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1 Introduction

Modeling comovements in asset returns has been a central topic in asset allocation,

risk managment, and asset pricing for several decades (for example, see Bollerslev

et al. (1988), Buraschi et al. (2010) and Bali & Engle (2010)). Multivariate GARCH

(MGARCH) models continue to be the main class of models used in these empirical

finance application. Recent surveys of the existing MGARCH models literature can be

found in Laurent et al. (2006) and Silvennoinen & Teräsvirta (2009).

Many MGARCH models assume a multivariate normal distribution for the return

innovation vector. However, the tails of the empirical distribution of returns are fatter

than a normal distribution and less symmetrical. These and other empirical regularities

have lead to the rejection of the normality assumption for multivariate returns (see

Richardson & Smith (1993)). In response, Diamantopoulos & Vrontos (2010), Harvey

et al. (1992) and Fiorentini et al. (2003), adopt a multivariate Student-t density for

the MGARCH model, whereas Bauwens & Laurent (2005) extend this to a multivariate

skew-Student distribution. In addition, a finite mixture of normal distributions has been

applied by Bauwens et al. (2007) and Galeano & Auśın (2010). Each of these extensions

improves the fit of the MGARCH but all remain essentially parametric approaches.

Other notable advances are the classical semiparametric approaches considered by

Long et al. (2011) and Hafner & Rombouts (2007). Both of these semiparametric

MGARCH models employ a two-step estimation strategy. It is unclear what the fi-

nite sample performance is for estimators of these more general MGARCH models, or

the effect of two-step estimation. On the other hand, an open issue is the asymptotic

normality of maximum likelihood estimators (see point 9 of Bauwens et al. (2007)).

An alternative likelihood based approach is the posterior analysis of the Bayesian

paradigm. Bayesian methods are attractive in that estimation is conceptually straight-

forward, but they avoid sample size issues and two-step estimation questions. Existing

Bayesian estimators of the MGARCH model by Dellaportas & Vrontos (2007), Hudson

& Gerlach (2008) and Osiewalski & Pipien (2004) are based on parametric models. The

purpose of this paper is to extend this work to a Bayesian semiparametric setting.

This paper provides Markov chain Monte Carlo (MCMC) posterior simulation meth-

ods for Bayesian semiparametric MGARCH models. Estimation is jointly conducted on

all parameters of the conditional covariances and the unknown innovation distribution.

The predictive density integrates out uncertainty from the conditional covariance as well

as the uncertainty about the return distribution.
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Our semiparametric MGARCH model is closely related to the semiparametric uni-

variate volatility models of Jensen & Maheu (2010, 2012) and Auśın et al. (2010). These

earlier semiparametric models were based on modeling the dynamics of conditional

volatility parametrically and on a nonparametric Dirichlet process mixture (DPM) prior

for the distribution of the standardized returns. We too assume a parametric model for

the dynamics of the conditional variance matrix of returns1 and a DPM prior for the

multivariate distribution of the standardized returns.

The Bayesian nonparametric DPM prior, while being a flexible, countably, infinite

mixture of multivariate normals with unknown means, covariances and mixture probabil-

ities, is also parsimonious and simple to sample from. Our first nonparametric approach

makes use of the Dirichlet processes Polya urn sampler of Escobar & West (1995) and

West et al. (1994) to produce draws of the unknown distribution by sampling the mixture

covariance matrices. Posterior draws consists of sampling each components covariance

matrix from its conjugate, conditional, posterior distribution.

It is well understood that as the number of assets in the MGARCH model increases,

the number of unknowns can become overwhelming. To ensure that our semiparametric

Bayesian approach is scalable, we also estimate our semiparametric MGARCH model

with a DPM prior restricted to covariance matrices having only diagonal elements. These

diagonal covariance matrices take on two forms; one prior having only a single scaling

factor and the other allowing each asset to have its own mixture variance.

In order to allow more flexible priors and enable different location vectors in the

mixture components, which will be important in capturing potential asymmetries in the

nonparametric distribution of the standardized errors, we also use the slice sampler of

Walker (2007). Unlike the above Gibbs based, Polya urn approach, the slice sampler

works directly with the stick breaking representation of the DP prior. Posterior sampling

methods are straightforward and allow inference on the unknown distribution itself.

Such inference is not possible with the Gibbs based approach since it generates draws

by marginalizing over the DP prior.

Empirical applications to foreign exchange returns and equity returns using a vector-

diagonal MGARCH model of Ding & Engle (2001) shows the usefulness of our approach.

The semiparametric model has very similar parameter estimates to a MGARCH model

with Student-t innovations. Time-series plots of the conditional variances and condi-

1We choose to apply our Bayesian semiparametric estimator to Ding & Engle (2001) vector-diagonal
version of Bollerslev et al. (1988) diagonal VEC GARCH model, but other parametric models of the
conditional variance matrix could be used.
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tional correlations are likewise similar. We show how the Bayes factor for the paramet-

ric Student-t MGARCH model versus the simplest nonparametric specification can be

computed using the Savage-Dickey density ratio. For each dataset we find very strong

support for the nonparametric mixture model.

To assess our more general model we turn to predictive Bayes factors. We show

how to compute the predictive likelihood for the full support of the distribution as well

as regions such as the predictive likelihood for the tail of the distribution. In these

comparisons the semiparametric model is at least as good as the parametric alternative

and often significantly better. For example, in the first equity application the predictive

log-Bayes factor in favor of the new model is 17. On average 10 components are used in

the mixture to approximate the distribution of returns.

We present period by period log-predictive likelihoods for model comparison. We

find that for foreign exchange data the new models essentially match the predictive

performance of a MGARCH model with Student-t innovations. For equity the new

models offer significant improvements. The gains from the semiparametric model often

occur during high volatility episodes. We conclude that our model can be substituted

for parametric models and be expected to deliver similar and potentially much better

predictive performance.

During the high volatility of the financial crisis the sequential estimates of the semi-

parametric scale mixture model go from about 9 components in the mixture to around

10. Towards the end of the sample period the number of components begin to decrease.

This is a flexible feature of the DPM mixture model. If the future is unlike the past the

model can introduce new components with new parameters into the mixture to accom-

modate new structure in the distribution. This is something that is not possible for the

t-distribution or a finite mixture model as the number of components is fixed.

The paper concludes with an application to a larger equity portfolio of 10 assets.

Computation becomes more challenging with this model so we apply the diagonal version

of the DPM covariance prior to reduce the computational costs. The MGARCH model

with a DPM prior mixing over each assets variances leads to better out-of-sample forecast

performance. This semiparametric MGARCH model uses approximately 25 mixture

components and continues to have significant gains in density forecasts of returns beyond

the MGARCH model with Student-t innovations.

This paper is organized as follows. The next section presents a MGARCH model with

Student-t innovations that provides a benchmark to compare to the new models. Sec-

tion 3 removes the Student-t distributional assumption and replaces it with a Dirichlet

4



process mixture model. Gibbs sampling is discussed and computation of the predictive

density for returns and for a portfolio of assets is derived. Section 4 introduces posterior

sampling for a DPM model with more general priors for the base measure. We use this

version to allow the mean of the components in the infinite mixture to be non-zero.

Data, estimation results and model comparison are found in Section 5 while the paper

concludes in Section 6.

2 Benchmark Model

In the following let yt = (y1t, . . . , ykt)
′ denote a vector of k asset returns. For comparison

purposes we consider a parametric version of the vector-diagonal multivariate GARCH

model of Ding & Engle (2001). To capture the fat tails so prominent in asset returns a

Student-t distribution is used for the conditional density. The model, MGARCH-t, is

yt|Ht ∼ Stk(0, Ht, ψ) (1)

Ht = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 �Ht−1, (2)

where Stk(0, Ht, ψ) is a k variate multivariate Student-t distribution with mean vector 0,

k×k scale matrix Ht and ψ is the degree of freedom parameter. The conditional second

moment is Cov(yt|Ht, ψ) =
ψ
ψ−2

Ht. Note that Γ0 is a symmetric positive definite matrix

parametrized as Γ0 = Γ
1/2
0 (Γ

1/2
0 )′ where Γ

1/2
0 is a lower triangular matrix and Γ1 = γ1(γ1)

′

and Γ2 = γ2(γ2)
′, where both γ1 and γ2 are k vectors. The symbol � denotes the

Hadamard product. This model assumes that each conditional second moment element

hij,t is only related to a lag of itself, hij,t−1, plus its past innovation shocks yi,t−1yj,t−1.

The rank one restrictions on Γ1 and Γ1 serve to keep the model parsimonious. To start

the GARCH recursion H1 is set to the sample covariance of yt. Several features of this

model are discussed in detail in Ledoit et al. (2003).

Given a dataset YT = (y1, . . . , yT ), model parameter vector Γ = {Γ1/2
0 , γ1, γ2, ψ} and

prior p(Γ) the posterior density is

p(Γ|YT ) ∝ p(Γ)
T∏
t=1

ψψ/2Γ[(ψ + k)/2]

Γ(ψ/2)
|Ht|−1/2

(
ψ + y′tH

−1
t yt

)−(ψ+k)/2
. (3)

The priors are independent for each individual parameter and follow N(0, 100) with the

following restrictions Diag(Γ1/2) > 0, γ11 ≥ 0, γ22 ≥ 0 to impose identification and ψ > 2.

This density on (3) is nonstandard and we employ a Metropolis-Hastings sampler. Given
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the current value Γ of the chain, the proposal Γ′ is sampled from

h(Γ′) ∼

{
N(Γ, V ) w.p. p

N(Γ, 100V ) w.p. 1− p,
(4)

and accepted with probability

min{p(Γ′|YT )/p(Γ|YT ), 1} (5)

and otherwise rejected and Γ is selected as the draw. This is a multivariate random

walk directed by a fat-tailed mixture of normals. The second normal in the proposal

mixture allows for the possibility of large moves in the parameter space. In the empirical

applications p = 0.9 and V is an estimate of the inverse hessian of log(p(Γ|YT )) evaluated
at the posterior mode and scaled to achieve an acceptance frequency between 0.2–0.5.

V is computed once at the start of estimation.

Sampling from this distribution is repeated many times and after dropping a burnin

sample we collect {Γ(i)}Ni=1 to estimate posterior quantities of interest. The predictive

density can be approximated as

p(yt+1|Yt) ≈
1

N

N∑
i=1

Stk(yt+1|0, H(i)
t+1, ψ

(i)) (6)

where Stk(yt+1|0, H(i)
t , ψ

(i)) denotes the p.d.f. of the Student-t distribution and H
(i)
t+1 is

computed according to (2) with parameter Γ(i).

3 Multivariate GARCH-DPM-Λ Model

Now consider the same MGARCH-t model with the Student-t innovations replaced by

a Dirichlet process mixture model. This is labelled MGARCH-DPM-Λ and follows,

yt|Λt, Ht ∼ N
(
0, H

1/2
t Λ−1

t (H
1/2
t )

′
)
, (7)

Ht = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 �Ht−1 (8)

Λt|G
iid∼ G, (9)

G|G0, α ∼ DP(G0, α), (10)

G0(Λt) ≡ Wishartk(P, v + k − 1), v ≥ 1. (11)

The MGARCH parameters Γ0, Γ1 and Γ2 follow the same structure as the previous

sections MGARCH-t model. (9)-(11) places a nonparametric prior on the random inno-

vation distribution of returns. This Bayesian nonparametric prior is an infinite mixture
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of multivariate normals with mixing over the covariances and can approximate a wide

class of distributions. Within this mixture the unknown matrix Λt is assumed to be

distributed according to an unknown distribution G. G is modeled nonparametrically

in terms of the Dirichlet process (DP) prior of Ferguson (1973) with base measure

G0(Λt) and precision parameter α. The DP is centered at G0 since E[G(Λ)] = G0(Λ)

for the measurable set Λ. The parameter α is a precision parameter in the sense that

Var(G(Λ)) = G0(Λ)(1 − G0(Λ))/(α + 1). A larger α is consistent with the belief that

G is closer to G0. The base measure is a Wishart density2 of dimension k with scale

matrix P and degrees of freedom v + k − 1. The Wishart is a distribution of symmet-

ric nonnegative-definite random matrices and facilitates Gibbs sampling for the DPM

model portion of posterior sampling.

The model can be cast in the Sethuraman (1994) representation of the DPM mixture

model as

yt|Ht ∼
∞∑
j=1

Vjfk

(
yt|0, H1/2

t D−1
j (H

1/2
t )

′
)

(13)

where the mixture only affects the covariance of each component and fk

(
yt

∣∣∣0, H1/2
t D−1

j (H
1/2
t )

′
)

is a multivariate normal distribution of dimension k with mean vector 0 and covari-

ance H
1/2
t D−1

j (H
1/2
t )

′
. The mixture weights are distributed as V1 = W1, and Vj =

Wj

∏j−1
s=1(1 −Ws), where Wj ∼ Beta(1, α). The mixture parameters Dj prior is found

in (11).

The semiparametric model nests two important cases. For example, G becomes a

single point mass as α → 0 and V1 = 1, V2 = 0, V3 = 0, . . . . In this case there is only 1

component in the DPM and we have a Gaussian model for yt. On the other hand, as

α → ∞ we have an infinite number of distinct components all drawn from the Wishart

distribution and all equally likely. In this case G replicates G0 so that G ≡ G0. This

gives a Student-t distribution for yt.

In this formulation of the DPM prior only the precision matrix Λt affects components

in the mixture. This allows for Gibbs sampling that is straightforward but further on a

non-zero mean vector is allowed.

Given a dataset YT = {y1, . . . , yT}, the Gibbs sampler will sequentially draw the set

2If A ∼ Wishartk(S0, v0) with scale matrix S0 and degree of freedom v0 then it has density

Wishartk(A|S0, v0) = 2−v0k/2π−k(k−1)/4|S0|−v0/2

[
k∏

i=1

Γ

(
v0 − 1− i

2

)]−1

|A|(v0−1−k)/2 exp

(
−1

2
tr(S−1

0 A)

)
. (12)
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{Λ1, . . . ,ΛT}. Due to the nature of the DPM model some of the Λt will be identical.

This clustering is one of the attractions of the DPM model as it promotes parsimony.

Let Bj, j = 1, . . . ,m denote the m < T unique clusters of Λt and B = {B1, . . . , Bm}.
Observation t is assigned to cluster j with parameter Bj if st = j. Let S = (s1, . . . , sT )

and S−t be the state indicators for Λ−t = (Λ1, . . . ,Λt−1,Λt+1, . . . ,ΛT ) andm
(t) the unique

number of clusters for the set Λ−t.

To describe the sampler for B,S|YT , H1, . . . , HT we first apply the transformation

xt ≡ H
−1/2
t yt (14)

and rewrite Equation (7) so that:

xt|Λt ∼ N(0,Λ−1
t ) (15)

Λt|G
iid∼ G, (16)

G|G0, α ∼ DP(G0, α), (17)

G0(Λt) ≡ Wishartk(P, v + k − 1), v ≥ 1. (18)

Standardizing the returns in (14) leaves the return innovation distribution which is

modeled as a flexible DPM. Although we focus on one particular MGARCH model

other MGARCH parametrizations could be used as long as the transformation in (14)

can be applied. The DPM model for xt does not in general impose a covariance matrix

of Ik. Imposing moment restrictions in DPM models is still an open question but for

our applications we use the prior to essentially center xt around a covariance of Ik.

With this transformation we can use the Gibbs sampling approach of Escobar &

West (1995) to sample the DPM model portion of the model. Let XT = {x1, . . . , xT},
then draws are now made from B, S|XT with the following two step procedure:

Step 1. Sample st, t = 1, . . . , T and m from:

Λt|xt,Λ−t, S−t ∼ c
α

α+ T − 1
g(xt) G(dΛt|xt)

+
c

α+ T − 1

m(t)∑
j=1

n
(t)
j fk(xt|0, B−1

j ) δBj
(Λt). (19)

where g(xt) ≡
∫
fk(xt|0,Λ−1

t G0(dΛt) dΛt.

Step 2. Given the S and m from Step 1, sample Bj, j = 1, . . . ,m from:

Bj|{xt : st = j} ∝
∏
t:st=j

fk
(
xt|0,Λ−1

t

)
G0(dΛt). (20)
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We require the following derivations.

G(dΛt|xt) ≡ fk(xt|0,Λ−1
t ) G0(dΛt)

g(xt)
, (21)

∝ |Λt|1/2 exp
(
−1

2
x′tΛtxt

)
|Λt|(v+k−1−1−k)/2 exp

(
−1

2
tr(P−1Λt)

)
(22)

∝ |Λt|(v−1)/2 exp

(
−1

2
tr([P−1 + xtx

′
t]Λt)

)
(23)

∝ Wishartk(Λt|(xtx′t + P−1)−1, v + k), (24)

and

g(xt) ≡
∫
fk(xt|0,Λ−1

t ) G0(dΛt) dΛt (25)

∝ |xtx′t + P−1|−(v+k)/2 (26)

∝ (v + x′t(Pv)xt)
−(v+k)/2 (27)

∝ Stk(xt|0, (Pv)−1, v). (28)

In Step 2 we have for j = 1, . . . ,m,

Bj|{xt : st = j} ∝

[ ∏
t:st=j

|Bj|1/2 exp
(
−1

2
x

′

tBjxt

)]
|Bj|(v−2)/2 exp

(
−1

2
tr(P−1Bj)

)

∝ |Bj|(v+nj−2)/2 exp

(
−1

2
tr

([∑
t:st=j

xtx
′

t + P−1

]
Bj

))
(29)

∝ Wishartk

Bj

∣∣∣∣∣∣
(∑
t:st=j

xtx
′
t + P−1

)−1

, v + k + nj − 1

 , (30)

where nj = #{t : st = j}. This completes the DPM model portion of the Gibbs sam-

pling. Finally, if the precision parameter α is assigned a Gamma prior Gibbs sampling

following Escobar & West (1995) can be used for the conditional posterior distribution.

Next we sample the MGARCH model parameters. Let Γ = {Γ1/2
0 , γ1, γ2}; note, the

semiparametric model does not contain the degree of freedom parameter ψ. To sample

from Γ|B, S note that

Cov(yt|Ht, Bst) = H
1/2
t B−1

st (H
1/2
t )′, (31)

so that the conditional posterior is

p(Γ|B, S, YT ) ∝ p(Γ)
T∏
t=1

|Ht|−1/2|Bst |1/2 exp
(
−1

2
y

′

t(H
−1/2
t )′B−1

st H
−1/2
t yt

)
. (32)
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The same sampling strategy used for the MGARCH-t model with a fat-tailed mixture

of normals (4)-(5) is used to jointly sample all structural parameters in the MGARCH

recursion.

Sampling from these distributions is repeated many times and after dropping a burnin

sample we collect {Γ(i), B(i), S(i)}Ni=1 to estimate posterior quantities of interest.

3.1 Predictive Density

Escobar & West (1995) point out that the key quantity of interest for Bayesian nonpara-

metrics is the predictive density. The predictive density for xt+1 given the parameters

follows the Polya urn prediction rule,

p(xt+1|Xt,Γ, B, S) =
α

α+ t
Stk(xt+1|0, (Pν)−1, ν) +

m∑
j=1

nj
α+ t

fk(xt+1|0, B−1
j ). (33)

Applying the change of variables yt+1 = H
1/2
t+1xt+1, with Jacobian term |Ht+1|−1/2, gives

the predictive density for yt+1 as,

p(yt+1|Yt,Γ, B, S) =
α

α+ t
Stk

(
yt+1|0, H1/2

t+1(Pν)
−1(H

1/2
t+1)

′
, ν
)

+
m∑
j=1

nj
α+ t

fk

(
yt+1|0, H1/2

t+1B
−1
j (H

1/2
t+1)

′
)
. (34)

From this the covariance is

Cov(yt+1|Yt,Γ, B, S) =
α

α+ t

H
1/2
t+1P

−1(H
1/2
t+1)

′

ν − 2
+

m∑
j=1

nj
α+ t

H
1/2
t+1B

−1
j (H

1/2
t+1)

′
. (35)

The predictive density with all parameter and density uncertainty integrated out can

be estimated as

p(yt+1|Yt) ≈
1

N

N∑
i=1

p(yt+1|Yt,Γ(i), B(i), S(i)) (36)

where {Γ(i), B(i), S(i)}Ni=1 are the posterior draws and the right-hand side of (36) averaging

over (33).

The predictive density of a portfolio of assets can also be conveniently derived from

these results. Given the weights ω on wealth with
∑k

i=1 ωi = 1, the portfolio return is

ypt+1 = ω′yt+1 and has a predictive density

p(ypt+1|Yt,Γ, B, S, ω) =
α

α+ t
St1

(
ypt+1|0, ω′H

1/2
t+1(Pν)

−1(H
1/2
t+1)

′
ω, ν

)
+

m∑
j=1

nj
α+ t

f1

(
ypt+1|0, ω′H

1/2
t+1B

−1
j (H

1/2
t+1)

′
ω
)
. (37)
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Each of the distributions in this mixture are univariate. Averaging over the posterior

draws as in (36) gives p(ypt+1|Yt, ω).

3.2 Savage-Dickey Density Ratio

The DP precision parameter α can be understood as the parameter controlling the

number of unique Λts. Its value determines the mixture weights through the proportion

Wj ∼ Beta(1, α) with expected value E[Wj] = 1/(1 + α). As α → ∞, the DP mixture

probabilities Vj → 0, G|G0, α ≡ G0, and Λt ∼ G0. Under this condition the MGARCH-

DPM-Λ is the MGARCH-t model.

As a sharp hypothesis on α, the Savage-Dickey density ratio of Dickey (1971) can

be used to compute the Bayes factor for MGARCH-t versus MGARCH-DPM-Λ model.

Under a proper prior for α, the Bayes factor can be computed using the Savage-Dickey

density ratio

BF ≡ p(YT |MGARCH-t)

p(YT |MGARCH-DPM-Λ)
(38)

=
p(α→ ∞|YT )
p(α→ ∞)

(39)

where p(YT |M) is the marginal likelihood of the model M .

Since α does not lend itself to a sharp hypothesis we transform the DP precision

variable into

u ≡ α

α+ 1

and assume a uniform prior over the unit interval for u. Using this transformation u→ 1

as α → ∞. It also provides an intuitive look into how the prior for α is a prior over

the probability of clustering since u is the probability of a new cluster for the second

observation. If u = 1 a new Λt will be drawn from G0 for every observation and xt in

(15) is distributed as a multivariate Student-t, St(0, (Pν)−1, ν).

Since for the uniform prior p(u = 1) equals one, the Savage-Dickey density ratio can

be rewritten as

BF = p(u = 1|YT ). (40)

The uniform prior on u implies the following prior for α

p(α) =
1

(α+ 1)2
, α ≥ 0.
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A random walk proposal is used to generate the draw α′. This candidate draw, α′,

is accepted with probability

p(m|α′, T )p(α′)

p(m|α, T )p(α)
=

α′mΓ(α′)/Γ(α′ + T )p(α′)

αmΓ(α)/Γ(α+ T )p(α)
(41)

where α is the draw from the previous sweep and m is the number of clusters from the

current sweep (see Escobar & West (1995) for the formula of the likelihood function,

p(m|α,N)). For each draw of α we also compute its corresponding u. We then evaluate

the empirical distribution of the sampled u at 1.0. If it is less than 1 then evidence in

favor of the MGARCH-DPM-Λ model over the Student-t version of the model.

4 General Semiparametric MGARCH Model

The previous model presented relies on a restrictive prior and does not allow the mean

of a component to affect the mixture. To allow for more general priors on the base

measure including estimation of the mean of the components, a sampler based on the

stick breaking formulation of the DPM model is used. This more general MGARCH

model is labelled as MGARCH-DPM.

The MGARCH-DPM model is,

yt|µt,Λt, Ht ∼ N(H1/2µt, H
1/2
t Λ−1

t (H
1/2
t )

′
), (42)

Ht = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 �Ht−1 (43)

µt,Λt|G
iid∼ G, (44)

G|G0, α ∼ DP(G0, α), (45)

G0(µt,Λt) ≡ N(β, V )−Wishartk(P, v + k − 1), v ≥ 1. (46)

The base measure governing µt and Λt are independent multivariate normal and Wishart

distributions. The mixture parameters now affect the mean vector and covariance in

(42).

The Polya-urn based sampler relies on G being integrated out from the posterior.

This marginal method gives a finite number of parameters that can be sampled with

MCMC methods when conjugacy is available. For more general priors this does not

work. Instead we work with conditional sampling approaches that directly sample from

the Sethuraman representation of the DPM. The problem is that there is an infinite

number of parameters to keep track of. One approach is to approximate the infinite

expansion by a finite one as in Ishwaran & Zarepour (2000).
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However, it is possible to avoid this approximation by using slice sampling. The

key idea behind slice sampling is to introduce a latent variable that slices the infinite

expansion in the Sethuraman representation to a finite number of parameters that can

be sampled by MCMC. Integrating over the latent variable yields the correct mixture.

We extend the slice sampling techniques of Walker (2007), Kalli et al. (2011) and Pa-

paspiliopoulos (2008) to our MGARCH-DPM model.

Let G ∼ DP (G0, α), whose stick breaking representation is

G =
∞∑
j=1

wjδθj , (47)

where θj
iid∼ G0, θj = (ξj, Bj) and ξj and Bj are the unique mass points of the vector µt

and matrix Λt. The weights are

w1 = v1, wj = vj

j−1∏
i=1

(1− vi) (48)

with vj
iid∼ Beta(1, α).

Using the transformation xt ≡ H
−1/2
t yt again, the density for xt is

f(xt|W,Θ) =
∞∑
j=1

wjfk(xt|ξj, B−1
j ). (49)

where W = (w1, w2, . . .) and Θ = {θ1, θ2, . . .}. Introducing the auxiliary latent variable

ut, we define the joint conditional density of xt and ut as,

f(xt, ut|W,Θ) =
∞∑
j=1

1(ut < wj)fk(xt|ξj, B−1
j ). (50)

The conditional distribution of components that have a weight wj less than the slice

variable ut is 0. If ut has a uniform distribution then integration of f(xt, ut|W,Θ)

with respect to ut gives f(xt|W,Θ). On the other hand the marginal density of ut is∑∞
j=1 1(ut < wj).

Let st = j assign observation xt to data density fk(xt|ξj, B−1
j ) with parameter θj =

(ξj, Bj), and U = (u1, . . . , uT ), then the full likelihood is

p(XT , U, S|W,Θ) =
T∏
t=1

f(xt, ut, st|W,Θ) =
T∏
t=1

1(ut < wst)fk(xt|ξst , B−1
st ) (51)
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and the joint posterior is

p(WK)

[
K∏
i=1

p(ξi, Bi)

]
T∏
t=1

1(ut < wst)fk(xt|ξst , B−1
st ), (52)

where WK = (w1, . . . , wK) and K is the smallest natural number that satisfies the

condition
∑K

j=1wj > 1−min{ut}.3

The Gibbs sampler samples the following set of variables each iteration,

{(ξj, Bj, vj), j = 1, 2, . . . , K; (st, ut), t = 1, . . . , T}. (53)

After dropping the burnin phase we collect i = 1, . . . , N samples.

The sampling steps are:

1. π(ξj, Bj|XT , S) ∝ p(ξj, Bj)
∏

{t:st=j} fk(xt|ξj, B
−1
j ), j = 1, . . . , K.

2. π(vj|S) ∝ Beta(vj|aj, bj), j = 1, . . . , K, where

aj = 1 +
T∑
t=1

1(st = j), bj = α+
T∑
t=1

1(st > j). (54)

3. π(ut|WK , S) ∝ 1(0 < ut < wst), t = 1, . . . , T .

4. Find the smallest K such that
∑K

j=1wj > 1−min{ut}.

5. P (st = j|XT , θ, U,WK) ∝
∑K

j=1 1(wj > ut)fk(xt|ξj, B−1
j ).

In step 4 additional wj and θj will need to be generated from the prior ifK is incremented.

From step 1 the conditional posterior for ξ = {ξ1, . . . , ξK} is

p(ξ|B,S) ∝
K∏
j=1

[ ∏
t:st=j

fk(xt|ξj, B−1
j )

]
p(ξj). (55)

For each j in which at least one observation is assigned we have

ξj|XT , B, S ∼ N(β, V ) (56)

β = V

(
V −1β +Bj

∑
t:st=j

xt

)
(57)

V =
(
V −1 + njBj

)−1
. (58)

3Hjort et al. (2010) list another condition
∏K

j=1(1− vj) < min{ut}.
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For the conditional posterior of B = {B1, . . . , BK} we have

p(B|XT , ξ, S) ∝
K∏
j=1

[ ∏
t:st=j

fk(xt|ξj, B−1
j )

]
p(Bj). (59)

Conjugacy makes this a series of Gibbs draws,

Bj|{xt : st = j} ∼ Wishartk

(∑
t:st=j

(xt − ξj)(xt − ξj)
′ + P−1

)−1

, v + k + nj − 1

 .

For the empty sets {t : st = j} in which none of the observations are allocated to the

cluster a direct draw from the Normal-Wishart (46) prior for ξj and Bj is taken.

4.1 Predictive density

Conditional on Ht+1 the predictive density can be estimated as

p(yt+1|Yt, Ht+1) ≈
1

R

R∑
i=1

fk

(
yt+1

∣∣∣H1/2
t+1ξ

(i), H
1/2
t+1(B

(i))−1(H
1/2
t+1)

′
)
. (60)

We found R = 2 produces accurate results. The parameter θ(i) = (ξ(i), B(i)) is found

from these steps:

1. a ∼ U(0, 1)

2. If
∑`−1

j=0w
(i)
j < a <

∑`
j=0w

(i)
j , with w0 = 0 and ` ≤ K then set θ(i) = θ

(i)
` .

3. If a ≥
∑K(i)

j=0 w
(i)
j then generate θ(i) ∼ G0.

From this the full predictive density with all parameter uncertainty integrated out is

obtained as

p(yt+1|Yt) ≈
1

N

N∑
i=1

p
(
yt+1

∣∣∣Yt, H(i)
t+1

)
(61)

where H
(i)
t+1 is obtained from the posterior draw Γ(i) using the MGARCH recursion (43).

As in Section 3.1 the predictive density of the portfolio return ypt+1 = ω′yt+1 can be

computed. The predictive density analogous to (60) is

p(ypt+1|Yt, Ht+1, ω) ≈
1

R

R∑
i=1

fk

(
yt+1

∣∣∣ω′H
1/2
t+1ξ

(i), ω′H
1/2
t+1(B

(i))−1(H
1/2
t+1)

′
ω
)

(62)
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where θ(i) = (ξ(i), B(i)) comes from steps 1-3 above. The full predictive density with all

parameter uncertainty integrated out is

p(ypt+1|Yt, ω) ≈
1

N

N∑
i=1

p
(
ypt+1

∣∣∣Yt, H(i)
t+1, ω

)
. (63)

It is often of interest to focus on density forecasts of a particular region of the

distribution. The predictive density for the tail (Diks et al. 2011) of the portfolio is

defined for ypt+1 < η, η ∈ R as

p(ypt+1|y
p
t+1 < η, Yt) =

p(ypt+1|Yt)1yt+1<η∫ η
−∞ p(vpt+1|Yt)dv

p
t+1

(64)

≈
1
NR

∑N
j=1

∑R
i=1 f1(y

p
t+1|ω′H

(j)1/2
t+1 µ(i), ω′H

(j)1/2
t+1 B(i)−1(H

(j)1/2
t+1 )

′
ω)1ypt+1<η

1
NR

∑N
j=1

∑R
i=1

∫ η
−∞ f1(v

p
t+1|ω′H

(j)1/2
t+1 µ(i), ω′H

(j)1/2
t+1 B(i)−1(H

(j)1/2
t+1 )′ω)dvpt+1

(65)

=

1
NR

∑N
j=1

∑R
i=1 f1(y

p
t+1|ω′H

(j)1/2
t+1 µ(i), ω′H

(j)1/2
t+1 B(i)−1(H

(j)1/2
t+1 )

′
ω)1ypt+1<η

1
NR

∑N
j=1

∑R
i=1 Φ

(
(η − ω′H

(j)1/2
t+1 µ(i))/

√
ω′H

(j)1/2
t+1 B(i)−1(H

(j)1/2
t+1 )′ω

) (66)

The denominator is an integration constant that ensures the conditional predictive den-

sity integrates to one while Φ(·) denotes the cumulative distribution function for the

univariate standard normal and f1(·|) is the associated pdf. In contrast to the previous

predictive likelihood that assessed the quality of the predictive density for the whole

support of returns, this focuses only on portfolio values less that η. Analogous results

apply for the MGARCH-t and the MGARCH-DPM-Λ models.

5 Application

Two datsets, one of equity and the other foreign exchange are used to estimate the

models. Data for equity returns is on IBM, the Center of Research in Security Prices

(CRSP) value-weighted market portfolio and HP, all obtained from CRSP for 2001/01/02

– 2009/12/31 (2263 observations). Data from the FX market is for log-returns on Euro-

USD, UK-USD, JPY-USD, 1999/01/05 – 2010/04/19 (2834 observations). Table 1 dis-

plays summary statistics for daily returns for the datasets along with the sample cor-

relations. Each of the assets display skewness and excess kurtosis. The time series of

equity returns is reported in Figure 1 with clear evidence from 2008 on of an increase in

volatility from the financial crisis.

For priors, each element of Γ
1/2
0 , γ1 and γ2 is independent N(0, 100) with the first

element of each matrix (vector) restricted to be positive to ensure identification. In
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the MGARCH-t model ν ∼ U(2, 100). For the DPM models, α ∼ Gamma(2, 8), P =
1

ν+k−1
Ik and ν = 10. This implies E[Λt] = Ik and essentially centers the DPM model

around a Gaussian distribution with mean vector 0 and covariance matrix I.

5.1 Estimates

In posterior simulation, for each model, a total of 13000 draws are collected and the

first 3000 are dropped as burnin with the remainder being used to estimate posterior

features. Posterior draws are shown in Figure 2 for the the MGARCH-DPM-Λ model.

Although there is some autocorrelation the chain overall mixes well and fully explores

the posterior density. In the following we focus on the results for the equity dataset.

Table 2 displays the posterior mean and 0.95 density intervals for several models for

the equity data. The first model is a MGARCH with Student-t innovations. The second

model MGARCH-DPM-Λ, is the MGARCH with a DPM model return distribution

which allow the covariance of the components to differ. The last model MGARCH-

DPM allows mixing over both mean and covariance of each mixture component.

The structural parameters, vech(Γ
1/2
0 ), γ1, and γ2, of the MGARCH models, are all

very similar across the semiparametric and parametric models. This is especially true

for the MGARCH model’s estimates of γ2. Clearly, volatility clustering remains very

important in the semiparametric models. In general the parameters are less precise in

the semiparametric models with wider density intervals.

The parametric MGARCH-t model features thick tails with the degree of freedom

parameter, ψ, estimated to be 7.7. A drawback of the Student-t density is that a single

degree of freedom parameter governs tail thickness in all directions of the density. This is

not the case for the semiparametric alternatives. The semiparametric models capture any

deviations from the normal distribution by using approximately 9 and 10 components,

on average, in the DPM models. However, there is some posterior uncertainty as to the

number of components, m, with a density interval of (5, 16) for the MGARCH-DPM-Λ

model. Both semiparametric models estimate a similar value of 0.7 for the precision

parameter α.

Figure 3 and 4 plot the conditional variances and the conditional correlations for the

MGARCH-t and the MGARCH-DPM-Λ model. These quantities are derived from the

posterior mean of the conditional covariances and for the DPM version are computed

from (35) for a particular parameter draw. Both models have very similar patterns in

their conditional moments through time. Plots for the MGARCH-DPM specification
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are very similar.

Finally, the Bayes factor in favor of the MGARCH-t model versus the MGARCH-

DPM-Λ model were computed for both the equity and foreign exchange data following

Section 3.2. For a range of degree of freedom parameters (ν = 6, 8, 12, 30) the Bayes

factor is 0. The support for u is always confined to values below 0.7 as is evident in the

posterior density of u plotted in Figure 5 for the equity data. This indicates the equity

data strongly supports a nonparametric specification with only a few (as in ten, more

or less), unique covariances, Bj, as opposed to the MGARCH-t model’s 2263 unique

covariances.

5.2 Out-of-Sample Forecasts

In this section the forecast precision of the models is compared by predictive likelihoods.

This measures the overall accuracy of density forecasts from each model and is equivalent

to a log-scoring rule (see Winkler (1969)). In each case a model is estimated with data

Yt−1 and then the predictive likelihood is estimated for yt given Yt−1 following Sections 3.1

and 4.1. After this the data is incremented to Yt and the model is re-estimated and the

predictive likelihood is computed for yt+1 given Yt. This is repeated for all the out-

of-sample period τ1 ≤ t ≤ τ2 and the log-predictive likelihood
∑τ2

t=τ1
log p(yt|Yt−1,M),

whereM = MGARCH-t, MGARCH-DPM−Λ, MGARCH-DPM, is reported in Table 3

while portfolio results are in Table 4. From this, log-predictive Bayes factors for com-

parison of two models can be computed from the values in Tables 3 and 4 by subtracting

two entries from the same column.

For equity the semiparametric models offer a substantial improvement over the para-

metric model in prediction. The log-predictive Bayes factor in favour of the MGARCH-

DPM-Λ over the MGARCH-t is 14.64. For the FX returns there is really no forecast gain

compared to the MGARCH-t model as the semiparametric models match the parametric

model.

In moving from the MGARCH-DPM-Λ model to the more general MGARCH-DPM

parametrization there are further gains in prediction accuracy. The log-Bayes factor is

2.63 (equity) in favor of the MGARCH-DPM. Since there is no loss of precision for the FX

data and substantial improvement for the equity the MGARCH-DPM is our preferred

model. By allowing mixing over the mean vector this model can capture general forms

of asymmetry in the return density.

Why do the semiparametric models perform well? Some explanation of this can be
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found in Figure 6. This figure reports several features of model comparison using the

equity data. The top panel shows the period-by-period difference in the log-predictive

likelihoods. A positive (negative) value is in favor of the MGARCH-DPM-Λ (MGARCH-

t) model. The next panel is the cumulative values from the previous panel. The last

panel is the average absolute value of returns for each date of the out-of-sample period.

It provides a rough estimate of average volatility.

From Figure 6 we can see three influential observations that are in favor of the

MGARCH-DPM-Λ. They appear to be high volatility episodes. On the other hand,

the second panel shows there to be regular ongoing forecast improvements from the

semiparametric model. Even at the end of the sample, which has lower average volatility,

the evidence continues to strengthen for the semiparametric model.

In a longer out-of-sample period, Figure 7 displays the sequential estimates of the

posterior mean of m|Yt, the number of clusters in the DPM mixture, along with average

volatility. During the high volatility of the financial crisis the MGARCH-DPM-Λ goes

from using about 9 components in the mixture to around 10. Towards the end of the

sample period the number of clusters begins to decrease. This is a flexible feature of

the DPM mixture model. If the future is unlike the past the model can introduce new

components with new parameters into the mixture to accommodate new structure in

the distribution. This is something that is not possible with the t-distribution or a finite

mixture model as the number of components is fixed.

Figure 8 provides a similar comparison between the two semiparametric models. The

last panel plots the market return. The MGARCH-DPM model provides regular gains

over the whole sample and is not confined to any particular data points such as outliers.

Some of the early gains in the model coincide with the negative returns in the market.

Recall that the main difference in these models is the ability of the MGARCH-DPM

specification to capture asymmetry in the return distribution.

Next we consider results for various portfolios of equity for our best model MGARCH-

DPM along with the Student-t version. Table 4 displays the cumulative log-predictive

likelihoods for the full support of the distribution along with the conditional (tail) log-

predictive likelihood for portfolio returns less that −1.0. The final column of this table

lists the portfolio weights. The MGARCH-DPM specification gives robust gains for

different portfolios for the whole distribution. The log-Bayes factor is on the order of 4

for each portfolio. On the other hand, the tail predictive likelihoods are almost identical

between the models with a slight edge for the DPM version. In contrast to the previous

results, in which the same tail behaviour of the Student-t distribution is imposed in

19



3 dimensions and worked poorly, the MGARCH-t only has to match the tail in one

dimension for the univariate portfolio. As such it does much better in this situation.

As an example of the breakdown of these results, Figure 9 plots the portfolio return

versus the difference in the log-predictive likelihoods for the MGARCH-DPM and the

MGARCH-t, for the third portfolio in Table 4. A positive (negative) value on the y-axis

is in favor of the MGARCH-DPM (MGARCH-t). Overall the models are very similar.

The DPM version is better in the range [-5:-1] and [1:5] while the Student-t model is

better around 0 and in the extreme tails.

In summary, the semiparametric models are at least as good at the parametric model

with t-innovations and often significantly better in terms of density forecasts. This has

been demonstrated for three assets and portfolios. We now turn to a more demanding

application of the model.

5.3 Ten Asset Example

In this section we show that our approach can be used for a larger portfolio of assets. We

consider the previous models and propose some simplifications, that in some cases, result

in better forecast performance. Using the same sample period 2001/01/02 – 2009/12/31

(2263 observations) returns from CRSP with company ticker symbols: HWP, AAPL,

IBM, XOM, JPM, MET, GE, FDX, DLM, and WHR are used.

In this case, with k = 10 assets the MGARCH model of (8) now has 75 (k(k +

1)/2 + 2k) parameters as well as the parameters associated with the DPM component

of the model. Clearly, computational considerations begin to play an important role.

In order to compare the most flexible specification in Section 4 with some restricted

versions we employ OpenMP4 for parallel programming on an Intel quadcore proces-

sor. The main bottleneck is associated with computing the loglikelihood function in

(32). GARCH models have a path dependence in that the covariance matrix at time t

affects all future covariance matrices. This structure does not readily admit standard

parallel programming methods. To do so, we first run through the MGARCH recursion

to obtain {Ht}Tt=1 and then compute the conditional covariances (35). After this the

Cholesky decomposition of each of the covariance terms, needed for density evaluation,

can be calculated independently among the 4 processors. Although additional gains are

possible, this is sufficient to make the computation time practical. For instance, the full

model in Section 4, given an estimate of V , the covariance of the proposal density (4)

4http://openmp.org/wp/

20



used to sample the MGARCH parameters, it only takes a few minutes to obtain 8000

draws from the full posterior distribution of which the last 5000 are used for inference.

We consider several restricted models and some require modification to the MCMC

sampler. Each semiparametric model in this section uses the slice sampler for estimation.

First we restrict all mixture mean vectors in the DPM to zero, in other words, µt ≡ 0, and

secondly, the mixture precision matrices, Bj, are diagonal. This forces all nondiagonal

elements to be zero but allows separate scaling for each element of xt. The Wishart

prior for Bj is reduced to the Gamma prior

Bj,ii ∼ Gamma

(
ν + k − 1

2
,
P−1
ii

2

)
, i = 1, . . . , k, (67)

which implies E[Bj,ii] = 1 if Pii = 1/(ν + k − 1). For each active cluster, j = 1, . . . ,m,

the Gibbs update step becomes

Bj,ii|{xt : st = j} ∼ Gamma

(
nj + ν + k − 1

2
,

∑
t:st=j

x2ti + P−1
ii

2

)
, (68)

i = 1, . . . , k, while Bj,il = 0, i 6= l.

A further simplification is to restrict Bj = bjIk where bj is a scalar. This scales the

whole matrix Ht up or down by a fixed amount in each cluster of the DPM. In this case

with prior

bj ∼ Gamma

(
ν + k − 1

2
,
p−1

2

)
, (69)

and p = 1/(ν + k − 1) the Gibbs step in (68) becomes one draw from

bj|{xt : st = j} ∼ Gamma

(
njk + ν + k − 1

2
,

∑
t:st=j

x
′
txt + p−1

2

)

for j = 1, . . . ,m.

Table 5 reports the predictive likelihoods for the same sample period as before but

for the 10 assets. The same priors are used as in the previous examples and any changes

are listed in the center column of Table 5. The first model is the parametric MGARCH-t

model with a cumulative log-predictive likelihood of −5549.69. The next specification is

our most flexible semiparametric model of Section 4, the MGARCH-DPM model. The

average number of clusters m with this model is around 25 but it often has MCMC

draws well in excess of 50. With a cumulative log-predictive likelihood of −5551.94, this

model is slightly worse than the MGARCH-t model.
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The third through fifth row of Table 5 impose restrictions on the MGARCH-DPM

model in one form or another. In general, the tighter prior Gamma(0.5, 12) for the

precision parameter α results in the average number of active clusters being around 20.

It also delivers better performance in the form of the cumulative log-predictive likelihood

being approximately −5545.

Imposing a zero mean vector ξt = 0 further improves the density forecasts of returns.

The best specification features this restriction as well as a diagonal Bj matrix. This

restricted semiparametric MGARCH model has a log-predictive Bayes factor of 28.1

against the MGARCH-t – strong evidence in favor of the semiparametric model. The fi-

nal model restricts the cluster covariance to a scaled identity matrix and performs poorly

with the smallest cumulative log-predictive likelihood of −5556.25. Except for this last

specification all of the semiparametric models are competitive with the parametric model

and often give significantly more accurate forecasts.

6 Conclusion

This paper proposes a Bayesian nonparametric modeling approach for the return inno-

vations in multivariate GARCH models. The approach of this paper opens the door

to semiparametric modeling in a wide variety of different multivariate GARCH models.

An infinite mixture of multivariate normals is given a flexible Dirichlet process prior.

We discuss conjugate methods that allow for scale mixtures and nonconjugate methods

which provide mixing over both the location and scale matrix of the normal components.

MCMC methods are introduced for posterior simulation and computation of the predic-

tive density. Bayes factors and density forecasts with comparisons to GARCH models

with Student-t innovations demonstrate the gains from our flexible modeling approach.

The paper concludes with an application to 10 assets. We introduce several restricted

versions of the model that reduce computational costs and lead to better out-of-sample

forecast performance. The best semiparametric model continues to have significant im-

provements in density forecasts of returns beyond the MGARCH model with Student-t

innovations.
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Table 1: Summary Statistics
Mean Variance Skewness Kurtosis Sample Correlation

IBM 0.0389 3.0940 0.5253 9.4160 1
VW 0.0159 1.9276 -0.0010 11.0670 0.6889 1
HP 0.0850 8.4305 -0.1016 9.9779 0.3271 0.5758 1

Euro-USD -0.0044 0.4249 -0.2092 5.4101 1
UK-USD 0.0030 0.3768 0.1609 7.8475 0.6802 1
JPY-USD -0.0069 0.4697 -0.4093 5.7904 0.2712 0.1412 1

Equity is the daily return on IBM, value-weighted CRSP portfolio (VW), HP ob-
tained from CRSP, 2001/01/02 – 2009/12/31 (2263 observations). FX is log-returns
on Euro-USD, UK-USD, JPY-USD, 1999/01/05 – 2010/04/19 (2834 observations).
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Table 2: Full Sample Estimates, CRSP Data

MGARCH-t MGARCH-DPM-Λ MGARCH-DPM
Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

g11 0.1017 ( 0.0748, 0.1288) 0.1200 (0.0849, 0.1545) 0.1255 ( 0.0949, 0.1610)
g21 0.0581 ( 0.0362, 0.0856) 0.0317 (-0.0152, 0.0727) 0.0268 (-0.0068, 0.0575)
g31 0.0418 ( 0.0025, 0.0816) 0.0084 (-0.0741, 0.0988) 0.0207 (-0.0460, 0.0890)
g22 0.0623 ( 0.0453, 0.0795) 0.0732 ( 0.0533, 0.0933) 0.0753 ( 0.0511, 0.0980)
g32 0.0926 ( 0.0518, 0.1357) 0.0996 ( 0.0377, 0.1723) 0.0088 ( 0.0093, 0.1758)
g33 0.1633 ( 0.1075, 0.2147) 0.1214 ( 0.0428, 0.1790) 0.1281 ( 0.0068, 0.1877)
γ11 0.1534 ( 0.1341, 0.1735) 0.1914 ( 0.1626, 0.2198) 0.1951 ( 0.1625, 0.2366)
γ12 0.1883 ( 0.1619, 0.2165) 0.1936 ( 0.1615, 0.2228) 0.1930 ( 0.1602, 0.2231)
γ13 0.1636 ( 0.1428, 0.1865) 0.1570 ( 0.1318, 0.1839) 0.1563 ( 0.1307, 0.1828)
γ21 0.9793 ( 0.9737, 0.9838) 0.9777 ( 0.9721, 0.9823) 0.9769 ( 0.9698, 0.9818)
γ22 0.9721 ( 0.9620, 0.9796) 0.9649 ( 0.9577, 0.9719) 0.9663 ( 0.9574, 0.9745)
γ23 0.9787 ( 0.9731, 0.9836) 0.9746 ( 0.9687, 0.9796) 0.9754 ( 0.9691, 0.9805)
ψ 7.7147 ( 6.5995, 8.9348)
α 0.6784 ( 0.2391, 1.3544) 0.7159 (0.2351, 1.4586)
m 9.4901 ( 5.0000, 16.000) 10.0994 ( 5.0000, 17.0000)

This table displays the posterior mean and the 0.95 density intervals (DI) of model
parameters. Data is daily return on IBM, vwretd, HP obtained from CRSP,

2001/01/02 – 2009/12/31 (2263 observations). (g11, . . . , g33)
′ = vech(Γ

1/2
0 ).

Table 3: Cumulative Log-Predictive Likelihoods

Equity FX

MGARCH-t -1468.26 -1096.47
MGARCH-DPM-Λ -1453.62 -1096.63
MGARCH-DPM -1450.97 -1096.88

Observations 262 333

FX is log-returns on Euro-USD, UK-USD, JPY-USD, 1999/01/05 – 2010/04/19
(2834 observations). Predictive likelihoods are computed for the final 333 obser-
vations at the end of the sample. Equity is the daily return on IBM, vwretd, HP
obtained from CRSP, 2001/01/02 – 2009/12/31 (2263 observations). Predictive
likelihoods are computed for the final 262 observations at the end of the sample.
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Table 4: Cumulative Log-Predictive Likelihoods for Equity Portfolios

Log-Predictive Tail Log-Predictive Portfolio
Likelihoods Likelihoods Weight

MGARCH-t -548.29 -89.00 1/3,1/3,1/3
MGARCH-DPM -544.77 -88.57 1/3,1/3,1/3

MGARCH-t -506.76 -66.01 3/5,1/5,1/5
MGARCH-DPM -504.87 -65.90 3/5,1/5,1/5

MGARCH-t -522.43 -75.76 1/5,3/5,1/5
MGARCH-DPM -518.84 -75.41 1/5,3/5,1/5

MGARCH-t -616.13 -119.80 1/5,1/5,3/5
MGARCH-DPM -612.33 -119.04 1/5,1/5,3/5

Observations 262 62

The portfolio comprises IBM, vwretd, HP obtained from CRSP, 2001/01/02 –
2009/12/31 (2263 observations) and using portfolio weights in the last column.
Predictive likelihoods are computed for the final 262 observations at the end of the
sample while the tail log-predictive likelihood is p(ypt+1|y

p
t+1 < η, Yt) for η = −1.0.

Table 5: Cumulative Log-Predictive Likelihoods 10 Assets

Model Prior/Restriction

MGARCH-t -5549.69
MGARCH-DPM -5551.94
MGARCH-DPM α ∼ Gamma(0.5, 12), ξt ∼ N(0, 0.1) -5545.58
MGARCH-DPM α ∼ Gamma(0.5, 12), ξt ∼ N(0, 0.1), ν = 15 -5544.88
MGARCH-DPM ξt = 0 -5538.55
MGARCH-DPM ξt = 0, Bt = diag(b1, . . . , bk) -5521.59
MGARCH-DPM ξt = 0, Bt = bIk -5556.29

Observations 262

Equity is the daily return on the following stocks with symbols: HWP, AAPL, IBM,
XOM, JPM, MET, GE, FDX, DLM, and WHR, 2001/01/02 – 2009/12/31 (2263
observations). Predictive likelihoods are computed for the final 262 observations
at the end of the sample. The benchmark prior is listed in Section 5.1 and any
deviations from this are noted in the center column of the table.
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Figure 1: Daily equity returns for IBM, the market, value-weighted CRSP portfolio, and
Hewlett and Packard.
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Figure 2: Posterior draws of the MGARCH-DPM-Λ parameters α and m in panel (a),

γ2 in panel (b), γ1 in panel (c), the first three elements of vech(Γ
1/2
0 ) in panel (d), and

the last three elements of vech(Γ
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0 ) in panel (e).
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