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Abstract

Markov Switching models are a way to consider discrete changes in the economic en-

vironment, such as policy changes, and allow agents in the economy to form expectations

over these changes. This paper develops a methodology for constructing approximations

to the solution of Markov Switching dynamic stochastic general equilibrium (MS-DSGE)

models. The method allows for changes in parameters that both do and do not affect the

economy’s steady state, and enables linear or higher-order approximations. In addition,

the paper proves that first-order approximations to a wide class of MS-DSGE models are

not certainty equivalent. The numerical procedure handles potentially large systems and

considers existence and uniqueness using the concept of mean square stability. Two exam-

ples, one Real Business Cycle and one New Keynesian, illustrate the procedure and issues

of certainty equivalence and mean square stability.
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1 Introduction

Following the introduction of vector autoregressions (VARs) to macroeconomics by Sims (1980)

it was quickly realized that it is diffi cult to find macroeconomic applications for which model

parameters remain stable over long periods of time. This problem was not unique to reduced

form representations of the data, but was also an issue when more structural approaches were

considered. One way to solve the problem, pursued by Clarida et al. (2000) and followed up

by Lubik & Schorfheide (2004), breaks the sample into sub-periods and estimates the structural

models in which one or more of the model’s parameters differ across sub-samples. While this

approach addresses the parameter instability problem, it fails to consider that forward looking

agents living in a world in which parameters are known to change occasionally would be expected

to take possible parameter change into account when forming their expectations and, therefore,

will affect their optimal decisions.

An alternative approach to parameter instability, suggested by the work of Hamilton (1989)

and pursued in Sims & Zha (2006), is to estimate a backward-looking vector autoregression

(VAR) with regime dependent parameters. This approach has its limitations since it does not

allow for the presence of forward-looking components that are present in a dynamic stochastic

general equilibrium (DSGE) model.

A number of authors have recently studied forward looking Markov-switching linear rational

expectations (MSLRE) models. Work in this area includes papers by Leeper & Zha (2003),

Svensson &Williams (2007), Blake & Zampolli (2006), Davig & Leeper (2007), and Farmer et al.

(2009). MSLRE models are more complicated than linear rational expectations models since the

agents of the model must be allowed to take account of the possibility of future regime changes

when forming expectations. The MSLRE literature has made some headway in addressing

questions like setting necessary and suffi cient conditions to determine if the parameters of a

Markov-switching rational expectations model lead to a determinate equilibrium (See Farmer

et al. (2009)).

There are two main shortcomings with the MSLRE approach. First, most of the analyzed

models do not begin from first principles. In other words, researchers consider linear rational
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expectations (LRE) models where Markov-switching (MS) has been added after the model has

been linearized. Second, higher order solutions are not considered. Given that MS parameters

add a lot of uncertainty to the model, considering higher order approximations may be poten-

tially important. This paper solves these two shortcomings. In particular, it shows how to use

perturbation methods to solve Markov-switching rational expectations (MSRE) models - note

the absence of the “linear”- starting from first principles, i.e. from the set of (non-linearized)

first order conditions that define equilibrium.

Following Costa et al. (2005), Farmer et al. (2009), and Farmer et al. (2008), this paper

uses the concept of mean square stability (MSS) to characterize stable solutions. The pertur-

bation approach uses the theory of Gröbner Bases to find solutions, and determines existence

and uniqueness of MSS solutions. It also allows for a flexible regime-switching specification,

including in parameters that affect the steady state of the economy. In particular, the first order

approximation of models where switching affects the steady state is not certainty equivalent.

After developing the methodology, the paper presents two example economies that illustrate

the methodology and highlight the issues of mean square stability and certainty equivalence.

In the first, a simple real business cycle model with stochastic drift shows how to use the

methodology and the importance of certainty equivalence. The second, a New Keynesian

model, adds sticky prices and a monetary authority with changes in the policy rule, and shows

how mean square stability determines existence and uniqueness.

The remainder of the paper is as follows: Section 2 describes a general class of MS-DSGE

models and the nature of Markov switching. Sections 3 and 4 discuss the first-order approxima-

tion, the former showing how to solve the model, and the latter highlighting the key quadratic

equations and how to use Gröbner Bases to solve them. Section 6.1 has an example RBC

economy, Section 6.2 has an example NK economy, and Section 7 concludes.
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2 The Model

Consider a dynamic general equilibrium model in which some of the parameters follow a discrete

state Markov chain indexed by st with transition matrix P = (ps,s′). The element ps,s′ represents

the probability that st+1 = s′ given st = s for s, s′ ∈ {1, . . . , ns} where ns is the number of

regimes and when st = s the model is said to be in regime s at time t. The vector of changing

parameters θt has size nθ × 1.1 Given any xt−1, εt, and θt, the set of equilibrium conditions of

a wide class of models can be written as

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = 0nx+ny (1)

where Et denotes the mathematical expectations operator conditional on information available

at time t, and 0m1 denotes a m1× 1 vector of zeros. The vector xt−1 of predetermined variables

(endogenous and exogenous) is of size nx × 1, the vector yt of non-predetermined variables is of

size ny × 1, the vector εt of independent innovations to the exogenous predetermined variables

with mean equal to zero is of size nε×1, and χ ∈ R is the perturbation parameter. The function

f maps R2(ny+nx+nε+nθ) into Rny+nx is the number of equations in (1). Since the parameters,

θt, in (1) depend on the state of the Markov chain, there are ns sets of equilibrium conditions,

one for each value of the Markov chain, instead of the single set of equilibrium conditions in the

constant parameter case.

The solution to the model has the form

yt ≡ g (xt−1, εt, χ, st) , (2)

yt+1 ≡ g (xt, χεt+1, χ, st+1) , (3)

and

xt ≡ h (xt−1, εt, χ, st) (4)

where g maps Rnx+nε+1×{1, . . . , ns} into Rny and h maps Rnx+nε+1×{1, . . . , ns} into Rnx . The

goal is to find the Taylor expansion of the functions g and h around the steady state.

1There may also be a set of non-changing parameters not included in θt.
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The parameters θt depend on the regime in the following way

θt ≡ θ (χ, st) and θt+1 ≡ θ (χ, st+1) (5)

where θ maps R×{1, . . . , ns} into Rnθ . The vector of parameters θt has two subvectors θ1t and

θ2t

θt =
(
θ′1t θ′2t

)′
≡
(
θ1 (χ, st)

′ θ2 (χ, st)
′
)′
, (6)

where θ1t and θ2t have sizes nθ1 × 1 and nθ2 × 1 respectively, and

θ1 (χ, st) = θ1 + χθ̂1 (st) (7)

and

θ2 (χ, st) = θ̂2 (st) . (8)

The parameters θt+1 have the same functional forms.2 Note two things about this specifica-

tion: first, θ̂1 (st) is the deviation of θ1t from θ1 in regime st and, second, θ2t is not a function

of the perturbation parameter χ. Hence, the perturbation parameter, χ, only affects a subset

of the parameters, θ1t, while θ2t is not affected by the perturbation parameter. The choice of

which parameters to perturb, θ1t, and which ones do not perturb, θ2t, is not unique, but there

is one restriction. Define the steady state of the model as vectors xss and yss of size nx × 1 and

ny × 1 respectively such that

f

(
yss, yss, xss, xss, 0nε , 0nε ,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)

= 0nx+ny

for all st+1 and st. Thus, the partition should be such that neither θ2 (0, st+1) = θ̂2 (st+1) nor

θ2 (0, st) = θ̂2 (st) enter in the calculation of the steady state since the last expression has to

hold for all st+1 and st.

In other words, the partition should be such that the function f , once θ1t and θ2t have been

replaced by (7) and (8) and evaluated at εt = 0nε and χ = 0, can be written as another function

fss that only depends on yt+1, yt, xt, xt−1, and θ1 but neither on θ̂2 (st+1) nor θ̂2 (st), i.e.

f

(
yt+1, yt, xt, xt−1, 0nε , 0nε ,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)

= fss
(
yt+1, yt, xt, xt−1, θ1, θ1

)
.

2These functional forms are not necessary but just convenient for the derivations; any other functional form

such that θ1 (0, st) = θ1 for all st holds may also work.
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In general, more than one partition of parameters accomplishes this objective. In any case,

included in θ1t is the smallest set of parameters such that the steady state is defined as described

above. Since the steady state depends upon θ̄1, a natural choice for this point is the mean of

the ergodic distribution across θ1t, but again, this selection is not unique. Sections 6 provides

examples of partitions of θt and choices of θ̄1.

Given the definition of the steady state, it is the case that

yss = g (xss, 0nε , 0, st) and xss = h (xss, 0nε , 0, st)

for all st and

yss = g (xss, 0nε , 0, st+1) and xss = h (xss, 0nε , 0, st+1)

for all st+1.

Using equations (2), (3), (4), and (5) the function f can be written as

F (xt−1, εt+1, εt, st+1, χ, st) = f

 g (h (xt−1, εt, χ, st) , χεt+1, χ, st+1) , g (xt−1, εt, χ, st) ,

h (xt−1, εt, χ, st) , xt−1, χεt+1, εt, θ (χ, st+1) , θ (χ, st)


for all xt−1, εt+1, εt, st+1, and st. The function F maps Rnx+2nε+1×{1, . . . , ns}×{1, . . . , ns} into

Rny+nx .

Assuming that innovations to the exogenous predetermined variables, εt, are independent of

the Markov chain, st, write (1) as

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = (9)

G (xt−1, εt, χ, st) =

ns∑
s′=1

pst,s′

∫
F (xt−1, ε

′, εt, s
′, χ, st)µ (ε′) dε′ = 0ny+nx

for all xt−1, εt, and st where µ is the density of the innovations. The function G maps Rnx+nε+1×

{1, . . . , ns} into Rny+nx .

The remainder of the paper will use the following notation

DG (xt−1, εt, χ, st) =
[
DjGi (xt−1, εt, χ, st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

to refer the (ny + nx)× (nx + nε + 1) matrix of first-order partial derivatives of G with respect

to (xt−1, εt, χ) evaluated at (xt−1, εt, χ, st) for all xt−1, εt, and st. Note the absence of derivatives
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with respect to st, since it is a discrete variable. Equivalently,

DG (xss, 0nε , 0, st) =
[
DjGi (xss, 0nε , 0, st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

refers to the (ny + nx)× (nx + nε + 1) matrix of first-order partial derivatives of G with respect

to (xt−1, εt, χ) evaluated at (xss, 0nε , 0, st) for all st. To simplify notation define

DGss (st) ≡ DG (xss, 0nε , 0, st) and DjGi
ss (st) ≡ DjGi (xss, 0nε , 0, st)

for all i, j, and st. Thus,

DGss (st) =
[
DjGi

ss (st)
]

1≤i≤ny+nx,1≤j≤nx+nε+1

for all st. In the same way,

Dfss (st+1, st) =[
Djf i

(
yss, yss, xss, xss, 0nε , 0nε ,

(
θ
′
1 θ̂2 (st+1)

′
)′
,
(
θ
′
1 θ̂2 (st)

′
)′)]

1≤i≤ny+nx,1≤j≤2(ny+nx+nε+nθ)

is the (ny + nx)×(2 (ny + nx + nε + nθ))matrix of first-order partial derivatives of f with respect

to all its components evaluated at(
yss, yss, xss, xss, 0nε , 0nε ,

(
θ
′
1 θ̂2 (st+1)′

)′
,
(
θ
′
1 θ̂2 (st)

′
)′)

for all st+1 and st,

Dg (xss, 0nε , 0, st) =
[
Djgi (xss, 0nε , 0, st)

]
1≤i≤ny ,1≤j≤nx+nε+1

is the ny× (nx + nε + 1) matrix of first-order partial derivatives of g with respect to (xt−1, εt, χ)

evaluated at (xss, 0nε , 0, st) for all st, and

Dh (xss, 0nε , 0, st) =
[
Djhi (xss, 0nε , 0, st)

]
1≤i≤nx,1≤j≤nx+nε+1

is the nx× (nx + nε + 1) matrix of first-order partial derivatives of h with respect to (xt−1, εt, χ)

evaluated at (xss, 0nε , 0, st) for all st. To simplify notation, define

Dgss (st) ≡ Dg (xss, 0nε , 0, st) and Djgiss (st) ≡ Djgi (xss, 0nε , 0, st) ,

for all i, j, and st and

Dhss (st) ≡ Dh (xss, 0nε , 0, st) and Djhiss (st) ≡ Djhi (xss, 0nε , 0, st)
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for all i, j, and st. Thus,

Dgss (st) =
[
Djgiss (st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

and

Dhss (st) =
[
Djhiss (st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

for all st.

3 First-Order Approximation

This section shows how to find the first-order Taylor expansions to g and h around the point

(xss, 0nε , 0, st) of the form

g (xt−1, εt, χ, st)− yss ' [D1gss (st) , . . . ,Dnxgss (st)] (xt−1 − xss)

+ [Dnx+1gss (st) , . . . ,Dnx+nεgss (st)] εt +Dnx+nε+1gss (st)χ

and

h (xt−1, εt, χ, st)− xss ' [D1hss (st) , . . . ,Dnxhss (st)] (xt−1 − xss)

+ [Dnx+1hss (st) , . . . ,Dnx+nεhss (st)] εt +Dnx+nε+1hss (st)χ

for all st where Djgss (st) is the jth column vector of Dgss (st) and Djhss (st) is the jth column

vector of Dhss (st). To simply notation, define

Dn,mgss (st) ≡ [Dngss (st) , . . . ,Dmgss (st)] and Dn,mhss (st) ≡ [Dnhss (st) , . . . ,Dmhss (st)]

for all n and m and all st.

Hence, the above approximations are equivalent to

g (xt−1, εt, χ, st)− yss ' D1,nxgss (st) (xt−1 − xss) +Dnx+1,nx+nεgss (st) εt +Dnx+nε+1gss (st)χ

and

h (xt−1, εt, χ, st)− xss ' D1,nxhss (st) (xt−1 − xss) +Dnx+1,nx+nεhss (st) εt +Dnx+nε+1hss (st)χ
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The objective is now to find the coeffi cients of first-order partial derivatives

{D1,nxgss (st) ,D1,nxhss (st)}nsst=1 , {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1 ,

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1

of the above describe expansions, where D1,nxgss (st) ∈ Cny×nx , D1,nxhss (st) ∈ Cnx×nx ,

Dnx+1,nx+nεgss (st) ∈ Cny×nε, Dnx+1,nx+nεhss (st) ∈ Cnx×nε, Dnx+nε+1gss (st) ∈ Cny×1, and

Dnx+nε+1hss (st) ∈ Cnx×1 for all st and where we are using Cm1×m2 to denote m1 × m2 ma-

trices over the complex numbers. The current setup requires finding a set of ns policy functions,

one for each possible value of the Markov chain, instead of the single set of policy functions in

the constant parameter case.

The coeffi cients of these policy functions are going to be obtained by using the fact that

G (xt−1, εt, χ, st) = 0ny+nx

for all xt−1, εt, χ, and st and, therefore, it must be the case that

DG (xt−1, εt, χ, st) = 0(ny+nx)×(nx+nε+1)

for all xt−1, εt, χ, and st and, in particular,

DGss (st) = 0(ny+nx)×(nx+nε+1)

for all st where 0m1×m2 is a m1 ×m2 matrix of zeros. Thus,

[D1Gss (st) , . . . ,DnxGss (st)] = 0(ny+nx)×nx , (10)

[Dnx+1Gss (st) , . . . ,Dnx+nεGss (st)] = 0(ny+nx)×nε ,

and Dnx+nε+1Gss (st) = 0ny+nx

for all st where DjGss (st) is the jth column vector of DGss (st). Again, note that there are a

set of ns derivatives of G, one for each possible value of st, instead of the single derivative in

the constant parameter case. To simply notation, again, define

Dn,mGss (st) ≡ [DnGss (st) , . . . ,DmGss (st)]
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for all st. Therefore, expression (10) can be written as

D1,nxGss (st) = 0(ny+nx)×nx , Dnx+1,nx+nεGss (st) = 0(ny+nx)×nε , and Dnx+nε+1Gss (st) = 0ny+nx

(11)

for all st.

The expression D1,nxGss (st) = 0(ny+nx)×nx will be used to solve for

{D1,nxgss (st) ,D1,nxhss (st)}nsst=1, while expressions Dnx+1,nx+nεGss (st) = 0(ny+nx)×nε and

Dnx+nε+1Gss (st) = 0ny+nx will be used to solve for {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1. In what follows, we show that D1,nxGss (st) =

0(ny+nx)×nx implies a quadratic system, while Dnx+1,nx+nεGss (st) = 0(ny+nx)×nε and

Dnx+nε+1Gss (st) = 0ny+nx (given {D1,nxgss (st) ,D1,nxhss (st)}nsst=1) are linear systems.

3.1 Solving for the Derivatives of xt−1

Taking derivatives with respect to xt−1 in (9) produces the following expression

D1,nxGss (st) =
ns∑
s′=1

pst,s′

∫

D1,nyfss (s′, st)D1,nxgss (s′)D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s′, st)

µ (ε′) dε′

for all st. Next, taking into account that
∫
µ (ε′) dε′ = 1, this expression simplifies to

D1,nxGss (st) =
ns∑
s′=1

pst,s′


D1,nyfss (s′, st)D1,nxgss (s′)D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s′, st)


for all st. Now, rearranging, for each st

D1,nxGss (st) = (12)

ns∑
s′=1

pst,s′

 (
D1,nyfss (s′, st)D1,nxgss (s′) +D2ny+1,2ny+nxfss (s′, st)

)
D1,nxhss (st)

+Dny+1,2nyfss (s′, st)D1,nxgss (st) +D2ny+nx+1,2(ny+nx)fss (s′, st)

 .
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Putting together the ns versions of (12), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)nxns quadratic equations in the same number

of unknowns {D1,nxgss (st) ,D1,nxhss (st)}nsst=1. Section 4 describes how to solve this quadratic

system.

3.2 Solving for the Derivatives of εt and χ

This subsection shows that, after finding {D1,nxgss (st) ,D1,nxhss (st)}nsst=1, obtaining

{Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1 and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1 is sim-

ply solving a system of linear equations. The first step is to solve for

{Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1. Then, we solve for

{Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1.

3.2.1 Solving for the Derivatives of εt

In order to solve for {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1, we obtain the expression for

Dnx+1,nx+nεGss (st) by taking derivatives with respect to εt in (9)

Dnx+1,nx+nεGss (st) =

ns∑
s′=1

pst,s′

∫

D1,nyfss (s′, st)D1,nxgss (s′)Dnx+1,nx+nεhss (st) +

Dny+1,2nyfss (s′, st)Dnx+1,nx+nεgss (st) +

D2ny+1,2ny+nxfss (s′, st)Dnx+1,nx+nεhss (st) +

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, st)

µ (ε′) dε′

for all st. Taking into account that
∫
µ (ε′) dε′ = 1, this expression simplifies to

Dnx+1,nx+nεGss (st) =

ns∑
s′=1

pst,s′


(
D1,nyfss (s′, st)D1,nxgss (s′) +D2ny+1,2ny+nxfss (s′, st)

)
Dnx+1,nx+nεhss (st)

Dny+1,2nyfss (s′, st)Dnx+1,nx+nεgss (st)

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, st)

 (13)

for all st.
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Putting together the ns versions of (13), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)nεns equations in the same number of unknowns

{Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}nsst=1. The system is linear.

The linear system can be written in matrix notation expression as

[
Θε Φε

]


Dnx+1,nx+nεgss (1)
...

Dnx+1,nx+nεgss (ns)

Dnx+1,nx+nεhss (1)
...

Dnx+1,nx+nεhss (ns)


= Ψε (14)

where

Θε =
ns∑
s′=1


p1,s′Dny+1,2nyfss (s′, 1) · · · 0(nx+ny)×ny

...
. . .

...

0(nx+ny)×ny · · · pns,s′Dny+1,2nyfss (s′, ns)

 ,

Φε =
ns∑
s′=1


p1,s′D1,nyfss (s′, 1)D1,nxgss (s′) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D1,nyfss (s′, ns)D1,nxgss (s′)



+

ns∑
s′=1


p1,s′D2ny+1,2ny+nxfss (s′, 1) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D2ny+1,2ny+nxfss (s′, ns)

 ,
and

Ψε = −
ns∑
s′=1


p1,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, 1)

...

pns,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s′, ns)

 .
Thus, given the solution for {D1,nxgss (st) ,D1,nxhss (st)}nsst=1, expression (14) is a system of

(ny + nx)nεns linear equations in the same number of unknowns given by

{Dnx+1,nx+negss (st) ,Dnx+1,nx+nehss (st)}nsst=1 that can be solved by inverting
[

Θε Φε

]
.
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3.2.2 Solving for the Derivatives of χ

In order to solve for {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1, we obtain the expression for

Dnx+nε+1Gss (st) by taking derivatives with respect to χ in (9)

Dnx+nε+1Gss (st) =

ns∑
s′=1

pst,s′

∫



D1,nyfss (s′, st)

 D1,nxgss (s′)Dnx+nε+1hss (st)

+Dnx+1,nx+nεgss (s′) ε′ +Dnx+nε+1gss (s′)

+

Dny+1,2nyfss (s′, st)Dnx+nε+1gss (st) +

D2ny+1,2ny+nxfss (s′, st)Dnx+nε+1hss (st) +

D2ny+nx+1,2ny+nx+nεfss (s′, st) ε
′+

D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, st)Dθss (s′) +

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, st)Dθss (st)


µ (ε′) dε′

for all st, where Dθss (st) is the derivative of θ (χ, st) with respect to χ evaluated at χ = 0

Dθss (st) = Dθ (0, st) =
[
Dijθ (0, st)

]
1≤i≤nθ,j=1

for all st.

Taking into account that
∫
µ (ε′) dε′ = 1 and

∫
ε′µ (ε′) dε′ = 0, the above simplifies to

Dnx+nε+1Gss (st) = (15)

ns∑
s′=1

pst,s′


D1,nyfss (s′, st) {D1,nxgss (s′)Dnx+nε+1hss (st) +Dnx+nε+1gss (s′)}+

Dny+1,2nyfss (s′, st)Dnx+nε+1gss (st) +D2ny+1,2ny+nxfss (s′, st)Dnx+nε+1hss (st)

+D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, st)Dθss (s′) +

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, st)Dθss (st)


for all st.

Putting together the ns versions of (15), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)ns equations in the same number of unknowns

{Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1. This system is also linear.

13



The linear system can be written in matrix notation expression as

[
Θχ Φχ

]


Dnx+nε+1gss (1)
...

Dnx+nε+1gss (ns)

Dnx+nε+1hss (1)
...

Dnx+nε+1hss (ns)


= Ψχ, (16)

where

Θχ =
ns∑
s′=1


p1,s′Dny+1,2nyfss (s′, 1) · · · 0(nx+ny)×ny

...
. . .

...

0(nx+ny)×ny · · · pns,s′Dny+1,2nyfss (s′, ns)



+


p1,1D1,nyfss (1, 1) · · · p1,nsD1,nyfss (ns, 1)

...
. . .

...

pns,1D1,nyfss (1, ns) · · · pns,nsD1,nyfss (ns, ns)

 ,

Φχ =
ns∑
s′=1


p1,s′D1,nyfss (s′, 1)D1,nxgss (s′) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D1,nyfss (s′, ns)D1,nxgss (s′)



+
ns∑
s′=1


p1,s′D2ny+1,2ny+nxfss (s′, 1) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D2ny+1,2ny+nxfss (s′, ns)

 ,
and

Ψχ = −
ns∑
s′=1



p1,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, 1)Dθss (s′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, 1)Dθss (1)


...

pns,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, ns)Dθss (s′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, ns)Dθss (ns)




.
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Thus, given the solution for {D1,nxgss (st) ,D1,nxhss (st)}nsst=1, expression (16) is a system of

(ny + nx)ns linear equations in the same number of unknowns given by

{Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}nsst=1 that can be solved by inverting
[

Θχ Φχ

]
.

3.3 Non-Certainty Equivalence of First-Order Approximation

As pointed out by Schmitt-Grohe & Uribe (2004), one important feature of constant parame-

ter models is certainty equivalence of the first-order approximation. This feature of constant

parameter models implies that first-order approximations are inadequate for analyzing interest-

ing behavior such as responses to risk because the approximated decision rules are invariant to

changes in volatility. For example, van Binsbergen et al. (2008) and Rudebusch & Swanson

(2008) note that at least second-order approximations are needed to analyze certain asset pric-

ing implications, such as the yield curve, since second-order approximations are not certainty

equivalent, and hence react to changes in volatility. Second-order approximations also imply a

degree of diffi culty in performing likelihood based estimation, such as Fernández-Villaverde &

Rubio-Ramirez (2007) who use the particle filter for estimation. These factors mean that ad-

dressing interesting questions with second-order approximations may be necessary but diffi cult

in constant parameter models. As shown below, first order approximations to Markov Switching

models are not necessarily certainty equivalent. This nice feature opens the door to analyze risk

related behaviors using linearly approximated models.

To see the certainty equivalence of the first-order approximation of constant parameter mod-

els, consider equation (16) with only one regime, so ns = 1. In this case

[
Θχ Φχ

] Dnx+nε+1gss (1)

Dnx+nε+1hss (1)

 = Ψχ (17)

where [
Θχ Φχ

]
=[

D1,nyfss (1, 1)D1,nxgss (1) +D2ny+1,2ny+nxfss (1, 1) D1,nyfss (1, 1) +Dny+1,2nyfss (1, 1)
]
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and

Ψχ = −
[
D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (1, 1)Dssθ (1)

]
.

Clearly, in constant parameter models it is the case that θ (χ, 1) = θ̄. Therefore, Dssθ (1) =

0nθ , which implies Ψχ = 0nx+ny . Consequently the linear system (17) is homogenous. If a unique

solution exists, then it is given by

Dnx+nε+1gss (1) = 0ny and Dnx+nε+1hss (1) = 0nx . (18)

Remenber that in constant parameter models the linear approximation to the policy rules

imply

yt − yss = D1,nxgss (1) (xt−1 − xss) +Dnx+1,nx+nεgss (1) εt +Dnx+nε+1gss (1)

and

xt − xss = D1,nxhss (1) (xt−1 − xss) +Dnx+1,nx+nεhss (1) εt +Dnx+nε+1hss (1) .

Using (18), evaluated at xt−1 = xss and εt = 0nε the above approximations imply that yt−yss =

0ny and xt − xss = 0nx , i.e. the linear approximation of constant parameter models is certainty

equivalent.

Let us now turn to the Markov switching case. From equation (16) is clear that a necessary

condition for the linear approximation not to be certainty equivalent is that Ψχ 6= 0ns(nx+ny).

Let us analyze when it is the case that Ψχ 6= 0ns(nx+ny). Consider the expression for Ψχ

Ψχ = −
ns∑
s′=1



p1,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, 1)Dθss (s′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, 1)Dθss (1)


...

pns,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, ns)Dθss (s′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, ns)Dθss (ns)




.

Then, if Dθss (st) = 0nθ for all st, it is the case that Ψχ = 0ns(nx+ny). So a necessary condition

for Ψχ 6= 0ns(nx+ny) is that Dθss (st) 6= 0nθ for some st. Recalling the form of θt

θ1 (χ, st) = θ1 + χθ̂1 (st)
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and

θ2 (χ, st) = θ̂2 (st)

we conclude that

Dθss (st) =
[
θ̂1 (st)

′ 0′nθ2

]′
.

Then Dθss (st) 6= 0nθ for some st if and only if θ̂1 (st) 6= 0nθ1 for some st. Hence, a necessary

condition for Ψχ 6= 0ns(nx+ny) is that θ̂1 (st) 6= 0nθ1 for some st.

However, the condition that θ̂1 (st) 6= 0nθ1 for some st is not suffi cient for Ψχ 6= 0ns(nx+ny).

In addition, it must be the case that

ns∑
s′=1

pst,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, st)Dθss (s′) +

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, st)Dθss (st)

 6= 0nx+ny

for some st, which will be true when θ1t do not enter the equilibrium conditions multiplicatively

with a variable which expected value equals zero when evaluating f (·) in steady state. The

following Proposition summarizes these results.

Proposition 1 Let θ̂1 (st) = 0nθ1 for all st. Then Ψχ = 0ns(nx+ny) and

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

for all st and the first order approximation is certainty equivalent. On the other hand, let

θ̂1 (st) 6= 0nθ1 for some st but let

ns∑
s′=1

pst,s′

 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s′, st)Dθss (s′) +

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s′, st)Dθss (st)

 = 0nx+ny

for all st. Then Ψχ = 0ns(nx+ny) and

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

for all st and the first order approximation is certainty equivalent.

Note that if the first-order approximation is not certainty equivalent, it means that either

Dnx+nε+1gss (st) 6= 0ny
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or

Dnx+nε+1hss (st) 6= 0nx

for some st and the linear approximation to the policy rules evaluated at xt−1 = xss and εt = 0nε

imply that either

yt − yss = Dnx+nε+1gss (st) 6= 0ny

or

xt − xss = Dnx+nε+1hss (st) 6= 0nx

for some st.

4 The Solution to the Quadratic System

As mentioned above, the ns versions of (12) form a system of (ny + nx)nsnx quadratic equations

in the elements of {D1,nxgss (s) ,D1,nxhss (s)}nss=1. This section describes how to find the solution

to this quadratic system. Putting (12) into matrix form produces ns quadratic systems of the

form

A (st)


I

D1,nxgss (1)
...

D1,nxgss (ns)

D1,nxhss (st) = B (st)

 I

D1,nxgss (st)

 (19)

for all st, where

A (st) =
[ ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)
]

and

B (st) = −
ns∑
s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s′, st) Dny+1,2nyfss (s′, st)

]
.

This quadratic system is nothing else than an algebraic system of equations. In a constant

regime framework, ns = 1, mapping this quadratic system into a generalized eigenvalue problem

allows solving it by a singular value decomposition (SVD) type of algorithm. In the case of
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Markov switching, the fact that {D1,nxgss (s)}nss=1 appear in every of the ns equations described

above makes it impossible to map the algebraic systems of equations into a generalized eigenvalue

problem. Instead solutions are going to be found using Gröbner Bases to be introduced bellow.

Before getting into the Gröbner Bases, we need to bound the number of solutions of the

quadratic system (19). At this point is important to note that any {D1,nxgss (s) ,D1,nxhss (s)}nss=1

that solves the quadratic system (19) is a minimum state variable solution. A number of other

procedures, such as Newton’s methods, can be used to solve this equation, with the important

limitation that they cannot find all possible solutions. However, the Appendix describes a

numerical procedure to find one solution.

4.1 Bounding the Number of Solutions

In order to apply Gröbner Bases to solve the quadratic system (19) we need to make sure that

the system has a finite number of solutions (see below for details). In general, determining the

number of solutions in a algebraic systems of equations may be diffi cult. However, given the

structure of the quadratic system (19), it is possible to bound the number of solutions. This is

going to be enough for our purposes.

Consider the fixed regime case of the quadratic system (19), when ns = 1. The usual

practice of solving the model, as in Schmitt-Grohe & Uribe (2004), involves constructing a

single stable solution that depends upon a particular ordering of the generalized eigenvalues of

the matrices A (1) and B (1). But the quadratic system does not have an unique solution. The

full set of solutions (stable and unstable) can be found by choosing different orderings of the

eigenvalues. The bound to the number of possible orderings of eigenvalues depends upon the

rank of the matrix A (1), the number of (endogenous and exogenous) predetermined variables,

and the number of exogenous predetermined variables by the following.

Proposition 2 Assume we are in the fixed regime case, i.e. ns = 1.. Let nexo denote the

number of exogenous predetermined variables, so 0 ≤ nexo ≤ nx. Then the total number of
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solutions to the quadratic system (19) when ns = 1 is bounded by rank [A (1)]− nexo
nx − nexo

 =
(rank [A (1)]− nexo)!

(nx − nexo)! (rank [A (1)]− nx)!

where rank [A (1)] stands for the rank of the matrix A (1).

Three important remarks. First, the number in the proposition is a bound because it may

be the case that we have repeated eigenvalues. If all the eigenvalues are different, then the

proposition provides the exact number of solutions. Second, matrix A (1) will not be of full rank

when there exist redundant variables or identities that can be eliminated from the quadratic

system, and consequently are linearly dependent upon another set of variables.3 The set of

exogenous predetermined variables has their set eigenvalues associated with their coeffi cients

of autocorrelation and, conditional on the number of endogenous predetermined variables and

non-predetermined variables, the number of solutions does not depend upon the number of

exogenous predetermined variables.

Now consider the case of Markov Switching models, when ns > 1. We now have ns quadratic

systems of the form (19). Let us first analyze the quadratic system (19) for st = 1. Given

{D1,nxgss (st) ,D1,nxhss (st)}nsst=2, the bound on the number of solutions to the quadratic system

(19) for st = 1 depends upon the rank of the matrix A (1), the number of (endogenous and

exogenous) predetermined variables, and the number of exogenous predetermined variables as

reported in Proposition 2. Since there are ns quadratic systems of the form (19), the bound to

the total number of solutions is determined by the following proposition.

Proposition 3 Assume we are in the Markov Switching case, i.e. ns > 1. Then the bound to

the number of solutions to the ns quadratic system (19) is given by

ns∏
st=1

 rank [A (st)]− nexo
nx − nexo

 =

(
(rank [A (st)]− nexo)!

(nx − nexo)! (rank [A (st)]− nx)!

)ns
3A simple example of a system where matrix A (1) will not be of full rank is a leisureless RBC model with three

variables (capital, consumption, and output) and three equations (the eurler condition, the resource constraint,

and the output definition). If we eliminate the output definition equation and the output variable the new matrix

would be full rank.
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where rank [A (st)] stands for the rank of the matrix A (st) for all st.

4.2 Gröbner Basis

A Gröbner basis for a set of polynomials is an alternative set of polynomials that possesses

desirable algorithmic properties. The most important of these features for our problem at hand

is that the Gröbner basis can be used to easily find all the roots of the original system of

polynomials equations. We will use this technique to solve the quadratic system defined by

equation (19). Every set of polynomials can be transformed into a Gröbner basis, although

this transformation may not be unique. The reduced Gröbner basis is indeed unique. The

transformation process generalizes the familiar techniques of Gaussian elimination for solving

linear systems of equations. A careful definition of reduced Gröbner basis, and lexicographic is

out of the scope of the paper. Here we only present the mathematical result (the Shape Lemma)

that is useful for our purposes, i.e. solving the quadratic system defined by equation (19). In

what follows we first introduce the theory around Gröbner basis. Then, we show an example.

Finally, we illustrate how the Shape Lemma can be used for our purposes.

4.2.1 The Theory

Suposse a given set of polynomials f1, . . . , fm in Q [x1, . . . , xn], where Q [x1, . . . , xn] is the poly-

nomial ring defined by the set of polynomials in n variables with coeffi cients in field Q of rational

numbers. Here, we define a polynomial f in x1, . . . , xn with coeffi cients in Q as a finite combi-

nation of monomials

f =
∑
α

cαx
α =

∑
α

cαx
α1
1 . . . xαnn

with cα ∈ Q and the sum is over the finite number of n-tuples α = (α1, . . . , αn) ∈ Zn+.

A subset I of the polynomial ring Q [x1, . . . , xn] is called an ideal if closed under sums,

f + g ∈ I for all f, g ∈ I and f ∗ h ∈ I for all f ∈ I and h ∈ Q [x1, . . . , xn]. There is

one particular ideal we are interested on. Let I = 〈f1, . . . , fm〉 ⊆ Q [x1, . . . , xn] be the ideal
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generated by this set of polynomials where

〈f1, . . . , fm〉 =

{
f |f =

m∑
i=1

gifi, gi ∈ Q [x1, . . . , xn]

}
.

Let also define the set V (f1, . . . , fm) to be the complex variety defined by the set of polynomials

f1, . . . , fm where

V (f1, . . . , fm) = {(a1, . . . , an) ∈ Cn|fi (a1, . . . , an) = 0 for all i ∈ {1, . . . ,m}} .

The complex variety defines the set of common complex zeros of the polynomials f1, . . . , fm.

If we replace f1, . . . , fm by another set of polynomials g1, . . . , gl that generate the same ideal,

i.e. 〈f1, . . . , fm〉 = 〈g1, . . . , gl〉, the complex variety does not change, i.e. V (f1, . . . , fm) =

V (g1, . . . , gl). Any set of polynomials that generates the ideal 〈f1, . . . , fm〉 is called a basis of the

ideal. Thus, both f1, . . . , fm and g1, . . . , gl are basis for the ideal 〈f1, . . . , fm〉. If V (f1, . . . , fm)

is a finite set, then 〈f1, . . . , fm〉 is said to be a zero-dimensional ideal.

The fact that complex varieties do not change when we change the basis is going to be crucial

for our strategy. Our approach is going to ask whether we can find a basis that makes describing

the solution set V (f1, . . . , fm) straightforward. In other words: Can we transform the original

system of polynomials equations f1 (x1, . . . , xn) = . . . = fm (x1, . . . , xn) = 0 into a new system

g1 (x1, . . . , xn) = . . . = gl (x1, . . . , xn) = 0 that can be easily solved? In this section, we show

how reduced Gröbner basis can be used for this purpose.

Before showing how to do this we need to introduce two last concepts things. First, let us

now define a monomial ordering in general and the lexicographic monomial order. A monomial

ordering on Q [x1, . . . , xn] is a relation � on Zn+ (i.e. the monomial exponents) such that (1) the

relation is a total ordering, (2) if α � β and γ ∈ Zn+, then α+ γ � β + γ, and (3) every set has

a smallest element. The lexicographic term monomial order, �lex, is defined as α �lex β if the

left-most nonzero entry of α− β is positive.

Second, let us define a particular class of ideals, the radical ideals. The radical ideal of an

ideal I is defined as

√
I =

{
f ⊆ Q [x1, . . . , xn] |∃k ≥ 1 such that fk ∈ I

}
.
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Clearly, I ⊆
√
I. If I =

√
I, the ideal I is called a radical ideal. Why do we need our ideal to

be radical? We will explain the reason below. But first, let us introduce the Shape Lemma that

is going to be the crucial theoretical tool in our approach to solve the quadratic system (19).

Theorem 4 Let 〈f1, . . . , fm〉 be a zero-dimensional ideal in Q [x1, . . . , xn] such that all d complex

roots of f1, . . . , fm have distinct last coordinate. The reduced Gröbner basis of 〈f1, . . . , fm〉 in

the lexicographic term monomial order is

G = {x1 − q1 (x1) , . . . , xn−1 − qn−1 (xn−1) , r (xn)}

where r is a polynomial of degree d and the qi are polynomials of degree ≤ d− 1 for all 1 ≤ i ≤

n− 1.

Proof. See Becker et al. (1996).

The reduced Gröbner basis consists of one univariate equation r (xn) in the last variable and

n− 1 equations that depend only on a (different) single variable xi and the last variable. These

n − 1 equations are linear in xi The Shape Lemma tell us how how to find all solutions to a

polynomial system of equations. We compute the reduced Gröbner basis G. Then we need to

find all solutions to G. Remember that G and f1, . . . , fm share the same set of complex roots.

So finding the set complex roots of G is equivalent to find the set of complex roots of f1, . . . , fm.

But finding the set of complex roots of G is easy. We need to solve the univariate equation

r (xn) = 0 in the last variable. The values for all other variables are then trivially given by

the remaining linear equations. Finding all solutions to a complicated system of polynomial

equations in many variables thus requires determining the reduced Gröbner basis and finding

all solutions to a univariate polynomial equation. The second step is trivial.

There is a large literature on the computation of the reduced Gröbner basis. Buchberger’s

algorithm is the most popular one. We refer the interested reader to Cox et al. (1997). In this

paper we use Mathematica to compute the reduced Gröbner basis.
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4.2.2 Example

As an example, consider the following system of polynomial equations of four quadratic equations

in four unknowns:

x1x2 + x3x4 + 2 = 0,

x1x2 + x2x3 + 3 = 0,

x1x3 + x4x1 + x4x2 + 6 = 0, and

x1x3 + 2x1x2 + 3 = 0.

A Gröbner basis, with respect to the lexicographic term monomial order is

−49− 19x2
4 + 9x4

4 + 3x6
4,

2x4 + 9x3
4 + 3x5

4 + 14x3,

−99x4 + 6x3
4 + 9x5

4 + 28x2, and

15x4 − 6x3
4 − 9x5

4 + 28x1.

Note that the first element of the basis is a univariate equation in x4 only. Given a root x4

of the first polynomial, the second polynomial is linear in x3, the third is linear in x2, and the

last is linear in x1. Solving the first element of the basis produces the following six solutions

{x4 = −1.55461, x4 = −1.39592i, x4 = 1.39592i, x4 = −1.86232i, x4 = 1.86232i, x4 = 1.55461}

Solving the other three basis, conditional on these solutions, gives the following roots

{x3 = 4.58328, x3 = −0.41342i, x3 = 0.41342i, x3 = 0.914097i, x3 = 0.914097i, x3 = −4.58328} ,

{x2 = −1.7728, x2 = −3.81477i, x2 = 3.81477i, x2 = −0.768342i, x2 = 0.768342i, x2 = 1.7728}

and

{x1 = −2.89104, x1 = −0.37300i, x1 = 0.37300i, x1 = −4.81861i, x1 = 4.81861i, x1 = 2.89104} .

It is easy to show that these roots solve the original system of four quadratic equations in four

unknowns.
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4.3 Mean Square Stability

The issue now is whether any of the solutions are stable, and if so, how many. In a typical fixed

regime model, determinacy is easily verified by checking whether the number of eigenvalues of

the quadratic system (19) inside the unit circle equals to the number of predetermined variables.

In a model with Markov switching the problem is more subtle. As shown in Farmer et al. (2009),

it is possible that the number of stable eigenvalues associated with each of the regimes is equal

to the number of predetermined variables but the system, as a whole, does not have a stable

solution under several concepts of stability. The good news is that the Markov switching model

can be checked for mean-square stability (MSS), as defined in Costa et al. (2005). In particular,

MSS requires checking if the following matrix has its eigenvalues inside the unit circle

T =
(
P ′ ⊗ In2

x

)
diag [D1,nxhss (s)⊗D1,nxhss (s)] (20)

where

diag [D1,nxhss (s)⊗D1,nxhss (s)] =
D1,nxhss (1)⊗D1,nxhss (1) · · · 0n2

x×n2
x

0n2
x×n2

x
· · · 0n2

x×n2
x

...
. . .

...

0n2
x×n2

x
· · · D1,nxhss (ns)⊗D1,nxhss (ns)

 .

Thus, with Markov switching, the policy functions {D1,nxhss (st)}nsst=1 associated to each of

the solutions of the quadratic system (19) must be checked for MSS under (20). If only one

policy function is stable then the model only has one stable solution. If more than one are stable,

the model has multiple stable solutions. If none are stable, the model has no stable solutions.

5 Second Order Approximation

Having constructed the first-order approximations, this Section shows how to find the second

order Taylor expansions to g and h around the point (xss, 0nε , 0, st). Thus, we have

g (xt−1, εt, χ, st)− yss ' Dgss (st)St +
1

2
Hgss (st) (St ⊗ St)
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where Hgss (st) is a ny× (nx + nε + 1)2 matrix related to the second-order partial derivatives of

g and St =
(

(xt−1 − xss)′ ε′t χ
)′
is a vector of size (nx + nε + 1)× 1 that reflects the states

of the model and

h (xt−1, εt, χ, st)− xss ' Dhss (st)St +
1

2
Hhss (st) (St ⊗ St)

where Hhss (st) is a ny × (nx + nε + 1)2 matrix related to the second-order partial derivatives

of h.

Define

Hgiss (st) = Hgiss (xss, 0nε , 0, st) =
[
DkDjgi (xss, 0nε , 0, st)

]
1≤j,k≤nx+nε+1

to be the (nx + nε + 1) × (nx + nε + 1) matrix of second-order partial derivatives of gi with

respect to (xt−1, εt, χ) evaluated at (xss, 0nε , 0, st) for all st and for 1 ≤ i ≤ nx, and

Hhiss (st) = Hhiss (xss, 0nε , 0, st) =
[
DkDjhi (xss, 0nε , 0, st)

]
1≤j,k≤nx+nε+1

to be the (nx + nε + 1) × (nx + nε + 1) matrix of second-order partial derivatives of hi with

respect to (xt−1, εt, χ) evaluated at (xss, 0nε , 0, st) for all st and for 1 ≤ i ≤ ny. Note that both

Hgiss (st) and Hhiss (st) are Hessian matrices, and are hence symmetric, with the row k, column

j elements of each denoted DkDjgi (xss, 0nε , 0, st) and DkDjhi (xss, 0nε , 0, st).

Then the matrices of second-order partial derivatives of g and h are related to the the

matrices of second-order partial derivatives of gi and hi by

Hgss (st) =


vec (Hg1

ss (st))
′

...

vec
(
Hgnyss (st)

)′


and

Hhss (st) =


vec (Hh1

ss (st))
′

...

vec (Hhnxss (st))
′

 .
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Similar to the first-order approximations, the objective is now to find the coeffi cients in the

matrices of second-order partial derivatives

{{
Hgiss (st)

}ny
i=1

,
{
Hhiss (st)

}nx
i=1

}ns
st=1

(21)

in the above described expansions, whereHgiss (st) ∈ C(nx+nε+1)×(nx+nε+1)×(nx+nε+1)×(nx+nε+1) for

all st and for 1 ≤ i ≤ ny and Hhiss (st) ∈ C(nx+nε+1)×(nx+nε+1)×(nx+nε+1)×(nx+nε+1) for all st and

and for 1 ≤ i ≤ nx, by using the second-order partial derivatives of the function G evaluated at

steady state. The remainder of the paper will use the following notation

HGi (xt−1, εt, χ, st) =
[
DkDjGi (xt−1, εt, χ, st)

]
1≤j,k≤nx+nε+1

to refer the (nx + nε + 1) × (nx + nε + 1) matrix of second-order partial derivatives of Gi with

respect to (xt−1, εt, χ) evaluated at (xt−1, εt, χ, st) for all xt−1, εt, and st and 1 ≤ i ≤ ny + nx.

Equivalently,

HGi (xss, 0nε , 0, st) =
[
DkDjGi (xss, 0nε , 0, st)

]
1≤j,k≤nx+nε+1

refers to the (nx + nε + 1)× (nx + nε + 1) matrix of second-order partial derivatives of Gi with

respect to (xt−1, εt, χ) evaluated at (xss, 0nε , 0, st) for all st and 1 ≤ i ≤ ny + nx. To simplify

notation define

HGi
ss (st) ≡ HGi (xss, 0nε , 0, st) and DkDjGi

ss (st) ≡ DkDjGi (xss, 0nε , 0, st)

for 1 ≤ i ≤ ny + nx, 1 ≤ j, k ≤ nx + nε + 1, and for all st. Thus,

HGi
ss (st) =

[
DkDjGi

ss (st)
]

1≤j,k≤nx+nε+1

for all st and 1 ≤ i ≤ ny + nx.

The coeffi cients of these policy functions are going to be obtained by using the fact that

G (xt−1, εt, χ, st) = 0ny+nx

for all xt−1, εt, χ, and st and, therefore, it must be the case that

HGi (xt−1, εt, χ, st) = 0(nx+nε+1)×(nx+nε+1)
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for all xt−1, εt, χ, st and 1 ≤ i ≤ ny + nx, in particular,

HGi
ss = 0(nx+nε+1)×(nx+nε+1)

for all st and 1 ≤ i ≤ ny + nx. Thus,

H1,nx;1,nxGi
ss (st) = 0nx×nx , H1,nx;nx+1,nεGi

ss (st) = 0nx×nε ,

Hnx+1,nε;nx+nε+1Gi
ss (st) = 0nx , Hnx+1,nε;nx+1,nεGi

ss (st) = 0nε×nε, (22)

Hnx+1,nε,nε;nx+nε+1Gi
ss (st) = 0nε, and Hnx+nε+1;nx+nε+1Gi

ss (st) = 0.

for all st and 1 ≤ i ≤ ny + nx, where, to simply notation, we have used the following definition

Hn1,n2;m1,m2Gi
ss (st) =


Hn1;m1Gi

ss (st) . . . Hn1;m2Gi
ss (st)

...
. . .

...

Hn2;m1Gi
ss (st) . . . Hn2;m2Gi

ss (st)


for all st and 1 ≤ n1,m1 ≤ n2,m2 ≤ nx + nε + 1.

The appendix shows how to use equations (22) to obtain (21): H1,nx;1,nxGi
ss (st) = 0nx×nx

determines
{
{H1,nx;1,nxg

i
ss (st) ,H1,nx;1,nxh

i
ss (st)}nx+ny

i=1

}ns
st=1

, H1,nx;nx+1,nεGi
ss (st) = 0nx×nε deter-

mines
{
{H1,nx;nx+1,nεg

i
ss (st) ,H1,nx;nx+1,nεh

i
ss (st)}nx+ny

i=1

}ns
st=1

, Hnx+1,nε;nx+nε+1Gi
ss (st) = 0nx de-

termines
{
{Hnx+1,nε;nx+nε+1g

i
ss (st) ,Hnx+1,nε;nx+nε+1h

i
ss (st)}nx+ny

i=1

}ns
st=1

,

Hnx+1,nε;nx+1,nεGi
ss (st) = 0nε×nε determines{

{Hnx+1,nε;nx+1,nεg
i
ss (st) ,Hnx+1,nε;nx+1,nεh

i
ss (st)}nx+ny

i=1

}ns
st=1

, Hnx+1,nε,nε;nx+nε+1Gi
ss (st) = 0nε

determines
{
{Hnx+1,nε,nε;nx+nε+1g

i
ss (st) ,Hnx+1,nε,nε;nx+nε+1h

i
ss (st)}nx+ny

i=1

}ns
st=1

,

and Hnx+nε+1;nx+nε+1Gi
ss (st) = 0 determines{

{Hnx+nε+1;nx+nε+1g
i
ss (st) ,Hnx+nε+1;nx+nε+1h

i
ss (st)}nx+ny

i=1

}ns
st=1

.

The equations in the appendix also imply two important results. First, conditional on ob-

taining the first order solution for the policy functions, each of the equations in (22) is linear in

the set of unknowns. As a result, given the solution first-order approximation, the second-order

approximation follows as the solution of a linear system. See appendix for details.

Second, lack of certainty equivalence matters in the second order as well. For the derivatives

H1,nx;nx+nε+1Gi
ss (st) andHnx+1,nε;nx+1,nεGi

ss (st), they are homogenous systems in the unknowns
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Hnx+1,nε;nx+nε+1g
i
ss (st) and Hnx+1,nε;nx+1,nεh

i
ss (st) if Dnx+nε+1gss (st) = 0ny and

Dnx+nε+1hss (st) = 0nx , which means the first order is certainty equivalent. The following

Proposition summarizes this result.

Proposition 5 Let θ̂1 (st) = 0nθ1 for all st. Then, by Proposition 1,

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

for all st and the first order approximation is certainty equivalent. In addition

Hi
1,nx;nx+nε+1Gss (st) = 0nx and Hnx+1,nε;nx+1,nεGi

ss (st) = 0nε

are homogenous systems in the unknowns, and so

Hnx+1,nε;nx+nε+1g
i
ss (st) = 0nx and Hnx+1,nε;nx+1,nεh

i
ss (st) = 0nε.

6 Examples

6.1 Example 1: The RBC Model

This section presents a simple exercise to illustrate the theoretical framework at hand. The per-

fect vehicle for such pedagogical effort is the real business cycle model. There are two reasons.

First, the stochastic neoclassical growth model is the foundation of modern macroeconomics.

Even the more complicated New Keynesian models, such as those in Woodford (2003) or Chris-

tiano et al. (2005), are built around the core of the neoclassical growth model augmented with

nominal and real rigidities. Thus, after understanding how to deal with Markov switching in this

prototype economy, it will be rather straightforward to extend it to richer environments such

as the ones commonly used for policy analysis. Second, the model is so well known, its working

so well understood, and its computation so thoroughly explored that the role of time-varying

volatility in it will be staggeringly transparent.

Consider a real business cycle model where the TFP process follows a random walk in logs

with drift. The drift will take one of two levels, high and low, depending on the value of
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the Markov process. The random walk specification helps simplify the number of variables

considered in a stationary equilibrium, and is hence the most parsimonious illustrative example.

The specification of two regimes will allow a succinct discussion of the methodology, but, as

mentioned above, more regimes can be handled easily within the framework.

To get into the substantive questions as soon as possible, the description of the standard

features of the prototype economy will be limited to fix notation. There is a representative

household in the economy, whose preferences over stochastic sequences of consumption, ct, are

represented by a utility function:

maxE0

∞∑
t=0

βt log ct

where β ∈ (0, 1). The resource constraint is

ct + kt = ztk
α
t−1 + (1− δ) kt−1

where kt is capital and the technological change, zt, proceeds according to a random walk in

logs with drift where the Markov switching is in the drift, i.e.

log zt = µt + log zt−1 + σεt

where the drift, µt, takes two values depending on the value of the Markov process, st.

For this model it is natural to work with the solution to the social planner’s problem. The

optimality conditions are standard:

1

ct
= βEt

1

ct+1

(
αzt+1k

α−1
t + 1− δ

)
and

ct + kt = ztk
α
t−1 + (1− δ) kt−1.

Due to the unit root the economy is non-stationary. Thus, define ωt = z
1

1−α
t−1 , and let c̃t = ct

ωt
,

k̃t−1 = kt−1

ωt
, z̃t = zt

zt−1
. Then the re-scaled equilibrium conditions are

1

c̃t
= βEt

z̃
1

α−1

t

c̃t+1

(
αz̃t+1k̃

α−1
t + 1− δ

)
,
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c̃t + k̃tz̃
1

1−a
t = z̃tk̃

α
t−1 + (1− δ) k̃t−1,

and,

log z̃t = µt + σεt.

Substituting the expression for z̃t, the conditions are then

1

c̃t
= βEt

1

c̃t+1

exp

(
µt + σεt
α− 1

)(
α exp

(
µt+1 + σεt+1

)
k̃α−1
t + 1− δ

)
and

c̃t + k̃t exp

(
µt + σεt

1− α

)
= exp (µt + σεt) k̃

α
t−1 + (1− δ) k̃t−1.

Using the notation in Section 2, xt−1 = k̃t−1, yt = c̃t, and θt = θ1t = µt, so

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = 1
c̃t
− β 1

c̃t+1
exp

(µt+σεt
α−1

) (
α exp

(
µt+1 + χσεt+1

)
k̃α−1
t + 1− δ

)
c̃t + k̃t exp

(µt+σεt
1−α

)
− exp (µt + σtεt) k̃

α
t−1 − (1− δ) k̃t−1

 .
Clearly,

c̃t = g
(
k̃t−1, εt, χ, st

)
,

c̃t+1 = g
(
k̃t, χεt+1, χ, st+1

)
,

k̃t = h
(
k̃t−1, εt, χ, st

)
,

and the drift, µt, has the following law of motion that depends on the Markov process

µt+1 = µ (χ, st+1) = µ+ χµ̂ (st+1)

where st ∈ {1, 2}.

6.1.1 Solving the RBC Model

The following subsections show how to solve the model using a second-order approximation.

The first step is to find the steady state. The second is to define the matrices of first-order

partial derivatives of f with respect to all its components evaluated at steady state that we
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use to solve for first-order approximation to the policy functions. Third, we find the second-

order approximation to the policy functions (we omit the matrices that we use to solve for

the second-order terms to simplify notation). We will consider two parametrization. The first

parametrization has symmetric regimes. The second parametrization has asymmetric regimes.

6.1.2 Steady State

In order to calculate steady state, we set χ = 0 and, hence, µt = µt+1 = µ. Therefore, the

steady state of the model are values c̃ss and k̃ss such that 1
css
− β 1

css
exp

(
µ̄

α−1

) (
α exp (µ̄) k̃α−1

ss + 1− δ
)

c̃ss + k̃ss exp
(

µ̄
1−α
)
− exp (µ̄) k̃αss − (1− δ) k̃ss

 = 0.

These two equations produce the steady state values

k̃ss =

(
1

α exp (µ̄)

(
1

β exp
(

µ̄
α−1

) − 1 + δ

)) 1
α−1

and

c̃ss = exp (µ̄) k̃αss + (1− δ) k̃ss − k̃ss exp

(
µ̄

1− α

)
.

6.1.3 The Matrices

The next step is to define the matrices of partial derivatives of f with respect to all its com-

ponents evaluated at steady state as introduced in Section in () and that we use to solve for

first-order approximation to the policy functions. Recall in this example that ny = 1, nx = 1,

nε = 1, and nθ = 1. Thus, the matrices are

D1,1fss (s′, s) =

 1
c2ss

0

 ,D2,2fss (s′, s) =

 − 1
c2ss

1

 ,

D3,3fss (s′, s) =

 (1− α)αβ exp
(
αµ̄
α−1

)
kα−2
ss

css

exp
(

µ̄
1−α
)

 ,D4,4fss (s′, s) =

 0

− exp( µ̄
1−α)
β

 ,
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D5,5fss (s′, s) =

 −αβ exp
(
αµ̄
α−1

)
kα−1
ss

css
σ

0

 ,D6,6fss (s′, s) =

 σ
(1−α)css(

exp( µ̄
1−α)kss
1−α − exp (µ̄) kαss

)
σ


D7,7fss (s′, s) =

 −αβ exp
(
µ̄α
α−1

)
kα−1
ss

css

0

 ,D8,8fss (s′, s) =

 1
css

exp
(

µ̄
1−α
)
kss
1−α − exp (µ̄) kαss

 .
6.1.4 Symmetric Regimes

Consider first the following parametrization with symmetric regimes:

α β δ σ µ̄ µ (1) µ (2) p1,1 p2,2

0.3300 0.9976 0.0250 0.0002 0.00333 0.00167 −0.00163 0.90 0.90

The growth rates µ̄+µ (1) and µ̄+µ (2) correspond to regimes where the annual output growth

rate is three or one percent, β produces a risk free rate of three percent annually, and σ is set to

match the total volatility of TFP growth as estimated in Fernández-Villaverde & Rubio-Ramirez

(2007). The standard calibration of α implies a capital share of one-third, and δ implies an

annual depreciation rate of approximately ten percent. The steady state values of capital and

consumption are kss = 32.0986 and css = 2.18946. Consequently the numerical values of the

matrices of first-order partial derivatives of f with respect to all its components evaluated at

steady state are

D1,1fss (s′, s) =

 0.20861

0

 , D2,2fss (s′, s) =

 −0.2086

1

 , D3,3fss (s′, s) =

 0.00031

1.00499



D4,4fss (s′, s) =

 0

−1.0074

 , D5,5fss (s′, s) =

 0

0

 , D6,6fss (s′, s) =

 0.00014

0.00900


D7,7fss (s′, s) =

 −0.0147

0

 , and D8,8fss (s′, s) =

 0.68169

44.9953

 .
Using these matrices, we can solve the quadratic system (19) to get the following set of

solutions for {D1,1gss (st) ,D1,1hss (st)}nsst=1. In this example, since nx = 1 and there are no
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exogenous variables, ny = 1, and ns = 2, Proposition (3) indicates that, at most, there are four

total solutions. As shown below, there are, indeed, four solutions

D1,1hss (1) D1,1gss (1) D1,1hss (2) D1,1gss (2)

(1) 0.96364 0.03896 0.96364 0.03896

(2) 1.04023 −0.0380 1.04023 −0.0380

(3) 1.11326 + 0.116871i −0.1114− 0.11745i 1.11326 + 0.11687i −0.1114− 0.11745i

(4) 1.11326− 0.116871i −0.1114 + 0.11745i 1.11326− 0.11687i −0.1114 + 0.11745i

The only MSS solution is (1), hence the model is determined. Given solution (1) can find
{D2,2gss (st) ,D2,2hss (st)}nsst=1 and {D3gss (st) ,D3hss (st)}nsst=1 for the first order approximation

and
{
{H1,3;1,3g

i
ss (st) ,H1,3;1,3h

i
ss (st)}2

i=1

}ns
st=1

for the second-order approximation. Let St denote
the state for time t. Then the second-order solution is, for st = 1: ĉt

k̂t

 =

 0.03896 0.00028 0.00972

0.96364 −0.0092 −0.0843

St
+

1

2

 −0.0004 4× 10−6 0.00016 4× 10−6 4× 10−8 1× 10−6 0.00016 1× 10−6 −0.0003

−0.0002 −0.0003 −0.0025 −0.0003 2.7× 10−6 0.00002 −0.0025 0.00002 0.00057

 (St ⊗ St)

and for st = 2:  ĉt

k̂t

 =

 0.03896 0.00028 −0.00972

0.96364 −0.0092 0.0843

St
+

1

2

 −0.0004 4× 10−6 −0.0002 4× 10−6 4× 10−8 −1× 10−6 −0.0002 −1× 10−6 −0.0003

−0.0002 −0.0002 0.00251 −0.0003 3× 10−6 −2× 10−5 0.00251 −2× 10−5 0.00057

 (St ⊗ St)

This solution highlights the results of Propositions 1 and 5. Let us first analyze Proposition

1 that indicates that the first-order approximation is not certainty equivalent. Since µ̂ (st) 6= 0

for all st and
ns∑
s′=1

pst,s′ (D7,7fss (s′, st)Dθss (s′) +D8,8fss (s′, st)Dθss (st)) 6= 02

for all st. As a result, the first-order partial derivatives of g and h with respect to χ are nonzero:

D3gss (st) 6= 0 and D3hss (st) 6= 0.

Let us now analyze Proposition 5. This Proposition states that the cross-derivatives of χ

with the other state variables in the second-order approximation are nonzero: DiD3gss (st) =

D3Digss (st) gss (st) 6= 0 and DiD3hss (st) = D3Dihss (st) 6= 0 for all st = 1, 2 and 1 ≤ i ≤ 2.
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6.1.5 Asymmetric Regimes

As an alternative parameterization, consider the same parameters above, but with p1,1 = 0.5,

µ̄ = 0.00222, µ (1) = 0.00278, and µ (2) = 0.00052. In this example, regime 1 has a shorter

expected duration, and regime 2 occurs more frequently in the ergodic distribution. The steady

state is kss = 34.6774, and css = 2.24769. Also, with this alternative parametrization, the

numerical values of the matrices of first-order partial derivatives of f will change with respect

to the ones from the symmetric regimes presented above (in the interest of space we do not

present them here). Using these new matrices, we can solve the quadratic system (19) for the

alternative parameterization. Again, since nx = 1 and there are no exogenous variables, ny = 1,

and ns = 2, Proposition 3 indicates that, at most, there are four total solutions. As shown

below, there are, indeed, four solutions

D1,1hss (1) D1,1gss (1) D1,1hss (2) D1,1gss (2)

(1) 0.96545 0.0370821 0.96545 0.0370821

(2) 1.03828 −0.035996 1.03828 −0.035996

(3) 2.00373− 0.7042i −1.00465 + 0.70654i 1.11318 + 0.39122i −0.111145− 0.39252i

(4) 2.00373 + 0.7042i −1.00465− 0.70654i 1.11318− 0.39122i −0.111145 + 0.39252i

The only MSS solution is (1), hence the model is determined. Given solution (1) can find the
rest of the matrices needed to build the second-order approximation. We have, for st = 1

 ĉt

k̂t

 =

 0.03708 0.00029 0.00637

0.96545 −0.0100 −0.1412

St
+

1

2

 −0.0004 4× 10−6 0.00009 4× 10−6 5× 10−8 1× 10−6 0.00009 1× 10−6 −5× 10−6

−0.0002 −0.0003 −0.0040 −0.0003 3× 10−6 0.00004 −0.0040 0.00004 0.00065

 (St ⊗ St)

and for st = 2
 ĉt

k̂t

 =

 0.03708 0.00029 −0.0013

0.96545 −0.0100 0.02823

St
+

1

2

 −0.0004 4× 10−6 −1× 10−5 4× 10−6 5× 10−8 −2× 10−7 −1× 10−5 −2× 10−7 −6× 10−5

−0.0002 −0.0003 0.00080 −0.0003 3× 10−6 −8× 10−6 0.00080 −8× 10−6 0.00009

 (St ⊗ St)
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As in the symmetric regime case, the first-order derivatives in the first-order approximation

and the cross-derivatives in the second-order approximation with respect to χ are non-zero.

However, given the asymmetry of regimes the terms reflecting the lack of certainty equivalence

(first-order derivatives with respect to χ) are not simply negated across regimes.

6.1.6 Accuracy: Euler Equation Errors

In this section, we will compare the accuracy of the first-order and second-order approximations.

For that purpose we will use the Euler equation errors as reported in Judd (1998) and Aruoba

et al. (2006). The Euler equation error at point
(
k̃t−1, εt; st

)
for an approximation order

order ∈ {first,second}:

EEorder
(
k̃t−1, εt, χ = 1; st

)
=

1− β
∫ 2∑

s′=1

pst,s′


c̃order(k̃t−1,εt,χ=1;st)

c̃order(k̃order(k̃t−1,εt,χ=1;st),ε′;1)
exp

(
µ(st)+σεt
α−1

)
×
(
α exp (µ (s′) + σε′) k̃order

(
k̃t−1, εt, χ = 1; st

)α−1

+ 1− δ
)
µ (ε′) dε′

where c̃order
(
k̃t−1, εt, χ = 1; st

)
and k̃order

(
k̃t−1, εt, χ = 1; st

)
are the approximations to the pol-

icy functions. The unconditional absolute Euler equation error is

EEorder =

∫ ∣∣∣EEorder
(
k̃t−1, εt, χ = 1; st

)∣∣∣µorder (k̃t−1, εt, χ = 1; st

)
dk̃t−1dεtdst

where µorder is the unconditional distribution of the variables implied by the approximation.

The table shows the base-10 logarithm of the absolute Euler equation errors for the first and

second order approximations in both the symmetric and asymmetric examples. Both the first

and second order approximations produce a high degree of accuracy: a value of −5 implies an

error of $1 for each $100,000. In addition, the second order achieves an even higher degree of

accuracy.

Unconditional Absolute Euler Equation Errors (log10)

p1,1 = 0.9 p1,1 = 0.5

EEfirst −4.6099 −5.3929

EEsecond −5.4158 −6.1983
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6.2 Example 2: NK Model

This section presents a second example: a simple New Keynesian model to highlight the issue

of determinacy and mean square stability.

The model is a model with quadratic price adjustment costs where the monetary authority

follows a Taylor Rule that changes according to a Markov Process. The reaction coeffi cient of

monetary policy switches with the regime, which Davig & Leeper (2007), Farmer et al. (2008),

and Bianchi (2009), among others, have argued captures the changing stance of policy in the

United States.

A representative consumer maximizes expected lifetime utility over consumption Ct and

hours worked Ht

E0

∞∑
t=0

βt (logCt −Ht)

subject to the budget constraint

Ct +
Bt

Pt
= WtHt +Rt−1

Bt−1

Pt
+ Tt +Dt

where Bt is next period’s nominal bonds, Wt is the real wage, Rt−1 is the nominal return on

bonds, Tt is lump-sum transfers, and Dt is profits from firms.

A competitive final goods producer combines a continuum of intermediate goods Yj,t into a

final good Yt by a CES aggregator

Yt =

(∫ 1

0

Y
η−1
η

j,t dj

) η
η−1

Intermediate goods firms take the wage and their demand function

Yj,t =

(
Pj,t
Pt

)−η
Yt

as given and set their price Pj,t demand hours Hj,t to produce according to

Yj,t = AtHj,t

where total factor productivity follows

logAt = µt + logAt−1
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where, similar to the RBC model in Section 6.1, the drift can take two values

µt = µ (st) , st ∈ {1, 2} .

These firms face quadratic price adjustment costs according to

ACj,t =
κ

2

(
Pj,t
Pj,t−1

− 1

)2

.

The monetary authority sets prices by a Taylor rule where the coeffi cient varies over time

Rt

Rss

=

(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt)

In a symmetric equilibrium Pj,t = Pt, Yj,t = Yt, and Hj,t = Ht for all j, and market clearing

implies

Yt = Ct +
κ

2
(Πt − 1)2 Yt.

Using the notation in Section 2, yt = [Πt, Yt]
′, xt−1 = Rt−1, θ1t = µt, and θ2t = ψt. Then

the stationary equilibrium is expressed as

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =
1− β (1−κ

2
(Πt−1)2)Ỹt

(1−κ
2

(Πt+1−1)2)Ỹt+1

1

exp(µt+1)
Rt

Πt+1

(1− η) + η
(
1− κ

2
(Πt − 1)2) Ỹt + βκ

(1−κ
2

(Πt−1)2)
(1−κ

2
(Πt+1−1)2)

(Πt+1 − 1) Πt+1 − κ (Πt − 1) Πt(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt)− Rt

Rss


6.2.1 Solving the NK Model

Similar to the RBC example, the following subsections show how to solve the model: find

the steady state, define the matrices of first-order partial derivatives of f with respect to all

its components evaluated at steady state that we use to solve for first-order approximation

to the policy functions find the second-order approximation to the policy functions. Two

parameterizations show how using Gröbner basis and MSS allows checking for determinacy.
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6.2.2 Steady State

In order to calculate steady state, set χ = 0. Therefore, Πt = Πt+1 = Πss, Ỹt = Ỹt+1 = Ỹss,

Rt = Rt−1 = Rss, and µt+1 = µt = µ̄. So the equilibrium conditions in steady state are
1− β (1−κ

2
(Πss−1)2)Ỹss

(1−κ
2

(Πss−1)2)Ỹss
1

exp(µ̄)
Rss
Πss

(1− η) + η
(
1− κ

2
(Πss − 1)2) Ỹss + βκ

(1−κ
2

(Πss−1)2)
(1−κ

2
(Πss−1)2)

(Πss − 1) Πss − κ (Πss − 1) Πss(
Rss
Rss

)ρ
Π

(1−ρ)ψt
ss − Rss

Rss

 = 03×1

Using the assumption Πss = 1, and solving these produces the steady state values

Rss =
exp (µ̄)

β
,

and

Ỹss =
η − 1

η
.

Note that µ̄ affects the steady state, but ψ (s) does not, demonstrating the partition of the

switching vector θt = [θ1t, θ2t].

6.2.3 The Matrices

The next step is to define the matrices in expression (19), which depend on the derivatives of

the function f evaluated at the steady state. Recall in this example that ny = 2, nx = 1, nε = 1,

and nθ = 2. The necessary matrices are

D1,2fss (s′, s) =


η
η−1

1

0 βκ

0 0

 ,D3,4fss (s′, s) =


η

1−η 0

η −κ

0 (1− ρ)ψ (s)



D5,5fss (s′, s) =


−βe−µ̄

0

−βe−µ̄

 ,D6,6fss (s′, s) =


0

0

ρβe−µ̄

 ,D7,7fss (s′, s) =


0

0

0

 ,

D8,8fss (s′, s) =


0

0

σ

 ,D9,10fss (s′, s) =


1 0

0 0

0 0

 ,D11,12fss (s′, s) =


0 0

0 0

0 0


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6.2.4 Determinate Solution

Consider the following parameterization

β κ η ρ σ p1,1 p2,2 µ̄ µ̂ (1) µ̂ (2) ψ (1) ψ (2)

0.9976 162 10 0.8 0.0025 0.90 0.90 0.005 0.0025 −0.0025 3.1 0.9

The growth rates µ̄ + µ̂ (1) and µ̄ + µ̂ (2) again correspond to regimes where annual growth

rate is three or one percent, β produces a risk-free rate of three percent annually, η produces

a steady state markup of 11 percent, and ρ and σ match estimates in Fernandez-Villaverde

et al. (2009). The two monetary policy parameters ψ (1) and ψ (2) are such that, in two fixed

regime models, regime 1 would imply a determinate equilibrium, and regime 2 would imply

indeterminacy. The steady state values of the nominal rate and output are Rss = 1.0074 and

Ỹss = 0.90. Consequently the numerical values of the matrices of first-order partial derivatives

of f with respect to all its components evaluated at steady state are

D1,2fss (s′, s) =


1.11111 1

0 160.614

0 0

 ,D3,4fss (s′, s) =


−1.11111 0

10 −161.

0 0.2ψ (s)

 ,

D5,5fss (s′, s) =


−0.9926

0

−0.9926

 ,D6,6fss (s′, s) =


0

0

0.77941

 ,D7,7fss (s′, s) =


0

0

0

 ,

D8,8fss (s′, s) =


0

0

0.0025

 ,D9,10fss (s′, s) =


1 0

0 0

0 0

 ,D11,12fss (s′, s) =


0 0

0 0

0 0


Using these matrices, we can solve the quadratic system to get the following set of solutions

for {D1,1gss (st) ,D1,1hss (st)}nsst=1. In this example, since nx = 1 and there are no exogenous

variables, ny = 2, and ns = 2, Proposition 3 indicates that, at most, there are 9 total solutions.
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As shown below, there are exactly 9 solutions

D1,1hss (1) D1,1gss (1)′ D1,1hss (2) D1,1gss (2)′

(1) 0.59517 −1.92815 −0.327932 0.699414 −2.9541 −0.554689

(2) 0.77508 −3.64018 −0.0398952 1.3018 −7.43725 2.76721

(3) 0.79559 −1.82393 −0.00706061 1.05423 1.21892 1.40196

(4) 1.0939− 0.4363i −0.8264 + 4.2641i 0.4706− 0.6986i 1.3311 + 0.0574i −10.008− 1.9739i 2.9287 + 0.3165i

(5) 1.0939 + 0.4363i −0.8264− 4.2641i 0.4706 + 0.6986i 1.3311− 0.0574i −10.008 + 1.9739i 2.9287− 0.3165i

(6) 1.0952− 0.2105i −0.9833 + 1.9595i 0.4727− 0.3370i 1.0240− 0.0200i 0.8689 + 0.7833i 1.2351− 0.1103i

(7) 1.0952 + 0.2105i −0.9833− 1.9595i 0.4727 + 0.3370i 1.0240 + 0.0200i 0.8689− 0.7833i 1.2351 + 0.1103i

(8) 1.2360− 0.2511i 0.7554 + 3.0821i 0.6980− 0.4020i 0.7507 + 0.0047i −2.2696 + 0.6345i −0.2718 + 0.0260i

(9) 1.2360 + 0.2511i 0.7554− 3.0821i 0.6980 + 0.4020i 0.7507− 0.0047i −2.2696− 0.6345i −0.2718− 0.0260i

The only MSS solution is (1), hence the model is determined. Given solution (1), we can find
{D2,2gss (st) ,D2,2hss (st)}nsst=1 and {D3,3gss (st) ,D3,3hss (st)}nsst=1 for the first-order approximation

and
{
{H1,3;1,3g

i
ss (st) ,H1,3;1,3h

i
ss (st)}3

i=1

}ns
st=1

for the second-order approximation. Letting St
denote the state for time t, the second-order solution is, for st = 1:


̂̃Y t
Π̂t

R̂t

 =


−1.9282 −0.0062 0.00481

−0.3279 −0.0011 0.00014

0.59517 0.00191 0.00008

St

+


21.3771 0.06247 −0.0188 0.06247 0.00020 −0.0001 −0.0188 0.00020 −0.0004

0.49793 0.00056 −0.0008 0.00056 2× 10−6 −2× 10−6 −0.0008 2× 10−6 −0.0003

−0.1986 0.00124 −0.0004 0.00124 4× 10−6 −1× 10−6 −0.0004 4× 10−6 −0.0002

 (St ⊗ St)

and for st = 2:

̂̃Y t
Π̂t

R̂t

 =


−2.9541 −0.0090 −0.0094

−0.5547 −0.0017 −0.0026

0.69941 0.00214 −0.0006

St

+


56.9733 0.16487 0.23174 0.16487 0.00050 0.00071 0.23174 0.00050 −0.0016

0.99333 0.00136 0.00033 0.00136 4× 10−6 1× 10−6 0.00033 4× 10−6 −0.0010

−0.1842 0.00160 −0.0005 0.00160 5× 10−6 −2× 10−6 −0.0005 5× 10−6 −0.0002

 (St ⊗ St)

As in the RBC example, the first-order derivatives in the first-order approximation and the

cross-derivatives in the second-order approximation with respect to χ are non-zero. However,

in this example, the derivatives with respect to Rt−1 and εt are different across regimes, which

is a result of the fact that ψ (st) affects these derivatives.
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6.2.5 Indeterminate Solution

As an alternative parameterization, consider the same parameters above, but with ψ (2) = 0.7.

In this example, the steady state is identical to the previous case, and the first regime would

imply determinacy and the second indeterminacy if considered in isolation. However, the second

regime now has a slightly lower response by the monetary authority to inflation. The numerical

values of the first-order partial derivatives are largely unchanged, with the exception of

D3,4fss (s′, s) =


−1.11111 0

10 −161.

0 0.2ψ (s)


which depends on ψ (s). As shown below, there are nine total solutions to the quadratic system.

D1,1hss (1) D1,1gss (1)′ D1,1hss (2) D1,1gss (2)′

(1) 0.59067 −1.9452 −0.3351 0.71244 −3.2185 −0.6209

(2) 0.79733 −4.7813 −0.0043 1.32443 −11.313 3.71833

(3) 0.85231 −1.7727 0.08374 1.01525 2.03718 1.52618

(4) 1.0444− 0.4989i −0.7000 + 4.6327i 0.3912− 0.7987i 1.3523 + 0.0442i −14.210− 1.8733i 3.9161 + 0.3132i

(5) 1.0444 + 0.4989i −0.7000− 4.6327i 0.3912 + 0.7987i 1.3523− 0.0442i −14.210 + 1.8733i 3.9161− 0.3132i

(6) 1.0670− 0.1894i −1.2845 + 1.5032i 0.4274− 0.3033i 0.9995− 0.0089i 1.6635 + 0.5703i 1.4141− 0.0629i

(7) 1.0670 + 0.1894i −1.2845− 1.5032i 0.4274 + 0.3033i 0.9995 + 0.0089i 1.6635− 0.5703i 1.4141 + 0.0629i

(8) 1.2374− 0.2527i 0.8018 + 3.0980i 0.7004− 0.4046i 0.7582 + 0.0045i −2.3764 + 0.6699i −0.2963 + 0.0317i

(9) 1.2374 + 0.2527i 0.8018− 3.0980i 0.7004 + 0.4046i 0.7582− 0.0045i −2.3764− 0.6699i −0.2963− 0.0317i

Now there are two MSS solutions —(1) and (3) —and so the model is indeterminate. This

example then shows how the combination of Gröbner basis to find all possible solutions, and

then checking these solutions for MSS can check for determinacy.

6.3 Example 3: NK Model with Habits

Now consider a slight variant of the previously discussed New Keynesian model, but with house-

holds that have habit formation. In this case, they maximize

E0

∞∑
t=0

βt (log (Ct − ϕCt−1)−Ht)
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where ϕ denotes habit persistence. For simplicity, assume TFP is constant

At = 1

and that there is no interest rate smoothing, so ρ = 0:

Rt

Rss

= Π
ψt
t exp (σrεr,t) .

With habits, consumption appears dated as Ct−1, Ct, and Ct+1 in the equilibrium conditions,

which are

λt =
1

Ct − ϕCt−1

− βEt
ϕ

Ct+1 − ϕCt

λt = βEtλt+1
Rt

Πt+1

κλt (Πt − 1) Πt = (1− η)λt + η + βκEtλt+1 (Πt+1 − 1) Πt+1
Yt+1

Yt

Rt

Rss

= Π
ψt
t exp (σrεr,t)

Yt = Ct +
κ

2
(Πt − 1)2 Yt

Consequently, define the auxiliary variable C̃t = Ct, so C̃t+1 = Ct+1. Substituting out Rt and

Yt to simplify the equilibrium conditions, now gives yt =
[
Πt, C̃t, λt

]′
, yt+1 =

[
Πt+1, C̃t+1, λt+1

]
,

xt = [Ct], xt−1 = [Ct−1]′, and θ2t = ψt. Then the equilibrium is expressed as

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =

1
Ct−ϕCt−1

− βEt ϕ

C̃t+1−ϕCt
− λt

βEtλt+1
RssΠ

ψt
t exp(σrεr,t)

Πt+1
− λt

(1− η)λt + η + βκEtλt+1 (Πt+1 − 1) Πt+1
Ct+1

Ct

1−κ
2

(Πt−1)2

1−κ
2

(Πt+1−1)2 − κλt (Πt − 1) Πt

C̃t − Ct


6.3.1 Solving the Habit Model

The following subsections show how to solve the model.
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6.3.2 Steady State

Calculating the steady state involves setting χ = 0, so Πt = Πt+1 = Πss, C̃t = C̃t+1 = Css, and

Ct = Ct−1 = Css. The equilibrium conditions in steady state are

1
Css−ϕCss − β

ϕ

C̃ss−ϕCss
− λss

βλss
RssΠ

ψt
ss exp(σrεr,t)

Πss
− λss

(1− η)λss + η + βκλss (Πss − 1) Πss
Css
Css

1−κ
2

(Πss−1)2

1−κ
2

(Πss−1)2 − κλss (Πss − 1) Πss

C̃ss − Css

 = 04×1

Assuming Πss = 1, the steady state satisfies

λss =
η

η − 1

Css =
1− βϕ
1− ϕ

η − 1

η

C̃ss = Css

6.3.3 The Matrices

Now to define the matrices in Section, which are the derivatives of the function f evaluated at

steady state. In this example, ny = 3, nx = 1, nε = 1, and nθ = 2. The necessary matrices are

D1,3fss (s′, s) =


0 ϕβ

c2ss(1−ϕ)
0

−λss 0 1

βκλss 0 0

0 0 0

 , D4,6fss (s′, s) =


0 0 −1

λssψ (s) 0 −1

−κλss 0 1− η

0 1 0



D7,7fss (s′, s) =


− 1+βϕ2

c2ss(ϕ−1)2

0

0

−1

 , D8,8fss (s′, s) =


ϕ

c2ss(1−ϕ)2

0

0

0

 ,D9,9fss (s′, s) =


0

0

0

0


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D10,10fss (s′, s) =


0

λssσ

0

0

 ,D11,11fss (s′, s) =


0

0

0

0

 ,D12,12fss (s′, s) =


0

0

0

0


6.3.4 Determinate Solution

Consider first the following parametrization

β κ η ϕ σ p1,1 p2,2 ψ (1) ψ (2)

0.993 161 10 0.95 0.0025 0.90 0.90 2.1 0.9

The parameters are similar to those in the previous NK example, with the exception that

β is changed to reflect that there is no growth in the economy, and ϕ dictates a very high

degree of habit formation. The steady state values are Rss = 1.007, C̃ss = Css = 1.0197,

and λss = 1.11111. Consequently the numerical values of the matrices of first-order partial

derivatives of f with respect to all its components evaluated at steady state are

D1,3fss (s′, s) =


0 362.901 0

−1.1111 0 1

177.637 0 0

0 0 0

 , D4,6fss (s′, s) =


0 0 −1

1.11111ψ (s) 0 −1

178.889 0 −9

0 1 0



D7,7fss (s′, s) =


−729.45

0

0

−1

 , D8,8fss (s′, s) =


365.459

0

0

0

 ,D9,9fss (s′, s) =


0

0

0

0



D10,10fss (s′, s) =


0

0.00278

0

0

 ,D11,11fss (s′, s) =


0

0

0

0

 ,D12,12fss (s′, s) =


0

0

0

0


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Using these matrices, we can solve the quadratic system to get the following set of solutions

for {D1,1gss (st) ,D1,1hss (st)}nsst=1. In this example, since nx = 1 and there are no exogenous

variables, ny = 3, and ns = 2, Proposition 3 indicates that, at most, there are 16 total solutions.

As shown below, there are exactly 16 solutions. For brevity, we only present D1,1hss (st)

D1,1hss (1) D1,1hss (2)

(1) 0.95 0.95

(2) 1.06005 1.06005

(3) 0.91787 1.04360

(4) 1.04128 1.12014

(5) 1.03760 1.13389

(6) 1.35512 1.20296

(7) 1.1167− 0.10864i 1.1167 + 0.10864i

(8) 1.1167 + 0.10864i 1.1167− 0.10864i

(9) 1.11048 + 0.19451i 0.96460 + 0.17167i

(10) 1.11048− 0.19451i 0.96460− 0.17167i

(11) 1.14351− 0.30537i 1.00574 + 0.16203i

(12) 1.14351 + 0.30537i 1.00574− 0.16203i

(13) 1.16037− 0.16517i 1.14822 + 0.07969i

(14) 1.16037 + 0.16517i 1.14822− 0.07969i

(15) 1.16056 + 0.34768i 1.34334− 0.11370i

(16) 1.16056− 0.34768i 1.34334 + 0.11370i

The only MSS solution is (1), hence the model is determinate.

6.3.5 Indeterminate Solution

Now, consider an alternative parameterization where the degree of habit persistence is lower,

ϕ = 0.7. The steady state under these parameters is Rss = 1.007, C̃ss = Css = 0.9147, and

λss = 1.11111. A similar set of numerical matrices as above can be used to find the 16 total
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solutions to the quadratic equation. For brevity, we only present D1,1hss (st)

D1,1hss (1) D1,1hss (2)

(1) 0.7 0.7

(2) 1.43864 1.43864

(3) 0.79717 1.57910

(4) 1.57910 0.79717

(5) 0.69800 1.02883

(6) 1.62054 1.09263

(7) 0.89005− 0.10590i 1.20624 + 0.02242i

(8) 0.89005 + 0.10590i 1.20624− 0.02242i

(9) 1.11412− 0.31013i 0.95067 + 0.10869i

(10) 1.11412 + 0.31013i 0.95067− 0.10869i

(11) 1.42678− 0.06046i 1.24724− 0.01867i

(12) 1.42678 + 0.06046i 1.24724 + 0.01867i

(13) 1.11018 + 0.24344i 0.80144 + 0.07992i

(14) 1.11018− 0.24344i 0.80144− 0.07992i

(15) 1.19334 + 0.28773i 1.58875− 0.07190i

(16) 1.19334− 0.28773i 1.58875 + 0.07190i

Now there are two MSS solutions —(1) and (5) —again showing how the combination of Gröbner

basis to find all possible solutions, and then checking these solutions for MSS can check for

determinacy.

7 Conclusion

This paper developed a perturbation method for constructing approximations to the solutions

to Markov switching DSGE models. The framework allows introducing switching from first

principles, including when switching affects the steady state of the economy. While not pursued

here, second- or higher-order approximations are straightforward, and follow the single-regime
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case studied by Schmitt-Grohe & Uribe (2004). Using Gröbner bases to solve the system and

mean square stability to check for existence and uniqueness of stable solutions, the method

handles a wide variety of models, and shows that switching in parameters that affect the steady

state implies that first order approximations are not certainty equivalent.
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8 Appendix A: Iterative Algorithm

This section describes an iterative procedure to potentially find one solution of the quadratic

system (19). This method cannot be used to check for determinacy, but can be used to find

one solution and then check that solution for MSS. Recall the quadratic system to be solved is

A (st)


I

D1,nxgss (1)
...

D1,nxgss (ns)

D1,nxhss (st) = B (st)

 I

D1,nxgss (st)

 (23)

for all st, where

A (st) =
[ ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)
]

and

B (st) = −
ns∑
s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s′, st) Dny+1,2nyfss (s′, st)

]
.

The idea of the algorithm is to guess at the policy functions, and solve for each regime’s

policy functions as in the fixed regime case. When the solutions are close to the guesses, then

a solution has been found.
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Algorithm 6 Let
{
D1,nxg

(j)
ss (st) ,D1,nxh

(j)
ss (st)

}
denote solution at iteration j.

1. Set j = 0 and initialize D1,nxg
(0)
ss (st) = 0ny×nx and D1,nxh

(0)
ss (st) = 0nx×nx.

2. Set j = 1. For each st, construct the transformed system

A
(
st,
{
D1,nxg

(j−1)
ss (s′)

}ns
s′=1,s′ 6=st

) I

D1,nxg
(j)
ss (st)

D1,nxh
(j)
ss (st) (24)

= B (st)

 I

D1,nxg
(j)
ss (st)


where

A
(
st,
{
D1,nxg

(j)
ss (s′)

}ns
s′=1,s′ 6=st

)
=  ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s′, st)

+
∑ns

s′=1,s′ 6=st pst,s′D1,nyfss (s′, st)D1,nxg
(0)
ss (s′)

 pst,stD1,nyfss (st, st)


3. The set of systems (24) are identical to a fixed regime problem, and can be solved using stan-

dard singular value decomposition (SVD) algorithm. When constructing D1,nxh
(j)
ss (st), use

the "most stable" generalized eigenvalues of
(
A

(
st,
{
D1,nxg

(j−1)
ss (s′)

}ns
s′=1,s′ 6=st

)
, B (st)

)
—those with the smallest modulus.

4. Check max
{∥∥∥D1,nxh

(j)
ss (st)−D1,nxh

(j−1)
ss (st)

∥∥∥ ,∥∥∥D1,nxg
(j)
ss (st)−D1,nxg

(j−1)
ss (st)

∥∥∥} < crit.

If yes, then stop and check for MSS. If no, then set j =⇒ j + 1 and return to step 2.

Note in step (2), when st > 1, then
{
g

(j)
ss (s′)

}st−1

s′=1
can be used instead of

{
g

(j−1)
ss (s′)

}st−1

s′=1
.

9 Appendix B: Second Order Derivatives

This appendix contains the forms of the second derivatives in (22).
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The first equation is the derivative with respect to xt−1 twice.

H1,nx;1,nxG
i
ss (st) =

ns∑
s′=1

pst,s′×

[D1,nxgss (s′)D1,nxhss (st)]
ᵀ



 H1,ny ;1,nyf
i
ss (s′, st)D1,nxgss (s′)

+2H1,ny ;2ny+1,2ny+nxf
i
ss (s′, st)

D1,nxhss (st)

+2H1,ny ;ny+1,2nyf
i
ss (s′, st)D1,nxgss (st)

+2H1,ny ;2ny+nx+1,2nf
i
ss (s′, st)



+D1,nxgss (st)
ᵀ


Hny+1,2ny ;ny+1,2nyf

i
ss (s′, st)D1,nxgss (st)

+2Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s′, st)D1,nxhss (st)

+2Hny+1,2ny ;2ny+nx+1,2nf
i
ss (s′, st)



+D1,nxhss (st)
ᵀ


 H2ny+1,2ny+nx;2ny+1,2ny+nxf

i
ss (s′, st)

+D1,nyf
i
ss (s′, st)H1,nx;1,nxgss (s′)

D1,nxhss (st)

+2H2ny+1,2ny+nx;2ny+nx+1,2nf
i
ss (s′, st)


+

 D1,nyf
i
ss (s′, st)D1,nxgss (s′)

+D2ny+1,2ny+nxf
i
ss (s′, st)

H1,nx;1,nxhss (st)

+Dny+1,2nyf
i
ss (s′, st)H1,nx;1,nxgss (st)

+H2ny+nx+1,2n;2ny+nx+1,2nf
i
ss (s′, st)


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The second equation is the derivative with respect to xt−1 and εt.

H1,nx;nx+1,nx+nεGi
ss (st) =

ns∑
s′=1

pst,s′×

[D1,nxgss (s′)D1,nxhss (st)]
ᵀ



 H1,ny ;1,nyf
i
ss (s′, st)D1,nxgss (s′)

+2H1,ny ;2ny+1,2ny+nxf
i
ss (s′, st)

Dnx+1,nx+nεhss (st)

+H1,ny ;ny+1,2nyf
i
ss (s′, st)Dnx+1,nx+nεgss (st)

+H1,ny ;2n+nε+1,2(nx+ny+nε)f
i
ss (s′, st)



+D1,nxgss (st)
ᵀ



 Hny+1,2ny ;1,nyf
i
ss (s′, st)D1,nxgss (s′)

+Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s′, st)

Dnx+1,nx+nεhss (st)

+Hny+1,2ny ;ny+1,2nyf
i
ss (s′, st)Dnx+1,nx+nεgss (st)

+Hny+1,2ny ;2n+nε+1,2(nx+ny+nε)f
i
ss (s′, st)



+D1,nxhss (st)
ᵀ


H2ny+1,2ny+nx;ny+1,2nyf

i
ss (s′, st)Dnx+1,nx+nεgss (st)

+H2ny+1,2ny+nx;2n+nε+1,2(nx+ny+nε)f
i
ss (s′, st)

+

 H2ny+1,2ny+nx;2ny+1,2ny+nxf
i
ss (s′, st)

+D1,nyf
i
ss (s′, st)H1,nx;1,nxgss (s′)

Dnx+1,nx+nεhss (st)


+

 H2ny+nx+1,2(nx+ny);1,nyf
i
ss (s′, st)D1,nxgss (s′)

+H2ny+nx+1,2n;2ny+1,2ny+nxf
i
ss (s′, st)

Dnx+1,nx+nεhss (st)

+

 D1,nyf
i
ss (s′, st)D1,nxgss (s′)

+D2ny+1,2ny+nxf
i
ss (s′, st)

H1,nx;nx+1,nx+nεhss (st)

+H2ny+nx+1,2n;ny+1,2nyf
i
ss (s′, st)Dnx+1,nx+nεgss (st)

+Dny+1,2nyf
i
ss (s′, st)H1,nx;nx+1,nx+nεgss (st)

+H2ny+nx+1,2(nx+ny);2(nx+ny)+nε+1,2(nx+ny+nε)f
i
ss (s′, st)


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The third equation is the derivative with respect to xt−1 and χ.

H1,nx;nx+nε+1Giss (st) =
ns∑
s′=1

pst,s′×

[D1,nxgss (s′)D1,nxhss (st)]
ᵀ



H1,ny ;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H1,ny ;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H1,ny ;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H1,ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H1,ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)



+D1,nxhss (st)
ᵀ



H2ny+1,2ny+nx;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H2ny+1,2ny+nx;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H2ny+1,2ny+nx;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)

D1,nyf iss (s′, st)

 H1,nx;nx+nε+1gss (s′)

+H1,nx;1,nxgss (s′)Dnx+nε+1hss (st)





+D1,nxgss (st)
ᵀ



Hny+1,2ny ;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+Hny+1,2ny ;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+Hny+1,2ny ;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+Hny+1,2ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+Hny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)


+H2ny+nx+1,2(nx+ny);1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H2ny+nx+1,2n;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H2ny+nx+1,2n;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H2ny+nx+1,2(nx+ny);2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H2ny+nx+1,2(nx+ny);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f iss (s′, st) θχ (s)

+

 D1,nyf iss (s′, st)D1,nxgss (s′)
+D2ny+1,2ny+nxf iss (s′, st)

H1,nx;nx+nε+2hss (st)
+Dny+1,2nyf iss (s′, st)H1,nx;nx+nε+1gss (st)


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The fourth equation is the derivative with respect to εt−1 twice.

Hnx+1,nx+nε;nx+1,nx+nεGiss (st) =
ns∑
s′=1

pst,s′×

[D1,nxgss (s
′)Dnx+1,nx+nεhss (st)]

ᵀ



 H1,ny ;1,nyf
i
ss (s

′, st)D1,nxgss (s
′)

+2H1,ny ;2ny+1,2ny+nxf
i
ss (s

′, st)

Dnx+1,nx+nεhss (st)

+2H1,ny ;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+2H1,ny ;2n+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)



+Dnx+1,nx+nεhss (st)
ᵀ


 H2ny+1,2ny+nx;2ny+1,2ny+nxf

i
ss (s

′, st)

+D1,nyf
i
ss (s

′, st)H1,nx;1,nxgss (s
′)

Dnx+1,nx+nεhss (st)

+2H2ny+1,2ny+nx;2(nx+ny)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)



+Dnx+1,nx+nεgss (st)
ᵀ


Hny+1,2ny ;ny+1,2nyf

i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+2Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s

′, st)Dnx+1,nx+nεhss (st)

+2Hny+1,2ny ;2n+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)


+

 D1,nyf
i
ss (s

′, st)D1,nxgss (s
′)

+D2ny+1,2ny+nxf
i
ss (s

′, st)

Hnx+1,nx+nε;nx+1,nx+nεhss (st)

+Dny+1,2nyf
i
ss (s

′, st)Hnx+1,nx+nε;nx+1,nx+nεgss (st)

+H2n+nε+1,2(nx+ny+nε);2n+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)


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The fifth equation is the derivative with respect to εt−1 and χ.

Hnx+1,nx+nε;nx+nε+1Giss (st) =
ns∑
s′=1

pst,s′×

[D1,nxgss (s′)Dnx+1,nx+nεhss (st)]
ᵀ



H1,ny ;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H1,ny ;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H1,ny ;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H1,ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H1,ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)



+Dnx+1,nx+nεhss (st)
ᵀ



H2ny+1,2ny+nx;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H2ny+1,2ny+nx;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H2ny+1,2ny+nx;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)

D1,nyf iss (s′, st)

 H1,nx;nx+nε+1gss (s′)

+H1,nx;1,nxgss (s′)Dnx+nε+1hss (st)





+Dnx+1,nx+nεgss (st)
ᵀ



Hny+1,2ny ;1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+Hny+1,2ny ;ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+Hny+1,2ny ;2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+Hny+1,2ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+Hny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)


+H2(nx+ny)+nε+1,2(nx+ny+nε);1,nyf iss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)


+H2(nx+ny)+nε+1,2(nx+ny+nε);ny+1,2nyf iss (s′, st)Dnx+nε+1gss (st)

+H2(nx+ny)+nε+1,2(nx+ny+nε);2ny+1,2ny+nxf iss (s′, st)Dnx+nε+1hss (st)

+H2n+nε+1,2(nx+ny+nε);2(nx+ny+nε)+1,2(nx+ny+nε)+nθf iss (s′, st)Dθss (s′)

+H2n+nε+1,2(nx+ny+nε);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f iss (s′, st)Dθss (st)

+

 D1,nyf iss (s′, st)D1,nxgss (s′)
+D2ny+1,2ny+nxf iss (s′, st)

Hnx+1,nx+nε;nx+nε+1hss (st)
+Dny+1,2nyf iss (s′, st)Hnx+1,nx+nε;nx+nε+1gss (st)


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The sixth equation is the derivative with respect to χ twice.

Hnx+nε+1;nx+nε+1Giss (st) =

ns∑
s′=1

pst,s′×

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)

ᵀH1,ny ;1,nyf
i
ss (s′, st)

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)



+2

 Dnx+nε+1gss (s′)

+D1,nxgss (s′)Dnx+nε+1hss (st)

ᵀ


H1,ny ;ny+1,2nyf
i
ss (s′, st)Dnx+nε+1gss (st)

+H1,ny ;2ny+1,2ny+nxf
i
ss (s′, st)Dnx+nε+1hss (st)

+H1,ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s′, st)Dθss (s′)

+H1,ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)
f iss (s′, st)Dθss (st)



+Dnx+nε+1gss (st)
ᵀ


Hny+1,2ny ;ny+1,2nyf

i
ss (s′, st)Dnx+nε+1gss (st)

+2Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s′, st)Dnx+nε+1hss (st)

+2Hny+1,2ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s′, st)Dθss (s′)

+2Hny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)
f iss (s′, st)Dθss (st)



+Dnx+nε+1hss (st)
ᵀ



H2ny+1,2ny+nx;2ny+1,2ny+nxf
i
ss (s′, st)Dnx+nε+1hss (st)

+2H2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s′, st)Dθss (s′)

+2H2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)
f iss (s′, st)Dθss (st)

+
[
D1,nyf

i
ss (s′, st)H1,nx;1,nxgss (s′)

]
Dnx+nε+1hss (st)

+2
[
D1,nyf

i
ss (s′, st)H1,nx;nx+nε+1gss (s′)

]



+ (ε′)ᵀ


H2(nx+ny)+1,2(nx+ny)+nε;2(nx+ny)+1,2(nx+ny)+nε

f iss (s′, st)

+D1,nyf
i
ss (s′, st)Hnx+1,nx+nε;nx+1,nx+nεgss (s′)

+Dnx+1,nx+nεgss (s′)′H1,ny ;1,nyf
i
ss (s′, st)Dnx+1,nx+nεgss (s′)

+2Dnx+1,nx+nεgss (s′)′H1,ny ;2n+1,2n+nεf
i
ss (s′, st)

 ε
′

+Dθss (s′)ᵀ

 H2(nx+ny+nε)+1,2(nx+ny+nε)+nθ ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s′, st)Dθss (s′)

+2H2(nx+ny+nε)+1,2(nx+ny+nε)+nθ ;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)
f iss (s′, st)Dθss (st)


+Dθss (st)

ᵀH2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)
f iss (s′, st)Dθss (st)

+

 D1,nyf
i
ss (s′, st)D1,nxgss (s′)

+D2ny+1,2ny+nxf
i
ss (s′, st)

Hnx+nε+1;nx+nε+1hss (st)

+D1,nyf
i
ss (s′, st)Hnx+nε+1;nx+nε+1gss (s′)

+Dny+1,2nyf
i
ss (s′, st)Hnx+nε+1;nx+nε+1gss (st)

+D2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s′, st)Hθss (s′)

+D2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)
f iss (s′, st)Hθss (st)
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