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1 Introduction

Many fields of research, especially those in the social sciences, rely on surveys as a means of collecting data.

Indeed, certain types of information, such as attitudes or self-assessments, can only be gathered in this manner.

Experience has shown that response patterns are heavily influenced by the questionnaire design, with variations in

the instrument often introducing systematic tendencies and introducing a “survey effect” in the distribution of sam-

ple statistics (Bradburn, Sudman, and Wansink 2004; Schuman and Presser 1996; Sudman, Bradburn, and Schwarz

1996). Aspects as fundamental as the survey mode (Bowling 2005) to seemingly trivial details of question presen-

tation (Dawes 2008; Schwarz et al. 1991) are known to make a difference. As a result, an entire field of research,

survey methodology, has emerged to better understand these aspects of data collection and to establish conventions

for consistency.

One of the prominent themes in the survey design literature is that order often matters. While in some contexts

there is no evidence that the order of questions in a survey affect responses, (Bradburn and Mason 1964), most

analyses find otherwise (McFarland 1981; Sigelman 1981; Schwarz and Hippler 1995). There is also strong evidence

that the order of response options influences respondents’ tendencies (Knauper 1999; Chan 1991; Schwarz and

Hipler 1991).

In this work, we focus on order effects within a very narrow, but common, form of survey question: a battery

of Likert-scale questions. A Likert-scale question asks a respondent to select a response from a set of categorical,

ordered options (Likert 1932). Likert-scales are useful for categorizing attitudes or feelings when quantitative mea-

sures are impossible or impractical to obtain. While the nature of the questions and response options can vary, we

use the terminology that the respondent is “rating” an “item,” which is often the case. If a Likert-scale question

asks respondents to rate one particular item, then a battery of such questions asks for ratings of several different, but

presumably related, items on the same scale in one table or screen. An example from the field of consumer payment

surveys is given in Figure 1.

Likert-scale batteries allow respondents to efficiently provide ratings for a group of items in the context of one

another. For this reason, analyses often center on the relative rating distributions to two items in the battery, or how

often one is given a lower rating than the other. Unlike mean ratings or even the distribution of ratings themselves,

relative rating distributions provide direct insight into how the population feels toward one item relative to another.

Looking at relative ratings avoids issues caused by heterogeneity of responses, in which certain individuals tend to

give high ratings while others tend to give low ratings (Tourangeau, Rips, and Rasinki 2000).
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As far as we know, there has been little research on the effects of item ordering in Likert-scale batteries. The

lone example, Siminski (2008) found significant differences in response patterns under two orderings in the context

of a medical survey, but that analysis did not examine relative rating distributions nor did it attempt to quantify

effect sizes or trends. In this work, we look to understand the degree of variation in relative rating distributions

that is caused by different orderings and whether trends in ordering effects depend on the relative location of two

items. This paper is organized as follows. Section 2 defines the notation and research goal. Section 3 introduces

the data used in our analysis, and Section 4 does some preliminary data analysis that motivates the model developed

in Section 5. Section 6 discusses the implications of the model fits, and a broad summary of findings and potential

future work is given in Section 7.

2 Notation

In this section, we define the basic concepts of interest and introduce any relevant notation. Our analysis is limited to

Likert-scale questions with five possible responses fielded in batteries of eight items, just as in Figure 1. Considering

a collection of respondents, indexed by u, we let Ri[u] represents the rating given to item i by individual u. In the

case of a five-point Likert-scale, Ri[u] = 1, 2, . . . , 5 represent the ordered responses. In the example in Figure 1, a

rating of 1 corresponds to “very hard to get or set up” and a rating of 5 corresponds to “very easy to get or set up.”

The focus of this work is not on individual responses, but rather aggregate trends within the entire sample.

Specifically, we are interested in the relative rating distributions for two items, i and j, defined by Prob(Ri[u] <

Rj [u]),Prob(Ri[u] = Rj [u]), and Prob(Ri[u] > Rj [u]) where u is assumed to be drawn at random from the

entire population of U.S. consumers. To distinguish patterns under different orderings, we let o represent a particular

ordering of items, generally represented as a permutation of the integers one to eight. A battery with eight items has

8! = 40,320 possible orderings. For any two items, i and j, and ordering, o, the relative ratings of interest can be

uniquely identified by the quantities

pij(o) = Prob (Ri[u] < Rj [u] | item order o) and qij(o) = Prob (Ri[u] ≤ Rj [u] | item order o) , (1)

along with the fact that Prob (Ri[u] = Rj [u] | item order o) = qij(o)−pij(o) and Prob (Ri[u] > Rj [u] | item order o) =

1− qij(o).

Ideally, the quantities in (1) are identical for all o, but based on general findings about order effects, we expect

differences. One goal of this work is to gain insight into how {pij(o), qij(o)} compares with {pij(o′), qij(o′)}. Order

effects, if present, likely result from a variety of factors, many of which may be specific to the particular set of items
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being considered. However, some effects might relate to known, predictable components of any ordering, one of

which is the relative location of the two items in question. Relative location takes into account order of appearance

as well as distance between two items. Thus, we define `i(o) to be the location in the battery of item i in ordering o,

coded as integers from 1 (first in the list) to 8 (last in the list). Then, we define dij(o) = `j(o)− `i(o), which takes

integer values from −7 to 7, with the exception of 0.

3 Data

The data analyzed in this paper come from the Survey of Consumer Payment Choices (SCPC), a survey conducted

annually since 2008 by the Consumer Payment Research Center at the Boston Federal Reserve. The survey, generally

administered at the end of September and beginning of October, asks respondents about preferences and typical

behavior regarding various aspects of household economics, with a particular emphasis on the use of payment

instruments. The entire survey is taken online and takes around 30 minutes to complete. In our analysis, we use data

from the 2012 – 2014 SCPCs. The administration of the Likert batteries using several different orderings began in

2012, and the survey in all three included years provides responses for the exact same set of batteries. Studying data

from several renditions of the survey helps estimate the size of any universal ordering effects. Below, we discuss the

SCPC sample and introduce the survey design for the questions of interest.

3.1 Survey of Consumer Payment Choice

SCPC respondents come exclusively from RAND’s American Life Panel (ALP). The ALP originated in 2006 with

around 1,000 respondents and has been growing since. Recruitment into the ALP has relied on a variety of method-

ologies, with the general goal of making the panel as representative of the U.S. adult population as possible. More

information about the ALP can be found at http://mmic.rand.org/alp.

A key strategy in SCPC sample selection every year has been to balance the improvement of sample coverage

with respect to the target population of U.S. adults and to continue a longitudinal component to the sample. As

a result, many individuals in one year are the same as in a previous year. In 2012, there were 3,170 respondents,

including almost 1,000 individuals who had recently been added to the ALP as part of a targeted recruiting strategy

for lower-income and minority households. In the following two years, there were fewer respondents, 2,082 in 2013

and 1,805 in 2014. There were 1,347 respondents who participated in all three years.

The analysis in this paper is based on treating each respondent with equal weight, rather than weighing to better

match population composition or explicitly modeling separate effects for different demographic groups. While the
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SCPC sample in any given year does not perfectly match the demographic compositions of the U.S. adult population,

with respect to certain common demographics it is generally no farther off than a simple random sample of the target

population might be expected to be. Although it is certainly possible that the effect of order on response tendencies

varies across various demographic variables, such as age, making this type of assessment is beyond the focus of this

work. Instead, we are interested in the average effect for the survey-taking population.

3.2 Assessment of Payment Instrument Batteries

Survey data analyzed in this paper are responses to a series of six Likert batteries relating to the assessment of

eight payment instruments with respect to different characteristics. The characteristics to be rated were: acceptance,

cost, convenience, security, ease of setting up, and access to payment records. Each characteristic is presented on

a separate screen with the instruments listed vertically in a table as shown by the screenshot of the cost assessment

question in Figure 1. The wording and definitions relevant to these survey questions, shown in Table 1, were the

same for all three years of the SCPC.

Prior to 2012, the order in which the eight payment instruments were presented to the respondent was fixed, but

in 2012 the SCPC began randomizing the order in which the items are listed. The eight payment instruments are

grouped into three general types of payment instruments: paper, plastic, and online. The top panel in Table 2 lists the

eight instruments by type. The randomization of the survey instruments was done by permuting the order of the three

general groups of instruments while maintaining the same order within each group to preserve a degree of similarity

between instruments of the same group. Therefore, there are six possible orderings for the instruments, as shown

in the bottom panel of Table 2. Each year, the instrument orderings are assigned randomly to each respondent (and

maintained for all six characteristics for that individual) independently of any ordering observed by that respondent

in previous years. In order to accommodate the yearly component, we use the index t = 1, 2, 3 to identify data from

the years 2012, 2013, and 2014, respectively. We letNt(o) be the number of respondents in year t to see the batteries

under ordering o. Because of the increased sample size in 2012, N1(o) is around 500 respondents, while N2(o) and

N3(o) are closer to 300. Because of random assignment of ordering and sample changes, comparing data within a

particular ordering across years generally involves responses from a different set of respondents. No more than 12

percent of respondents in a given year saw the same ordering in a different year.

Implementing this form of randomization is advantageous from the point of view of survey methodology, as

it allows us to study patterns under different orderings. Restricting the number of orderings to six options has

the benefit of yielding substantial sample sizes for each ordering, making inferences about the particular orderings
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possible. However, if we are primarily interested in studying trends with respect to relative locations of the items,

a strategy in which orderings were taken at random from the 8! = 40,320 possible options would yield a greater

number of meaningful observations. As currently done, certain pairs of instruments are always in the same relative

locations: checks always directly follow cash. This means we cannot compare how relative ratings of checks and

cash change as their relative locations change. Additionally, by grouping instruments according to similarity, it is

possible that we are masking certain forms of variation, as we do not observe larger distances between items of the

same payment groups. Perhaps relative ratings for instruments that have similar attributes, such as credit and debit

cards, have a different pattern across orderings than relative ratings for pairs of instruments with less in common.

4 Preliminary Data Analysis

We begin with some preliminary data analysis that examines the nature of the variability in sample relative rating

frequencies under different item orderings. The extent of the variation, the presence of any trends with respect to

the relative location of items, and the extent to which the trends are consistent across years all inform the statistical

model for the data. In particular, having responses for identical batteries from a set of largely different respondent

sets in subsequent years provides great insight into whether effects are largely fixed for each given battery. Because

of the yearly component of the data, we introduce the subscript t to the notation in (1),

pijt(o) = Prob (Rit[u] < Rjt[u] | item order o) and qijt(o) = Prob (Rit[u] ≤ Rjt[u] | item order o) , (2)

so that yearly effects can be recognized. Natural estimates of the quantities in (2) are the sample frequencies of

observed relative ratings under corresponding orderings. Thus, if for respondent u, we let out be the battery ordering

observed in year t, then

Xijt(o) =
∑
u

1 [Rit[u] < Rjt[u] | out = o] and Yijt(o) =
∑
u

1 [Rit[u] ≤ Rjt[u] | out = o] ,

represents the number of individuals who gave a lower rating to item i than to item j under ordering o in year t and

the number of individuals who rated item i with an equal or lower rating than item j under ordering o in year t,

respectively. Sample estimates of (2) take the form

p̄ijt(o) =
Xijt(o)

Nt(o)
and q̄ijt(o) =

Yijt(o)

Nt(o)
.

Perhaps the simplest measure of the order effect comes by contrasting the relative rating frequencies for a given
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ordering to the averaged relative frequencies across all observed orderings, given by

p̄ijt =
6∑

o=1

Nt(o)

Nt
p̄ijt(o) and q̄ijt =

6∑
o=1

Nt(o)

Nt
q̄ijt(o).

Using weighted estimates rather than simply pooling data helps account for the fact that the relative prevalence of

each ordering varies across years. We note that any changes in p̄ijt and q̄ijt across t are of little interest. While these

quantities tend to be fairly consistent, some do show statistically significant differences across years. Because our

analysis focuses on relative changes from one ordering to another, we do not want to confound such ordering effects

with changes in overall attitudes from one year to the next. Therefore, we always estimate baseline frequencies

separately for each year.

Deviations, given by pijt(o) − pijt and qijt(o) − qijt, provide a measure of variation in relative ratings under

different orderings. Figure 2 shows scatterplots of deviations for t = 1 versus corresponding deviations for t = 2, 3.

As a point of comparison, consider six independent draws from a Binomial(300, 0.5) distribution. The deviation

of the sample frequency from the first draw from the sample frequency among data pooled over all six draws has a

standard deviation of 0.026, meaning over 90 percent of such deviations fall between−0.05 and 0.05. If the number

of draws is changed to 500, this interval drops to (−0.04, 0.04). Of course, if the likelihood of success moves away

from 0.5, these intervals will shorten as well. For a success likelihood of 0.2 and number of draws fixed at 500, the

standard deviation is 0.016. Given that values of pijt and qijt are not clustered around 0.5, the deviations in Figure

2 suggest greater variation than expected, especially in the case of q̄ijt(o).

Perhaps the most remarkable aspect of Figure 2 is the consistency observed in deviations for different years.

If deviations were drive only by sampling variation, the expected correlation would be 0. Instead, we observe

correlations of over 0.5 and 0.6 for pijt(o) and qijt(o), respectively. The strength of correlation cannot be explained

by the fact that some of the same respondents are providing responses within the same ordering. These people

constitute no more than 12 percent of the sample and correlations of item ratings from one year to the next among

those who participated in at least two years range from 0.25 to 0.6 with a mean of 0.45. Dependence driven by

presence of the same individuals in two samples is not great enough to see the correlations in Figure 2. The similarity

of the size and direction of deviations across years is evidence of real order effects. In addition, we find a relatively

strong correlation of 0.46 between p̄ijt(o)− p̄ijt and q̄ijt(o)− q̄ijt.

To look at trends with respect to relative locations, we capitalize on the above finding to combine data from all
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three years. For each of the 14 observable distances, d = −7, . . . ,−1, 1, . . . , 7, Figure 3 shows boxplots for

⋃
(o,i,j,t)

{p̄ijt(o)− p̄ijt | dij(o) = d} and
⋃

(o,i,j,t)

{q̄ijt(o)− q̄ijt | dij(o) = d},

the former in the top plot and the latter in the bottom plot. Because the deviation for any particular value of d

is measured relative to a baseline determined by the six observed orderings observed, combining deviations for

different item pairs is not always comparing the same concepts. The average effect over observed values of d

may not be the same for any two pairs of items, so the baseline of comparison is not standardized. For example,

regarding cash and checks the distance is always d = 1, while for cash and online bill payment d = 1 is observed

among d = −7,−4, 3, 5, 1, 4. In the former, expected deviation for any observed ordering is 0, because all orderings

have d = 1. In the latter, the expected deviation for the ordering with d = 1 will depend on the average effects for

the observed d, which may not be the same as the effect when d = 1.

Despite the concern in comparing deviations across item pairs, Figure 3 suggests a very interesting dynamic

in the changes of relative rating distributions as a function of the relative distance. Following the medians of each

boxplot, the data suggest that the likelihood of giving one item a lower rating than a second item is largely constant as

long as the second item is after the first. Whether the second item is directly after or seven spots after the first item, the

first item seems equally likely to have a lower rating than the second. However, as revealed by looking at cases where

d > 0 in the second plot, the earlier item is progressively less likely to be rated less than or equal to the second item

as the distance between them increases. The implication is that items later in the battery tend to get lower ratings than

when they are earlier in the list. The sample trends in both plots when d < 0 (item i is after item j) largely mirrors

the case where d > 0, as it should since Prob(Ri[u] < Rj [u] | dij = d) = 1− Prob(Rj [u] ≤ Ri[u] | dji = −d).

Based on the results of Figure 3, a parametric model for trends in relative ratings as a function of d should be

smooth and non-linear in order to capture the asymmetry between cases where d > 0 and those when d < 0. Based

on the extent of noise around the median trends in the plots, relative location explains only a portion of variation due

to order effects. Therefore, our model should allow for additional, order-specific effects independent of the relative

location of items.

5 Model

In this section, we delineate a model for the 2012 – 2014 SCPC data that can be used to generate broader inferences

about battery order effects in a general context. The model is based around formulating a set of distributions for
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{pijt(o), qijt(o)}. Given these, a natural model for the observed data might be

{Xijt(o), Yijt(o)−Xijt(o), Nt(o)− Yijt(o)} ∼ Multinomial (Nt(o), {pijt(o), qijt(o)− pijt(o), 1− qijt(o)}) . (3)

In practice, fitting hierarchical models, in which pijt(o) and qijt(o) are themselves random variables, is somewhat

onerous in most statistical software. Therefore, we greatly simplify the fitting by adopting the model

Xijt(o) ∼ Binomial(Nt(o), pijt(o)) and Yijt(o) ∼ Binomial(Nt(o), qijt(o)). (4)

Expected trends, effectively estimated by averaging over functions of p̄ijt(o) and q̄ijt(o), data statistics that do not

violate assumptions of the Multinomial distribution, will yield sensible results (Agresti 2002). Potential problems

may arise if one attempts to use our model to generate distributions of ordering effects, which in certain cases may

yield implausible Multinomial distributions. This aspect is discussed in further detail below.

Defining logit(z) = log
[

z
1−z

]
, for all z ∈ (0, 1), we adopt the following logistic regression model:

logit [pijt(o)] = µijt + λijt(o). (5)

By virtue of the fact that

logit [qijt(o)] = log

[
qijt(o)

1− qijt(o)

]
= log

[
1− pjit(o)
pjit(o)

]
= − [µjit + λjit(o)] , (6)

specifying a distribution for {λijt(o)} and {µijt} defines the entire data likelihood. The parameters, {µijt}, define

the “base rate” of relative ratings, to which relative rating distributions under different orderings are compared. In

estimation, we allow separate effects for µijt and µjit, with little interest in estimating the joint distribution of these

variables, and we assume independence between base rates and order effects.

We also assume that the random variables λijt(o) and λi′j′t′(o) are independent as long as it is not true that

i = i′, j = j′ or i = j′, j = i′. In particular, this means that changes in how item i is rated relative to item j

has no bearing on changes to how item i is rated relative to item j′. It is easy to imagine how such an assumption

may be wrong. If items j and j′ are sufficiently similar, a factor that affects the comparison of i to j might have a

similar effect on the comparison of i to j′. In addition, certain items may be more susceptible to external factors

influencing their given rating, in which case relative ratings involving that item might be generally more variable
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across orderings. However, this level of complexity to the dependence structure is beyond the scope of this work.

We decompose the order effect, λijt(o), into two components: one dealing with the relative location of the two

items and one related to all other sources of variation. We write the function as:

λijt(o) = fijt (dij(o)) + εijt(o). (7)

Because dji = −dij , the model in (7) implies that

λjit(o) = fjit (−dij(o)) + εjit(o). (8)

In particular, the variable, εijt(o), serves to distinguish response patterns in two different orderings in which the

locations of the two items in question happens to be the same. There are myriad potential causes for these effects,

an example of which might be the choice of items that fall between item i and item j.

For our smooth, non-linear function, we choose a cubic form, so that the model is

fijt(d) =
3∑

k=1

αkd
k + αijtd,

αijt = β[ij] + βij + β[ij]t + βijt (9)

εijt(o) = ε[ij]o + εijo + ε[ij]to + εijto,

where the subscript [ij] specifies effects that differ only in the sign of the ordered pairs (i, j) and (j, i). Thus, β[ij]t =

−β[ji]t. The motivation for this specification comes from the positive correlation observed between deviations p̄ijt(o)

and q̄ijt(o), which under the models in (5) and (6) corresponds to positive correlations between λijt(o) and−λjit(o).

In fact, if λijt(o) = −λjit(o), our model guarantees that pijt(o) < qijt(o).

In considering model specifications, we found that models in which varying quadratic and cubic terms were

included in addition to the varying linear term were superfluous. Fits resulted in linear combinations of the varying

terms as having zero variance, suggesting that there was not enough variation in the distance effects to justify more

complex models. Very similar results to those of the adopted model were found by using a piecewise linear function,

with varying slopes for different signs of d. However, the simpler use and exposition of the model in (10) led us to

its selection.

We model β· and ε· as independent, Normal random variables with mean zero. Specifically, we take

β[ij] ∼ Normal(0, σ2s0) βij ∼ Normal(0, σ2a0) β[ij]t ∼ Normal(0, σ2s1) βijt ∼ Normal(0, σ2a1)

ε[ij]o ∼ Normal(0, τ2s0) εijo ∼ Normal(0, τ2s0) ε[ij]to ∼ Normal(0, τ2s1) εijto ∼ Normal(0, τ2a1),

9



where the naming framework of the variance parameters takes “s” to mean symmetric with respect to (i, j), “a” to

mean asymmetric with respect to (i, j), “0” to represent effects that are fixed across years, and “1” to those that vary

across years.

The model used for the SCPC data accounts for the longitudinal nature of the data. However, it can easily be

consolidated to a more general case, outside the context of repeated surveys. Thus, a hypothetical researcher who is

interested in the distribution of ordering effects for a new battery of items is interested in a model of the form

λij(o) =
3∑

k=1

αkd
k + αijd+ εij(o) ,

αij , αji ∼ Normal
(
0, σ2s0 + σ2s1 + σ2a0 + σ2a1

)
with Cov (αij , αji) = −

(
σ2a0 + σ2a1

)
, (10)

εij(o), εji(o) ∼ Normal
(
0, τ2s0 + τ2s1 + τ2a0 + τ2a1

)
with Cov (εij(o), εji(o)) = −

(
τ2a0 + τ2a1

)
. (11)

6 Results

Models are fit using the glmer function in R. Estimates of all model parameters are provided in Table 3. We begin

by discussing some implications of the model fits themselves.

The nature of the varying effect terms suggests strong similarity of effects for the same pairs across different

years, λijt(o) and λijt′(o), as well as heavy dependence between λijt(o) and λjit(o). For the linear component,

in fact, only the time-invariant terms, β[ij]t and βijt, have estimated variances greater than zero. With regard to

the order-specific term, the model does find the presence of a year-specific term, ε[ij]to, but it is relatively small,

accounting for about a third of the variance in the order-specific effects. This result is consistent with empirical

similarities in the data across years.

Additionally, the effect sizes are such that the model implies great similarity between λijt(o) and −λjit(o),

by virtue of the fact that the asymmetric terms have relatively small variance compared to the symmetric ones.

Therefore, the distribution of λijt(o) conditional on −λjit(o) is relatively concentrated. The practical implication is

that effects related to rating item i less than item j are heavily dependent on effects related to rating item i less than

or equal to item j, with strong positive correlations in shifts for any item pair.

One nice aspect of the strong dependence in ordering effects, λijt(o) and λjit(o), is that simulations based on

the fitted model are likely to produce results in which pijt(o) ≤ qijt(o), a condition that is not explicitly imposed by

our estimation methodology. Given (5) and (6), we have that

logit [qijt(o)]− logit [pijt(o)] = (−µjit − µijt) + (αij − αji) d+ (εijo − εjio) . (12)

10



The first term on the right-hand side of (12), representing difference in base rates, is greater than zero by definition.

Therefore, implausible probabilities ensue if the remainder of right-hand side is negative and its absolute value

is greater than the difference in base rates. Under our model, this quantity is a Normal random variable with

variance greatest when d = 7 or d = −7, in which case, the standard deviation is 0.075. This means that if

−µjit−µijt > 0.225, it is virtually certain that the model will result in technically sound probabilities. A difference

of 0.225 in base rates is the difference between a frequency of 0.5 and 0.55 or the difference between a frequency

of 0.2 and 0.24. Therefore, as long as the likelihood of providing the same ranking is larger than 0.05, which is the

case in our data, the fact that our model does not meet the technically required criteria should have little practical

impact on simulations.

Algorithm 1 details a procedure to simulate data, X∗ijt(o) and Y ∗ijt(o). The procedure detailed uses the estimated

baseline rates, µ̂ijt, so as to make comparisons of relative ordering effects for particular items in the SCPC survey

easier, but it can easily be adapted to generate data for any unobserved batteries. Adaptations to simulate without

an annual component involve removing the time-specific loop in (1) and updating distributions to those given in

(10 – 11).

Algorithm 1 Simulating Data

for unordered pairs (i, j) do
Draw β[ij] ∼ Normal(0, σ2s0)
Draw βij , βji ∼ Normal(0, σ2a0)
for o = 1, 2, 3, 4, 5, 6 do

Draw ε[ij]o ∼ Normal(0, τ2s0
Draw εijo, εjio ∼ Normal(0, τ2a0)
for t = 1, 2, 3 do

Draw ε[ij]to ∼ Normal(0, τ2s1)
Define λijt(o) and λjit(o), as given in (7), (8), and (10)
Define pijt(o) and qijt(o) using µ̂ijt and µ̂jit, as given in (5) and (6)

Draw
{
X∗ijt(o), Y

∗
ijt(o)

}
from Multinomial

(
Nt(o),

{
p∗ijt(o), q

∗
ijt(o)− p∗ijt(o), 1− q∗ijt(o)

})
end for

end for
end for

6.1 Posterior Checks

Before drawing conclusions and inferences about trends, it is prudent to check that our model adequately captures

certain aspects of the data. We do so through posterior predictive checks, in which properties of simulated data are

compared with those of the observed data (Gelman and Hill 2007). We are primarily interested in expected trends
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with respect to the relative locations, which are defined by the parameters αk. Therefore, ideal posterior checks

involve functions of the data whose distribution is predominantly determined by those parameters as opposed to

others, thus isolating the effects of the αk from other components, most notably the base rates.

A convenient pair of functions for any pair of items, (i, j), is

Sijt(o, o
′) = logit [pijt(o)]− logit

[
pijt(o

′)
]

Tijt(o, o
′) = logit [qijt(o)]− logit

[
qijt(o

′)
]

because their expectations with respect to random draw of (o, o′) are

E
[
Sijt(o, o

′)
]

=

3∑
k=1

αk

[
dkij(o)− dkij(o′)

]
E
[
Tijt(o, o

′)
]

=
3∑

k=1

αk

[
dkji(o

′)− dkji(o)
]
.

In fact, for unique pairs (d1, d2), the set defined by

U(d1, d2) =
{
Sijt(o, o

′) | dij(o) = d1, dij(o
′) = d2

}⋃{
Tijt(o, o

′) | dij(o) = −d2, dij(o′) = −d1
}
.

is a collection of variables with an identical mean that is defined by αk, d1, and d2.

We define e(d1, d2) to be the average of the elements in a given collection, U(d1, d2). Therefore, e(d1, d2) is

itself a random variable with expectation uniquely defined by the parameters αk. The variance of these statistics de-

pends on many variables, including the number of elements in U(d1, d2), the size of Nt(o), the base rates associated

with item pairs in the collection, and the variance parameters of varying effects in our model.

In generating posterior predictions, we try to keep as many components as possible constant. Thus, we letX∗ijt(o)

and Y ∗ijt(o) be simulated counts using the estimated base rates µ̂ijt and the appropriate sample sizes, Nt(o), of the

SCPC data. Simulated results can be used to generate p∗ijt(o), q
∗
ijt(o) and, in turn, S∗ijt(o, o

′) and T ∗ijt(o, o
′). For

each set of simulated data, we can create U∗(d1, d2) and calculate its average, e∗(d1, d2). Corresponding averages

for the observed data are noted as ē(d1, d2).

We simulate 500 independent sets of SCPC data and thus generate 500 sets of e∗(d1, d2) for each of the 52

unique pairs of (d1, d2). Figure 4 compares the observed statistics ē(d1, d2) to the mean and 95 percent prediction

intervals, defined by central-most 475 values, of the simulated data. Appropriate specification of model parameters

should lead to general consistency between the observed statistics and their simulated distributions. As expected,

when d1 = d2, the expectation of e∗(d1, d2) is zero. Otherwise, as d2 − d1 increases, the mean increases, because
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our model predicts generally larger discrepancies when distances are greater. In addition, the obvious trends within

(d1, d2) for a fixed value of d2 − d1 result from the fact that plotted results are organized according to increasing

values of d1 and d2, and the largest effects are observed for negative values of d.

Only 47 out of 52 (90.4 percent) posterior intervals contain the observed means, although it is important to

remember that confidence intervals are not independent of one another, since data for a given pair of items goes into

results for (dij(o), dij(o
′)), and (−dij(o),−dij(o′)). Although the observed patterns mimic the simulated trends,

they are sometimes shifted up (d2 − d1 = 11) or down (d2 − d1 = 10). This too might be explained by dependence

of observations or the inability of our model to properly capture effect variances, which, as noted throughout this

paper, likely have complicated structures. Indeed, the use of medians of U(d1, d2) rather than means leads to better

agreement between observed and simulated results, perhaps indicating that variance in effects is more heterogeneous

across pairs than our model allows. Nevertheless, the SCPC statistics seem to generally match the simulated trends,

suggesting, at least, that our parametric trend curve, given by αk, is adequate.

6.2 Implications

Given that our model seems to do an adequate job of capturing mean effects as a function of the relative location of

items, we explore implications for survey data. The overall trend determined as a function of the distance between

two items, dij(o), is given by the estimated parameters αk. It is useful to consider effects relative to a baseline, which

we choose to be an ordering in which d = 1. Thus, the solid black line in Figure 5 shows the expected multiplicative

effect on the odds relative to an ordering in which dij = 1, exp
{∑3

k=1 αkd
k −

∑3
k=1 αk

}
. The shape of this trend

line closely matches the trend in medians shown in Figure 3, confirming the empirical findings.

Figure 5 also shows the variation in trends due to the varying slope term, which allows pairs of items to have

different trend lines across different orders. The variation in these trend lines is substantial. As an example, positive

values of αij tend to increase the relative influence of the linear term and at the same time increase the slope, resulting

in more drastic differences in fij(d) across d with negative values of fij(d) when d > 0 and positive values when

d < 0. When αij < 0, the quadratic term takes precedence, resulting in an fij(d) with relatively small, but positive

values for all d, although with the largest values when the distance is large (|d| is big). Finally, Figure 5 also shows

the relative variation due to the order-specific effect. In particular, we see that for a fixed distance between items i

and j, other changes in the ordering change the odds by factors from 0.8 to 1.2.

Multiplicative effects on odds are revealing, but it is hard to take those results and visualize practical effects on

estimated relative rating distributions under different orderings. In Figure 6, we use the fitted trend line to show
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expected effects on relative rating distributions as the relative locations of the items changes for four examples

defined by different base rates. The expected changes under different relative locations are non-trivial. The greatest

changes relate to the probability that item i is greater than item j as item j moves down the battery relative to item i.

The greater the distance, the more likely that item j is given a higher rating than item i. Comparing extreme cases,

in which item i and j switch spots at the very top and bottom of the list, shows differences ranging from 0.05 to 0.09

in the likelihood of giving item i a higher rating than item j.

The changes observed in Figure 6 are certainly large enough to bias comparisons of groups in which data were

collected under different orderings. For example, if a researcher were interested in making inferences about rela-

tive ratings of two items in one-subpopulation to those in a second sub-population, but responses for the two were

collected under different battery orderings, such comparisons would likely be unfair. While the order-specific differ-

ences are impossible to predict, changes in reported attitudes based on item distances can be adjusted for. Otherwise,

sub-populations that have similar tendencies may be distinguished and marked as different solely due to different

relative locations of items in the survey batteries.

7 Discussion

In this paper, we use data from six different question batteries that were asked of survey respondents under different

orderings to study how the ordering of items in the battery influenced responses. We found evidence that different

orderings have distinct effects on tendencies in relative item ratings. In particular, we see a pattern that depends on

the relative locations of the items in the battery. At the very least, researchers who use similar Likert-scale batteries

should be aware of these effects when writing questionnaires and analyzing survey data.

Further research into the nature of these effects can take many forms. Using different sets of items to check

for robustness, developing more elaborate parametric models and dependence structures for effects under different

orderings are perhaps most useful. Simple extensions, such as considering Likert-scales with a greater number

of response options or longer batteries would also be interesting. Expanding analysis to include not only relative

locations, but other predictable aspects of the battery, such as the actual location of the items, could also help give

us insight into the dynamics at hand. More nuanced analyses could potentially distinguish trends between item

pairs in which lower ratings are considered positive to those in which lower ratings are negatively associated. In

general, psychological explanations for the underlying cognitive processes involved would be interesting and could

potentially help in future questionnaire design.

From the viewpoint of a survey methodologist, how best to collect responses for a series of Likert-scale questions
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is unclear. One option for modeling is to allow for an ordering effect in the stochastic model used to describe relative

response tendencies. The use of randomization of ordering will also be effective at averaging out the influence of

ordering effects as long as sample sizes are sufficiently large. Finally, because our finding is that effects are greater

when distances between items are greater, it is possible to use shorter Likert batteries. However, it is unclear how

the order of the blocked, Likert batteries would affect results. Again, more research is necessary to ascertain the

potential benefits of such an approach.
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Table 1: The text for the six Likert-scale batteries used in the 2012 – 2014 SCPCs.

Characteristic Question Text
Acceptance Please rate how likely each payment method is to be

ACCEPTED for payment by stores, companies, online
merchants, and other people or organizations.

Cost Please rate the COST of using each payment method.

Examples: Fees, penalties, postage, interest paid or
lost, subscriptions, or materials can raise the cost of a
payment method. Cash discounts and rewards (like frequent
flyer miles) can lower the cost of a payment method.

Convenience Please rate the CONVENIENCE of each payment method.

Examples: speed, control over payment timing, ease of
use, effort to carry, ability to keep or store.

Security Suppose a payment method has been stolen, misused, or
accessed without the owners permission. Please rate the
SECURITY of each method against permanent financial loss
or unwanted disclosure of personal information.

Ease of Setting Up Rate the task of getting or setting up each payment method
before you can use it.

Examples: getting cash at the ATM, length of time to get
or set up, paperwork, learning to use or install it, or
travel.

Access to Payment
Records

Rate the quality of payment records offered by each
payment method. Consider both paper and electronic
records.

Examples: proof of purchase, account balances, spending
history, usefulness in correcting errors or dispute
resolution, or ease of storage.
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Table 2: The three different groups of instruments referenced in the SCPC along with the six different orderings presented at
random to respondents. The different orderings reflect different permutations of the three instrument types.

Instrument Group Instruments
Paper Cash (C) Check (Ch) Money Order (MO)
Plastic Credit (CC) Debit (DC) Prepaid Card (PC)
Online Bank Acct. # Payments (BA) Online Bill Payment (OB)

Order 1 C Ch MO CC DC PC BA OB
Order 2 C Ch MO BA OB CC DC PC
Order 3 CC DC PC C Ch MO BA OB
Order 4 CC DC PC BA OB C Ch MO
Order 5 BA OB C Ch MO CC DC PC
Order 6 BA OB CC DC PC C Ch MO

Table 3: Fitted model parameter estimates (×100). For non-varying parameters, standard errors are included in parentheses.

Non-Varying Varying Slope Order-Specific Effect
Parameter α1 α2 α3 σs0 σa0 σs1 σa0 τs0 τa0 τs1 τa1
Estimate -1.28 (0.27) 1.299 (0.12) -0.06 (0.04) 1.43 0.55 0.00 0.00 9.04 3.66 5.38 0.00

Source: Author’s calculations.
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Figure 1: Example of Likert-scale battery from the Survey of Consumer Payment Choice.
Source: Author’s calculations.
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Figure 2: pijt(o) − pijt and qijt(o) − qijt across t = 1 and t = 2, 3. Ellipses correspond to 98 percent confidence interval
under the assumption of a bivariate Normal distribution.

Source: Author’s calculations.
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Figure 3: Distribution of deviations for different relative locations, indexed by d.
Source: Author’s calculations.
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Posterior Predictive Checks
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Figure 4: ē(d1, d2) vs. 95 percent posterior intervals for e∗(d1, d2).
Source: Author’s calculations.

Effect of Relative Location on Relationship Between Item Responses
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Figure 5: Relative log-odds compared to hypothetical ordering for which dij(o) = 1.
Source: Author’s calculations.
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Effect of Location: Example 1
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Effect of Location: Example 2
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Effect of Location: Example 3
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Effect of Location: Example 4
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Figure 6: Expected distributions of relative ratings under different relative locations for four examples. The left-most bar
corresponds to item i having a rating less than that of item j. The middle bar is the frequency with which item i and
item j have the same rating. The right-most bar is the frequency with which item j is rated higher than item i.

Source: Author’s calculations.
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