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The Anatomy of Out-of-Sample Forecasting Accuracy

Abstract

We introduce the performance-based Shapley value (PBSV) to measure the con-
tributions of individual predictors to the out-of-sample loss for time-series forecasting
models. Our new metric allows a researcher to anatomize out-of-sample forecasting ac-
curacy, thereby providing valuable information for interpreting time-series forecasting
models. The PBSV is model agnostic—so it can be applied to any forecasting model,
including “black box” models in machine learning—and it can be used for any loss
function. We also develop the TS-Shapley-VI, a version of the conventional Shapley
value that gauges the importance of predictors for explaining the in-sample predictions
in the entire sequence of fitted models that generates the time series of out-of-sample
forecasts. We then propose the model accordance score to compare predictor ranks
based on the TS-Shapley-VI and PBSV, thereby linking the predictors’ in-sample im-
portance to their contributions to out-of-sample forecasting accuracy. We illustrate
our metrics in an application forecasting US inflation.

Keywords: Model interpretation, Machine learning, Big data, Shapley value, Loss func-
tion, Inflation

JEL classifications: C22, C45, C52, C53, E31, E37

1. Introduction

Time-series forecasting models play a fundamental role in macroeconomics and finance. With

the advent of “big data,” the use of machine learning for out-of-sample time-series forecast-

ing in macroeconomics and finance is burgeoning. Macroeconomic applications forecast a

host of variables, such as inflation, output and employment growth, the unemployment rate,

unemployment insurance initial claims, and housing starts1; applications in finance often

involve forecasting stock returns.2 The growing literature provides evidence that machine-

learning techniques improve forecasting accuracy. While forecasting accuracy is obviously

crucial to a model’s usefulness, the ability to interpret fitted time-series forecasting mod-

els is also vital, as many machine-learning models are “black boxes.” In particular, it is

important to understand how the predictors in fitted machine-learning models contribute

1See, for example, Medeiros and Mendes (2016), Medeiros et al. (2021), Borup and Schütte (2022), Goulet
Coulombe et al. (2022), Borup et al. (2023), and Hauzenberger et al. (2023).

2See, for example, Chinco et al. (2019), Freyberger et al. (2020), Gu et al. (2020), Dong et al. (2022), and
Avramov et al. (2023).
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to forecasting accuracy, thereby making the black boxes more transparent by revealing the

roles of the model inputs in determining time-series forecasting success. In this paper, we

develop the first metric—the performance-based Shapley value (PBSVp)—that provides such

an understanding.

Specifically, the PBSVp estimates the contribution of a predictor p in a sequence of fitted

time-series forecasting models to the loss over the out-of-sample forecast evaluation period

(although it can also be computed for any subsample of the forecast evaluation period,

including a single observation). As its name suggests, we employ the logic of Shapley (1953)

values to fairly allocate the marginal contributions of a model’s predictors to the out-of-

sample loss. By a property of Shapley values, the sum of the PBSVp values across all of

the predictors equals the out-of-sample loss. Thus, by computing the PBSVp for each of the

predictors, we can decompose the out-of-sample loss into the components attributable to the

individual predictors.

In essence, the PBSVp allows us to anatomize forecasting accuracy in a time-series con-

text, identifying the predictors that enhance out-of-sample performance as well as those that

detract from it. By understanding the roles of predictors in determining out-of-sample per-

formance, researchers gain insight into empirically important economic mechanisms that can

help to guide the assessment and development of theoretical models. In a similar vein, it

allows researchers involved in policy to provide more comprehensible and relevant advice to

policymakers. We emphasize that the PBSVp is very flexible: it is model agnostic—so it can

be used for any forecasting model (parametric or nonparametric, linear or nonlinear)—and

it can be applied to any loss function, including the popular mean squared error (MSE),

mean absolute error (MAE), and root mean squared error (RMSE) criteria.

As machine learning has grown in popularity over the past few decades, a variety of

tools have been developed for interpreting fitted prediction models, including many that are

model agnostic. One set of tools analyzes how the in-sample predictions generated by fitted

models vary with the individual predictors. Such methods include partial dependence plots
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(Friedman, 2001), Shapley values (Shapley, 1953; S̆trumbelj and Kononenko, 2010, 2014;

Lundberg and Lee, 2017), individual conditional expectation curves (Goldstein et al., 2015),

locally interpretable model-agnostic explanations (Ribeiro et al., 2016), and accumulated

local effects (Apley and Zhu, 2020). A related set of tools measures variable importance,

namely, how important individual predictors are in accounting for the predictions produced

by fitted models. Variable importance metrics include those based on partial dependence

plots (Greenwell et al., 2018), permutations (Fisher et al., 2019), and Shapley values (Lund-

berg and Lee, 2017; Casalicchio et al., 2018).

Existing tools for interpreting fitted prediction models are typically applied in a manner

appropriate for cross-sectional data. Specifically, a researcher divides the total sample of

observations into training and test samples. The researcher then fits a prediction model

using data from the training sample and uses the fitted model to generate predictions for the

test-sample observations. To interpret the model that generates the forecasts, the researcher

computes, for example, the variable importance for each predictor based on the fitted model

and training data used to estimate the model. This conventional approach is eminently rea-

sonable, especially in a cross-sectional context.3 However, it is not necessarily appropriate

in a time-series setting. In such a setting, a researcher typically re-estimates the prediction

model each period using an expanding or rolling window of data, as they generate a sequence

of out-of-sample forecasts. Thus, instead of a single model, there is a sequence of estimated

models to interpret. Our new PBSVp metric explicitly accounts for a time-series setting by

recognizing that the prediction model is re-estimated regularly as new data become avail-

able when generating the sequence of out-of-sample forecasts. The conventional approach

also focuses on the predictors’ contributions to the in-sample predictions, while the PBSVp

estimates their contributions to the out-of-sample loss—the ultimate object of interest for

assessing forecasting accuracy.

We develop two additional metrics that, in conjunction with the PBSVp, link the predic-

3For example, this approach is used on numerous occasions for the applications in the insightful textbook
by Molnar (2023).

3



tors’ in-sample importance in fitted models to their contributions to out-of-sample forecasting

accuracy. First, we introduce the TS-Shapley-VIp, an extension of the conventional in-sample

Shapley-based variable importance measure that aggregates predictor p’s in-sample variable

importance across the entire set of fitted models that generates the sequence of out-of-sample

time-series forecasts.

Second, we define the model accordance score (MAS) to assess the extent to which the

in-sample importance of predictors in a sequence of fitted forecasting models aligns with the

predictors’ contributions to out-of-sample forecasting accuracy. Specifically, in the spirit of

the Spearman rank correlation, we compare the ranks of the predictors in terms of their

in-sample importance based on the TS-Shapley-VIp and their contributions to out-of-sample

forecasting accuracy based on the PBSVp. A relatively high MAS indicates that the pre-

dictors that are the most important for generating the in-sample fitted values in a sequence

of time-series forecasting models are also the most responsible for improving out-of-sample

forecasting accuracy. As the MAS declines, there are greater discrepancies between the in-

sample importance of predictors and their contributions to out-of-sample accuracy. While

a performance metric like the RMSE focuses solely on out-of-sample performance, the MAS

evaluates whether a model’s out-of-sample success mirrors what it has learned from the in-

sample data. The MAS paired with a performance metric such as the RMSE provides insight

into the model’s “intentional success.” We develop a procedure for testing the statistical sig-

nificance of the MAS.

We illustrate the use of our new metrics in an empirical application forecasting US

inflation. A spate of recent studies finds that large datasets in conjunction with nonlin-

ear machine-learning models, including random forests and neural networks, significantly

improve inflation forecasts (e.g., Medeiros et al., 2021; Goulet Coulombe, 2022; Goulet

Coulombe et al., 2022; Hauzenberger et al., 2023). We generate inflation forecasts using

a set of approximately 120 predictors, primarily from the FRED-MD database (McCracken

and Ng, 2016), and a variety of leading machine-learning methods, including principal com-
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ponent regression (Stock and Watson, 2002a,b), elastic net (Zou and Hastie, 2005) estimation

of a linear model, random forests (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and

neural networks. We also consider ensembles of individual forecasts generated by different

models. The forecasting models consistently outperform a standard autoregressive (AR)

benchmark in terms of RMSE at horizons ranging from one to twelve months, in line with

the recent literature.

We employ our new PBSVp to measure how the predictors contribute to increasing the

accuracy of the out-of-sample inflation forecasts. At shorter horizons, the PBSVp identifies

the price of oil as a leading predictor for improving forecasting accuracy across different

models, in line with the relevance of commodity price fluctuations for short-term inflation.

Across all reported horizons and a variety of models, the PBSVp points to the durables

component of the CPI, the medical services component of the CPI, and the spread between

the Baa-rated corporate bond yield and federal funds rate as important predictors when it

comes to forecasting accuracy.

The MAS values reflect the degree of agreement in terms of predictor ranks between the

TS-Shapley-VIp and PBSVp for the different forecasting models. For some models, we find

a relatively low RMSE combined with a relatively low MAS, suggesting that luck played

a substantive role in the model’s out-of-sample success. For other models, a low RMSE

coincides with a high MAS, indicating that the sequence of fitted models learned from the

in-sample data in a manner that reliably delivers out-of-sample forecasting accuracy. In this

regard, the random forest and ensemble forecasts generally perform the best.

The remainder of the paper is organized as follows. Section 2 derives the PBSVp,

TS-Shapley-VIp, and MAS metrics for analyzing predictor relevance in a time-series con-

text. Section 3 presents the empirical application forecasting US inflation. Section 4 con-

cludes. We created the Python package anatomy, which is model agnostic, to implement the

algorithms for computing our new metrics.
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2. Methodology

We use the following notation in our time-series context. We index individual predictors by

p and collect the predictors in the index set S = {1, . . . , P}. The period-t P -dimensional

vector of predictor observations is denoted by xt = [ x1,t · · · xP,t ]′. The prediction model

is given by

yt+1:t+h = f(xt) + εt+1:t+h, (1)

where yt+1:t+h = (1/h)
∑h

k=1 yt+k is the target, h is the forecast horizon, f is the conditional

mean (i.e., prediction) function, and εt+1:t+h is a zero-mean disturbance term. We denote

the fitted prediction model by f̂ , while Wi = {ti,start, . . . , ti,end − (h− 1)− 1} denotes the

set of observations used to train the model in Equation (1) based on window Wi. The

fitted prediction model evaluated at xt and trained using Wi for horizon h is denoted by

f̂(xt ;Wi, h).

2.1. Shapley Values in a Time-Series Context

Shapley values draw on coalitional game theory to utilize the analogy between the predictors

in a model and players in a cooperative game earning payoffs, where an individual predic-

tor’s payoff corresponds to its contribution to the model’s prediction. In a time-series setting,

the aim of a Shapley value is to quantify the marginal contribution of predictor xp,t to the

prediction f̂(xt ;Wi, h), given the presence of all of the other predictors (S \ {p}). Allo-

cating the contributions of the predictors to the prediction is a challenging task, especially

for correlated predictors, interactions between predictors in the fitted model, and complex

nonlinearities. Viewed through the lens of coalitional game theory, Shapley values provide a

means for fairly allocating the contributions of the predictors to a prediction for any fitted

prediction model.

Adapting S̆trumbelj and Kononenko (2010, 2014) to our time-series context, the Shapley

value for predictor p and instance xt for a model trained using window Wi for horizon h is

6



given by

φp(xt ;Wi, h) =
∑

Q⊆S\{p}

|Q|!(P − |Q| − 1)!

P !

[
ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h)

]
(2)

for p ∈ S and t ∈ Wi, where Q is a subset of predictors (i.e., a coalition), Q ⊆ S \ {p} is

the set of all possible coalitions of P − 1 predictors in S that exclude predictor p, |Q| is the

cardinality of Q, |Q|!(P − |Q| − 1)!/P ! is a combinatorial weight,

ξQ(xt ;Wi, h) = E
[
f̂
∣∣Xj,t = xj,t ∀ j ∈ Q ;Wi, h

]
(3)

is the value function, and E is the expectation operator. Equation (3) is the prediction of the

fitted model conditional on the predictors in coalition Q, so ξQ∪{p}(xt ;Wi, h)−ξQ(xt ;Wi, h)

in Equation (2) measures the change in the prediction, conditional on the predictors in coali-

tion Q, when the predictor p is included in the conditioning information set. The difference

ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h) is computed for all possible coalitions of P − 1 predictors

that exclude predictor p, with each quantity receiving the weight |Q|!(P − |Q| − 1)!/P ! in

the summation in Equation (2) (the weights sum to one). In essence, the Shapley value uses

coalitions to control for the other predictors when measuring the contribution of predictor p

to the prediction corresponding to instance xt.

The Shapley value in Equation (2) has a number of attractive properties, including effi-

ciency, also known as local accuracy:

∑
p∈S

φp(xt ;Wi, h) = f̂(xt ;Wi, h)− E
[
f̂ ;Wi, h

]
, (4)

where E[f̂ ;Wi, h] is the baseline prediction, which corresponds to the unconditional expec-

tation of f̂ (i.e., the prediction based on the empty coalition set). Equation (4) says that we

can exactly decompose the fitted model prediction corresponding to instance xt (in terms

of the deviation from the baseline prediction) into the sum of the Shapley values for the

individual predictors for that instance.

In general, it is practically infeasible to compute the exact Shapley value in Equation (2)
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for even a moderate number of predictors, as the prediction function has to be evaluated for

all possible coalitions both with and without predictor p. Building on the sampling-based

approach of Castro et al. (2009), S̆trumbelj and Kononenko (2014) develop an algorithm for

estimating the Shapley value. We use a refined version of their algorithm. We first express

Equation (2) in the equivalent form:

φp(xt ;Wi, h) =
1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}(xt ;Wi, h)− ξPrep(O)(xt ;Wi, h)

]
(5)

for p ∈ S and t ∈ Wi, where O is an ordered permutation for the predictor indices in S, π(P )

is the set of all ordered permutations for S, and Prep(O) is the set of indices that precede p

in O. The algorithm is based on making a random draw m with replacement for an ordered

permutation from π(P ), which we denote by Om. Using Om, we compute the following:

θp,m(xt ;Wi, h) =
1

|Wi|
∑
s∈Wi

[
f̂(xj,t : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h)−

f̂(xj,t : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h)
] (6)

for p ∈ S and t ∈ Wi, where Postp(O) is the set of indices that follow p in O. Equation (6)

approximates the effect of removing predictors not in the coalition by replacing them with

background data from the training sample (S̆trumbelj and Kononenko, 2014; Lundberg and

Lee, 2017). “Background data” refer to the data used to integrate out the predictors not in

the coalition when estimating the conditional expectation in Equation (3).4 The estimate of

φp(xt ;Wi, h) in Equation (5) is then given by

φ̂p(xt ;Wi, h) =
1

2M

2M∑
m=1

θp,m(xt ;Wi, h) (7)

for p ∈ S and t ∈ Wi, where M is the number of random draws. To increase computational

efficiency, we follow Castro et al. (2009) and compute Shapley values for each predictor p ∈ S
4Equation (6) effectively samples from the empirical marginal distribution based on the training sample

for the predictors not in the coalition, which implicitly assumes that the predictors not in the coalition
are distributed independently of those in the coalition. Because this assumption is not likely to hold in
practice, Lundberg and Lee (2017) propose sampling from the empirical conditional distribution for the
predictors not in the coalition. Using insights from Pearl (2009), however, Janzing et al. (2020) argue that,
to fairly allocate the contributions across the individual predictors, it is more appropriate to use the empirical
marginal distribution, as in Equation (6).
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for a randomly drawn ordered permutation from π(P ). In addition, we implement antithetic

sampling as a variance-reduction technique by computing θp,m(xt ;Wi, h) in Equation (6) for

the original order of a randomly drawn ordered permutation as well as when the order is

reversed (Mitchell et al., 2022). Equation (7) retains the property of efficiency:

∑
p∈S

φ̂p(xt ;Wi, h) = f̂(xt ;Wi, h)− ¯̂
f(Wi, h)︸ ︷︷ ︸
φ̂∅(Wi,h)

, (8)

where
¯̂
f(Wi, h) = (1/|Wi|)

∑
t∈Wi

f̂(xt ;Wi, h) is the average in-sample prediction for the

model trained using sample Wi, which corresponds to the baseline or unconditional forecast

(i.e., the forecast based on the empty coalition set, which we denote by φ̂∅(Wi, h)).

The Shapley value φ̂p(xt ;Wi, h) provides a local measure of the contribution of predictor

p to the prediction corresponding to instance xt in the training sample. A global measure

of the importance of predictor p for the training sample can be computed by taking the

average of the absolute values of the Shapley values for predictor p across the training-

sample observations:

Shapley-VIp(Wi, h) =
1

|Wi|
∑
t∈Wi

∣∣∣φ̂p(xt ;Wi, h)
∣∣∣ (9)

for p ∈ S. The variable importance measure in Equation (9) is a popular metric for assessing

predictor importance in machine-learning applications (e.g., Molnar, 2023, Chapter 9.6).

Equation (9) is based on a single training sample. Tools for interpreting fitted models are

usually applied in this manner, which is appropriate for cross-sectional data (or time-series

data if a researcher only estimates the prediction model once). In a time-series context,

however, researchers typically re-estimate the model on a regular basis over time as additional

data become available, so there are multiple training samples. Next, we develop a variable

importance metric more suited to this practice.

When forecasting time-series variables in macroeconomics and finance, it is common to

retrain the prediction model using data available at the time of forecast formation. For

example, if we are forecasting a monthly variable at horizon h, we re-estimate the prediction
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model each month as additional data become available, which is typically done using either

an expanding or rolling window, where the estimation sample becomes longer (remains the

same size) for the former (latter). Suppose that there are t = 1, . . . , T total observations

available. The initial in-sample period ends in t = Tin, while the remaining T − Tin = D

observations constitute the out-of-sample period.

Mimicking the situation of a forecaster in real time, we proceed as follows. We first

use observations from t = 1 through t = Tin − (h − 1) − 1 to fit the prediction model

in Equation (1) and generate an out-of-sample forecast of yTin+1:Tin+h. For an expanding

(rolling) window, we then use observations from t = 1 (t = 2) through Tin − (h − 1) to

fit Equation (1) and generate a forecast of yTin+2:Tin+h+1. Continuing in this manner, we

generate a sequence of D − (h − 1) out-of-sample forecasts, where, for the final forecast,

we use observations from the first period (period T − D − (h− 1)) through T − 2h for an

expanding (rolling) window to fit Equation (1) and generate a forecast of yT−(h−1):T . Note

that we only use data available at the time of forecast formation to train the model so that

there is no “look-ahead” bias in the out-of-sample forecasts. We denote the sequence of

time-series forecasts by ŷTin+1:Tin+h, ŷTin+2:Tin+h+1, . . . , ŷT−(h−1):T .

The Shapley-based variable importance in Equation (9) corresponds to a prediction model

trained once using the observations in Wi. To accommodate the sequence of D − (h − 1)

time-series forecasts for models regularly retrained with an expanding or rolling window, we

denote the set of training samples by W =
{
W1, . . . ,WD−(h−1)

}
. In this context, we define

the time-series Shapley-based variable importance as

TS-Shapley-VIp(W,h) =
1

|W |
∑
i∈W

Shapley-VIp(Wi, h) (10)

for p ∈ S, which is the average of the variable importance measures for predictor p across

all of the training samples used to generate the sequence of time-series forecasts.
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2.2. Performance-Based Shapley Values

Out-of-sample forecasts are typically assessed using a loss function. Accordingly, we pro-

pose the PBSVp to decompose the loss over the out-of-sample period into the components

attributable to the individual predictors p ∈ S. We begin by defining the Shapley value

for the fitted model and the vector of predictors used to generate an out-of-sample forecast,

which corresponds to an out-of-sample version of Equation (5):

φoutp

(
xTin+(i−1) ;Wi, h

)
=

1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}

(
xTin+(i−1) ;Wi, h

)
− ξPrep(O)

(
xTin+(i−1) ;Wi, h

)]
(11)

for p ∈ S and i = 1, . . . , D − (h− 1), where xTin+(i−1) is the vector of predictors plugged

into the fitted prediction model that is trained with Wi and used to generate the ith out-

of-sample forecast, which is given by ŷTin+i:Tin+h+(i−1) = f̂
(
xTin+(i−1) ;Wi, h

)
. To estimate

Equation (11), we use a suitably modified version of the algorithm in Section 2.1. For a

random draw m of an ordered permutation, we modify Equation (6) to

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
=

1

|Wi|
∑
s∈Wi

[
f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)
−

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]
,

(12)

while Equation (7) becomes

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
(13)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (12) continues to approximate the effect of

removing predictors not in the coalition by replacing them with background data from Wi,

as this is the sample used to train the prediction model that generates the out-of-sample

forecast; in this sense, we remain “true to the model” that is used for forecasting.5 The

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
estimate in Equation (13) continues to be characterized by efficiency,

5“True to the model” means that we use parameter estimates from the fitted prediction model and
background data from the training sample used to fit the prediction model. In other words, we retain the
basic elements of the fitted model in Equation (12).
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so we can decompose the out-of-sample forecast corresponding to xTin+(i−1) as follows:

∑
p∈S

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
= f̂

(
xTin+(i−1) ;Wi, h

)
− φ̂∅(Wi, h) (14)

for i = 1, . . . , D − (h− 1).

The key insight for computing the PBSVp is to wrap a loss function around the predictions

in Equation (12). We denote a generic loss function by

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
(15)

for i = 1, . . . , D− (h−1). To incorporate the loss function, we further modify the algorithm.

For a random draw m of an ordered permutation, we adjust Equation (12) as follows:

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
=

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)−
L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)
(16)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (13) becomes

φ̂out
p

(
xTin+(i−1) ;Wi, h, L

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
(17)

for p ∈ S and i = 1, . . . , D − (h− 1). The local PBSVp in Equation (17) measures the

contribution of predictor p to the loss incurred by the ith out-of-sample forecast. Like

Equation (12), Equation (16) approximates the effect of removing predictors not in the

coalition by replacing them with background data from the training sample Wi so that we

continue to remain true to the model that generates the out-of-sample forecast. Based on the

logic of Shapley values, the local PBSVp in Equation (17) fairly allocates the loss among the

predictors for the ith out-of-sample forecast.6 Equation (17) is characterized by efficiency:

∑
p∈S

φ̂outp

(
xTin+(i−1) ;Wi, h, L

)
= L

(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1) ;Wi, h

))
− φ̂out∅ (Wi, h, L) (18)

for i = 1, . . . , D − (h− 1), where φ̂out
∅ (Wi, h, L) corresponds to the loss for the baseline or

6Section A.1 of the Online Appendix provides the local PBSVp for the special case of a linear model (with
no interactions) and squared error loss, for which we can derive an analytical expression. More generally, we
need to rely on the algorithm to compute the PBSVp.
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unconditional prediction based on the empty coalition set.

We are primarily interested in the performance of the entire sequence of out-of-sample

forecasts, so we define the global PBSVp. To obtain the global PBSVp, we again modify

the algorithm. Specifically, we expand Equation (16) to reflect the average loss for the

out-of-sample period:

θ out
p,m(W,h,L) =

1

|W |
∑
i∈W

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)−
1

|W |
∑
i∈W

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)
(19)

for p ∈ S. To remain true to the model, Equation (19) continues to approximate the effect

of removing predictors not in the coalition by replacing them with background data from

the training sample. Equation (17) is now given by

φ̂out
p (W,h, L) =

1

2M

2M∑
m=1

θ out
p,m(W,h, L) (20)

for p ∈ S. The global PBSVp in Equation (20) allows us to decompose the average loss for a

sequence of out-of-sample forecasts into the contributions of each of the P predictors. In this

way, we anatomize out-of-sample performance by fairly assessing how the individual predic-

tors contribute to out-of-sample forecasting accuracy. Equation (20) is again characterized

by efficiency:

∑
p∈S

φ̂outp (W,h,L) =
1

|W |
∑
i∈W

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
− φ̂out∅ (W,h,L), (21)

where φ̂out
∅ (W,h, L) corresponds to the average loss for the sequence of baseline forecasts

based on the empty coalition set.7

The PBSVp bears some resemblance to the Shapley feature importance (SFIMP) in Casal-

icchio et al. (2018), as both are computed using a loss function for the test sample. However,

there are important differences between the PBSVp and SFIMP. The SFIMP assumes that

the prediction model is estimated only once, which is more appropriate for cross-sectional

7In addition to the entire out-of-sample period, the PBSVp in Equation (20) can be computed for any
subsample of the forecast evaluation period; for an example, see Figure 2 for the empirical application in
Section 3.
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data, while the PBSVp is explicitly designed for time-series data when the out-of-sample

forecasts are generated by a sequence of fitted models based on an expanding or rolling

window. Furthermore, there are substantive differences in the algorithms used to compute

the PBSVp and SFIMP (beyond the fact that the former is based on a sequence of fitted

models, while the latter is not). For example, the SFIMP uses background data from the

test sample to control for predictors not in the coalition when computing Shapley values;

in contrast, Equation (19) always uses background data from the training sample so that

we remain true to the fitted models that generate the out-of-sample forecasts.8 In sum,

the PBSVp provides a means for fairly allocating the out-of-sample loss for a sequence of

time-series forecasts across the individual predictors, thereby shedding light on the anatomy

of out-of-sample forecasting accuracy.

Section A.2 of the Online Appendix provides an example of computing the PBSVp for

a specific loss function, namely, the RMSE criterion. We use M = 500 for the algorithms

when computing the TS-Shapley-VIp in Equation (10) and PBSVp in Equation (20) for the

empirical application in Section 3.

2.3. Model Accordance Score

We use the MAS to compare predictor ranks according to the TS-Shapley-VIp in Equa-

tion (10) and PBSVp in Equation (20). The aim is to gauge how well the in-sample impor-

tance of the predictors in the sequence of fitted forecasting models aligns with the predictors’

roles in determining out-of-sample forecasting accuracy. The MAS is a type of Spearman

rank correlation between a list of P strictly positive ranks A ∈ {1, .., P} (corresponding to

the TS-Shapley-VIp) and a list of P both negative and positive ranks B ∈ {−P, ..,−1, 1, .., P}

(corresponding to the PBSVp). A is derived from the TS-Shapley-VIp by ranking the pre-

dictors in ascending order (with the highest variable importance receiving the highest rank).

B is derived from the PBSVp by ranking “good” predictors (i.e., those that reduce the out-

8The PBSVp has a different focus from the “Shapley regressions” proposed by Joseph (2021). Shapley
regressions relate the realized target values to Shapley values for the out-of-sample observations in a linear
regression framework.
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of-sample loss) separately from “bad” predictors (i.e., those the increase the out-of-sample

loss). Good predictors are ranked in ascending order from one to the number of good pre-

dictors, where the best predictor receives the highest rank (which is at most P , if all of the

predictors are good). Bad predictors are ranked from −1 to the negative of the number of

bad predictors, where the worst predictor receives the most negative rank (which is −P in

the limit if all of the predictors are bad). In the case where all of the predictors contribute

to lowering the out-of-sample loss and the relative importance is the same according to the

TS-Shapley-VIp and PBSVp, then A = B. At the other extreme, the most important predic-

tors according to the TS-Shapley-VIp are the worst according to the PBSVp and contribute

to increasing the out-of-sample loss, so B = −A.

We define the MAS as

MAS = 1− MSDR

E[MSDR]
, (22)

where MSDR is the weighted mean squared deviation in ranks:

MSDR =
1

P

P∑
p=1

wp

[
rank

(
TS-Shapley-VIp(W,h)

)
− signed-rank

(
φ̂out
p (W,h, L)

)]2
, (23)

wp is the weight for predictor p (the weights are scaled to sum to P ), and we standardize

the MSDR in Equation (22) by dividing by the expectation of Equation (23) under the

assumption that good predictors are as likely as bad predictors in terms of out-of-sample

loss.9 The greater the accord in ranks between the TS-Shapley-VIp and PBSVp, the lower

(higher) the MSDR (MAS) will be; when there is exact agreement between the ranks (A =

B), the MSDR (MAS) reaches its minimum (maximum) value of zero (one).

In empirical applications, certain predictors often receive substantially higher in-sample

variable importance measures, while others have variable importance measures close to

9When good predictors are as likely as bad predictors in terms of out-of-sample loss and the weights sum
to P , it can be shown that

E[MSDR] =
1

P

(
P∑
p=1

{
wprank

(
TS-Shapley-VIp(W,h)

)2}
+

P∑
a=0

{(
P

a

)
0.5P [S(a) + S(P − a)]

})
,

where S(n) = [n(n+ 1)(2n+ 1)]/6.
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zero. To account for such differences in in-sample variable importance, we weight the dif-

ferences in ranks in Equation (23) proportionally to the TS-Shapley-VIp by setting wp =

TS-Shapley-VIp
1
P

∑P
p=1 TS-Shapley-VIp

. Note that the scaling of the weights implies that
∑P

p=1wp = P , so the

average value of the weights is one. The equal-weighted case corresponds to wp = 1 for all

P .

We test for a significant relation between the ranks for the TS-Shapley-VIp and PBSVp (A

and B, respectively). We do so by generating a distribution for the MSDR under the null hy-

pothesis of no relation between the ranks and computing an empirical p-value for the MSDR

corresponding to the original data. We generate random and unrelated ranks under the null

hypothesis as follows. To simulate a random rank of predictors for B (PBSVp), we first draw

P+ ∼ Binomial(P, α), where α is a hyperparameter corresponding to the proportion of good

predictors anticipated by the researcher under the null hypothesis, and set P− = P − P+.10

Then, we randomly draw a sequence of P elements from {−P−, ..,−1, 1, .., P+} without re-

placement. Based on the original weights and ranks for the TS-Shapley-VIp and the randomly

drawn predictor ranks for B, we compute the MSDR in Equation (23). Repeating this many

times, we generate an empirical distribution for the MSDR under the null hypothesis and

compute the empirical p-value as the proportion of generated MSDR values that are less

than or equal to the MSDR for the original data.

We created the Python package anatomy to implement the algorithms for calculating the

TS-Shapley-VIp, PBSVp, and MAS. Section A.3 of the Online Appendix provides computa-

tional details for the algorithms in the package.

3. Forecasting Inflation

In this section, we use the metrics developed in Section 2 to analyze predictor relevance

in out-of-sample forecasts of US inflation. Recent evidence shows that traditional infla-

10Setting the hyperparameter α depends on the forecasting environment. Specifically, it should be set to
the proportion of predictors expected to contribute to reducing the loss against the model with an empty
set of predictors (commonly the unconditional mean forecast).
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tion benchmark forecasts can be outperformed by the use of big data in conjunction with

machine-learning methods and that the outperformance is largely attributable to nonlinear-

ities, especially at long horizons (e.g., Medeiros et al., 2021; Goulet Coulombe, 2022; Goulet

Coulombe et al., 2022; Hauzenberger et al., 2023). We forecast inflation using a large dataset

and a variety of machine-learning models.

3.1. Forecasting Models

Consider the following general prediction model for inflation:

πt+1:t+h = f
(
πAR
t−L:t,wt,w

MA(q)
t

)
+ εt+1:t+h, (24)

where πt+1:t+h = (1/h)
∑h

k=1 πt+k, πt = log(CPIt) − log(CPIt−1), CPIt is the month-t US

consumer price index (CPI), πAR
t−L:t = [ πt · · · πt−L ]′ captures the AR component in

inflation, wt is a vector of predictors, and w
MA(q)
t = (1/q)

∑q
k=1wt−(k−1) is a vector of

moving averages (MAs) of order q for the predictors in wt. We collect the entire set of

predictors in the P -dimensional vector xt = [ πAR
t−L:t

′
w′t w

MA(q) ′
t

]′. The inclusion of MAs

of the predictors is motivated by Goulet Coulombe et al. (2021), who find that MAs of

predictors provide substantive out-of-sample gains for forecasting macroeconomic variables.

We set q = 3, which allows predictors up to a quarter in the past to affect the prediction.

In terms of the AR component, we set L = 11, corresponding to twelve lags of inflation in

Equation (24). Based on Equation (24), the forecast of πt+1:t+h is given by

π̂t+1:t+h = f̂(xt), (25)

where f̂ is the fitted prediction function based on data through t.

We consider a variety of machine-learning methods for forecasting inflation based on

Equation (24). The first two methods are linear: principal component regression (PCR,

Stock and Watson, 2002a,b) and elastic net (ENet, Zou and Hastie, 2005) estimation of a

linear model. Next, we employ three methods that allow for nonlinearities in the prediction

function: random forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and a neural
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network. We also consider ensembles of individual forecasting models, which are popular in

the machine-learning literature. An ensemble forecast can be straightforwardly computed as

a simple average of the forecasts generated by the models in the ensemble.11 Ensemble-linear

(ensemble-nonlinear) is an average of the PCR and ENet (random forecast, XGBoost, and

neural network) forecasts; ensemble-all is an average of all five of the individual forecasting

models. Section A.4 of the Online Appendix provides details for the construction of the

different forecasting models.

3.2. Data

We measure inflation based on the US CPI. CPI data are from the FRED database at the

Federal Reserve Bank of St. Louis (ticker CPIAUCSL). The predictors are from two data

sources. We use a set of 118 predictors from the FRED-MD database (McCracken and

Ng, 2016), which is employed by a number of recent macroeconomic forecasting studies (e.g.,

Kotchoni et al., 2019; Medeiros et al., 2021; Borup and Schütte, 2022; Goulet Coulombe et al.,

2022; Hauzenberger et al., 2023). We also include three predictors from the University of

Michigan Survey of Consumers.12 The sample period covers 1960:01 to 2022:12. We specify

1960:01 to 1989:12 as the initial in-sample period and compute out-of-sample forecasts for

1990:01 to 2022:12. As in Medeiros et al. (2021), among others, we generate out-of-sample

inflation forecasts using a rolling estimation window.

3.3. Results

An AR model of order k serves as the benchmark, where we determine k using the Bayesian

information criterion (BIC, Schwarz, 1978), considering a maximum value of twelve. We

again estimate the AR benchmark model via a rolling window. The AR model is a standard

benchmark in the macroeconomic forecasting literature, including for inflation (e.g., Kotchoni

et al., 2019; Medeiros et al., 2021).

11The algorithm for computing the PBSVp straightforwardly accommodates ensemble forecasts (as shown
in Section A.3 of the Online Appendix).

12Section A.5 of the Online Appendix provides a complete list of the inflation predictors.
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Table 1. Out-of-sample forecasting results

The table reports the root mean squared error (RMSE) for the autoregressive benchmark forecast
and RSME ratio for the competing forecast in the first column vis-à-vis the autoregressive bench-
mark forecast for inflation for the 1990:01 to 2022:12 out-of-sample period and the forecast horizon
(h) in the column heading. The Diebold and Mariano (1995) and West (1996) statistic is used to
test the null hypothesis that the benchmark forecast MSE is less than or equal to the competing
forecast MSE against the (one-sided, upper-tail) alternative hypothesis that the benchmark forecast
MSE is greater than the competing forecast MSE; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%,
5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

Autoregressive benchmark RMSE 0.26% 0.23% 0.20% 0.16%

Principal component regression 1.08 1.01 0.96 0.92∗∗

Elastic net 0.93∗∗ 0.95∗ 0.96 0.94

Random forest 0.96 0.97 0.92∗ 0.82∗∗∗

XGBoost 1.00 0.98 0.91∗∗ 0.85∗∗∗

Neural network 0.94∗∗ 0.93∗∗ 0.94 0.83∗∗∗

Ensemble-linear 0.96 0.96 0.93∗ 0.90∗∗

Ensemble-nonlinear 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.81∗∗∗

Ensemble-all 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.84∗∗∗

We evaluate the forecasts using the RMSE criterion. Table 1 reports results for the

accuracy of the inflation forecasts for horizons of one, three, six, and twelve months. The

table provides the RMSE for the AR benchmark forecast as well as the RMSE ratio for each

of the competing models vis-à-vis the AR benchmark. We use the Diebold and Mariano

(1995) and West (1996) statistic to test the null hypothesis that the MSE (in population) for

the AR benchmark forecast is less than or equal to that for the competing forecast against the

(one-sided, upper-tail) alternative that the AR forecast MSE is greater than the competing

forecast MSE.13

The RMSE for the AR benchmark forecast decreases monotonically with the horizon

from 0.26% (h = 1) to 0.16% (h = 12) in Table 1. At the one-month horizon in the second

column, six of the eight competing forecasts deliver a lower RMSE than the AR benchmark

13We use a robust standard error (Newey and West, 1987) to compute the Diebold and Mariano (1995)
and West (1996) statistic, which accounts for the autocorrelation induced by overlapping observations when
h > 1.
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(the exceptions are PCR and XGBoost), and the improvement in forecasting accuracy is

statistically significant for the ENet, neural network, ensemble-nonlinear, and ensemble-all

forecasts. The ENet, ensemble-nonlinear, and ensemble-all forecasts provide the largest

improvements in accuracy, each with an RMSE ratio of 0.93. Seven of the eight competing

forecasts outperform the AR benchmark at the three-month horizon in the third column.

The improvements are again significant for the ENet, neural network, ensemble-nonlinear,

and ensemble-all forecasts. The biggest gain in accuracy is for the neural network, ensemble-

nonlinear, and ensemble-all forecasts (RMSE ratio of 0.93 for each). The results are fairly

similar for the six-month horizon in the fourth column, although now all of the competing

forecasts outperform the AR benchmark, and the improvement is significant in five cases

(random forest, XGBoost, ensemble-linear, ensemble-nonlinear, and ensemble-all).

The best overall results are for the twelve-month horizon in the last column of Table 1.

All eight of the competing forecasts outperform the AR benchmark, and seven of the im-

provements are significant (the exception is the ENet). The nonlinear forecasts perform very

well for h = 12, with RMSE reductions of 18%, 15%, and 17% vis-à-vis the AR benchmark

for the random forest, XGBoost, and neural network, respectively. This pattern is consistent

with the recent literature that finds that nonlinear machine-learning models are particularly

useful for forecasting inflation at longer horizons. The ensemble forecasts also perform well

at the twelve-month horizon, as each delivers a significant improvement in forecasting accu-

racy. Reiterating the strong performance of the nonlinear models, the ensemble-nonlinear

forecast performs the best at the 12-month horizon, reducing the RMSE by 19% relative to

the AR benchmark.

To demonstrate how the metrics developed in Section 2 can be used to interpret a fitted

prediction model and anatomize out-of-sample forecasting performance, Figure 1 depicts the

PBSVp based on the RMSE and the TS-Shapley-VIp for the ensemble-nonlinear forecast.

We focus on the ensemble-nonlinear forecast to conserve space and because it performs well

overall in Table 1. Figures A.1 to A.7 in the Online Appendix provide analogous versions of
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Figure 1. PBSV and TS-Shapley-VI: ensemble-nonlinear. The figure shows the PBSVp

(left axis) and TS-Shapley-VIp (right axis) for the ensemble-nonlinear inflation forecast for the
1990:01 to 2022:12 out-of-sample period. The predictors on the horizontal axis are the top 20 and
the bottom ten ordered according to the PBSVp in terms of improving out-of-sample forecasting
accuracy. The numbers associated with the red bars are the predictor ranks according to the
TS-Shapley-VIp.

Figure 1 for the other forecasts.

The different panels in Figure 1 display results for the different horizons. The predictors

on the horizontal axis in each panel are ordered according to the PBSVp in terms of their

contributions to improving out-of-sample forecasting accuracy. The green bars correspond
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to the PBSVp, while the red bars correspond to the TS-Shapley-VIp.
14 To conserve space,

the horizontal axis shows the top 20 and bottom ten predictors based on the PBSVp. The

numbers associated with the red bars are the predictors ranks based on the TS-Shapley-VIp.

The green bars to the left of dotted vertical line in each panel of Figure 1 identify the

20 predictors that contribute the most to lowering the RMSE (i.e., improving forecasting

accuracy) for the ensemble-nonlinear forecast. At the one-month horizon, the price of oil

(oilpricex) is the top contributor, highlighting the importance of oil price fluctuations in af-

fecting short-run inflation. The price of oil also ranks fourth at the three-month horizon. The

AR component (ar) makes a major contribution at all reported horizons: it ranks second at

the one-month horizon and first at the other reported horizons. Other predictors that consis-

tently rank highly across all reported horizons in Figure 1 include the durables component of

the CPI (cusr0000sad), the medical services component of the CPI (cpimedsl), the durable

goods component of the personal consumption expenditures price index (ddurrg3m086sbea),

average weekly hours for the goods producing sector (ces0600000007), average weekly hours

in manufacturing (awhman), the personal consumption expenditures price index (pcepi), and

the spreads between Aaa- and Baa-rated corporate bond yields and the federal funds rate

(aaaffm and baaffm, respectively).

According to the green bars to the right of the dotted vertical lines in Figure 1, there are

a number of predictors that substantively detract from out-of-sample forecasting accuracy,

including some relating to housing, such as total housing starts (houst) and housing starts

in the South (housts) at all reported horizons; housing starts in the Northeast (houstne)

at the one-, three-, and six-month horizons; housing starts in the West at the three- and six-

month horizons; total new housing permits (permit) at the six- and twelve-month horizons;

and new housing permits in the Northeast (permitne) at the twelve-month horizon.

Comparing the red and green bars in Figure 1, many of the predictors listed above that

are leading contributors to out-of-sample forecasting accuracy based on the PBSVp are also

14In Figure 1, we sum the Shapley values for each predictor and its corresponding MA(q) term. We also
sum the Shapley values for the twelve lags of inflation.
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among the most important predictors on an in-sample basis according to the TS-Shapley-VIp.

Nevertheless, there are a few predictors that evince marked differences across the PBSVp and

TS-Shapley-VIp to the right of the vertical dashed lines in Figure 1. For example, housing

starts in the South, which contributes adversely to out-of-sample performance, ranks among

the most important variables on an in-sample basis at all reported horizons. Other predictors

exhibiting a similar pattern include the index of current economic conditions (soc_icc) at

the six- and twelve-month horizons and employment in the financial activities sector (usfire)

at the twelve-month horizon. The MAS values subsequently reported in Table 2 quantify

the degree of accordance between predictor ranks based on the PBSVp and TS-Shapley-VIp.

In sum, the PBSVp quantifies the contributions of predictors to the accuracy of CPI

inflation forecasts for the 1990:01 to 2022:12 out-of-sample period. It allows us to pinpoint

predictors that play leading roles in accounting for the out-of-sample gains in forecasting ac-

curacy, as well as to identify predictors that detract from out-of-sample forecasting accuracy.

Based on Figure 1 and Figures A.1 to A.7 in the Online Appendix, among the most impor-

tant predictors for improving the accuracy of inflation forecasts across the different models,

the PBSVp identifies the price of oil at shorter horizons as well as the AR component, the

durables component of the CPI, the medical services component of the CPI, and the spread

between the Aaa-rated corporate bond yield and federal funds rate at all reported horizons.

We also illustrate how the PBSVp can shed light on the most important contributors

to forecasting accuracy for subsamples of the entire sequence of time-series forecasts. This

provides a sense of the predictor contributions to forecasting accuracy over time. Figure 2

plots the cumulative difference in squared errors (CDSE, Goyal and Welch, 2008) between

a näıve forecast that ignores the information in the predictors and the ensemble-nonlinear

forecast. We again focus on the ensemble-nonlinear forecast to conserve space; Figures A.8 to

A.14 in the Online Appendix provide analogous versions of Figure 2 for the other forecasts.

To further conserve space, we report results for horizons of one, six, and twelve months in

Figure 2.
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Figure 2. Cumulative difference in squared errors: ensemble-nonlinear. The figure shows
the cumulative difference in squared errors for a näıve forecast that ignores the information in the
predictors vis-à-vis the ensemble-nonlinear forecast for the 1990:01 to 2022:12 out-of-sample period.
Shifts to the right (left) imply an improvement (deterioration) in forecasting accuracy relative
to the näıve forecast. The figure also shows the top (bottom) contributor to the improvement
(deterioration) in forecasting performance as identified by the PBSVp for non-overlapping twelve-
month subsamples; a green (red) color for the predictor indicates that the subsample is associated
with an improvement (deterioration) in performance. Horizontal gray bars indicate twelve-month
subsamples that contain an NBER-dated recession.

The CDSE is a convenient and informative graphical device for ascertaining whether a

competing forecast is more accurate than the näıve forecast for any subsample of the out-

of-sample period. In terms of Figure 2, we compare the CDSE at the beginning and end

of the interval corresponding to a subsample. If the curve lies to the right (left) at the

end of the interval relative to the beginning, then the ensemble-nonlinear (näıve) forecast is

more accurate in terms of MSE for the subsample. In addition, we compute the PBSVp for

the predictors for the ensemble-nonlinear forecast for non-overlapping twelve-month rolling
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subsamples. The abbreviation to the right (left) of the curve in Figure 2 indicates the

predictor that contributes the most to improving (detracting from) performance during a

subsample. A predictor in green (red) to the right (left) of the curve indicates that the

ensemble-nonlinear forecast delivers a lower (higher) MSE than the näıve forecast for the

twelve-month subsample. The horizontal gray bars indicate twelve-month subsamples that

contain an NBER-dated recession.

The CDSE plots in Figure 2 are consistently positively sloped (when viewed from top to

bottom), so the ensemble-nonlinear forecast outperforms the näıve forecast on a consistent

basis over time. For numerous twelve-month periods before the Great Recession in 2008, the

AR component is the predictor most responsible for the outperformance of the ensemble-

nonlinear forecast, consistent with the top and bottom two panels of Figure 1. In line with

the top panel of Figure 1, at the one-month horizon in the left panel of Figure 2, there are

eleven twelve-month periods when the price of oil is the predictor most responsible for the

outperformance of the ensemble-nonlinear forecast, including during the Great Recession

and the recent recession corresponding to the advent of COVID-19 as well as the inflation

surge starting in mid 2021. However, there are two twelve-month periods when the price of

oil detracts the most from forecasting accuracy, pointing to noteworthy time variation in the

predictor’s contribution to forecasting accuracy.

The medical services component of the CPI is the leading predictor in terms of the

outperformance of the ensemble-nonlinear forecast for four of the twelve-month subsamples

at the six-month horizon in the middle panel of Figure 2, consistent with the third panel

of Figure 1. Economically, it accords with Bils and Klenow (2004), who rank medical care

among the stickiest components of the CPI (in terms of its low frequency of price adjustment),

and it is an important component in the Federal Reserve Bank of Atlanta’s Sticky-Price CPI.

However, there are a few twelve-month subsamples in the middle panel of Figure 2 when the

medical services component of the CPI detracts the most from forecasting accuracy. Thus,

like the price of oil at the one-month horizon, the medical services component of the CPI
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evinces important time variation in its contribution to forecasting accuracy at the six-month

horizon. A similar situation holds for the medical services component of the CPI at the

twelve-month horizon in the right panel of Figure 2.

Table 2. Model accordance scores

The table reports the model accordance score (MAS) for inflation forecasts for the 1990:01 to
2022:12 out-of-sample period and the forecast horizon (h) in the column heading. The MAS com-
pares the predictor ranks in terms of the in-sample TS-Shapley-VIp and out-of-sample PBSVp,
where a higher score indicates greater agreement in predictor ranks; ∗, ∗∗, and ∗∗∗ indicate signifi-
cance at the 10%, 5%, and 1% levels, respectively, with the hyperparameter for the proportion of
good predictors under the null hypothesis set to α = 2/3.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

Principal component regression 0.60∗∗∗ 0.58∗∗∗ 0.49∗∗ 0.45∗

Elastic net 0.55∗∗ 0.37 0.59∗∗ 0.40

Random forest 0.82∗∗∗ 0.62∗∗∗ 0.75∗∗∗ 0.88∗∗∗

XGBoost 0.53∗∗ 0.34 0.46∗ 0.57∗∗∗

Neural network 0.56∗∗∗ 0.57∗∗∗ 0.27 0.46∗

Ensemble-linear 0.64∗∗∗ 0.52∗∗ 0.54∗∗ 0.53∗∗

Ensemble-nonlinear 0.65∗∗∗ 0.61∗∗∗ 0.43 0.59∗∗∗

Ensemble-all 0.68∗∗∗ 0.64∗∗∗ 0.48∗∗ 0.65∗∗∗

Next, we analyze the MAS in Equation (22). Table 2 reports the MAS for the different

forecasts and horizons, where we set the hyperparameter α equal to 2/3. Recall that the MAS

measures the agreement (in terms of predictor ranks) between the in-sample TS-Shapley-VIp

and out-of-sample PBSVp. As the MAS increases, there is greater agreement between the

predictors that are deemed important in the sequence of fitted models that generate the

forecasts and those that contribute to improvements in out-of-sample forecasting accuracy.

A higher MAS indicates that the training of the sequence of prediction models identifies the

most relevant predictors for improving out-of-sample performance, thereby inspiring more

confidence in the reliability of the model and implying less reliance on good luck in accounting

for a model’s out-of-sample success.

All of the MAS measures are positive in Table 2, ranging from 0.27 (neural network,
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h = 6) to 0.88 (random forest, h = 12). Many are statistically significant at conventional

levels: 27, 24, and 16 of the 32 MAS metrics are significant at the 10%, 5%, and 1% levels,

respectively. Thus, there is generally a considerable degree of agreement between the in-

sample importance of predictors in the fitted models and their contributions to out-of-sample

forecasting accuracy.

The MAS measures for the ensemble-nonlinear forecast in Table 2 align with the im-

pressions of the results in Figure 1. The MAS is relatively large and statistically significant

for the ensemble-nonlinear forecast at the one-, three-, and twelve-month horizons. It is

smaller and insignificant at conventional levels at the six-month horizon, in line with the

more sizable discrepancies in rankings to the right of the dashed line in the third panel of

Figure 1. Recall from Table 1 that the ensemble-nonlinear forecast outperforms the AR

benchmark forecast at the six-month horizon (RMSE ratio of 0.90, significant at the 10%

level). The results for the ensemble-nonlinear forecast at the six-month horizon in Figure 1

and Table 2 suggest that the ability of the forecast to outperform the AR benchmark in-

volves some luck. Also, recall from Table 1 that the ensemble-nonlinear forecast significantly

outperforms the AR benchmark at horizons of one, three, and twelve months. The MAS

results in Table 2 indicate that luck plays a more limited role in the out-of-sample success

of the ensemble-nonlinear forecast at these horizons.

Finally, Figure 3 provides additional insight into links between the MAS and out-of-

sample forecasting accuracy as measured by RMSE. Each panel in the figure depicts a

quadrant plot with RMSE (MAS) on the horizontal (vertical) axis, where both measures

are standardized in the form of Z-scores. The top-right “intentional success” quadrant is

the most desirable, as forecasts located there have above-average MAS and below-average

RMSE.15 In contrast, the bottom-right “unintentional success” quadrant is less desirable,

in the sense that forecasts located there have lower-than-average RMSE but also below-

average MAS, suggesting that luck plays a larger role in accounting for their out-of-sample

15Note that the RMSE on the horizontal axis is decreasing from left to right.
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Figure 3. Quadrant plots. The figure shows the RMSE and MAS Z-scores in quadrant plots for
forecast horizons of one, three, six, and twelve months in Panels A through D, respectively. The
frontier of non-dominated forecasts is highlighted (a forecast is non-dominated if no other model
has a higher MAS and a lower RMSE). Black dots are non-dominated forecasts (i.e., are on the
frontier) that have above-average MAS and below-average RMSE. Gray dots are non-dominated
forecasts that have below-average MAS and RMSE.

performance. Each quadrant plot includes a frontier of non-dominated forecasts. A forecast

is non-dominated if no other forecast has both a higher MAS and a lower RMSE. Fore-

casts with black dots in Figure 3 are non-dominated forecasts with above-average MAS and

below-average RMSE (i.e., are in the intentional success quadrant); non-dominated forecasts

with gray dots have below-average MAS and RMSE (i.e., are in the unintentional success

quadrant).

Panel A indicates that the random forest and ensemble-all forecasts perform well at the
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one-month horizon in terms of the MAS-RMSE combination. Both forecasts are in the

intentional success quadrant and lie on the frontier. The ensemble-linear and ensemble-

nonlinear forecasts also reside in the intentional success quadrant, and the latter is very

close to the frontier. At the three-month horizon in Panel B, the neural network, ensemble-

nonlinear, and ensemble-all forecasts stand out, as they all lie on the frontier and are in the

intentional success quadrant.

Turning to the six-month horizon in Panel C, the random forest lies on the frontier and is

the only forecast in the intentional success quadrant. The ensemble-nonlinear and ensemble-

all forecasts are also on the frontier and in the unintentional success quadrant. However,

the MAS metrics for these forecasts lie close to the boundary for the intentional success

quadrant, so it is unlikely that luck plays an outsize role in explaining their out-of-sample

success. At the twelve-month horizon in Panel D, the random forest and ensemble-nonlinear

forecasts lie on the frontier and are in the intentional success quadrant, while the ensemble-

all and XGBoost forecasts are in the intentional success quadrant but not on the frontier.

Overall, the quadrant plots in Figure 3 identify the random forest, ensemble-nonlinear, and

ensemble-all forecasts as among the best forecasts with regard to intentional success.

4. Conclusion

As large datasets and machine learning become more popular in macroeconomics and finance,

researchers are increasingly concerned with interpreting forecasting models fitted with time-

series data. We develop the PBSVp to measure the contributions of individual predictors

in fitted machine-learning models to out-of-sample forecasting accuracy. The PBSVp is a

powerful new model-interpretation tool that fosters a deeper understanding of the sources

of a model’s out-of-sample performance. It is model agnostic, so the PBSVp can be applied

to any machine-learning model; it can also be used for any loss function, making it a very

flexible tool.

We develop two additional tools to complement the PBSVp. The first is the TS-Shapley-VIp,
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which extends the conventional Shapley-based variable importance metric by measuring a

predictor’s importance across the entire set of fitted prediction models that generates the

sequence of out-of-sample forecasts. The second is the MAS, which compares predictor ranks

based on the TS-Shapley-VIp and PBSVp. As the MAS increases, there is greater accord

between the predictors’ importance in the fitted models used to generate the out-of-sample

forecasts and their importance for improving out-of-sample performance. A relatively high

MAS together with a low average loss indicates that the model learned from the in-sample

data in a manner leading to out-of-sample success, while a relatively low MAS and average

loss suggest that luck played a more substantial role in the model’s out-of-sample perfor-

mance.

To demonstrate the use of the PBSVp, TS-Shapley-VIp, and MAS metrics, we under-

take an empirical application forecasting monthly US inflation based on a large number of

predictors and a variety of machine-learning methods. In line with recent studies, machine-

learning forecasts generally outperform a standard AR benchmark at horizons ranging from

one to twelve months. The outperformance is the greatest at the twelve-month horizon for

machine-learning methods that allow for nonlinearities.

According to the PBSVp, predictors that play leading roles in improving forecasting

accuracy across the different models include the price of oil at shorter horizons as well as the

durables component of the CPI, the medical services component of the CPI, and the spread

between the Baa-rated corporate bond yield and federal funds rate at all reported horizons.

Using the MAS to compare predictor ranks based on the TS-Shapley-VIp and PBSVp, we

find considerable agreement between the in-sample importance of predictors in fitted models

and their contributions to out-of-sample forecasting accuracy, although the link is relatively

weak for some models. We use quadrant plots to identify models that deliver a relatively

low RMSE combined with a high MAS; such models successfully learn from the in-sample

data to reliably improve out-of-sample forecasting accuracy. Overall, the random forest,

ensemble-nonlinear, and ensemble-all forecasts perform the best in terms of the quadrant
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plots. In sum, our new metrics provide keen insight into the sources of the out-of-sample

forecasting accuracy of machine-learning forecasts of US inflation.

We created the Python package anatomy to facilitate the implementation of the new

metrics developed in this paper and better understand the sources of the out-of-sample

forecasting accuracy of fitted machine-learning models. In future research, it would be

interesting to explore strategies for using the PBSVp to refine forecasting models over time

to potentially improve future out-of-sample performance.

The authors report there are no competing interests to declare.
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Medeiros, M. C., G. F. R. Vasconcelos, Álvaro Veiga, and E. Zilberman (2021). Forecasting

inflation in a data-rich environment: The benefits of machine learning methods. Journal

of Business & Economic Statistics 39 (1), 98–119.

Mitchell, R., J. Cooper, E. Frank, and G. Holmes (2022). Sampling permutations for Shapley

value estimation. Journal of Machine Learning Research 23 (43), 1–46.

Molnar, C. (2023). Interpretable Machine Learning: A Guide for Making Black Box Models

Explainable (Second ed.). Independently published.

Newey, W. K. and K. D. West (1987). A simple, positive semi-definite, heteroskedasticity

and autocorrelation consistent covariance matrix. Econometrica 55 (3), 703–708.

Pearl, J. (2009). Causality (Second ed.). Cambridge: Cambridge University Press.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). “Why Should I Trust You?” Explaining

the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461–464.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of

Games 2 (28), 307–317.

34



Stock, J. H. and M. W. Watson (2002a). Forecasting using principal components from a large

number of predictors. Journal of the American Statistical Association 97 (460), 1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion indexes.

Journal of Business & Economic Statistics 20 (2), 147–162.

S̆trumbelj, E. and I. Kononenko (2010). An efficient explanation of individual classifications

using game theory. Journal of Machine Learning Research 11 (1), 1–18.

S̆trumbelj, E. and I. Kononenko (2014). Explaining prediction models and individual pre-

dictions with feature contributions. Knowledge and Information Systems 41 (1), 647–665.

West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica 64 (5),

1067–1084.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67 (2), 301–

320.

35


	Introduction
	Methodology
	Shapley Values in a Time-Series Context
	Performance-Based Shapley Values
	Model Accordance Score

	Forecasting Inflation
	Forecasting Models
	Data
	Results

	Conclusion
	WP Title Page 2022-16b--TH edits.pdf
	Daniel Borup, Philippe Goulet Coulombe, David E. Rapach,  Erik Christian Montes Schütte, and Sander Schwenk-Nebbe
	November 2022 (Revised February 2024)




