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1 Introduction

Optimal policy design problems routinely exploit the rational expectations assumption that

attributes a unique and fully trusted probability model to all agents. That useful assumption

precludes carrying out a coherent analysis that attributes fears of model misspecification to

some or all agents.

This paper is studying the design of optimal fiscal policy in an environment where the

public has doubts about the probability model of exogenous government expenditures and

guards itself against this ambiguity by forming pessimistic expectations. In contrast, the

fiscal authority or government (these two terms will be used interchangeably throughout the

paper) completely trusts the probability model and uses it in order to assess the likelihood

of shocks in the design of fiscal policy.

We are motivated by situations where fearful markets are constraining the actions of

fiscal authorities, as in the recent European fiscal crisis for example. In various cases, fiscal

authorities have been taking actions to alleviate market pressures and have tried to convince

markets that fiscal policies are sustainable. Attempts to manage fearful expectations in such

environments raise natural questions about how this is possible and about how fiscal policy

should be designed. This paper consists a first take on a theoretical model that explores

this type of questions, by positing a government that shows full confidence in the probability

model of government expenditures, whereas the public does not.1

The distinctive feature of our approach is the fact that the agents’ fears of model misspec-

ification cause them to twist their expectations about exogenous shocks in an endogenous

way, by assigning high probability to low utility events and low probability to high utility

events. The fiscal authority, by its choice of tax and debt policies, is affecting the agents’

utility and therefore their cautious beliefs. As a result, this paper features a notion of expec-

tation management absent from the standard rational expectations paradigm, where beliefs

about exogenous shocks are fixed and actually correct.2

For our analysis we adopt the complete-markets economy without capital analyzed by

Lucas and Stokey (1983), but modify the representative household’s preferences to express its

concerns about misspecification of the stochastic process for government expenditures. The

Lucas and Stokey (1983) setup consists the canonical framework for analyzing optimal fiscal

1Lack of confidence in models seems to have become pronounced also in the recent financial crisis. See
for example Caballero and Krishnamurthy (2008), Caballero and Kurlat (2009) and Uhlig (2010).

2The management of pessimistic expectations could also have alternative interpretations in terms of
risk-sensitive preferences.
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policy when lump-sum taxes are not available.3 There is an exogenous stream of government

expenditures that the government has to finance in the least distortionary way through a

linear tax on labor income or (and) by issuing state-contingent debt. Our household ex-

presses model distrust by ranking consumption and leisure plans according to the multiplier

preferences of Hansen and Sargent (2001); only when a multiplier parameter assumes a spe-

cial value do the expected utility preferences of Lucas and Stokey (1983) emerge as a special

case in which the representative household completely trusts its probability model.4 The

government shows complete confidence in the probability model of government expenditures

and acts paternalistically by using it in the evaluation of the household’s expected utility.5

The endogenous household’s beliefs play a crucial role in our analysis, because they affect

the equilibrium price of government debt and therefore the need to resort to distortionary

taxation.

There are two main forces that operate in our setup. The first reflects the paternalistic

motives that the fiscal authority is exhibiting by bestowing full confidence in the probability

model of government expenditures. At a casual level, one would think that a paternalistic

fiscal authority with no doubts about the model would like the household to hold the same

expectations as hers. The proper way to think about our setup is in terms of the optimal

allocation of tax distortions. We find that the fiscal authority has an incentive to tax more

contingencies that it considers less probable than the household and less contingencies that

it considers more probable than the household. The reason behind that is straightforward.

In the eyes of the fiscal authority, the welfare loss from taxing contingencies that it con-

siders unlikely relative to the household is small, motivating it to shift taxes towards these

contingencies. Thinking in terms of asset prices, claims on contingencies that the household

considers likely (and the government not) command an inflated price in the eyes of the gov-

ernment. This mispricing prompts the government to sell more debt (or buy less assets) at

these expensive prices, and therefore tax more these particular contingencies.6 The low util-

ity events to which the household is assigning high probability are typically associated with

high government expenditures. Thus, the paternalism of the fiscal authority is expressed as

3The European fiscal crisis served as a motivating example of an environment with fearful expectations.
We do not try to capture default here.

4Multiplier preferences lead to tractable functional forms. See Maccheroni et al. (2006a,b) and Strzalecki
(2011) for axioms that rationalize multiplier preferences as expressions of model ambiguity.

5Karantounias (2011) studies alternative sets of assumptions that allow the government to doubt the
probability model either more or less than the household and also possibly instructs the government to
evaluate expected utilities using the representative household’s beliefs, becoming in that special case the
Ramsey planner. The current setup isolates key forces that also operate in that alternative setting.

6We are thankful to the Co-editor and an anonymous referee for stressing the mispricing interpretation.
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an incentive to tax more (less) when government expenditures are high (low).

On the other hand, as we stressed earlier, the defining characteristic of our analysis of

model uncertainty is the endogeneity of the worst-case beliefs of the household and their

effect on asset prices, a feature that creates a separate and distinct mechanism from the

paternalistic motives analyzed previously. The government, by choosing a low tax rate at

a particular contingency, increases the utility of the household and therefore it decreases

the household’s assessment of the likelihood of this contingency. As a result, the price of a

contingent claim decreases. The government has an incentive to use this mechanism in order

to make claims cheaper when it purchases ex ante assets. On the other hand, the government

is increasing the tax rate in order to increase the price of a contingent claim through this

mechanism, when it is selling claims (issuing debt) in order to reduce the return on debt.

The government is typically hedging shocks by purchasing ex ante assets contingent on high

government expenditures, in order to finance deficits and is selling debt contingent on low

government expenditures that is paid for by running a surplus. Therefore, the government’s

price manipulation through the household’s expectations leads to an incentive to tax less

(more) when government expenditures are high (low), contributing an opposite and offsetting

force to the paternalistic force.

The two forces that we described affect also the dynamics of the optimal plan by in-

troducing dependence on the past history of shocks whereas the full confidence economy of

Lucas and Stokey (1983) would prescribe history independence.7 Consider first the pater-

nalistic force. The paternalistic-mispricing motive depends on the household’s probability

assessment of the entire history of shocks up to the current period and not solely on the

probability of the current shock. Assume for example that there was a high shock in the

past, an event to which the cautious household assigns high probability, motivating therefore

the fiscal authority to tax high in the past. However, the probability of the history of shocks

that includes this shock in the past and all shocks up to the current period will increase as

well, creating an incentive to tax high also in the current period. As a result, there is an

incentive to keep the tax rate high (low) following a high (low) shock inducing persistence

to the optimal tax rate.

In a sense, the history dependence arising from the paternalistic motives of the govern-

ment is due to the backward-looking nature of the discrepancy between the government’s

7It is interesting to observe that although history dependence was not our aim in this paper, it emerges
due to the paternalistic and the price manipulation motives of the fiscal authority, despite the complete
markets assumption. Aiyagari et al. (2002) obtain history dependence in a Ramsey problem, and Battaglini
and Coate (2008) in a political-economic bargaining equilibrium by dropping complete markets.
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and the household’s beliefs. Turning to the price manipulation efforts of the government,

we find that they also introduce history-dependence but due to the forward-looking nature

of the household’s endogenous beliefs. The household is forward-looking when it is forming

its worst-case beliefs, by taking into account both period utility and the discounted value of

future utility. As a result, a low tax rate in the future, by increasing future utility will also

increase current utility. This forces the fiscal authority to take into account the past when

it chooses the future tax rate. In particular, if there was an incentive to set a low tax rate in

the past (as in the case of a high shock), this incentive will persist in the future. Therefore,

the price manipulation motives of the fiscal authority make it keep the tax rate low (high)

following a high (low) shock. The marginal incentives of managing the household’s pes-

simistic expectations are tracked by the entire history of government debt or asset positions,

since they identify the incentives of increasing or decreasing asset prices respectively along

the history of shocks.

To conclude, another take on the tension between the two opposite government’s incen-

tives can be illustrated by considering a sequence of high shocks that are associated with low

utility every period. The pessimistic household would assign an increasingly higher proba-

bility to the partial history of shocks over time, leading therefore to an increasing sequence

of tax rates due to the paternalistic motive of the government, or in other words to a back-

loading of taxes. On the other hand, if the government hedges these high shocks by buying

assets each period, the price manipulation motive would lead to a decreasing sequence of

taxes over time, or a front-loading of taxes. Note that without doubts about the model, the

tax rate would stay constant over time in face of a sequence of high shocks.

1.1 Related literature

The policy problem that we formulate is a Stackelberg problem with a leader that trusts

the model and a follower that has doubts about it. Analysis of such problems is novel to

our knowledge and consists a methodological contribution of the paper. Robust control

in forward-looking models has been analyzed by Hansen and Sargent (2008, ch. 16), who

formulate a model in which a Stackelberg leader distrusts an approximating model while a

competitive fringe of followers completely trusts it. The reverse assumptions about specifi-

cations concerns that we make here alter the policy problem non-trivially by necessitating

the need to take into account the follower’s utility recursion, in order to be able to determine

the follower’s endogenous worst-case beliefs. We tackle this problem by applying recursive

methods along the lines of Marcet and Marimon (2009). These methods could potentially
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be applied in different policy settings where followers have doubts about the model.

Other contributions that share our aim of attributing misspecification fears to at least

some agents include Kocherlakota and Phelan (2009), who study a mechanism design prob-

lem using a max-min expected utility criterion, and Barlevy (2009, 2011), who studies policy

makers with fears of model misspecification.8 Woodford (2010), the most interesting previous

paper in several ways, sets up a particular timing to conceal the private sector’s beliefs from

the government. In Woodford’s model, both the government and the private sector fully

trust their own models, but the government distrusts its knowledge of the private sector’s

beliefs about prices. Arranging things so that this is possible is subtle because with enough

markets, equilibrium prices and allocations would reveal private sector beliefs. In contrast

to Woodford, we set things up with complete markets whose prices fully reveal private sector

beliefs to the fiscal authority.

Any analysis with multiple subjective probability models requires a convenient way to

express those models. Along with Woodford (2010), this paper uses the martingale repre-

sentation of Hansen and Sargent (2005, 2007) and Hansen et al. (2006). From the point

of view of the approximating model, these martingale perturbations look like multiplicative

preference shocks. In the present context, the fiscal authority manipulates those ‘shocks’.

This paper resides at the intersection of three literatures. Optimal policy analysis by

Bassetto (1999), Chari et al. (1994), Zhu (1992), Angeletos (2002) and Buera and Nicolini

(2004) in complete markets, or in incomplete markets by Aiyagari et al. (2002), Shin (2006)

and Marcet and Scott (2009), and recursive representations as in Chang (1998) and Sleet

and Yeltekin (2006) are all relevant antecedents of work. The multiplier preferences we

are using are closely related to risk-sensitive preferences and to Epstein and Zin (1989)

and Weil (1990) preferences and therefore our work is also related to Anderson (2005) and

Tallarini (2000), who study the impact of risk-sensitivity on risk-sharing and on business

cycles respectively, as well as to Hansen et al. (1999), who study the effect of doubts about

the model on permanent income theory and asset prices. Another related line of work is

Farhi and Werning (2008), who analyze the implications of recursive preferences in private

information settings.

8This work is also linked in a general sense to that of Brunnermeier et al. (2007), who study a setting in
which households choose their beliefs.
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1.2 Organization

Section 2 features a two-period version of our economy, in order to illustrate the paternalistic

and the price manipulation motives. In the same section we analyze also a three-period

economy, in order to clarify the dependence of the optimal plan on the past. In section 3

we lay out the infinite horizon economy. Sections 4 and 5 show the natural generalization of

our results in infinite horizon, the novel intertemporal smoothing motives that arise and the

recursive representation of the policy problem. Section 6 concludes. A separate appendix

provides information to the reader on the technical aspects of the policy problem.

2 The basic forces

The basic forces of our model are best captured in a two-period economy. Afterwards, we

will proceed to a three-period economy, in order to illustrate the history dependence of the

optimal plan.9

2.1 A two-period economy

We adopt a two-period version of the Lucas and Stokey (1983) economy without capital, with

a representative household that fears model misspecification. There are two periods, t = 0

and t = 1. At period zero there is no production, consumption or initial debt. At period one

there is uncertainty captured by the realization of an exogenous government expenditure

shock g1 that takes finite values. Markets are complete and competitive. The household

consumes c1(g1) and has one unit of time that it allocates between work h1(g1) and leisure

l1(g1). There is a linear technology in labor with productivity normalized to unity. The

resource constraint at period one is

c1(g1) + g1 = h1(g1), ∀g1. (1)

Competition makes the real wage equal to unity, w1(g1) = 1, for all g1. The household

is taxed linearly on its labor income with tax rate τ1(g1) and trades with the government at

t = 0 claims contingent on the realization of g1 with price q1(g1). The household’s budget

constraint at t = 0 reads

9We are grateful to an anonymous referee for suggesting this route as the most effective way to convey
the essence of our results.
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∑
g1

q1(g1)c1(g1) ≤
∑
g1

q1(g1)(1− τ1(g1))h1(g1), (2)

whereas the government budget constraint reads

∑
g1

q1(g1)(τ1(g1)h1(g1)− g1) ≥ 0.

Model misspecification. The representative household and the government share an

approximating probability model of government expenditures in the form of π1(g1). The

household is afraid that the probability measure is misspecified and considers alternative

probability measures π̃1 that are absolutely continuous with respect to π1. Absolute conti-

nuity means that events that receive positive probability under the alternative model, receive

also positive probability under the approximating model. We are going to express these al-

ternative models with a non-negative random variable m1(g1) ≡ π̃1(g1)
π1(g1)

≥ 0, that has the

interpretation of a likelihood ratio. The likelihood ratio m1 integrates to unity with respect

to the approximating model,
∑

g1
π1(g1)m1(g1) = 1. The discrepancy between the alternative

model and the approximating model is measured in terms of relative entropy,

ε(m) ≡
∑
g1

π1(g1)m1(g1) lnm1(g1).

Note that relative entropy is zero if the approximating and the alternative model coincide and

positive otherwise. Relative entropy is the expected log-likelihood ratio under the alternative

model.

The household expresses its aversion to model misspecification by using the multiplier

preferences of Hansen and Sargent (2001),

min
m1(g1)≥0

∑
g1

π1(g1)m1(g1)
[
u(c1(g1)) + v(1− h1(g1))

]
+ θ

∑
g1

π1(g1)m1(g1) lnm1(g1),

subject to
∑

g1
π1(g1)m1(g1) = 1. We assume that the utility functions of consumption and

leisure are strictly monotonic, strictly concave and thrice continuously differentiable. θ > 0 is
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a penalty parameter that captures the household’s doubts about the model π. Higher values

of θ represent more confidence in the approximating model π. Full confidence is captured

by θ = ∞, which reduces the above preferences to the expected utility preferences of Lucas

and Stokey (1983). We assume separability between consumption and leisure just for the

two- and three-period economy. We will restore non-separabilities between consumption and

leisure in the infinite horizon economy.

Household’s problem. The household’s problem is

max
c1(g1),h1(g1)

min
m1(g1)≥0

∑
g1

π1(g1)m1(g1)
(
u(c1(g1)) + v(1− h1(g1))

)
+ θ

∑
g1

π1(g1)m1(g1) lnm1(g1)

subject to the budget constraint (2), the non-negativity constraint for consumption

c1(g1) ≥ 0, the feasibility constraint for labor h1(g1) ∈ [0, 1] and the constraint that m1

has to integrate to unity.

Worst-case beliefs. Consider first the inner problem that minimizes the utility of the

household subject to the restriction that m1 integrates to unity.10 The optimal distortion is

indicated with an asterisk and takes the exponentially twisting form

m∗
1(g1) =

exp
(
−u(c1(g1))+v(1−h1(g1))

θ

)∑
g1
π1(g1) exp

(
−u(c1(g1))+v(1−h1(g1))

θ

) , ∀g1. (3)

Equation (3) denotes that the household assigns high probability to low utility events and

low probability to high utility events. By depending on utility, the household’s worst-case

beliefs become endogenous. As a result, the actions of the government, by determining the

household’s utility, will affect its worst-case beliefs.

Furthermore, inserting the optimal distortion m∗
1 into the preferences of the household

delivers the indirect utility function

σ−1 ln
∑
g1

π1(g1) exp
(
σ
(
u(c1(g1)) + v(1− h1(g1))

))
,

10See the technical appendix for details of the derivations.

9



where σ ≡ −1/θ < 0.

Proceeding to the first-order conditions of the maximization problem, we get the in-

tratemporal labor supply condition

v′(1− h1(g1))

u′(c1(g1))
= 1− τ1(g1)

and the optimality condition for the allocation of consumption between state g1 and ĝ1

q1(ĝ1)

q1(g1)
=

π1(ĝ1)

π1(g1)

m∗
1(ĝ1)

m∗
1(g1)

u′(c1(ĝ1))

u′(c1(g1))
,

which equates the relative price to the ratio of the worst-case beliefs times the ratio of

marginal utilities. Note how the endogenous worst-case beliefs show up in the determination

of asset prices. This will be the novel channel that the fiscal authority will exploit in order

to finance the exogenous government expenditures.

The competitive equilibrium given taxes τ1 is characterized by the household’s optimality

conditions and budget constraint together with the resource constraint (1).

2.1.1 Optimal taxation

Following Lucas and Stokey (1983), we are going to employ the primal approach and elim-

inate equilibrium prices and tax rates from the household’s budget constraint (2). This

delivers the implementability constraint

∑
g1

π1(g1)m
∗
1(g1)

[
u′(c1(g1))c1(g1)− v′(1− h1(g1))h1(g1)

]
= 0. (4)

In describing the economy we used the intertemporal budget constraint of the government

(which holds with equality at equilibrium). The period government budget constraint at

t = 0 is ∑
g1

q1(g1)b1(g1) = 0,

and at t = 1, when the shock takes the value g1,
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b1(g1) = τ1(g1)h1(g1)− g1.

The government surplus or deficit equals in equilibrium the household’s consumption net

of after-tax labor income. If b1(g1) > 0, then the government is issuing at period t = 0 debt

that matures at contingency g1 and is paid back by a surplus. If b1(g1) < 0, the government

is buying at t = 0 assets (household liabilities) that are used to finance a deficit at g1. The

term u′(c)c−v′(1−h)h in (4) expresses the government’s asset position in marginal utility of

consumption terms, u′(c1)b1. The implementability constraint (4) equates the present value

of government surpluses to the initial debt (which is zero).

As we discussed in the introduction, the fiscal authority has full confidence in the prob-

ability model of government expenditures and acts paternalistically, i.e. it imposes its own,

full-confidence expected utility criterion when it ranks alternative consumption-leisure plans

(c, l).

Definition. The fiscal authority’s problem is

max
{c1(g1),h1(g1),m∗

1(g1)}

∑
g1

π1(g1)(u(c1(g1)) + v(1− h1(g1)))

subject to (4), the resource constraint (1) and the endogenous worst-case beliefs (3) of

the household.

Assign multipliers Φ on the implementability constraint (4), π1(g1)λ1(g1) on the resource

constraint (1) and π1(g1)µ1(g1) on the worst-case distortion (3). The first-order conditions

for an interior solution are

c1(g1) : u′(c1(g1))
(
1 + Φm∗

1(g1) + σm∗
1η1(g1)

)
+ Φm∗

1(g1)u
′′(c1(g1))c1(g1) = λ1(g1) (5)

h1(g1) : −v′(1− h1(g1))
(
1 + Φm∗

1(g1) + σm∗
1(g1)η1(g1)

)
+Φm∗

1(g1)v
′′(1− h1(g1))h1(g1) = −λ1(g1) (6)

m∗
1(g1) : µ1(g1) = Φ

[
u′(c1(g1))c1(g1)− v′(1− h1(g1))h1(g1)

]
, (7)

where
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η1(g1) ≡ µ1(g1)−
∑
g1

π1(g1)m
∗
1(g1)µ1(g1), (8)

the innovation in µ1 under the household’s distorted measure. Obviously,
∑

g1
π1(g1)m

∗
1(g1)η1(g1) =

0.

Before we proceed to an analysis of the optimal government policy, it is helpful to consider

the derivation of the first-order condition with respect to consumption (5), which is rewritten

below:

u′(c1) + Φm∗
1[u

′′(c1)c1 + u′(c1)]︸ ︷︷ ︸
effect on government surplus in MU terms

+ m∗
1σu

′(c1)η1︸ ︷︷ ︸
effect on endogenous beliefs m∗

= λ1︸︷︷︸
shadow value of output

, (9)

where we dropped the argument g1 for notational simplicity. An increase in consumption

provides to the fiscal authority marginal utility u′(c) that is captured by the first-term in (9).

Note that the marginal utility is not multiplied with the worst-case likelihood ratio m∗
1 since

the fiscal authority has full confidence in the probabilistic model. The second term captures

the effect that an increase in consumption has on the government surplus in marginal utility

terms. The third term represents the effect of an increase in consumption on the endogenous

likelihood ratio m∗
1: an increase in consumption leads to an increase in utility and therefore

to a reduction in m∗
1 which is captured by term σu′(c) < 0, since σ < 0. This term is

multiplied by η1, the innovation in the shadow value µ1 of changing the likelihood ratio

m∗
1, that summarizes the marginal benefits or costs of affecting the household’s beliefs. The

shadow value µ1 and the innovation η1 will be analyzed in detail later. The sum of these

three terms should equal the shadow value of output λ1. Analogous interpretations hold for

the first-order condition with respect to labor (6).

Optimal wedge and tax rate. Combine (5) and (6) in order to eliminate λ1 and get an

expression for the optimal wedge,

v′(1− h1(g1))− u′(c1(g1)) =
Φ

1/m∗
1(g1) + ξ̃1(g1) + Φ

[
u′′(c1(g1))c1(g1) + v′′(1− h1(g1))h1(g1)

]
,(10)
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where we defined ξ̃1 ≡ ση1.
11 By using τ1 = 1 − v′(1 − h1)/u

′(c1), the optimal wedge

equation can be rearranged to get an expression for the tax rate (dropping g1 again),

τ1 =
Φ

1/m∗
1 + ξ̃1 + Φ(1 + ϵh,1)

[γRA,1 + ϵh,1]. (11)

Here γRA,1 stands for the coefficient of relative risk aversion γRA,1 ≡ −u′′(c1)c1/u
′(c1)

and ϵh,1 for the elasticity of the marginal disutility of labor, ϵh,1 ≡ −v′′(1−h1)h1/v
′(1−h1).

Given the concavity of the utility function, (11) shows that the tax rate is positive for every

contingency (and therefore u′ > v′), as long as there is need for distortionary taxation, which

is captured by the multiplier Φ > 0.12

2.1.2 The two forces

In the full confidence economy of Lucas and Stokey (1983) (σ = 0) we would havem∗
1 ≡ 1 and

ξ̃1 ≡ 0. Our setup gives rise to two deviations from the Lucas and Stokey framework, as the

optimal wedge equation (10) shows: the ratio of the government’s over the household’s worst-

case beliefs 1/m∗
1 which captures the paternalistic motive of the government and ξ̃1, which

captures the price manipulation through the household’s endogenous worst-case beliefs.

Typically, we expect the pessimistic household to assign high probability on states

where government expenditures are high and low probability on states where government

expenditures are low, so we expect m∗
1 > 1 when g1 is high and m∗

1 < 1 when g1 is

low. Furthermore, note from the first-order condition (7) that µ1 is equal to a multi-

ple of the government surplus in marginal utility terms, µ1 = Φu′(c1)b1, and therefore,∑
g1
π1(g1)m

∗
1(g1)µ1(g1) = Φ

∑
g1
π1(g1)m

∗
1(g1)u

′(c1(g1))b1(g1) = 0, since the present value of

government surpluses is zero. Thus, η1 = µ1 and ξ̃1 ≡ ση1 = σΦu′(c1)b1. If the government

hedges shocks by issuing debt contingent on low g1 and buying assets contingent on high g1,

then we expect ξ̃1 < 0 for low g1 and ξ̃1 > 0 for high g1.

11Assume that we wrote the worst-case beliefs of the household as m∗
1 = exp(σV1)/

∑
π1 exp(σV1), where

V1 = u(c1) + v(1 − h1) and that we assigned the multiplier π1ξ1 on the additional constraint that equates
V1 to current utility of consumption and leisure. So ξ1 would capture the shadow value to the government
of the household’s utility. Then we would have an additional first-order condition with respect to V1 which
equates the shadow value of utility to a multiple of the innovation η1, ξ1 = σm∗

1η1. This leads to ξ̃1 = ση1,
by defining the normalized multiplier ξ̃1 ≡ ξ1/m

∗
1. This construction is redundant in the two-period economy

but it will prove useful in the three-period and in the infinite horizon economy.
12Positivity of the tax rate is established by showing that the denominator in (11) is positive despite the

presence of η1 which can take both positive and negative values. Use the definition of ξ̃1 and rearrange (5)
to get 1/m∗

1 + ξ̃1 +Φ = m∗−1
1 [λ1 − Φm∗

1u
′′(c1)c1]/u

′(c1) > 0, since λ1 > 0.
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In the next paragraphs we will provide a detailed interpretation of the economic forces

at play.

Paternalism

Turn first to the effect of asymmetry in evaluating welfare between the government and

the household. The optimal wedge equation (10) shows that an increase in m∗
1 leads to a

decrease in consumption and labor, and therefore to an increased tax rate, keeping everything

else equal.13 Thus, the fiscal authority has the incentive to tax more (less) contingencies

that it considers relatively less (more) probable than the household. The intuition behind

this result is straightforward. A high tax rate on a state of the world that the government

considers unlikely relative to the household implies a small welfare loss, creating the incentive

to concentrate distortions on those states. From a different perspective, the government

reacts to what it sees as mispricing, by taxing more and buying –at inflated prices– less

assets (or issuing more debt) contingent on the states of the world that it considers unlikely

relative to the household. On the other hand, the government taxes less and buys more

assets (issue less debt) contingent on the states of the world that it considers more likely

than the household. Associating the low-utility events to which the household assigns high

probability with high government expenditures leads to the conclusion that paternalism

creates an incentive to tax more when there is a high government expenditure shock and less

when there is a low government expenditure shock.

Price manipulation through expectation management

The government, by increasing consumption at a particular state of the world, is increas-

ing the household’s utility and therefore it leads the household to decrease the probability

that it assigns to this state. As a result, the price of a claim contingent on this state de-

creases. The marginal benefits or costs of affecting asset prices through this mechanism are

captured by the multiplier µ1, which measures the marginal benefit of increasing m∗
1. As

noted before, µ1 is just equal to the government surplus or deficit in marginal utility terms

(which equals maturing government debt or assets in marginal utility terms), times the cost

of distortionary taxation Φ, µ1 = Φu′(c1)b1. Therefore, there is a marginal benefit of in-

creasing m∗
1 (and the price of the respective state-contingent claim) when the government is

issuing at t = 0 debt for contingency g1, (b1(g1) > 0) and a marginal cost when it buys assets

that are due at contingency g1, (b1(g1) < 0). In a first-best world (Φ = 0), µ1 would be zero,

13See the appendix for the conditions under which this claim holds. These conditions are satisfied for a
power utility function of consumption and either convex marginal utility of leisure or a disutility function of
labor with constant Frisch elasticity.
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capturing the fact that asset prices would be irrelevant for taxation purposes in a world where

lump-sum taxes are available. The intuition behind the government’s price manipulation is

as follows. The government has a marginal incentive to increase asset prices in situations

where it sells claims (b1 > 0), in order to decrease the return on state-contingent debt. On

the other hand, in situations when the government is a net buyer of claims (b1 < 0), it has

the incentive to decrease the price of the claims in order to make them cheaper, increasing

therefore the return on the assets that mature at t = 1.

Note that an increase in utility at g1 will decrease the likelihood ratio m∗
1(g1) but it

will also increase the likelihood ratios at the rest of the contingencies ĝ1 ̸= g1, so that the

ratios integrate to unity. This is the reason for the appearance of η1 instead of just µ1 in

the first-order condition (5), which accounts for the net shadow benefit or cost of increasing

the worst-case beliefs and the respective prices. Due to our zero initial debt assumption,

we have η1 = µ1 in this simple two-period version of our model. This will not be true in a

multi-period setting as we will see in the analysis of the infinite horizon economy.

Furthermore, thinking about the implications for the tax rate, one can show using the

optimal wedge (10) that an increase in ξ̃1 = ση1 = σµ1 (equivalently a decrease in debt in

marginal utility terms), leads to an increase in consumption and labor, and therefore to a

reduction in the tax rate, keeping everything else equal.14 If the government is running a

deficit for high shocks, financed by assets contingent on these shocks, and a surplus for low

shocks, used to pay back state-contingent debt, then the incentive of the government is to

decrease the tax rate (reducing therefore the pessimistic probability and the respective price

of a claim) when there is a high government expenditure shock and increase the tax rate

(increasing therefore the pessimistic probability and the respective price of a claim) when

there is a low government expenditure shock. Thus, the price manipulation motive acts in

the opposite direction to the paternalistic (or mispricing) motive that we analyzed before.15

A last remark is due. Consider the optimal tax rate formula (11) in the case of constant

risk aversion γ and constant elasticity of the marginal disutility of labor ϕh (which is equal

to the inverse of the Frisch elasticity). Then, with full confidence in the model, the tax rate

would be constant among states of the world,τ1 = Φ(γ+ϕh)
1+Φ(1+ϕh)

whereas now it varies at each

14Remember from footnote 11 that ξ̃1 stands for the normalized shadow value of the household’s utility.
An increase in ξ̃1 is capturing the net marginal benefit of decreasing the worst-case beliefs of the household
by means of increasing V1. This comparative statics result holds for the same utility functions as in footnote
13. See the appendix for details.

15If the government adopted the household’s welfare criterion, the paternalism force would be absent.
The two forces could also act in the same direction, depending on the strength of the government’s doubts
relative to the household’s. See Karantounias (2011).
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state due to the paternalism incentive (m∗
1) and the price manipulation incentive (ξ̃1). Note

furthermore, that for these particular utility functions we could read the two basic forces

that lead to an increase or decrease of the tax rate from τ1 =
Φ(γ+ϕh)

1/m∗
1+ξ̃1+Φ(1+ϕh)

.

2.2 A three-period economy

Add one more period, t = 2, and for the sake of simplicity assume that there is no uncertainty

at t = 2, g2 = ḡ.16 The shock histories in the economy are g2 = (g1, ḡ), with approximating

probabilities π1(g1). The resource constraint at t = 2 is

c2(g1, ḡ) + ḡ = h2(g1, ḡ), (12)

and the preferences of the cautious household take the form

min
m1(g1)≥0

∑
g1

π1(g1)m1(g1)
[
u(c1(g1)) + v(1− h1(g1)) + β

(
u(c2(g1, ḡ)) + v(1− h2(g1, ḡ))

)]
+ θ

∑
g1

π1(g1)m1(g1) lnm1(g1).

The worst-case beliefs of the household are

m∗
1(g1) =

exp
(
−V1(g1)

θ

)∑
g1
π1(g1) exp

(
−V1(g1)

θ

) , (13)

where

V1(g1) = u(c1(g1)) + v(1− h1(g1)) + β
(
u(c2(g1, ḡ)) + v(1− h2(g1, ḡ))

)
, (14)

i.e. the sum of period and discounted future utility, a manifestation of the forward-looking

behavior of the household. This forward-looking element is crucial for the optimal taxation

problem.

It is easy to see that the two forces that we described in the two-period economy are

16The case with uncertainty will be covered in the infinite horizon economy.
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present also here. Assign the multiplier π1(g1)ξ1(g1) on (14), let ξ̃1 denote the normalized

multiplier ξ̃1 ≡ ξ1/m
∗
1 and let the rest of the multipliers be as in the two-period economy.

Then the optimal wedge equation for period t = 1 is as in (10), with the qualification that

worst-case beliefs now are formed taking into account the discounted value of utility, as

(13) shows. The marginal incentives of manipulating the price of a state-contingent claim

at t = 1, q1(g1) = π1(g1)m
∗
1(g1)u

′(c1(g1))/λ̂,
17 by means of the cautious household beliefs

are captured by the shadow value of utility ξ̃1 and depend again on the government asset

position in period t = 1. This consists now both of the current surplus or deficit and the

present value of the future surplus or deficit,

ξ̃1 = ση1 = σµ1 = σΦ
[
u′(c1)c1 − v′(1− h1) + β(u′(c2)c2 − v′(1− h2)h2)

]
= σΦu′(c1)b1,

where b1 = τ1h1 − g1 +
q2
q1
b2, with q2 the price of a claim contingent on history (g1, ḡ),

q2(g1, ḡ) = βπ1(g1)m
∗
1(g1)u

′(c2(g1, ḡ))/λ̂, q2/q1 the inverse of the gross interest rate between

period one and two, and b2 the government surplus or deficit at period t = 2, b2 = τ2h2 − ḡ.

As before, the fiscal authority is facing two opposite incentives, having the desire to tax high

when fiscal shocks are high, because they are considered relatively improbable, whereas on

the same time wanting to tax less the very same events if, as is typically the case, the present

value of government surpluses is negative (b1 < 0), in order to reduce the equilibrium price

of the state-contingent claims that it buys.

Turning into the optimal wedge at period t = 2, we have now

v′(1− h2(g1, ḡ))− u′(c2(g1, ḡ)) =
Φ

1/m∗
1(g1) + ξ̃1(g1) + Φ

[
u′′(c2(g1, ḡ))c2(g1, ḡ)

+v′′(1− h2(g1, ḡ))h2(g1, ḡ)
]
. (15)

Several comments are in place. Use the resource constraint (12) to substitute for labor in

(15) and remember that with full confidence in the model we would have m∗
1 ≡ 1 and ξ̃1 ≡ 0.

Then the optimal wedge equation at t = 2 would determine optimal consumption (and

therefore labor and the tax rate), solely as a function of the level of government expenditures

at period t = 2 and the multiplier Φ, c2 = c(ḡ; Φ). This is the celebrated history independence

result of Lucas and Stokey (1983), which renders the optimal plan effectively static. The only

17λ̂ is the multiplier on the household’s intertemporal budget constraint from the household’s optimization
problem. It could be eliminated according to the preferred normalization of prices.
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intertemporal link in this case occurs implicitly through the value of the multiplier Φ on the

implementability constraint, and this by itself imparts no history dependence. Therefore,

the Lucas and Stokey plan inherits the stochastic properties of government expenditures.

In the case of doubts about the model though, consumption depends on the past shock

through m∗
1 and ξ̃1, c2 = c(ḡ, m∗

1, ξ̃1; Φ), and therefore the dependence on the past is due to

both forces that we analyzed in the two-period model. In order to interpret how the past

matters, assume for example that there is a high realization of the fiscal shock at t = 1,

an event to which the household assigns high probability (high m∗
1), leading therefore to an

inflated price of the claim contingent on history (g1, ḡ), q2. The paternalism force implies

that after this high shock the fiscal authority will have an incentive to keep the tax rate at

t = 2 high, since the probability of this history is considered relatively low according to the

fiscal authority. Thus, the paternalistic motive makes the tax rate persistent, motivating the

fiscal authority to keep the tax rate high (low) following high (low) shocks.

Things become more interesting if we consider the price manipulation efforts through the

cautious beliefs of the household in this dynamic setup. Exactly because the household is

forward-looking in forming worst-case scenarios, the tax rate at t = 2 affects the household’s

utility at t = 1 and therefore the equilibrium price of state-contingent claims at t = 1 and

at t = 2, q1 and q2, forcing the fiscal authority to take into account the past. The absence of

uncertainty at t = 2 makes the household’s likelihood ratio m∗
1 the relevant object of interest.

The shadow value ξ̃1 of affecting the household’s beliefs through utility V1, captures exactly

that in (15) and indicates that the marginal incentive to affect prices will persist over time.18

A high shock at t = 1, for which the fiscal authority buys assets and sets a low tax rate,

motivates the fiscal authority to keep the tax rate low at t = 2, in order to keep period utility

at period t = 2 high and therefore discounted utility at period t = 1 high. As a result, there

is an incentive to keep the tax rate low (high) following high (low) shocks.

3 The infinite horizon economy

In this section we proceed to the full-blown infinite horizon economy. Time t ≥ 0 is discrete

and the horizon infinite. Labor is the only input into a linear technology that produces one

18Note that if we assigned a second multiplier ξ2 on the period utility at t = 2, we would get ξ̃2 = ξ̃1,
where ξ̃2 ≡ ξ2/m

∗
1. This reflects the fact that the absence of uncertainty at t = 2 makes the conditional

distortion of beliefs for period t = 2 identically equal to unity, m∗
2 ≡ 1. Thus, the shadow value to the fiscal

authority of the period utility at t = 2 is just equal to the shadow value of discounted utility at t = 1, since
there is obviously no room for affecting the conditional beliefs of the household for period t = 2. See the
infinite horizon economy for the general case where this would not hold.
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perishable good that can be allocated to private consumption ct or government consumption

gt. The only source of uncertainty is an exogenous sequence of government expenditures gt

that potentially takes on a finite or countable number of values. Let gt = (g0, ..., gt) denote

the history of government expenditures. Equilibrium plans for work and consumption have

date t components that are measurable functions of gt. A representative agent is endowed

with one unit of time, works ht(g
t), enjoys leisure lt(g

t) = 1− ht(g
t) and consumes ct(g

t) at

history gt for each t ≥ 0. One unit of labor can be transformed into one unit of the good,

which leads under the competitive assumption to a real wage wt(g
t) = 1 for all t ≥ 0 and

any history gt. Feasible allocations satisfy

ct(g
t) + gt = ht(g

t). (16)

The government finances its time t expenditures either by using a linear tax τt(g
t) on labor

income or by issuing a vector of state-contingent debt bt+1(gt+1, g
t) that is sold at price

pt(gt+1, g
t) at history gt and promises to pay one unit of the consumption good if government

expenditures are gt+1 next period and zero otherwise. The one-period government budget

constraint at t is

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1|gt)bt+1(gt+1, g
t). (17)

Equivalently, we can work with an Arrow-Debreu formulation in which all trades occur at

date 0 at Arrow-Debreu history-contingent prices qt(g
t). In this setting, the government

faces the single intertemporal budget constraint

b0 +
∞∑
t=0

∑
gt

qt(g
t)gt ≤

∞∑
t=0

∑
gt

qt(g
t)τt(g

t)ht(g
t).

3.1 Fear of model misspecification

The representative agent and the government share an approximating model in the form of

a sequence of joint densities πt(g
t) over histories gt ∀t ≤ ∞. Following Hansen and Sargent

(2005), we characterize model misspecifications with multiplicative perturbations that are

martingales with respect to the approximating model. The representative agent, but not the

government, fears that the approximating model is misspecified in the sense that the history

of government expenditures will actually be drawn from a joint density that differs from the

approximating model but is absolutely continuous with respect to the approximating model
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over finite time intervals. Thus, by the Radon-Nikodym theorem there exists a non-negative

random variable Mt with E(Mt) = 1 that is a measurable function of the history gt and that

has the interpretation of a change of measure. The operator E denotes expectation with

respect to the approximating model throughout the paper. The random variable Mt, which

we take to be a likelihood ratio Mt(g
t) = π̃t(gt)

πt(gt)
of a distorted density π̃t to the approximating

density πt is a martingale, i.e., EtMt+1 = Mt. Here the tilde refers to a distorted model.

Evidently, we can compute the mathematical expectation of a random variable Xt(g
t) under

a distorted measure as

Ẽ(Xt) = E(MtXt).

To attain a convenient decomposition of Mt, define

mt+1 ≡
Mt+1

Mt

for Mt > 0

and let mt+1 ≡ 1 when Mt = 0, (i.e., when the distorted model assigns zero probability to a

particular history). Then

Mt+1 = mt+1Mt (18)

= M0

t+1∏
j=1

mj.

The non-negative random variable mt+1 distorts the conditional probability of gt+1 given

history gt, so that it is a conditional likelihood ratio mt+1 = π̃t+1(gt+1|gt)
πt+1(gt+1|gt) . It has to satisfy

the restriction that Etmt+1 = 1 in order qualify as a distortion to the conditional measure.

We measure discrepancies between conditional distributions by conditional relative entropy,

which is defined as

εt(mt+1) ≡ E(mt+1 logmt+1|gt).

3.2 Preferences

The multiplier preferences of Hansen and Sargent (2001) and Hansen et al. (2006) in the

infinite horizon economy take the form:19

19In effect, we constrain the set of perturbations by the following constraint on a measure of discounted
entropy

βE
[ ∞∑
t=0

βtMtE(mt+1 logmt+1|gt)
∣∣∣g0] ≤ η
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min
{mt+1,Mt}∞t=0≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)U(ct(g
t), 1− ht(g

t)) + βθ
∞∑
t=0

∑
gt

βtπt(g
t)Mt(g

t)εt(mt+1)

(19)

with U(ct, 1− ht) satisfying the same monotonicity, concavity and differentiability assump-

tions as in section 2.20

Higher values of the multiplier parameter θ > 0 represent more confidence in the approx-

imating model πt, with full confidence captured by θ = ∞.

3.3 The representative household’s problem

For any sequence of random variables {at}, let a ≡ {at(gt)}t,gt . The problem of the consumer

is

max
c,h

min
M≥0,m≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)
[
U(ct(g

t), 1− ht(g
t))

+θβ
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) lnmt+1(g

t+1)
]

subject to

∞∑
t=0

∑
gt

qt(g
t)ct(g

t) ≤
∞∑
t=0

∑
gt

qt(g
t)(1− τt(g

t))ht(g
t) + b0 (20)

ct(g
t) ≥ 0, ht(g

t) ∈ [0, 1] ∀t, gt (21)

Mt+1(g
t+1) = mt+1(g

t+1)Mt(g
t),M0 = 1 ∀t, gt (22)∑

gt+1

πt+1(gt+1|gt)mt+1(g
t+1) = 1, ∀t, gt (23)

We assume that uncertainty at t = 0 has been realized, so π0(g0) = 1. Thus, the

distortion of the probability of the initial period is normalized to be unity, so that M0 ≡ 1.

where η measures the size of an entropy ball of models surrounding the approximating model. This constraint
could be used to formulate the constraint preferences of Hansen and Sargent (2001). They discuss the
relation between constraint preferences and the multiplier preferences featured in this paper and show how
to construct η ex post as a function of the multiplier θ in (19) and other parameters.

20The multiplier preferences can be written recursively as

Vt = U(ct, 1− ht) + β min
mt+1

{Etmt+1Vt+1 + θεt(mt+1)}.
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Inequality (20) is the intertemporal budget constraint of the household. The right side is

the discounted present value of after tax labor income plus an initial asset position b0 that

can assume positive (denoting government debt) or negative (denoting government assets)

values.

3.4 The inner problem: choosing beliefs

The inner problem chooses (M,m) to minimize the utility of the representative household

subject to the law of motion of the martingale M and the restriction that the conditional

distortion m integrates to unity. The optimal conditional distortion takes the exponentially

twisting form:21

m∗
t+1(g

t+1) =
exp

(
−Vt+1(gt+1)

θ

)
∑

gt+1
πt+1(gt+1|gt) exp

(
−Vt+1(gt+1)

θ

) , all t ≥ 0, gt. (24)

Vt is the utility of the household under the distorted measure, which follows the recursion

Vt = U(ct, 1− ht) + β[Etm
∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1]. (25)

Equations (24) and (25) are the first-order conditions for the minimization problem with

respect to mt+1 and Mt. Substituting (24) into (25) gives

Vt = U(ct, 1− ht) +
β

σ
lnEt(exp(σVt+1)) (26)

where σ ≡ −1/θ. Thus, the martingale distortion evolves according to

M∗
t+1 =

exp
(
σVt+1(g

t+1)
)∑

gt+1
πt+1(gt+1|gt) exp

(
σVt+1(gt+1)

)M∗
t , M0 ≡ 1. (27)

Equation (27) asserts that the martingale distortion attaches higher probabilities to histo-

ries with low continuation utilities and lower probabilities to histories with high continuation

utilities. Such exponential tilting of probabilities summarizes how the representative house-

hold’s distrust of the approximating model produces conservative probability assessments

that give rise to an indirect utility function that solves the recursion (26), an example of the

discounted risk-sensitive preferences of Hansen and Sargent (1995).22 For θ = ∞ (or equiv-

21See the technical appendix for the derivation of this formula.
22The risk-sensitive recursion is closely related to the preferences of Epstein and Zin (1989) and Weil
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alently σ = 0) the conditional and unconditional distortion become unity M∗
t = m∗

t = 1,

expressing the lack of doubts about the approximating model.

3.5 Outer problem: choosing {ct, ht} plan

An interior solution to the maximization problem of the household satisfies the intratemporal

labor supply condition
Ul(g

t)

Uc(gt)
= 1− τt(g

t) (28)

that equates the MRS between consumption and leisure to the after tax wage rate and the

intertemporal Euler equation

qt(g
t) = βtπt(g

t)M∗
t (g

t)
Uc(g

t)

Uc(g0)
. (29)

Here we have normalized the price of an Arrow-Debreu security at t = 0 to unity, so q0(g0) ≡
1. The implied price of one-period state-contingent debt (an Arrow security) is

pt(gt+1, g
t) = βπt+1(gt+1|gt)

exp
(
σVt+1(g

t+1)
)∑

gt+1
πt+1(gt+1|gt) exp

(
σVt+1(gt+1)

) Uc(g
t+1)

Uc(gt)
. (30)

In the infinite horizon case, doubts about the model show up as a worst-case conditional

density in the determination of the equilibrium price of an Arrow security. The stochastic

discount factor under the approximating model has an additional multiplicative element

which depends on the endogenous, forward-looking continuation utility.

Definition. A competitive equilibrium is a consumption-labor allocation (c, h), distortions

to beliefs (m,M), a price system q, and a government policy (g, τ) such that (a) given

(q, τ), (c, h) and (m,M) solve the household’s problem, and (b) markets clear, so that ct(g
t)+

gt = ht(g
t)∀t, gt.

4 The problem of the fiscal authority

The paternalistic fiscal authority chooses at t = 0 a competitive equilibrium allocation that

maximizes the expected utility of the representative household under the approximating

model.

(1990).
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4.1 Primal approach

The fiscal authority chooses allocations subject to the resource constraint (16) and imple-

mentability constraints imposed by the competitive equilibrium.

Proposition 1. The fiscal authority faces the following implementability constraints:

∞∑
t=0

βt
∑
gt

πt(g
t)M∗

t (g
t)Uc(g

t)ct(g
t) =

∞∑
t=0

βt
∑
gt

πt(g
t)M∗

t (g
t)Ul(g

t)ht(g
t) + Uc(g0)b0, (31)

the law of motion for the martingale that represents distortions to beliefs (27), and the

recursion for the representative household’s value function (26).

Proof. Besides the resource constraint, a competitive equilibrium is characterized fully by

the household’s two Euler equations, the intertemporal budget constraint (20) that holds

with equality at an optimum, and equations (27) and (26), which describe the evolution of

the endogenous beliefs of the agent. Use (28) and (29) to substitute for prices and after tax

wages in the intertemporal budget constraint to obtain (31).

Definition. The fiscal authority’s problem is

max
(c,h,M∗,V )

∞∑
t=0

βt
∑
gt

πt(g
t)U

(
ct(g

t), 1− ht(g
t)
)

subject to

∞∑
t=0

βt
∑
gt

πt(g
t)M∗

t (g
t)[Uc(g

t)ct(g
t)− Ul(g

t)ht(g
t)] = Uc(g0)b0 (32)

ct(g
t) + gt = ht(g

t), ∀t, gt (33)

M∗
t+1(g

t+1) =
exp (σVt+1(g

t+1))∑
gt+1

πt+1(gt+1|gt) exp (σVt+1(gt+1))
M∗

t (g
t),M0(g0) = 1,∀t, gt (34)

Vt(g
t) = U(ct(g

t), 1− ht(g
t)) +

β

σ
ln
∑
gt+1

πt+1(gt+1|gt) exp
(
σVt+1(g

t+1)
)
,

∀t, gt, t ≥ 1 (35)

In contrast to the two-period economy, the fiscal authority has to take into account how

the worst-case beliefs of the household evolve and therefore it needs to keep track of the law of

motion of M∗
t , (34). The increments to the endogenous likelihood ratio M∗

t are determined

by the household’s utility Vt, which necessitates the addition of the utility recursion (35)
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– a promise-keeping constraint– to the implementability constraints of the problem. Note

that we could interpret the minimization problem of the household in the description of the

preferences in (19) as the problem of a malevolent alter ego who, by choosing a worst-case

probability distortion, motivates the household to value robust decision rules. Along the lines

of this interpretation, the policy problem becomes a Stackelberg game with one leader and

two followers, namely, the representative household’s maximizing self and the representative

household’s malevolent alter ego.

4.2 First-best benchmark (i.e., lump-sum taxes available)

By first-best, we mean the allocation that maximizes the expected utility of the household

under π subject to the resource constraint (16). Note that for any beliefs of the fiscal author-

ity, the first-best is characterized by the condition Ul(g
t)

Uc(gt)
= 1 and the resource constraint (16),

so the first-best allocation (ĉ, ĥ) is independent of probabilities π. Private sector beliefs affect

asset prices through (29), but not the allocation. Because lump-sum taxes are not available

in our model, the fiscal authority’s and the household’s beliefs both affect allocations.

4.3 Optimality conditions of the government’s problem

Define for convenience Ω(ct(g
t), ht(g

t)) ≡ Uc(g
t)ct(g

t)−Ul(g
t)ht(g

t). Note that Ωt represents

the equilibrium government surplus or deficit in marginal utility terms, Ωt = Uct[τtht−gt]. At-

tach multipliers Φ, βtπt(g
t)λt(g

t), βt+1πt+1(g
t+1)µt+1(g

t+1), and βtπt(g
t)ξt(g

t) to constraints

(32), (33), (34), and (35), respectively.

First-order necessary conditions23 for an interior solution are

23We set up the Lagrangian of the policy problem and derive the first-order conditions in the technical
appendix.
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ct, t ≥ 1 : Uc(g
t) + ξt(g

t)Uc(g
t) + ΦM∗

t (g
t)Ωc(g

t) = λt(g
t) (36)

ht, t ≥ 1 : −Ul(g
t)− ξt(g

t)Ul(g
t) + ΦM∗

t (g
t)Ωh(g

t) = −λt(g
t) (37)

M∗
t , t ≥ 1 : µt(g

t) = ΦΩ(gt) + β
∑
gt+1

πt+1(gt+1|gt)m∗
t+1(g

t+1)µt+1(g
t+1) (38)

Vt, t ≥ 1 : ξt(g
t) = σm∗

t (g
t)M∗

t−1(g
t−1)

[
µt(g

t)−
∑
gt

πt(gt|gt−1)m∗
t (g

t)µt(g
t)
]

+m∗
t (g

t)ξt−1(g
t−1) (39)

c0 : Uc(g0) + ξ0Uc(g0) + ΦM0Ωc(g0) = λ0(g0) + ΦUcc(g0)b0 (40)

h0 : −Ul(g0)− ξ0Ul(g0) + ΦM0Ωh(g0) = −λ0(g0)− ΦUcl(g0)b0. (41)

In (38) and (39), we used expression (24) for the optimal conditional likelihood ratio

m∗
t+1 to save notation.

Two remarks are in order. In formulating the taxation problem, the last constraint (26)

applies only from period one on since the value of the agent at t = 0 V0 is not relevant to

the problem due to the normalization M0 ≡ 1. We can set the initial value of the multiplier

equal to zero ξ0 = 0 to accommodate this. Equivalently, we could maximize with respect

to V0 to get an additional first-order condition ξ0 = 0. Furthermore, since ξ0 = 0,M0 = 1,

the first-order conditions (40, 41) for the initial consumption-labor allocation (c0, h0) are the

same as the respective initial period first-order conditions for the special Lucas and Stokey

(1983) case where the representative consumer fears no misspecification.

The first-order conditions (36-41) together with the constraints (32-35) determine the

optimal plan.
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5 Characterizing the optimal plan

5.1 Optimal wedge

Substituting the derivatives of Ω with respect to c and h into first-order conditions (36) and

(37) and combining the resulting expressions to eliminate the shadow value of output λt

delivers an expression for the optimal wedge for t ≥ 1,24 which in terms of the normalized

multiplier ξ̃t ≡ ξt/M
∗
t , ξ̃0 ≡ 0, takes the form,25

Ul(g
t)− Uc(g

t) =
Φ

1/M∗
t (g

t) + ξ̃t(gt) + Φ

[
Ucc(g

t)ct(g
t)− Ucl(g

t)(ct(g
t) + ht(g

t))

+ Ull(g
t)ht(g

t)
]
. (42)

The corresponding optimal tax rate is

τt =
Φ

1/M∗
t + ξ̃t + Φ(1 + ϵh,t)

[
γRA,t +

Ucl

Uc

(ct + ht) + ϵh,t

]
, t ≥ 1, (43)

where γRA,t and ϵh,t stand again for the coefficient of relative risk aversion and the elasticity

of the marginal disutility of labor. A sufficient condition for a positive tax rate is Ucl ≥ 0,

following the same arguments as in section 2.

The optimal wedge formula (42) generalizes the two forces that we identified in the two-

period economy, the paternalistic motive of the fiscal authority, captured by M∗
t and the

price manipulation through the household’s cautious beliefs, captured by the multiplier ξ̃t,

which measures the shadow value to the fiscal authority of the representative household’s

utility.

24The optimal wedge at the initial period is

Ul(g0)− Uc(g0) =
Φ

1 + Φ

[
Ucc(g0)(c0 − b0)− Ucl(g0)(c0 − b0 + h0) + Ull(g0)h0

]
.

In the absence of initial debt b0 = 0, the optimal wedge at t = 0 would be determined by (42) for (M0, ξ̃0) =
(1, 0). Initial consumption is a function of (g0,b0) and Φ, c0 = c(g0, b0; Φ).

25This normalization amounts essentially to multiplying the household’s utility recursion (35) with M∗
t

and assigning the multiplier ξ̃t on that constraint.
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5.2 Paternalistic motives in infinite horizon

In the two-period economy the paternalistic motive was captured by the conditional likeli-

hood ratio m∗
1 (which equates trivially the unconditional likelihood ratio in that setup). In

the infinite horizon economy, the optimal wedge equation (42) shows that this role is played

in contrast by the unconditional likelihood ratio M∗
t , which by construction consists of the

product of the conditional likelihood ratios,

M∗
t = m∗

tM
∗
t−1,

generalizing naturally our two-period insights. Using (42) we can show as in section 2 that

an increase in M∗
t , which corresponds now to a history of shocks that the fiscal authority

is not considering very probable, leads to an increased tax rate, keeping everything else

equal. The opposite would happen for histories that that the fiscal authority considers more

probable relative to the household.

The decomposition of the unconditional likelihood ratio in terms of all past conditional

likelihood ratios m∗
t is helpful for understanding the paternalistic motive. Each conditional

distortion m∗
t depends on Vt, as shown in (24). A sequence of low utility events from

t = 1 till the current period leads to high increments m∗
t over time and therefore to an

increasing likelihood ratio M∗
t .

26 Therefore, a sequence of high government expenditure

shocks, which we typically associate with low utility events, leads to an increasing sequence

of M∗
t and therefore to an increasing tax rate over time (which will be associated with

an increasing sequence of debt positions or a decreasing sequence of asset positions of the

government). At first, note that this is an indication of persistence of the tax rate due to

the paternalistic motive as we also saw in the three-period economy. Furthermore, we note

that the paternalistic motive implies a back-loading of taxes in the case of a sequence of high

shocks (whereas without doubts about the model the tax rate would remain constant), due

to the increasing implausibility of these histories in the eyes of the fiscal authority.

5.3 Manipulation of expectations and prices in infinite horizon

Turning now to the price manipulation motives of the government, consider the first-order

condition with respect to Vt, (39), which determines the evolution of ξt and therefore of ξ̃t,

26In the three-period economy we had M∗
2 = m∗

1, since there was no uncertainty at period t = 2 and
therefore m∗

2 ≡ 1.
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ξt = σm∗
tM

∗
t−1ηt +m∗

t ξt−1, t ≥ 1, ξ0 = 0, (44)

where

ηt ≡ µt − Et−1m
∗
tµt, (45)

stands now for the conditional innovation in µt under the household’s distorted measure,

with Et−1m
∗
tηt = Et−1m

∗
tµt − Et−1m

∗
t · Et−1m

∗
tµt = 0, since Et−1m

∗
t = 1.

The corresponding law of motion in terms of the normalized multiplier ξ̃t becomes

ξ̃t = σηt + ξ̃t−1, t ≥ 1, ξ̃0 = 0. (46)

The multiplier µt, which captures the shadow value to the fiscal authority of increasing

the likelihood ratio M∗
t , can be found by iterating forward the first-order condition with

respect to M∗
t (38), which, by remembering that Ω(gt) stands for the government surplus in

marginal utility terms, delivers

µt(g
t) = ΦUc(g

t)
∞∑
i=0

∑
gt+i|gt

qtt+i(g
t+i)[τt+i(g

t+i)ht+i(g
t+i)− gt+i],

where

qtt+i(g
t+i) ≡ qt+i(g

t+i)

qt(gt)
= βiπt+i(g

t+i|gt)
i∏

j=1

m∗
t+j(g

t+j)
Uc(g

t+i)

Uc(gt)
,

the equilibrium price of an Arrow-Debreu security in terms of consumption at history gt.

Thus, using the intertemporal budget constraint at time t, allows us to rewrite µt as µt =

ΦUctbt and interpret ηt as the innovation in debt in marginal utility terms multiplied by the

cost of distortionary taxation Φ, ηt = Φ
[
Uctbt − Et−1m

∗
tUctbt

]
.

Analyzing now the price manipulation motives in infinite horizon, note first that an

increase in ξ̃t leads to a decrease in the tax rate, keeping everything else equal, following

the same arguments as in section 2. However, in contrast to the two-period case, ξ̃t depends

now on the cumulative innovation in debt in marginal utility terms,

ξ̃t = σHt,

29



where Ht ≡
∑t

i=1 ηi and H0 ≡ 0, indicating that all past innovations in debt ηi matter for

the decisions of the fiscal authority. The intuition behind this result is a generalization of the

intuition we highlighted in the three-period economy. It helps to write down the equilibrium

intertemporal budget constraint,

Uc0b0 = Ω0 + βE0M
∗
1Ω1 + ...+ βt−1E0M

∗
t−1Ωt−1 + βtE0M

∗
t Uctbt︸ ︷︷ ︸

Uc0
∑

gt qt(g
t)bt(gt)

. (47)

The fiscal authority has an incentive to decrease the price (by decreasing the tax rate)

of a history-contingent claim qt = βtπtM
∗
t Uct/Uc0 by means of the endogenous worst-case

beliefs of the household in situations where it ex ante buys assets relative to the value of

government portfolio (ηt < 0), and increase the price (by increasing the tax rate) when it

sells debt relative to the value of the government portfolio (ηt > 0).27 Both of these actions

relax the constraint (47) in the relevant contingencies.

This is not the whole story, though. The past innovations in debt matter due to the

forward-looking nature of the worst-case beliefs of the household. Any change in Vt(g
t)

through the tax rate τt will affect all past continuation utilities {V1(g
1), ..., Vt−1(g

t−1)} along

the history gt through recursion (26), and therefore all likelihood ratios M∗
i , i = 1, .., t. As a

result, all equilibrium prices qi, i = 1, ..., t along this history will be affected. This is why the

normalized shadow value of utility ξ̃t consists of the cumulative innovation Ht, tracking dates

in the past that the government was lending or borrowing and the corresponding marginal

incentives to affect equilibrium prices. The cumulative innovation Ht captures the essence

of commitment to the household’s utility recursion and to the corresponding evolution of

the endogenous worst-case beliefs: the fiscal authority must take into account how a gt-

contingent action chosen at t = 0 affects the choices of the forward-looking household and

equilibrium asset prices along the history gt.

Furthermore, if the government is hedging government expenditure shocks by buying

assets contingent on high shocks and selling debt contingent on low shocks, we would have

a taxation incentive that acts in the opposite direction to the paternalistic motive, as in the

simpler economies that we examined earlier. Thus, a sequence of high expenditure shocks

27Remember that the innovation ηt captures the net effect marginal benefit or cost of affecting Vt, due
to the fact that conditional distortions are interconnected among states. The innovation η1 was also the
relevant object in the two- and three-period economy, but it was reducing just to µ1 = Φu′(c1)b1, since the
present value of government surpluses was zero in these two economies. For simplicity, we are going to refer
to ηt < 0 and ηt > 0 as assets and debt respectively.
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that leads to a sequence of negative innovations ηt, would lead to a decreasing tax rate over

time.28 We could think of this as a tax front-loading incentive in the face of a sequence of

high shocks, in order to reduce properly asset prices along this shock history.

5.4 Smoothing

It is interesting to note that a novel intertemporal smoothing motive emerges when we

consider the price manipulation efforts of the fiscal authority. The government is exhibiting

a desire to smooth the shadow value of the household’s utility ξt –essentially the shadow

value of the household’s worst-case beliefs– by making it a martingale according to the

government’s beliefs πt. Thus, the best forecast of the future value of the price manipulation

motive is its current value, which is not equal to zero, in contrast to the full confidence

economy.

Proposition 2. (Smoothing) The multiplier ξt is a martingale under the approximating

model πt. The normalized multiplier ξ̃t is a martingale with respect to household’s worst-case

beliefs πt ·M∗
t .

Proof. Taking conditional expectation with respect to the approximating model π given

history gt−1 in the law of motion (44) for ξt and remembering that variables dated at t are

measurable functions of the history gt, we get

Et−1ξt = σM∗
t−1Et−1m

∗
tηt + ξt−1Et−1m

∗
t

= ξt−1,

since Et−1m
∗
tηt = 0 and Et−1m

∗
t = 1. We can take conditional expectations in the law of

motion of ξ̃t (46) and repeat the same steps to show that Et−1m
∗
t ξ̃t = ξ̃t−1. Or, even simpler,

given that ξt = M∗
t ξ̃t and that Et−1ξt = ξt−1, we have Et−1M

∗
t ξ̃t = M∗

t−1Et−1m
∗
t ξ̃t = ξt−1, so

Et−1m
∗
t ξ̃t = ξt−1/M

∗
t−1 ≡ ξ̃t−1. An immediate corollary of these martingale properties is that

the mean value of ξt according to the approximating model is zero since E(ξt) = E(E0ξt) =

E(ξ0) = 0, and similarly, the mean value of ξ̃t according to the household’s worst-case beliefs

is zero.

28It is obvious from the law of motion (46) that a negative innovation ηt < 0 leads to an increase in ξ̃t
(and therefore an incentive to set the tax rate lower over time), ξ̃t > ξ̃t−1, whereas a positive innovation
ηt > 0 to a decrease (and therefore an incentive to set the tax rate higher over time), ξ̃t < ξ̃t−1.
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5.5 State variables

As is clear from the preceding analysis and the analysis in the three-period economy, the

optimal plan will be history-dependent due to both the paternalistic and the expectation

management motive, in contrast to the Lucas and Stokey plan, where consumption would

be solely function of the current shock gt, cLSt (gt) = c(gt; Φ). This can be readily seen

from the optimal wedge (42) and the resource constraint (16) for t ≥ 1, which delivers

ct = c(gt,M
∗
t , ξ̃t; Φ) (implying ht = h(gt,M

∗
t , ξ̃t; Φ) and τt = τ(gt,M

∗
t , ξ̃t; Φ)).

29 Therefore,

the allocation and taxes at t depend on the history of shocks as intermediated through M∗
t

and ξ̃t. The dependence of (M∗
t , ξ̃t) on the past is not degenerate since these two variables

follow laws of motion (34) and (46) respectively.

The above analysis is based on the insights arising from the optimal wedge (42). We

would like to know if the martingales ξ̃t (ξt) and M∗
t , that induce persistence to the optimal

plan and capture the two forces of our model, are sufficient to capture the effect of history, i.e.

if they can serve as state variables in a recursive formulation of the government’s problem.

We will pursue this task along the lines of Marcet and Marimon (2009).

Proposition 3. Let the approximating model of government expenditures be Markov. Then

the fiscal authority’s problem from period one onward can be represented recursively by keep-

ing as a state variable the vector (gt,M
∗
t , ξt) with initial value (g0, 1, 0). A similar recursive

formulation can be achieved in terms of (gt,M
∗
t , ξ̃t), with initial value (g0, 1, 0).

Proof. See technical appendix.

To conclude, the logic of the Marcet and Marimon (2009) method (and in fact of any

method that tries to represent commitment problems recursively) is to augment the state

space appropriately in order to capture the restrictions that are implied by the forward-

looking behavior of the household. The multiplier ξt (the co-state variable) on the forward-

looking implementability constraint (35) becomes a state variable, with initial value zero,

which reflects the fact that the government at period one is not constrained to commit to the

shadow value of its utility promises to the household, whereas the likelihood ratio M∗
t with

law of motion (27) tracks the worst-case beliefs of the household, helping the identification

of situations that the household considers more or less likely than the government. This

augmented state allows us to express the policy problem as a functional saddle point problem.

29Note that we could have achieved the same result by working with the non-normalized multiplier ξt to
get ct = c(gt,M

∗
t , ξt; Φ).
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6 Concluding remarks

In this paper we have analyzed the design of optimal fiscal policy in an environment where a

government that completely trusts the probability model of exogenous government expendi-

tures faces a public that expresses doubts about it and forms pessimistic expectations. We

used a decision-theoretic model to make sense of pessimistic expectations and analyzed the

channels through which they affect the allocation of tax distortions over histories of shocks.

We found that a paternalistic fiscal authority that needs to resort to distortionary taxa-

tion in order to finance government expenditures, has on the one hand, an incentive to exploit

the mispricing of the household by taxing more events that it considers unlikely relative to

the household and on the other hand, an incentive to affect equilibrium prices by managing

the endogenous household’s expectations about the exogenous shocks in the economy. This

type of expectation management is absent in the rational expectations literature.

What lessons does our approach to modeling expectations management offer for fiscal

policy? Fundamentally, the fiscal authority should shift expectations so as to lower the cost of

issuing debt contingent on future – typically favorable– states of the world, that is paid back

by future government surpluses. It can do this by making households think that these states

are more likely to materialize. Since we model the households as endogenously pessimistic,

getting them to believe these states are more likely involves making households worse off in

those states, by taxing them more. The reverse logic of a smaller tax on households applies

for future –typically adverse– states of the world for which the government buys assets, to

be used for financing future deficits. Thus, one implication of our model is that the fiscal

authority, in its effort to increase the value of the portfolio of government securities in order

to reduce the cost of distortionary taxation, is trying to curb the fears of the households by

setting higher tax rates for favorable shocks and lower tax rates for adverse shocks.

We think that the intertemporal links introduced by forward-looking pessimistic house-

holds can play an important role also in other optimal policy settings, as in monetary policy

or in optimal capital taxation.
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A Optimal wedge comparative statics

The derivations of the first-order conditions for the two- and three-period economy are
subsumed in the infinite horizon economy and will not be repeated here. Consider the
comparative statics that we perform by using the optimal wedge (10) and the resource
constraint (1) which are repeated here for convenience,

(
v′(1− h)− u′(c)

)
(1 +m∗ξ̃ + Φm∗) = Φm∗[u′′(c)c+ v′′(1− h)h

]
c+ g = h.

Given g and Φ, this system of equations is defining implicitly consumption and labor as
functions of m∗ and ξ̃, c = c(m∗, ξ̃) and h = h(m∗, ξ̃). We will sign the partial derivatives of
these functions. Note at first that the resource constraint is immediately implying that ci =
hi, i = ξ̃, m∗, where the subscript denotes the partial derivative. Differentiating implicitly
the optimal wedge equation with respect to m∗ delivers

cm∗ = hm∗ =

(
v′(1− h)− u′(c)

)
(ξ̃ + Φ)− Φ

[
u′′(c)c+ v′′(1− h)h

]
K

,

where

K ≡
(
u′′(c) + v′′(1− h)

)
(1 +m∗ξ̃ + 2Φm∗) + Φm∗[u′′′(c)c− v′′′(1− h)h

]
. (A.1)

The numerator of cm∗ can be further simplified by using the optimal wedge equation to
finally get,

cm∗ = hm∗ =

(
u′(c)− v′(1− h)

)
/m∗

K
. (A.2)

Similarly, implicitly differentiating with respect to ξ̃ delivers

cξ̃ = hξ̃ =
m∗(v′(1− h)− u′(c)

)
K

. (A.3)

As we showed in the text, u′ > v′ (which implies a positive tax rate). We will work
under the assumption that K < 0. Then, cm∗ = hm∗ < 0 and cξ̃ = hξ̃ > 0, as claimed

in the text. Furthermore, we can express the tax rate as a function of (m∗, ξ̃), τ(m∗, ξ̃) =
1− v′(1− h(m∗, ξ̃))/u′(c(m∗, ξ̃)). Differentiating with respect to m∗ and ξ̃ delivers
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τi =
u′′(c)v′(1− h) + v′′(1− h)u′(c)(

u′(c)
)2 ci, i = m∗, ξ̃.

Thus, since cm∗ < 0 and cξ̃ > 0, we have τm∗ > 0 and τξ̃ < 0.

Sign of K. We worked under the assumption that K < 0. It is convenient to decompose
K as

K = Kc +Kh,

where

Kc ≡ u′′(c)(1 +m∗ξ̃ + 2Φm∗) + Φm∗u′′′(c)c

Kh ≡ v′′(1− h)(1 +m∗ξ̃ + 2Φm∗)− Φm∗v′′′(1− h)h.

We will show that K < 0 for a power utility function of consumption, u(c) = c1−ρ−1
1−ρ

, and

either convex marginal utility of leisure (v′′′ > 0) or constant Frisch elasticity, v(1 − h) =

−ah
h1+ϕh

1+ϕh
. Consider first Kc, which becomes

Kc = −ρc−ρ−1
(
1 +m∗ξ̃ + Φm∗(1− ρ)

)
.

Note though that for this utility function, the first-order condition of the policy problem
with respect to consumption takes the form

1 +m∗ξ̃ + Φm∗(1− ρ) = λcρ > 0

Therefore, Kc < 0. Furthermore, if v′′′ > 0, then Kh < 0, since 1+m∗ξ̃+Φm∗ > 0, as shown
in footnote 12. Thus, K = Kc +Kh < 0.

Consider now the case of constant Frisch elasticity, for which the third derivative is not
positive, unless ϕh > 1, since v′′′(1− h) = ahϕh(ϕh − 1)hϕh−2. However, Kh becomes

Kh = −ahϕhh
ϕh−1

[
1 +m∗ξ̃ + Φm∗(1 + ϕh)

]
< 0,

which again delivers the desired sign of K.

Non-separable case. In the infinite horizon economy we treat also the non-separable case.
Obviously, our comparative statics results for the separable case hold also there, by consid-
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ering the derivative of consumption (labor) with respect to M∗ and ξ̃ (which captures now
the cumulative innovation in debt). Implicitly differentiating the optimal wedge equation
for non-separable utility functions (42) and the resource constraint with respect to (M∗, ξ̃)
delivers

cM∗ = hM∗ =
(Uc − Ul)/M

∗

Knon

(A.4)

cξ̃ = hξ̃ =
M∗(Ul − Uc)

Knon

, (A.5)

where Knon the corresponding expression for the non-separable case,

Knon ≡
(
Ucc − 2Ucl + Ull

)(
1 +M∗ξ̃ + 2ΦM∗)

+ΦM∗[Ucccc− Uccl(2c+ h) + Ucll(c+ 2h)− Ulllh
]
. (A.6)

Again, we will assume that our utility functions are such that Knon < 0. If there is
a positive tax rate (a sufficient condition for that would be Ucl ≥ 0), then Uc > Ul and
therefore cM∗ = hM∗ < 0 and cξ̃ = hξ̃ > 0. The tax rate derivatives in the non-separable
case are

τi =
UccUl + UllUc − Ucl(Uc + Ul)

U2
c

ci, i = M∗, ξ̃. (A.7)

Under Ucl ≥ 0 we have cM∗ < 0 and cξ̃ > 0 and the term that multiplies the consumption
derivatives ci in (A.7) is negative. Therefore, τM∗ > 0 and τξ̃ < 0.

What needs further discussion in the non-separable case is the negative sign ofKnon. Note
that when we turn off the doubts of the household by setting σ = 0 we get (M∗, ξ̃) = (1, 0).
Thus, Knon at (1, 0) becomes Knon(1, 0) =

(
Ucc−2Ucl+Ull

)(
1+2Φ

)
+Φ

[
Ucccc−Uccl(2c+h)+

Ucll(c+2h)−Ulllh
]
. This would be just the second derivative of the Lagrangian of the Lucas

and Stokey (1983) problem for the proper value of Φ. In that case, Knon(1, 0) < 0 imposes
local concavity of the Lagrangian, satisfying therefore the sufficient second-order conditions
of the policy problem with full confidence in the model. Therefore, for small doubts about
the model and a Φ close enough to the cost of distortionary taxation of Lucas and Stokey,
we could justify Knon < 0 as a sufficient condition for the satisfaction of the second-order
conditions of the full confidence problem. Obviously, the same argument can be made for
the separable case. Note though that for the utility functions that we used before (power
in consumption and convex marginal utility of leisure or constant Frisch), we showed that
K < 0 for any doubts about the model.
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B Household’s inner problem and optimality condi-

tions of the fiscal authority’s problem

B.1 Inner problem in 3.4

Assign multipliers βt+1πt+1(g
t+1)ρt+1(g

t+1) and βtπt(g
t)νt(g

t) on constraints (22) and (23)
respectively and remember that M0 ≡ 1 and π0(g0) = 1. Form the Lagrangian

L =
∞∑
t=0

∑
gt

βtπt(g
t){Mt(g

t)[Ut(g
t) + θβ

∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) lnmt+1(g

t+1)]

−
∑
gt+1

βπt+1(gt+1|gt)ρt+1(g
t+1)[Mt+1(g

t+1)−mt+1(g
t+1)Mt(g

t)]

−νt(g
t)[
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1)− 1]}.

First-order necessary conditions for an interior solution are

mt+1(g
t+1), t ≥ 0 : νt(g

t) = βθMt(g
t)[1 + lnmt+1(g

t+1)] + βρt+1(g
t+1)Mt(g

t) (B.1)

Mt(g
t), t ≥ 1 : ρt(g

t) = Ut(g
t) + β

[∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1)ρt+1(g

t+1)

+θ
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) lnmt+1(g

t+1)
]
. (B.2)

The above conditions can be simplified as follows. Rearrange (B.1) to get

lnmt+1(g
t+1) = −ρt+1(g

t+1)

θ
+
( νt(g

t)

βθMt(gt)
− 1

)
or

mt+1(g
t+1) = exp

(
−ρt+1(g

t+1)

θ

)
exp

( νt(g
t)

βθMt(gt)
− 1

)
.

Taking conditional expectation of mt+1 and using (23) allows us to eliminate νt(g
t) and get

m∗
t+1(g

t+1) =
exp

(
−ρ∗t+1(g

t+1)

θ

)
∑

gt+1
πt+1(gt+1|gt) exp

(
−ρ∗t+1(g

t+1)

θ

) , (B.3)

where the asterisks denote optimal values. Furthermore, solving forward (B.2) and imposing

5



the transversality condition limk→∞ βkEtM
∗
t+kρ

∗
t+k = 0 delivers

ρ∗t (g
t) =

∞∑
i=0

∑
gt+i|gt

βiπt+i(g
t+i|gt)

M∗
t+i(g

t+i)

M∗
t (g

t)

[
U(gt+i) +

βθ
∑

gt+i+1|gt+i

πt+i+1(gt+i+1|gt+i)m∗
t+i+1(g

t+i+1) lnm∗
t+i+1(g

t+i+1)
]
, t ≥ 1.

As is clear from the above condition, ρ∗t (g
t) represents the household’s utility at history gt,

ρ∗t (g
t) = Vt(g

t). This fact, together with recursion (B.2) and the formula for the optimal
conditional distortion (B.3), deliver the conditions in the text.

B.2 First-order conditions of the policy problem

The Lagrangian of the policy problem is

L =
∞∑
t=0

∑
gt

βtπt(g
t)
{
U(ct(g

t), 1− ht(g
t)) + ΦM∗

t (g
t)Ω(ct(g

t), ht(g
t))− λt(g

t)
[
ct(g

t) + gt − ht(g
t)
]

−
∑
gt+1

βπt+1(gt+1|gt)µt+1(g
t+1)

[
M∗

t+1(g
t+1)− exp(σVt+1(g

t+1))∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(gt+1))
M∗

t (g
t)
]

−ξt(g
t)
[
Vt(g

t)− U(ct(g
t), 1− ht(g

t))− β

σ
ln
∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(g
t+1))

]}
−ΦUc(c0, 1− h0)b0,

with ξ0 = 0, M0 = 1 and g0 given.
Apart from first-order condition (39), the rest of the first-order conditions of the govern-

ment’s maximization problem can be derived in a straightforward fashion. Differentiate now
the Lagrangian with respect to Vt(g

t) to get

Vt, t ≥ 1 : πt(gt|gt−1)ξt(g
t) = M∗

t−1(g
t−1)

∂

∂Vt(gt)

{∑
gt
πt(gt|gt−1) exp

(
σVt(g

t)
)
µt(g

t)∑
gt
πt(gt|gt−1) exp

(
σVt(gt)

) }

+
ξt−1

σ

∂

∂Vt(gt)

{
ln
∑
gt+1

πt(gt|gt−1) exp
(
σVt(g

t)
)}

.

Note that
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∂

∂Vt(gt)

{∑
gt
πt(gt|gt−1) exp

(
σVt(g

t)
)
µt(g

t)∑
gt
πt(gt|gt−1) exp

(
σVt(gt)

) }
= πt(gt|gt−1)σ

exp
(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)
·

[
µt(g

t)−
∑
gt

πt(gt|gt−1)
exp

(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)µt(g
t)

]
= πt(gt|gt−1)σm∗

t (g
t)
[
µt(gt)−

∑
gt

πt(gt|gt−1)m∗
t (g

t)µt(g
t)
]
,

and

∂

∂Vt(gt)

{
ln
∑
gt+1

πt(gt|gt−1) exp
(
σVt(g

t)
)}

= πt(gt|gt−1)σ
exp

(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)
= πt(gt|gt−1)σm∗

t (g
t),

where we used formula (24) for the household’s conditional distortion. Plugging the two
derivatives back to the optimality condition and simplifying delivers (39) in the text.

C Recursive formulation

First we will give an expanded version of proposition 3 in the text.

Proposition. Let the approximating model of government expenditures be Markov. Then the
fiscal authority’s problem from period one onward can be represented recursively by keeping
as a state variable the vector (gt,M

∗
t , ξt). The likelihood ratio M∗

t and the multiplier ξt follow
laws of motion

M∗
t = M∗(gt, gt−1,M

∗
t−1, ξt−1; Φ)

ξt = ξ(gt, gt−1,M
∗
t−1, ξt−1; Φ),

with initial values (M0, ξ0) = (1, 0). The policy functions for consumption, household utility
and debt for t ≥ 1 are

ct = c(gt,M
∗
t , ξt; Φ),

Vt = V (gt,M
∗
t , ξt; Φ),

bt = b(gt,M
∗
t , ξt; Φ).

A similar recursive formulation can be achieved in terms of (gt,M
∗
t , ξ̃t) with initial value

of the state (g0, 1, 0).

7



C.1 State variables (M ∗
t , ξt)

Assume that a sequential saddle-point that solves the policy problem exists.2 Our objec-
tive is to transform the sequential saddle-point into a recursive saddle-point along the lines
of Marcet and Marimon (2009). To achieve that, we augment the state space and modify
properly the period return function associated with the sequential saddle-point.

Fix the multiplier on the implementability constraint (32) to a positive value, Φ > 0, and
form the partial Lagrangian L̃0

L̃0 ≡ U(g0) + ΦΩ0(g0)− ΦUc(g0)b0 + βL̃,

where

L̃ ≡ E0

∞∑
t=1

βt−1
{
Ut + ΦM∗

t Ωt − ξt
[
Vt − Ut − β(Etm

∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1)

]}
.

Note that we are not including in the partial Lagrangian the law of motion of the likeli-
hood ratio M∗

t (which is the reason why we distinguish in notation between L̃0 in this section
from L in section B.2) and that we have already expressed labor in terms of consumption
ht = ct + gt in L̃0. Furthermore, we are differentiating between the initial period and the
rest of the periods due to the presence of initial debt and the realization of uncertainty at
t = 0.

Bear in mind that we have not substituted for the optimal value of the conditional
likelihood ratio m∗

t (24) in the household’s utility recursion, which retains linearity with
respect to the approximating model π in L̃. This allows us to apply the Law of Iterated
Expectations and rewrite L̃ in terms of current and lagged values of ξt,

L̃ = E0

∞∑
t=1

βt−1
[
Ut + ΦM∗

t Ωt − ξt
(
Vt − Ut

)
+ ξt−1

(
m∗

tVt + θm∗
t lnm

∗
t

)]
. (C.1)

Consider the saddle-point problem from period one onward,

Problem 1.

min
ξt,t≥1

max
ct,m∗

t ,M
∗
t ,Vt,t≥1

L̃

2The existence of a sequential saddle-point is not guaranteed due to the non-convexity of the government’s
problem. However, if it exists, it solves the policy problem. See Marcet and Marimon (2009).
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subject to

M∗
t (g

t) = m∗
t (g

t)M∗
t−1(g

t−1), t ≥ 1

m∗
t (g

t) =
exp(−Vt(gt)

θ
)

Et−1 exp(−Vt(gt)
θ

)
, t ≥ 1,

with initial values M0 = 1, ξ0 = 0 and g0 given.

The modified return function in (C.1) does not depend on expectations of future vari-
ables, but only on the controls (ct,m

∗
t , Vt, ξt) and the lagged values (M∗

t−1, ξt−1), which will
serve as state variables. The object of interest is the value function of problem 1, which will
be a solution to a saddle-point functional equation.

More precisely, assume that the approximating model of government expenditures is
Markov with transition probabilities πg|g− ≡ Prob(gt = g|gt−1 = g−) and let the vector
Xt ≡ (gt,M

∗
t , ξt) denote the state. Let W (X−; Φ) denote the corresponding value function of

the saddle-point problem when the state is X−, where the underscore “ ” stands for previous
period, i.e. z− ≡ zt−1 for any random variable z. The value of problem 1 is W (g0, 1, 0; Φ).
Φ > 0 is treated as a parameter in the value function. Then

Bellman equation I. W (·; Φ) satisfies the Bellman equation

W (g−,M
∗
−, ξ−; Φ) = min

ξg
max

cg ,m∗
g ,Vg

∑
g

πg|g−

{
U(cg, 1− cg − g) + Φm∗

gM
∗
−Ωg

−ξg(Vg − U(cg, 1− cg − g)) + ξ−(m
∗
gVg + θm∗

g lnm
∗
g) + βW (g,m∗

gM
∗
−, ξg; Φ)

}
where

Ωg ≡ [Uc(cg, 1− cg − g)− Ul(cg, 1− cg − g)]cg − Ul(cg, 1− cg − g)g

and

m∗
g =

exp
(
−Vg

θ

)
∑

g πg|g− exp
(
−Vg

θ

) , ∀g.

Time zero problem. The planner’s problem at time zero takes the form

W0(g0, b0; Φ) = max
c0

{U(c0, 1− c0 − g0) +ΦΩ0(c0)−ΦUc(c0, 1− c0 − g0)b0 + βW (g0, 1, 0; Φ)},
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which is effectively the static problem

max
c0

U(c0, 1− c0 − g0) + ΦΩ0(c0)− ΦUc(c0, 1− c0 − g0)b0.

From the problem above, we get the initial period consumption, c0(g0, b0; Φ).

Envelope conditions. The envelope conditions are

WM∗(g−,M
∗
−, ξ−; Φ) =

∑
g

πg|g−m
∗
g

[
ΦΩg + βWM∗(g,M∗

g , ξg; Φ)
]
, (C.2)

Wξ(g−,M
∗
−, ξ−; Φ) =

∑
g

πg|g−
[
m∗

gVg + θm∗
g lnm

∗
g

]
. (C.3)

Condition (C.3) exposes the connection between the shadow value ξ of manipulating the
worst-case model and the promised utility to the household. Furthermore, solving (C.2)
forward and converting to sequence notation allows us to conclude that

WM∗(gt−1,M
∗
t−1, ξt−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i

= ΦEt−1m
∗
t [Et

∞∑
i=0

βiM
∗
t+i

M∗
t

Ωt+i]

= ΦEt−1m
∗
tUctbt, (C.4)

where in the last line we recognized the relationship between the present value of gov-
ernment surpluses and debt.

First-order conditions. For completeness, we are going to derive the first-order con-
ditions of the functional equation, in order to verify that they match with the first-order
conditions of the sequential Lagrangian formulation. Assign the multiplier πg|g−µ̃g on the
optimal distortion m∗

g and get the following first-order conditions

cg : (Ul,g − Uc,g)
(
1 + ξg + Φm∗

gM
∗
−
)
= Φm∗

gM
∗
−
[
(Ucc − 2Ucl,g + Ull,g)cg

+(Ull,g − Ucl,g)g
]

(C.5)

m∗
g : µ̃g = ΦM∗

−
[
Ωg + βWM∗(g,M∗

g , ξg; Φ)
]
+ ξ−[Vg + θ(1 + lnm∗

g)] (C.6)

Vg : ξg = σm∗
g[µ̃g −

∑
g

πg|g−m
∗
gµ̃g] +m∗

gξ− (C.7)

ξg : Vg = Ug + βWξ(g,M
∗
g , ξg; Φ). (C.8)

Equation (C.5) represents the familiar optimal wedge, with hg = cg + g. Furthermore,
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using the envelope condition with respect to ξ (C.3) in optimality condition (C.8) delivers the
household’s utility recursion (35). It remains to show that (C.7) describes the appropriate
law of motion of the multiplier ξt. For that consider at first (C.6) in sequence notation and
use the fact that lnm∗

t = −Vt

θ
− lnEt−1 exp

(
−Vt

θ

)
to get

µ̃t = M∗
t−1

[
ΦΩt + βWM∗(g,M∗

t , ξt; Φ)
]
+ ξt−1θ

[
1− lnEt−1 exp(−

Vt

θ
)

]
.

Using (C.4), we see that ΦΩt+βWM∗(gt,M
∗
t , ξt; Φ) = Φ(Ωt+βEtm

∗
t+1Uc,t+1bt+1) = ΦUctbt.

Thus

µ̃t = M∗
t−1ΦUctbt + ξt−1θ

[
1− lnEt−1 exp(−

Vt

θ
)

]
,

with innovation

µ̃t − Et−1m
∗
t µ̃t = M∗

t−1Φ(Uctbt − Et−1m
∗
tUctbt),

since the term multiplying ξt−1 is known with respect to information at t− 1. Plugging the
innovation of µ̃ in in (C.7) delivers the law of motion (44).

Policy functions and debt. Given the recursive representation of the government’s prob-
lem, we attain a time invariant representation of the policy functions as functions of the state,
e.g. the optimal policy function for consumption is cg = cg(g−,M

∗
−, ξ−; Φ). In the case of

an i.i.d. approximating model, we could drop the dependence on g−. Note though that
(C.5) shows that (g,M∗

g , ξg) is sufficient to determine c. Thus, the vector of state variables
(g−,M

∗
−, ξ−) is affecting the optimal policy for consumption at g by determining the value

of the current state (g,M∗
g , ξg) and consequently cg = cg(g−,M

∗
−, ξ−; Φ) = c(g,M∗

g , ξg; Φ).
Therefore labor and the optimal tax rate will also depend on the current values of the
state. Note also that (C.8) allows us to use the same logic with the household’s utility, so
Vg = V (g,M∗

g , ξg; Φ). Turning to debt, using (C.4) allows us to determine the optimal debt
position as a function of the current state bt = b(gt,M

∗
t , ξt; Φ), since

bt =
Ωt

Uct

+
β

ΦUct

WM∗(gt,M
∗
t , ξt; Φ).

To conclude, remember that the recursive formulation has been contingent on the value
Φ > 0. After the initial period problem and the functional problem are solved, Φ has to be
adjusted so that the intertemporal budget constraint is satisfied. The expression that we
derived for optimal debt suggests the use of the derivative WM∗ for that purpose: Increase
(decrease) Φ if Ω0

Uc0
+ β

ΦUc0
WM∗(g0, 1, 0; Φ) − b0 < (>)0. This procedure has to be repeated

and the initial period problem and the functional equation have to be resolved till the

11



intertemporal budget constraint holds with equality.

C.2 Normalized multiplier ξ̃t

The same methodology allows us to derive a recursive representation in terms of the nor-
malized multiplier ξ̃t. Form the partial Lagrangian by multiplying the household’s utility
recursion (35) with M∗

t and assign to this constraint the multiplier βtπtξ̃t, with ξ̃0 ≡ 0.
Follow now similar steps as in the previous subsection to get the functional equation:

Bellman equation II.

J(g−,M
∗
−, ξ̃−; Φ) = min

ξ̃g

max
cg ,m∗

g ,Vg

∑
g

πg|g−

[
U(cg, 1− cg − g) + Φm∗

gM
∗
−Ωg

−m∗
gM

∗
−ξ̃g(Vg − U(cg, 1− cg − g)) + ξ̃−M

∗
−(m

∗
gVg + θm∗

g lnm
∗
g) + βJ(g,m∗

gM
∗
−, ξ̃g; Φ)

]
,

where Ωg and m∗
g as before.

Envelope conditions.

JM∗(g−,M
∗
−, ξ̃−; Φ) =

∑
g

πg|g−

[
Φm∗

gΩg −m∗
g ξ̃g(Vg − Ug) + ξ̃−(m

∗
gVg + θm∗

g lnm
∗
g)

+βm∗
gJM∗(g,M∗

g , ξ̃g; Φ)
]
, (C.9)

Jξ̃(g−,M
∗
−, ξ̃−; Φ) = M∗

−

∑
g

πg|g−(m
∗
gVg + θm∗

g lnm
∗
g) (C.10)

Matching first-order conditions. Assign multiplier πg|g−µ̂g on the conditional distortion
of the household m∗

g and derive the first-order conditions:

cg : (Ul,g − Uc,g)(1/M
∗
g + ξ̃g + Φ) = Φ

[
(Ucc,g − 2Ucl,g + Ull,g)cg

+(Ull,g − Ucl,g)g
]

(C.11)

m∗
g : µ̂g = M∗

−

[
ΦΩg − ξ̃g(Vg − Ug) + ξ̃−(Vg + θ(lnm∗

g + 1))

+βJ∗
M(g,M∗

g , ξ̃g; Φ)
]

(C.12)

Vg : ξ̃gM
∗
− = σ(µ̂g −

∑
g

πg|g−m
∗
gµ̂g) + ξ̃−M

∗
− (C.13)

ξ̃g : m∗
gM

∗
−Vg = m∗

gM
∗
−Ug + βJξ̃(g,M

∗
g , ξ̃g; Φ) (C.14)

Condition (C.11) describes the familiar optimal wedge. Turn now into sequence notation,
update the envelope condition (C.10) one period, substitute in (C.14) and simplify to get
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the household’s utility recursion,

Vt = Ut + β(Etm
∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1).

There is some work needed in order to derive the law of motion of the multiplier ξ̃t in the
text. Consider the envelope condition (C.9) and solve it forward to get

JM∗(gt−1,M
∗
t−1, ξ̃t−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i

−Et−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

ξ̃t+i(Vt+i − Ut+i)

+Et−1

∞∑
i=0

βiM
∗
t+i−1

M∗
t−1

ξ̃t+i−1(m
∗
t+iVt+i + θm∗

t+i lnm
∗
t+i).

The last sum in the third line can be rewritten as

Et−1

∞∑
i=0

βiM
∗
t+i−1

M∗
t−1

ξ̃t+i−1(m
∗
t+iVt+i + θm∗

t+i lnm
∗
t+i) = ξ̃t−1Et−1(m

∗
tVt + θm∗

t lnm
∗
t )

+Et−1

∞∑
i=0

βiξ̃t+iβ(m
∗
t+i+1Vt+i+1 + θm∗

t+i+1 lnm
∗
t+i+1).

Thus the derivative of the value function with respect to the likelihood ratio M∗ becomes

JM∗(gt−1,M
∗
t−1, ξ̃t−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i + ξ̃t−1Et−1(m
∗
tVt + θm∗

t lnm
∗
t )

−Et−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

ξ̃t+i

(
Vt+i − Ut+i − βEt+i

(
m∗

t+i+1Vt+i+1 + θm∗
t+i+1 lnm

∗
t+i+1

))
= ΦEt−1m

∗
tUctbt + ξ̃t−1Et−1(m

∗
tVt + θm∗

t lnm
∗
t ),

by using the household’s utility recursion and the relationship between debt and the present
value of future government surpluses.

Update JM∗ one period and plug it in the first-order condition (C.12) to get
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µ̂t = M∗
t−1

[
Φ
(
Ωt + βEtm

∗
t+1Uc,t+1bt+1

)
−ξ̃t

(
Vt − Ut − β(Etm

∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1)

)
+ξ̃t−1

(
Vt + θ(lnm∗

t + 1)
)]

= M∗
t−1

[
Φ
(
Ωt + βEtm

∗
t+1Uc,t+1bt+1

)
+ ξ̃t−1

(
Vt + θ(lnm∗

t + 1)
)]
,

using again the household’s utility recursion. Note that Ωt + βEtm
∗
t+1Uc,t+1bt+1 = Uctbt.

Use now the expression for the conditional distortion m∗
t to finally get

µ̂t = M∗
t−1

[
ΦUctbt + ξ̃t−1θ(1− lnEt−1 exp(σVt))

]
.

Therefore, the innovation in µ̂t becomes µ̂t − Et−1m
∗
t µ̂t = ΦM∗

t−1

[
Uctbt − Et−1m

∗
tUctbt

]
.

Plugging the innovation in (C.13) and simplifying delivers the law of motion of the normalized
multiplier (46).
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