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Abstract

We develop a model of price formation in a dealership market where monitoring of the information
ow requires costly e�ort. The result is imperfect monitoring, which creates pro�t opportunities
for speculators who pick o� \stale quotes." Externalities associated with monitoring give rise to
multiple equilibria in which dealers earn strictly positive expected pro�ts. We obtain various policy
implications. A switch to automatic execution can improve or worsen (1) spreads and (2) price
discovery, depending on the speci�c equilibrium. A reduction in the minimum quoted depth tightens
the spread but reduces price e�ciency. Our analysis is relevant for the SOES controversy given
that speculators in our model behave as the real-world SOES \bandits." Our model predicts that
(1) SOES bandits should trade in stocks with small spreads and that (2) SOES bandit activity
should widen the spread. We provide empirical evidence consistent with these predictions.

Keywords: Market Making, Monitoring, Bid-Ask Spread, Automatic Execution.



1 Introduction

Nasdaq's Small Order Execution System (SOES) allows brokerage �rms to automatically execute

small orders at the best quotes posted by Nasdaq dealers. Participation in SOES is mandatory for

all dealers, who must post �rm quotes valid up to a maximum quantity, �xed by Nasdaq. Although

it was intended for small retail customers, SOES mainly attracted professional day traders (labeled

SOES \bandits" by dealers). The bandits trade when they observe a shift in the value of the asset,

either because they become aware of new public information before the dealers or because some

dealers are slow to update their quotes.1 This trading activity and its alleged impact on Nasdaq

trading costs, liquidity, and volatility has been the subject of a long and heated policy debate.2

Harris and Schultz (1998), henceforth HS (1998), show that bandits on average make positive

trading pro�ts, at the expense of dealers. This observation is puzzling since bandits trade on

information that is publicly available and pay commissions on their trades. They suggest (p. 61)

that imperfect monitoring by dealers is a potential explanation:

The existence and pro�tability of SOES bandits raise new questions about the e�ciency

of di�erent market structures. Bandits do not have any more information than the

market makers that they trade against and in many cases they have less information.

But bandits still make money. [...]. We believe the answer is that market makers are

inherently less e�cient at price discovery than are bandits. [...] bandits have much

greater incentives to concentrate on what they are doing, to follow stock prices closely,

and to stay in front of their terminals than do market maker employees.

In this paper, we develop a model of market making with costly monitoring and show how

this friction a�ects price formation. We distinguish between two forms of monitoring: (i) market

monitoring and (ii) quote monitoring. Market monitoring entails monitoring the arrival of new

1SOES day traders accounted for 83% of SOES share volume as of September 1995, according to the General
Accounting O�ce (GAO ) 1998 report on \The E�ect of SOES on the Nasdaq Market." Harris and Schultz (1997)
provide a detailed description of their trading strategies.

2In a Washington Post article (Hinden (1994)), Joseph Hardiman, president of the National Securities Dealers
Association, said that \The SOES activists were picking o� market makers, who were slow to adjust. The losses to
SOES activists made market makers gun shy, causing them to widen their price spreads." In testimony before the
House Committee on Commerce, David Whitcomb (1998) argued that \Abolishing SOES would remove the `market
discipline', which keeps market makers on `their toes' and causes prices to rapidly adjust when news occurs." See the
GAO report for a summary of the main arguments in the SOES controversy and important SOES-related events.
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information, e.g., public announcements, whereas quote monitoring is limited to monitoring quote

updates. Market monitoring requires some e�ort. In contrast, quote monitoring does not require

any e�ort because it can be automated.

In our model, dealers post �rm quotes and select how intensively they monitor information

arrival. Since market monitoring is costly, dealers never monitor news continuously. Imperfect

monitoring creates occasional pro�t opportunities due to \stale quotes." A second group of agents,

referred to as speculators, seek to exploit these opportunities. They behave like the SOES bandits.

When they observe new information or a quote revision indicating a change in the asset value,

speculators \pick o�" dealers who fail to adjust their quotes. In equilibrium, speculators' expected

pro�ts are positive. The dealers' losses from trading with the speculators are o�set by gains from

trading with liquidity traders.

Our main results are:

1. Market monitoring by one dealer can generate either a positive or a negative externality for

the other dealers. By monitoring quote updates, a dealer can free ride on the e�orts that his

competitors exert to monitor the market. This is the source of the positive externality. The

negative externality stems from the fact that speculators can use quote updates to \discover"

stale quotes. The direction of the externality depends on how quickly the dealers react to

quote updates.

2. These externalities inuence the dealers' bidding behavior. The positive externality induces

dealers to match the best quotes rather than undercut them. This e�ect gives rise to multiple

equilibria in which dealers earn strictly positive expected pro�ts. In contrast, the negative

externality precludes the existence of equilibria in which more than one dealer can operate

without incurring losses (a form of market breakdown).

3. Automatic execution of orders improves the speculators' ability to quickly respond to quote

updates. For this reason, it has an impact on market quality. We show that a switch

to automatic execution can increase or decrease spreads and the speed of price discovery,

depending upon which equilibrium is obtained.

Interestingly, the SOES's automatic execution feature has been a major bone of contention
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between bandits and Nasdaq dealers. Accordingly, Nasdaq has attempted to eliminate this feature

several times. The policy debate has also focused on the e�ect of bandit activity on the spread.

Dealers have blamed bandits for being the cause of large spreads. Despite its importance, there

is no direct empirical evidence regarding this question.3 A di�culty in obtaining such evidence is

that the spread and the level of bandit activity are interdependent. In our framework an increase in

the spread triggers the exit of some speculators, whereas an increase in the number of speculators

triggers a widening of the spread. We use our model to disentangle this interdependence and

formulate a simultaneous equations model, which allows us to test whether more bandit activity

leads to wider spreads. Consistent with the predictions of our model, we �nd that widening the

spread signi�cantly lowers SOES bandit activity. We also �nd that stocks with a higher level of

SOES bandit activity feature larger spreads. But the e�ect is surprisingly weak (signi�cant at the

10% level), given the dealers' insistence on the impact of SOES bandits on the spread.

Battalio, Hatch, and Jennings (1997) show that SOES bandits speed up the price discovery

process and are more likely to trade in volatile periods. We obtain theoretical and empirical results

consistent with their �ndings. HS (1997) report evidence consistent with a reduction in SOES

bandit activity following a reduction in the minimum depth from 1000 to 500 shares. In our model,

a decrease in the mandatory quoted depth causes fewer speculators to enter and thus tightens the

spread. Our empirical results con�rm these predictions. Another e�ect of such a change is to slow

down price discovery.

Our model is most closely related to Copeland and Galai (1983), who analyze the free-trading

option aspect of �xed quotes. We show how the free-trading option problem arises in equilibrium

as a result of costly monitoring. Kandel and Marx (1999) develop a theoretical model to study

whether odd-eighth avoidance is a rational response by Nasdaq dealers to SOES bandits. In their

model the pro�t opportunities of the SOES bandits are implicitly assumed to be due to imperfect

monitoring by the dealers. We explicitly model how \stale quotes" or pro�t opportunities may

arise. Kumar and Seppi (1994) model how index arbitrageurs, similar to our speculators, learn

information from quote updates. However they assume that the arbitrageurs always observe quote

updates faster than do dealers, which is not the case in our analysis. Furthermore, the information

3HS (1997) and Benston and Wood (1998) show that bandits trade ahead of short-term price changes and therefore
inict trading losses to dealers.
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structure is exogenous in their model, whereas it is endogenous in ours.

The rest of the paper is organized as follows. The general features of the model are presented

in Section 2. In Section 3, we analyze monitoring externalities. In Section 4, equilibrium bidding

strategies are analyzed. In Section 5, we study the e�ect of automatic execution on market quality.

Testable implications are derived in Section 6 and empirical results are reported in Section 7.

Section 8 concludes. All proofs are in the Appendix.

2 The Model

2.1 Timing, Traders, and Market Structure

There is a single risky asset with a liquidation value, ~V . At the beginning of the trading period, the

expected liquidation value is v0. There are three types of traders in this market: (i) M � 2 dealers,

who post quotes, (ii) N � 1 speculators, and (iii) liquidity traders, who submit market orders. Let

M and N denote the set of all dealers and all speculators, respectively. All the traders are risk

neutral.

A trading round comprises three stages, as described in Figure 1. In the quoting stage, dealers

simultaneously determine their quoted spreads, fSigi=Mi=1 . The bid quote posted by dealer i is

bi = v0�
Si
2 and the ask quote is ai = v0+

Si
2 . Let Sb =MinfSigi=Mi=1 be the inside spread, i.e., the

smallest posted spread. The number of dealers posting the inside spread is denoted Mb. Dealers

are required to honor their quotes for up to Q shares, the minimum quoted depth. For orders larger

than Q, dealers can back away from their quotes.

In the second stage, after observing the quotes posted in the market, the dealers and the

speculators choose their monitoring levels. The monitoring level chosen by a trader determines the

probability that she is the �rst to discover a public announcement regarding the asset value (see

below). We refer to the second stage as the monitoring stage.

Eventually, in the trading stage, one of the three following events occurs. With probability

� < 1, information arrives indicating an increase or a decrease in the asset value, with equal

probabilities. In the case of an increase (decrease), the new expected value becomes: v1 = v0 +
�
2

(v1 = v0 �
�
2 ). In this case, speculators may submit market orders, or dealers update their quotes

(see below). With probability (1��), no information arrives. In this case, with probability � > 0, a
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market buy or a sell order is submitted by a liquidity trader, with equal probabilities. The expected

size of the liquidity trader's order is �Q. With probability (1� �), no order is submitted.

Incoming market orders are evenly split among the Mb dealers posting the best quotes.4 A

liquidity trader places a single order and each dealer executes a fraction, xl(Mb) = 1=Mb, of the

order. A speculator can place one or more market orders depending on the number of dealers

posting the inside spread. Speci�cally her trade size is: QT (Mb) = xs(Mb)MbQ, that is, x
s(Mb) is

the fraction of the inside depth consumed by a speculator. A speculator places at least one order of

the maximum size (xs(Mb) � 1=Mb). She can not place more than one order when a single dealer

posts the inside spread (xs(1) = 100%). For Mb > 1, we assume that xs(Mb) belongs to [ 1
Mb

; 1].

If the speculator can exhaust the total market depth then xs(Mb) = 100%. Notice that a dealer

posting the inside spread trades QT =Mb = xs(Mb)Q shares against a speculator.

2.2 Market Monitoring and Quote Monitoring

Dealers and speculators become aware of new information by directly monitoring the information

ow, an activity that we call market monitoring.5 We model market monitoring as follows. Let

�i 2 [0;+1) be the monitoring level of market-maker i and let j 2 [0;+1) be the monitoring

level of speculator j. If new information arrives, the probability that a trader, say m, is �rst to

observe the new information is denoted Prob(f = m). This probability depends on the monitoring

levels as follows:

Prob(f = i) � P (�i) �
�i

�i +
P

m6=i �m +
P

j j
8i 2M; (1)

Prob(f = j) � P (j) �
j

j +
P

k 6=j k +
P

i �i
8j 2 N : (2)

Furthemore we set: P (0) = 0 and P (+1) = 1. A monitoring level equal to zero corresponds to the

decision of not monitoring the market at all. Conversely, an in�nite monitoring level corresponds

to the decision of continuously monitoring the market. For any intermediate monitoring level there

4Alternatively, market orders are routed to one dealer randomly chosen among the dealers posting the inside
spread. The results are identical. We interpret xs(M) and xl(M) as execution probabilities in this case.

5Houtkin (1998) lists events that SOES bandits monitor: business news, earnings announcements, price movements
in related stocks, brokerage �rms' upgrades and downgrades of stocks, and announcements of economic indicators.
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is some monitoring but it is imperfect. The probability that a trader will be �rst to react to new

information increases with his monitoring level and decreases with the aggregate monitoring level

of the other traders.

Each trader must exert e�ort to support her chosen level of monitoring. The monetary disutility

associated with this e�ort is captured by a cost function 	(l), which is strictly increasing and strictly

convex in the monitoring level l. We assume that:

	(l) =
cl2

4
; (3)

where the parameter c > 0 determines the scale of the monitoring cost for a given monitoring

level.6 Speculators and dealers simultaneously choose their monitoring levels, after observing the

inside spread.7 We denote by �(Sb;Mb) = (�1(Sb;Mb); :::; �Mb
(Sb;Mb)) the vector of the dealers'

monitoring levels. Dealers posting wider spreads than the inside spread optimally choose not to

monitor, since orders are only routed to the Mb dealers at the inside. Analogously, (Sb;Mb)

denotes the vector of the speculators' monitoring levels.

Dealers and speculators also monitor quote updates (quote monitoring). Dealers use the infor-

mation revealed by quote changes to update their quotes, and speculators use it to trade against

dealers who are slow to adjust their quotes.8 In practice, traders and dealers invest in software

that alerts them to quote updates in di�erent securities. Therefore quote monitoring involves neg-

ligible variable costs. This means that the probability of being the �rst trader to react to a quote

update is more likely to be determined by the trading technology used (or trading rules) than by

the e�ort exerted. Accordingly, we assume that when a dealer is �rst to update his quote, there

is an exogenous probability � that one speculator reacts to this quote update before the (Mb � 1)

remaining dealers react. In this case, each speculator has an equal probability (1=N) of being the

speculator who �rst reacts. With probability (1��), the (Mb � 1) remaining dealers update their

6Quadratic monitoring cost functions allow us to derive closed form solutions. Our results rely only on the strict
convexity of these functions. Furthermore, the results are qualitatively similar when dealers and speculators have
di�erent c parameters.

7There are two justi�cations for this timing of decisions. First, a trader's monitoring (e�ort) level is unobservable
and therefore quotes cannot be made contingent on monitoring levels. Second, traders can adjust their e�ort, once
the quotes have been posted. Hence it is natural to assume that the monitoring levels are chosen after the quoting
stage, i.e., can be contingent on the inside spread.

8In reality, quote revisions may, of course, occur for other reasons than changes in the asset value. This means
that a quote revision is a noisy signal of a shift in the asset value. However, the logic of the model applies insofar as
quote revisions do contain information.
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quotes before a speculator gets the chance to react to the initial quote update. Thus � is a measure

of the relative advantage of speculators over dealers in quote monitoring (if � = 0, dealers always

react more quickly than speculators and vice versa if � = 1).9

2.3 Equilibrium

Assume that the inside spread is strictly lower than the size of the revision in the asset's expected

value in case of information arrival, i.e., Sb < � (this will always be the case in equilibrium). Given

our previous assumptions, the optimal course of action for the dealers and the speculators in the

trading stage is as follows. If a dealer is �rst to observe the new information, he revises his quotes

accordingly. If his competitors react to this quote update before the speculators, they revise their

quotes as well. If a speculator is �rst to react to a quote update or to observe new information, she

trades QT (Mb) (in the direction of the quote revision). Tables 1 and 2 list the payo�s to the dealers

and the speculators, for di�erent decisions and outcomes in the monitoring and quoting stages.

We solve for the perfect equilibrium of the trading round, which is a set fS�b ;M
�
b ; �

�(:; :); �(:; :)g

such that (i) ��(Sb;Mb) and �(Sb;Mb) form a Nash equilibrium of the monitoring stage for all

possible outcomes of the quoting stage, and (ii) fS�b ;M
�
b g is a Nash equilibrium of the quoting

stage. Quote monitoring is meaningless when there is only one dealer at the inside. Hence the case

in which Mb = 1 and � > 0 is subsumed in the case of Mb = 1 and � = 0.

2.4 Discussion

Our trading game closely matches some of the key features of the Nasdaq's SOES trading system.

The quantity, Q, is the mandatory quoted depth. The speculators can be thought of as the SOES

bandits. In Nasdaq, dealers execute, at their posted quotes, orders that are larger than the minimum

quoted depth. SOES bandits typically do not take part in these trades since they are negotiated

by phone. This slows down the execution process and dealers can back away from their quote

upon realizing that the counter-party is a bandit (see HS (1997) and Houtkin (1998)). Accordingly,

the size of liquidity trades can be larger than Q (i.e., � > 1). The �ndings of HS (1998) suggest

9Nasdaq's Autoquote Policy prohibits software that would automatically update one market maker's quotes as
a function of other market makers' quotes. By forcing a dealer to update his quotes manually when he receives an
alert, this policy increases his reaction time. In our setting, we can analyze the e�ect of suppressing the Autoquote
policy by considering the impact of a decrease in �.
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that bandits submit multiple orders. This is captured by assuming that xs(M) > 1=M . There

are limitations on the number of positions initiated by individual bandits in Nasdaq. The e�ect of

more stringent limitations can be analyzed by decreasing xs(M).

Our model features equilibria in which only one dealer can pro�tably post the inside spread.

In this case sidelined dealers are exposed only to speculators, since liquidity traders are executed at

the inside quotes. Sidelined dealers should therefore optimally widen their spreads so that picking

o� these dealers is not pro�table. In order to account for this reaction within our static model of

price competition, we simply assume that orders are only routed to the dealers posting the inside

spread.10 This is in fact the case in SOES.

We assume that speculators unwind their positions at the mid-quote (v1) subsequent to infor-

mation arrival. This assumption is particularly palatable for SOES bandits. Bandits frequently

unload their positions on Selectnet or Instinet and trade within the quoted bid-ask spread. In fact

HS (1998) �nd that when bandits lay o� positions, they trade at or even above the spread mid-point

in 90% of the cases. More generally, we could assume that speculators pay a �xed fraction � of the

spread when they close out their position (as in Kandel and Marx (1999)). They would then gain

(� � (1 + �)S)=2 instead of (� � S)=2 when they initiate a trade. This just scales up the e�ect of

the spread on speculators' payo�s and would not qualitatively a�ect our results.

Finally note that the probability of a liquidity trade after an informational event is assumed to

be zero. This assumption could easily be relaxed. Increasing the probability of a liquidity trade

after an informational event essentially reduces the risk of being picked o� for the dealers and is

tantamount to a decrease in �.

3 Monitoring

3.1 Monitoring Externalities

In this section, we show that market monitoring by one dealer can generate a positive or a negative

externality for the other dealers. These externalities play an important role in determining the

10Another possibility would be to explicitly model quote revisions. The equilibria we describe are robust to the
possibility of quote revisions in the sense that no dealer would �nd it optimal to revise his quotes if he was o�ered the
opportunity to do so (before information arrival, of course). Our focus on static price competition biases the model
against �nding non competitive outcomes and therefore helps in better identifying the source of these outcomes in
the model.
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quotes. We refer to them as monitoring externalities.

Consider one dealer, say i. There are two ways dealer i can be picked o� when new information

arrives. In the �rst case, a speculator reacts �rst to the information. This event occurs with

probability Prob(f 2 N ). Using Equation (2), we obtain:

Prob(f 2 N ) =
A

�A + A
; (4)

where �A �
P

i �i (resp. A �
P

j j) is the aggregate monitoring level of the dealers (resp.

speculators). In the second case, a dealer (di�erent from dealer i) observes the arrival of information

and updates his quote, and a speculator is �rst to react to the quote update. The probability of

this event is �Prob(f 2Mbni). Using Equation (1), we obtain:

Prob(f 2Mbni) =

P
m6=i �m

�A + A
: (5)

Let �d(�i; ��i; ;Mb) be dealer i's expected pro�t for given levels of monitoring, ��i and , for the

other dealers and the speculators respectively. Using the payo� table (Table 1), we obtain:

�d(�i; ��i; ;Mb) = �� [xs(Mb)Prob(f 2 N ) + xs(Mb � 1)�Prob(f 2Mbni)]
(� � Sb)Q

2

+
h
(1� �)�xl(Mb)

i Sb�Q
2

�	(�i) 8Mb � 2: (6)

The �rst term, which is negative, represents dealer i's expected loss from the risk of being picked

o� by speculators. The second term is positive and corresponds to dealer i's expected pro�t from

trading with a liquidity trader. The last term is the monitoring cost incurred by dealer i. The

probability of being picked o� for dealer i is a�ected by the monitoring levels chosen by the other

dealers. Thus market monitoring by one dealer is an externality for the other dealers. We obtain

the following result.

Proposition 1. Consider two dealers i and m who are posting the inside spread. There exists a

constant �� = Ax
s(Mb)

(A+�i)xs(Mb�1)
such that:

1. If � � �� then market monitoring by dealer m is a positive externality for dealer i, or,

@�d(�i;��i;;Mb)
@�m

� 0.
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2. If � > �� then market monitoring by dealer m is a negative externality for dealer i, or,

@�d(�i;��i;;Mb)
@�m

< 0.

Notice that xs(Mb) � xs(Mb � 1) is a su�cient (but not necessary) condition for �� to be lower

than one. The economic intuition for this important property of market monitoring is as follows.

An increase in market monitoring by dealer m increases the probability that this dealer will be �rst

to observe new information. This indirectly bene�ts dealer i, since a quote update by dealer m

signals to dealer i that his own quotes are misaligned. Thus, the increase in market monitoring by

dealer m reduces dealer i's probability of being picked o� through speculators' market monitoring

(@Prob(f2N )
@�m

< 0). This is the source of the positive externality. However, there is a second e�ect,

since speculators monitor quote updates to learn about stale quotes. Accordingly, an increase

in market monitoring by dealer m results in a greater probability of being picked o� through

speculators' quote monitoring for dealer i, since @Prob(f2Mbni)
@�m

> 0. This is the source of the

negative externality. If dealer i reacts quickly enough to dealer m's quote updates (� � ��), the

reduction in the risk of being picked o� through market monitoring is larger than the increase in

the risk of being picked o� through quote monitoring. If speculators are relatively quicker (� > ��),

the reverse is true.

3.2 Equilibrium in the Monitoring Stage

Dealer i chooses the monitoring level that maximizes �d(�i; ��i; ;Mb). Using the expression for

dealer i's expected pro�t, the �rst order condition is:

��

�
xs(Mb)

@Prob(f 2 N )

@�i
+ xs(Mb � 1)�

@Prob(f 2Mbni)

@�i

�
(� � Sb)Q

2
= 	

0

(�i):

The terms inside the brackets measure the marginal reduction in the probability of being picked

o� due to increased monitoring by dealer i. The �rst order condition sets the marginal bene�t

of monitoring equal to the marginal cost. Using Equations (4) and (5), we rewrite the �rst order

condition as:

�QT (Mb)(� � Sb)

2Mb(�A + A)2

2
4A +�0

Mb

Mb � 1

X
m6=i

�m

3
5 = 	

0

(�i); (7)
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where �0 = �QT (Mb�1)
QT (Mb)

. The second order condition is satis�ed if Sb < �, which will be the case in

equilibrium.

Let �s(j ; �; �j ; N) be the expected pro�t for speculator j. Using Table 2, we obtain:

�s(j ; �; �j ; N) =
�MbQ(� � Sb)

2

�
xs(Mb)Prob(f = j) + �xs(Mb � 1)

Prob(f 2Mb)

N

�
�	(j):

(8)

In the case of a change in the asset value, a pro�t opportunity arises because the dealers' quotes

are stale. A speculator can capture this pro�t opportunity in two di�erent ways: either (i) she is

the �rst to react to the public announcement of a change in the asset value, or (ii) she is the �rst

to react to the quote update of a dealer. The term in brackets is the sum of the probabilities of

these two events, adjusted for the change in the expected total trade size for the speculator. Using

Equation (1), we obtain:

Prob(f 2Mb) =
�A

�A + A
:

Speculator j chooses the monitoring level that maximizes �s(j ; �; �j ; N). This implies setting

the marginal bene�t of monitoring equal to the marginal cost:

�QT (Mb)(� � Sb)

2(�A + A)2

2
4�A(N � �0

N
) +

X
s 6=j

s

3
5 = 	

0

(j): (9)

The second order condition is satis�ed if Sb < �. Thus, a Nash equilibrium of the monitoring stage

is a pair of vectors (��(Sb;Mb); 
�(Sb;Mb)) that solves Equations (7) and (9). This equilibrium is

symmetric if all the traders of a given type (e.g., all the dealers) choose the same monitoring level.

Lemma 1. If there exists a Nash equilibrium in the monitoring stage, it is symmetric.

Let �� (resp. �) be the monitoring level chosen by each dealer (resp. speculator) in equilibrium.

The system of Equations ((7) and (9)) characterizing traders' best responses is then given by:

�QT (Mb)(� � Sb)

Mb(Mb�� +N�)2
�
N� +�0Mb�

�� = c��; (10)

and

�QT (Mb)(� � Sb)

(Mb�� +N�)2

�
(
N � �0

N
)Mb�

� + (N � 1)�
�
= c�: (11)
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Solving this system of equations yields the equilibrium monitoring levels.

Proposition 2. When Mb dealers post an inside spread Sb < �, the equilibrium of the monitoring

stage is unique and is characterized by the following monitoring levels for the speculators and the

dealers (with � = 0 if Mb = 1):

�(Sb;Mb) =

s
�NQT (Mb)(� � Sb)

c(� +N)2
; (12)

��(Sb;Mb) =
�

Mb

�; (13)

where � = N
N��0 . For these monitoring levels, the expected pro�ts of the speculators and the dealers

are:

�d(�
�(Sb;Mb); 

�(Sb;Mb);Mb) =
Q

2

h
��xs(Mb)(� � Sb)C(Mb;�) + (1� �)xl(Mb)��Sb

i
; (14)

with C(Mb;�) �
N

N + 1� �0| {z }
Probability of Being P icked Off

+
N

2Mb(N + 1� �0)2| {z }
Monitoring Cost

; (15)

and

�s(�
�(Sb;Mb); 

�(Sb;Mb); N) =
�QT (Mb)(� � Sb)R(N;�)

2N
; (16)

with R(N;�) �
N

N + 1� �0| {z }
Probability of Hitting Stale Quote

�
(N � �0)2

2(N + 1� �0)2| {z }
Monitoring Cost

: (17)

The constant C(Mb;�) in dealers' expected pro�t function determines the size of the expected loss

per unit of commited depth by a dealer. This is a measure of the cost of market making. This cost

reects the risk of being picked o� and the monitoring cost borne by a dealer in equilibrium.

The proposition reveals several interesting properties of the monitoring strategies followed by

the traders. Firstly, speculators and dealers always put some e�ort into market monitoring (� > 0

and �� > 0). In particular, it is never optimal for speculators to entirely base their trading strategies

on dealers' quote updates.11 Secondly, the monitoring level of both types of traders decreases with

11This result is consistent with HS (1998) who, empirically, do not �nd a strong support for the view that bandits
trade only after quote updates.
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the size of the spread. When the dealers increase their spread, speculators monitor the market less

intensively, since the pro�t obtained by picking o� dealers is lower. The dealers react by monitoring

the market less intensively.

4 Spreads and Monitoring Externalities

The above results are all conditional on the spread. In this section we determine the set of equilib-

rium spreads. We show that there are two important determinants to this set: (1) the speed with

which speculators react to quote updates (�), and (2) the ratio of a speculator's order size to a

liquidity trader's order size (\the order ow mix"). When Mb dealers post the inside spread, the

order ow mix denoted omix is given by:

omix(Mb) =
QT (Mb)

�Q
=

xs(Mb)

xl(Mb)�
:

The order ow mix characterizes the mix of informed and non-informed orders in the order ow

routed to a dealer. Obviously, the larger is the order ow mix, the greater is the adverse selection

for a dealer.

4.1 The Set of Equilibrium Spreads

Consider a situation in which all the dealers (Mb = M) post the inside spread S�b . This inside

spread is a Nash equilibrium if no dealer has an incentive (i) to widen his spread or (ii) to improve

upon the inside spread. The �rst condition requires that dealers do not expect to incur losses:

�d(�
�(S�b ;M); �(S�b ;M);M) � 0:

Let Ŝ(M;�) be the spread such that this equation is binding. Using Equation (14), we get:

Ŝ(M;�) = ��(
xs(M)C(M;�)

�xs(M)C(M;�) + (1� �)xl(M)��
): (18)

In equilibrium, the inside spread must be at least equal to Ŝ for the dealers to break even. The

second condition requires that the pro�t earned by a dealer posting the inside spread is at least as
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large as the pro�t he would obtain if he undercuts, that is:

G(S�b ) = �d(�
�(S�b ;M); �(S�b ;M);M) ��d(�(S

�
b ; 1); 

�(S�b ; 1); 1) � 0: (19)

We obtain:

G(S�b ) = �
(1� xl(M))Q

2

�
S�b (� �C(M;�) + (1� �)��) � �� �C(M;�)

�
;

where

�C(M;�) =
[C(1; 0) � xs(M)C(M;�)]

(1� xl(M))
: (20)

Let �S(M;�) be the spread such that G( �S) = 0, that is:

�S(M;�) = ��(
�C(M;�)

� �C(M;�) + (1� �)��
): (21)

As G(:) decreases with S�b , a dealer is better o� not improving upon the inside spread when S�b �

�S(M;�). We conclude that S�b is an equilibrium spread if it belongs to [Ŝ(M;�); �S(M;�)]. The

next lemma provides the condition under which this interval is non-empty (Ŝ(M;�) < �S(M;�)).

Lemma 2. There exists an equilibrium with M dealers posting the inside spread if and only if:

omix(M)C(M;�) � omix(1)C(1; 0): (22)

This inequality has a simple interpretation. It states that an equilibrium in which all the dealers

pool on the inside spread exists if and only if the cost of market-making in this case is less than

the cost of market making when only one dealer posts the inside spread, accounting for the change

in the order ow mix due to a change in the number of dealers at the inside. If this is not the case,

a dealer at the inside is better o� undercutting. We study in detail the conditions under which

Inequality (22) holds true below. The next lemma is useful for the analysis.

Lemma 3. Ŝ(M;�) increases with � whereas �S(M;�) decreases with �.
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An increase in speculators' relative advantage in quote monitoring intensi�es the adverse selection

risk, which explains why the zero expected pro�t spread, Ŝ, increases with �. When a dealer

undercuts the inside spread, he weakens his competitors' incentive to monitor. This follows, since

orders are routed only to the dealer at the inside. Hence undercutting is a way to prevent speculators

from acquiring information through competitors' quote updates. This is particularly attractive

when speculators are quick to use the information contained in quote updates. This explains why

an increase in � tightens the largest possible spread ( �S).

4.2 The E�ect of Monitoring Externalities

We now show that the positive externality associated with market monitoring helps dealers earn

strictly positive expected pro�ts, whereas the negative externality may result in a form of market

breakdown. In order to better convey the intuition, we assume that the order ow mix is indepen-

dent of the number of dealers at the inside, i.e., omix(1) = omix(M). This requires xs(M) = xl(M).

Analysis of the case in which a change in the number of dealers a�ects the order ow mix is deferred

to Section 4.3.

Note that for � = 0, the cost of market-making decreases with the number of dealers posting

the inside spread (see Equation (15)). This reects the fact that each dealer can free-ride on

monitoring by a larger pool of dealers. He can therefore scale down his own monitoring without

facing an increase in the risk of being picked o�. Accordingly, for � = 0, Inequality (22) is always

satis�ed and we obtain the following result.

Proposition 3. In the absence of quote monitoring by speculators (� = 0),

1. All the dealers post the inside spread in equilibrium (no sidelined dealers).

2. There is a multiplicity of equilibrium spreads: any spread Sb 2 [Ŝ(M; 0); �S(M; 0)] is a Nash

equilibrium. For all the equilibria in which the inside spread is strictly larger than Ŝ(M; 0),

the dealers earn strictly positive expected pro�ts.

In the quoting stage dealers compete in prices. The equilibrium does not necessarily feature zero

expected pro�ts for the dealers, however. Undercutting guarantees a larger share of the order ow

to a dealer (\market share e�ect") but it prevents sharing of the monitoring cost (\cost sharing
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e�ect"). Actually, undercutting weakens the incentive to monitor for the dealers who are not at

the inside, and the dealer with price priority must bear the burden of monitoring alone. For all

spreads below �S, the cost sharing e�ect dominates the market share e�ect, and undercutting is not

attractive. This shows how the positive externality associated with the dealers' market monitoring

is not conducive to price competition. In fact pooling on the inside spread is a mechanism by which

dealers (non-cooperatively) share the monitoring costs.

Lemma 4. In the presence of quote monitoring by the speculators (� > 0), in equilibrium either

(a) all the dealers post the inside spread (M�
b = M) or (b) only one dealer posts the inside spread

(M�
b = 1).

When � = 0, an additional dealer posting the inside spread lowers the cost of market making for

all the dealers, even if initially only one dealer posts the inside spread. This explains why all the

dealers pool on the inside spread in equilibrium. When � > 0 and only one dealer posts the inside

spread, there is another e�ect. An additional dealer at the inside enables the speculators to use the

quote update of one dealer to pick o� the other dealer. This e�ect triggers a discontinuous jump in

the risk of being picked o�. The cost of market making with two dealers may then be larger than

with only one dealer, despite the cost sharing e�ect. For this reason, matching the quotes of a single

dealer can be sub-optimal, and there may be equilibria with only one dealer at the inside. Not

surprisingly, this depends on the speculators' ability to quickly exploit the information contained

in quote updates (the value of �) as shown in the next two propositions.

Proposition 4. There exists �̂(M;N) 2 (0; 1) such that when 0 � � � �̂(M;N):

1. All the dealers pool on the inside spread in equilibrium.

2. There is a multiplicity of equilibrium spreads: any spread Sb 2 [Ŝ(M;�); �S(M;�)] is a Nash

equilibrium. Dealers earn strictly positive expected pro�t when Sb > Ŝ(M;�).

When � is small, dealers react su�ciently quickly to quote updates (relative to speculators) for

the cost sharing e�ect to remain dominant. For � > �̂ free-riding becomes \too dangerous" as the

speculators react relatively quickly and thus the cost sharing e�ect is no longer attractive. In fact,

dealers even �nd monitoring by their competitors undesirable, since quote updates expose them
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dearly to speculators. An inside spread posted by all dealers would therefore be undercut. In this

case, Lemma 4 implies that the equilibrium must feature a single dealer posting the inside spread.

It is described in the next proposition.

Proposition 5. When �̂(M;N) < � � 1, the Nash equilibrium of the quoting stage is such that

only one dealer (M�
b = 1) posts the inside spread, which is S�b = Ŝ(1; 0). The expected pro�t of the

dealer posting the inside spread is zero.

In order to prevent speculators from acquiring information through quote updates, dealers undercut

each other until the point where a single dealer has no incentive to undercut the inside spread. For

this reason, the dealer posting this spread just breaks even. The equilibrium in this case is also

such that if another dealer were to match the inside spread, then the two dealers at the inside

would incur losses. This is due to the discontinuous jump in the probability of being picked o�

that results. Note that this jump comes from the negative externality that the two dealers inict

on each other (one dealer's quote update can be used to pick o� the other one).

A too large advantage in quote monitoring for speculators over dealers dramatically reduces

the supply of liquidity. No more than one dealer can operate in the market because two or more

market makers would incur losses. This sharp decline in liquidity when � becomes large is a form

of market breakdown.12 Continuous listing on Nasdaq requires at least two dealers but this not

viable when � > �̂ in our model. This observation supports the concern expressed by Nasdaq that

stocks with high levels of bandit activity would be left with fewer market makers.

Figure 2 represents the set of equilibrium spreads as a function of �. When � � �̂, there is a

multiplicity of equilibrium spreads.13 As usual in this situation, we must decide on which equilibria

dealers are the most likely to coordinate (see Fudenberg and Tirole (1991)). We use the concept of

Pareto-Dominance to select these equilibria. A Nash equilibrium is Pareto-Dominant if there is no

other equilibrium that improves or leaves unchanged each dealer's expected pro�t.

12We thank a referee for suggesting this interpretation.
13When � � �̂, in addition to the equilibria described in the �rst part of Proposition 4, there is also an equilibrium

with a single dealer if � is su�ciently large. In this equilibrium, the spread is S�b = Ŝ(1; 0), which belongs to the set
of equilibrium spreads depicted in Figure 2. Kandel and Marx (1997) show that multiple equilibrium spreads can be
obtained when a �nancial market features a positive tick size. Interestingly, we obtain a multiplicity of equilibrium
spreads even if the tick size is zero. A positive tick size would clearly not change this result but it could help dealers
to coordinate on the Pareto-Dominant equilibrium.
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Proposition 6. When there is a multiplicity of equilibria in the quoting stage, the unique Pareto-

Dominant equilibrium is such that all dealers post the largest possible equilibrium spread, S�b =

�S(M;�).

The result is immediate, since each dealer's expected pro�t increases with the inside spread (see

Equation (14)). We will refer to the equilibrium in which dealer posts a spread equal to �S(M;�)

as the Pareto-Dominant equilibrium and to the equilibrium in which dealers post a spread equal to

Ŝ(M;�) as the zero expected pro�t equilibrium. The Pareto-Dominant equilibrium is the preferred

equilibrium for the dealer, since it yields the largest expected pro�t. The zero expected pro�t

equilibrium is obviously preferred by investors, since execution costs are lower in this case.

4.3 The E�ect of Multiple Orders by Speculators

Dealers have an incentive to pool on the inside spread, even if it is above the competitive level,

in order to share monitoring costs. This incentive might be defeated, however, if such a pooling

adversely a�ects the composition of the order ow. This can occur because an increase in the

number of dealers at the inside allow speculators to trade in larger sizes.14 In order to consider this

possibility, we now assume that xs(M) > xl(M). Recall that an equilibrium with all the dealers

posting the inside spread exists if and only Inequality (22) is satis�ed. This inequality is equivalent

to:

xs(M)

xl(M)
C(M;�) � C(1; 0) (23)

We �rst consider the case in which � = 0 and show that the results of the previous section are

unchanged if xs(M) is not too large.

Proposition 7. Suppose � = 0. There exists �xs(M) 2 (1=M; 1) such that if 1=M � xs(M) �

�xs(M) then there is a multiplicity of equilibrium spreads as described in Proposition 3. (�xs(M) is

given in the appendix.)

When xs(M) > xl(M), the order ow mix whenM dealers post the inside spread is larger than when

a single dealer posts the inside spread (omix(M)=omix(1) = xs(M)=xl(M) > 1). Actually, with a

single dealer, a speculator's total trade size is lower, whereas the liquidity trader's total trade size is

14This implies that the adverse selection problem is more intense when there is a large number of dealers posting
the inside spread. Dennert (1993) analyzes a model in which there is a similar e�ect.
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unchanged. This means that a dealer can favorably rebalance the order ow composition (informed

vs. non-informed trades) if he undercuts. This e�ect decreases the incentive for dealers to pool on

the inside spread (the L.H.S. of Inequality (23) increases with xs(M)). The cost sharing e�ect is

still present, however, if a dealer undercuts he alone bears the burden of market monitoring. When

the order ow mix is not too sensitive to the number of dealers at the inside (xs(M) � �xs(M)),

the cost sharing e�ect dominates, and spreads larger than the competitive spread can be sustained.

When xs(M) > �xs(M), the cost sharing e�ect is dominated, and equilibria in which all the dealers

pool on the inside spread do not exist. The question is then whether or not equilibria with less than

M dealers but more than one dealer posting the inside spread can exist. In general, the answer

to this question depends on the speci�c relationship between xs(M) and the number of dealers

for which we made no assumptions. For xs(Mb) = 100%; 8Mb � M , we can provide an answer,

however.

Proposition 8. Suppose � = 0. If xs(Mb) = 100% 8Mb � M , the only equilibrium is such that

only one dealer posts the inside spread, and he earns zero pro�t.

In this case, undercutting the inside spread at least halves the order ow mix (omix(Mb)=omix(1) =

xs(Mb)=x
l(Mb) = Mb), that is, it dramatically reduces the proportion of informed trades relative

to non-informed trades. For this reason, a dealer is always better o� undercutting the inside

spread if two or more dealers post this spread, even if these dealers just break even. It follows

that the equilibrium must feature a single dealer with zero pro�t. An additional dealer posting

the equilibrium spread would trigger a large discontinuous jump in the order ow mix so that no

sidelined dealer would �nd it optimal to match the inside spread in this case. This suggests that

unbridled trading by speculators can lead to a market breakdown (no equilibrium with more than

one dealer posting the inside spread). This possibility vindicates Nasdaq's attempts to limit the

number of orders submitted by SOES bandits. For instance, Nasdaq rules prohibit SOES traders

from initiating more than one position in a given stock within �ve minutes.

Similar results are obtained when � > 0. In particular it is clear that if xs(M) � �xs(M) and

if � is su�ciently close to zero, Inequality (23) is satis�ed, and there exist equilibrium spreads for

which dealers capture strictly positive expected pro�ts. Furthermore the e�ect of a change in � on

the Pareto-Dominant equilibrium spread and on the zero expected pro�t spread is not dependent
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on xs(M) (Lemma 3 is established for any value of xs(M)). Overall equilibria with multiple dealers

do not qualitatively di�er when xs(M) = xl(M) and when xs(M) > xl(M). Hence, for simplicity,

we assume from now on that xs(M) = xl(M).

To sum up, in this section we have shown how externalities associated with market monitoring

inuence the price formation process. The possibility for dealers to free-ride on market monitoring

by other dealers is not conducive to price competition. Free-riding is more dangerous when spec-

ulators respond su�ciently quickly to quote updates, however. Accordingly spreads are a�ected

by the speed with which speculators respond to quote updates. In the next section, we derive the

implications of this result for market design.

5 Market Quality and Automatic Execution

What is the e�ect of automatic execution on trading costs?15 This question has been central to

the controversy between Nasdaq dealers and SOES bandits.16 Nasdaq dealers have argued that

automatic execution made it easier for bandits to pick o� dealers who were slow to adjust their

quotes. Accordingly, dealers were obliged to widen their spreads. In response, SOES bandits have

argued that their presence has strengthened price competition among dealers. They also argued

that they contributed to price discovery by forcing dealers to monitor more closely the information

ow.

Automatic execution certainly allows bandits to react more quickly when they observe stale

quotes, that is, it reduces the dealers' advantage in quote monitoring. Accordingly, we can study

the e�ect of automatic execution by comparing the case in which � = 0 (automatic execution is

prohibited) with the case in which � > 0 (automatic execution is permitted). Note that we already

pointed out that granting a too large advantage to speculators over dealers in quote monitoring

can result in a form of market breakdown. In the following analysis, we focus only on values of �

such that this is not a concern (� � �̂).17

15Stoll (1992) discusses the impact of automatic execution on the values of free trading options in limit order
markets and in dealer markets. He points out that automatic execution can be detrimental to market quality because
it increases the risk of being picked o� for traders with stale quotes.

16Nasdaq attempted to replace SOES with trading systems (N*Prove in 1994 and NAqcess in 1995) featuring
delayed execution rather than automatic execution. The SEC never approved these systems.

17This restriction does not a�ect our conclusions, however. They also hold for the single dealer equilibrium that is
obtained when � > �̂.
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Corollary 1.

1. When the equilibrium of the quoting stage is the Pareto-Dominant equilibrium, the inside

spread is smaller when automatic execution is permitted.

2. When the equilibrium of the quoting stage is the zero expected pro�t equilibrium, the inside

spread is larger when automatic execution is permitted.

Consider Figure 2. If the dealers post the zero expected pro�t spread, then the equilibrium spread

is clearly larger when � > 0. This reects the fact that the adverse selection risk for the dealers is

larger when speculators can use the information revealed by quote updates to pick o� dealers. This

supports the dealers' argument that automatic execution increases the spread. On the other hand,

if dealers post the Pareto-Dominant equilibrium spread, the conclusion is reversed: the equilibrium

spread is smaller when � > 0. Recall that the dealers' incentive to improve upon the inside spread

is stronger when speculators can hit dealers who are slow to adjust their quotes. This observation

vindicates the SOES bandits' claim that they have increased price competition among dealers.

Corollary 2. The monitoring level chosen by a dealer in equilibrium is always larger when auto-

matic execution is permitted, both in the zero expected pro�t and in the Pareto-Dominant equilibria.

Automatic execution strengthens the dealers' incentive to be �rst to discover new information

because it makes free-riding on other dealers' monitoring more dangerous. This e�ect is present

whatever the nature of the equilibrium in the quoting stage and explains the result.18 It vindicates

the argument that automatic execution disciplines dealers and forces them to quickly reect new

information in their quotes.

The speed of price discovery is determined by the the total e�ort, �A + A, exerted by all the

traders in monitoring the market.19 The following corollary compares the aggregate monitoring

level when � = 0 and when � > 0.
18Automatic execution also has an indirect e�ect on dealers' market monitoring because it a�ects the equilibrium

spread. The direction of the indirect e�ect depends on the equilibrium in the quoting stage. In the Pareto-Dominant
equilibrium, automatic execution reduces the spread and in this way further increases dealers' market monitoring.
In contrast, in the zero expected pro�t equilibrium, automatic execution widens the spread and in this way reduces
dealers' need to monitor. Still, this is insu�cient for their equilibrium monitoring levels to be smaller than when
automatic execution is prohibited.

19In the model, the probability that one trader will discover whether or not an informational event has taken place
is always equal to one. However, it is easy to modify the model in such a way that this probability is less than one,
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Corollary 3.

1. When the equilibrium of the quoting stage is the Pareto-Dominant equilibrium, the aggregate

monitoring level, ��A + �A, of all the traders is larger when automatic execution is permitted.

2. When the equilibrium of the quoting stage is the zero expected pro�t equilibrium, the aggregate

monitoring level, ��A+�A, of all the traders is smaller when automatic execution is permitted.

Automatic execution may or may not improve price discovery. On the one hand, it strengthens

dealers' incentives to monitor. On the other hand, it weakens speculators' incentive to monitor,

since they can use the free information contained in quote updates to pick o� dealers. In the

zero expected pro�t equilibrium, this e�ect is reinforced by the fact that the spread is larger with

automatic execution (� decreases with the spread). It follows that in this case the aggregate

monitoring is lower with automatic execution. In contrast, in the Pareto-Dominant equilibrium,

the spread is smaller with automatic execution. In this case the increase in dealers' aggregate

monitoring level is larger than the reduction in speculators' monitoring level, and price discovery

is improved.

6 Testable Implications

A major question in the SOES controversy is whether or not SOES bandits are responsible for wide

spreads on Nasdaq, as claimed by dealers. Our purpose is to study this issue empirically with the

guidance of the model. We �rst consider the impact of an increase in the number of speculators on

the equilibrium spread. Recall that the zero expected pro�t spread is:

Ŝ(M;�; N) = ��(
C(M;�)

�C(M;�) + (1� �)��
): (24)

An increase in the number of speculators increases the risk of being picked o� and results in a larger

cost of market-making (larger C). The same e�ect holds for the Pareto-Dominant equilibrium. The

next proposition follows.

by adding a constant p in the denominators of P (�i) and P (j). The probability that the informational event will
not be discovered is then p

�A+A+p
. It decreases with (�A + A). Thus the speed of price discovery increases with

(�A + A).
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Proposition 9. Other things equal, an increase in the number of speculators enlarges the equilib-

rium spread, both in the zero expected pro�t equilibrium and in the Pareto-Dominant equilibrium.

Therefore we predict that:

H.1: Other things equal, stocks with higher levels of SOES bandit activity have wider spreads.

Testing this prediction is not straightforward because the SOES bandit activity itself depends on

the spread. Bandits should specialize in stocks with low spreads because their trading pro�ts are

larger for these stocks. In order to test our �rst prediction, we need to control for this e�ect, which

creates a negative correlation between the spread and the level of bandit activity.

To this end, we extend the model assuming that each speculator bears a �xed entry cost, K > 0,

that is sunk at the beginning of the trading game. This �xed cost represents, for instance, bandits'

opportunity cost of time or the cost of freeing up capital and acquiring computer systems for

trading. The number of speculators is then determined in such a way that a speculator's expected

pro�t is just equal to the �xed cost.20 For a given inside spread, Sb, a speculator's expected pro�t

(see Proposition 2) net of the �xed cost K is:

�s(�
�(Sb;M); �(Sb;M); N)�K = �Q(� � Sb)

"
2N(N + 1� �)� (N � �)2)

4N(N + 1� �)2

#
�K: (25)

This net expected pro�t decreases with the number of speculators and is negative when this number

is large. For a given inside spread, the equilibrium number of speculators, N�(Sb), is such that

the net expected pro�t is zero. Assume that � � �̂(M; 1) (so that the equilibrium always features

multiple dealers) and that K � �s(�
�(0;M); �(0;M); 0; 1) (otherwise no trader would �nd it

pro�table to become a speculator even if the spread is zero).

Proposition 10. Other things equal, an increase in the inside spread triggers a decrease in the

number of speculators.

An increase in the spread reduces a speculator's gain when she picks o� a dealer. This explains the

result. Hence our second prediction is that:

H.2: Other things equal, stocks with higher spreads have lower levels of SOES bandit activity.

20There may not be an integer solution to the equality. In order to avoid this technical problem, we treat N as a
real number, as is usual in market entry analysis.
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Figure 3 depicts the e�ect of the number of speculators on the spread (the curve labelled S(N)) and

the e�ect of the spread on the number of speculators (the curve labelled N(S)). The spread and

the number of speculators are simultaneously determined and their equilibrium values (S�; N�) are

at the intersection of these two curves. Consequently, we will test predictions H.1 and H.2 using a

simultaneous equations framework with the spread and the level of bandit activity as endogenous

variables. In order to implement such a strategy we need to solve the associated identi�cation

problem and to control for variables that inuence the spread and/or SOES bandit activity.

Consider the case in which dealers post the zero expected pro�t spread in equilibrium. Note

that the average size of a liquidity trade (�) and the number of dealers appear only in the spread

equation (Equation (24)). This means that these variables do not directly determine the number

of speculators. The minimum quoted depth inuences the speculator's expected pro�t (Equation

(25)) but it does not directly a�ect the spread. Hence these variables (�, M , Q) can be used as

control variables and provide the exclusion restrictions that allow identi�cation of our system of

simultaneous equations. The volatility of the asset (the size of the innovation) inuences both the

spread and the number of speculators and is used as a control variable. We obtain the following

additional predictions.

Corollary 4.

1. For a given spread, an increase in the minimum quoted depth (Q) or an increase in volatility

(�) triggers an increase in the number of speculators.

2. For a given number of speculators, an increase in the average order size of liquidity trades (�)

or an increase in the number of dealers (M) triggers a decrease in the spread. An increase

in volatility (�) triggers an increase in the spread.

Recall that the dealers posting the inside spread share the monitoring costs. It follows that the

cost of market making and therefore the zero expected pro�t spread decreases with the number of

dealers. The intuition for the other results is straightforward.

Note that the previous corollary signs the direct impact of a change in the exogenous param-

eters on the number of speculators holding the number of dealers constant and vice versa. In

equilibrium, the spread and the number of speculators a�ect each other. Consider for instance an
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increase in the average size of liquidity trades. The direct e�ect, for a given number of speculators,

is to decrease the spread. But the decrease in the spread triggers the entry of new speculators.

This counterbalances the initial positive impact of a change in �. Eventually the total impact of

an increase in � on the spread is smaller than the direct impact, but it remains positive (see Figure

3 for an illustration). For all the exogenous parameters that a�ect only one of the endogenous vari-

ables, the direction of the total impact is the same as the direction of the direct impact (reported

in Corollary 4).

The direct impact of volatility on both the spread and the number of speculators is positive.

Hence, a priori, its total impact on each of these variables is ambiguous. In order to sign the total

impact of volatility, we substitute the zero expected pro�t spread in Equation (25). This yields:

(
�(1� �)��Q�

�C(M;�) + (1� �)��
)

"
2N�(N� + 1� �)� (N� � �)2)

4N�(N� + 1� �)2

#
�K = 0: (26)

This equation implicitly de�nes the equilibrium number of speculators (N�) in term of only the

exogenous variables and therefore allows us to assess the total impact of these variables. When

volatility increases, the L.H.S. of this equation increases and more speculators �nd it pro�table to

enter. The direct e�ect of an increase in volatility is to widen the spread (dealers' losses are larger

when they are picked o�). The positive impact of volatility on the number of speculators reinforces

this e�ect and therefore the total impact of volatility on the spread is also positive.

Interestingly, a change in the minimum quoted depth indirectly a�ects the spread because it

has an impact on the number of speculators. The minimum quoted depth, Q, has been changed

several times on Nasdaq; it was reduced from 1000 shares to 500 shares in January 1994, for most

stocks, on a trial basis; it was restored to 1000 shares in March 1995, and eventually it was reduced

to 100 shares starting in January 1997. Nasdaq argued that the reduction of the minimum quoted

depth would lessen SOES bandit activity and would narrow spreads. The next proposition concurs,

but it points out that a reduction in the minimum quoted depth adversely a�ects price discovery.

Proposition 11. In equilibrium:

1. When the minimum quoted depth decreases, the number of speculators decreases and the spread

decreases.
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2. When the minimum quoted depth decreases, the aggregate market monitoring (��A + �A) de-

creases.

A decrease in the minimum quoted depth induces the entry of fewer speculators, since it reduces

their expected pro�t in equilibrium (see Equation (26)). The risk of being picked o� is lower,

and tighter spreads follow. In line with our prediction, HS (1997) �nd a decline in the number

of trades initiated by SOES bandits after the reduction in the minimum quoted depth in 1994.21

The reduction in the number of speculators implies that their aggregate monitoring level decreases.

Dealers choose to monitor less as well, since the risk of being picked o� is lower. Eventually price

discovery is impaired.

Corollary 4 and Proposition 11 are established considering the zero expected pro�t spread. It

is straightforward to show that changes in parameters fQ; �; �g have similar e�ects in the Pareto-

Dominant equilibrium. The impact of a change in the number of dealers on the spread depends on

the nature of the equilibrium, however. This is the next result.

Proposition 12. In the Pareto-Dominant equilibrium, for a given number of speculators, N , there

exists ��(M;N) 2 (0; �̂(M;N)) such that the inside spread decreases with the number of dealers if

� 2 [0;��(M;N)] and increases with the number of dealers if � 2 [��; �̂(M;N)] (where ��(M;N)

is characterized in the proof).

The extent of monitoring cost sharing increases with the number of dealers posting the inside

spread. This makes undercutting less attractive when the number of dealers is large. On the other

hand, each dealer executes a decreasing fraction of the order ow when the number of dealers in-

creases. This e�ect encourages undercutting when the number of dealers is large. If � is su�ciently

large, the �rst e�ect dominates and an increase in the number of dealers helps dealers in sustaining

larger non-competitive spreads.

Note that in the zero expected pro�t equilibrium, an increase in the number of dealers indirectly

results in a larger number of speculators, since it decreases the spread. In the Pareto-Dominant

equilibrium, this may or may not be the case, since an increase in the number of dealers does not

necessarily result in smaller spreads. In the next section, we also provide evidence regarding the

impact of the number of dealers on bandit activity.

21Barclay et al. (1998) observe the same phenomenon after this quantity was reduced to 100 shares in 1997.
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7 Empirical Analysis

7.1 Methodology

The actual number of SOES bandits is unobserved. A natural measure of their activity is the

unconditional probability of observing a trade initiated by a bandit. In our model, this probability

is:

�(Prob(f 2 N ) + �Prob(f 2M)) =
�N

N + 1� �
;

which is strictly increasing in the number of speculators N . The qualitative e�ects of a change in the

exogenous parameters on the number of speculators and this probability are identical. Therefore

we can use this probability instead of the number of speculators to test our predictions. But how

to identify trades initiated by bandits? HS (1997) show that SOES trades occuring in clusters

(several maximum-size SOES trades in rapid succession) are very likely to be initiated by bandits.

Accordingly, we use the probability of a SOES cluster as our proxy for the probability of a trade

initiated by bandits (the level of \bandit activity"). For the estimation, we de�ne a cluster as an

uninterrupted sequence of three SOES orders of the maximum size, at the same price, within 30

seconds.22 We estimate the following system of simultaneous equations:

8><
>:

soesi = a1 + a2spri + a3vltyi + a4maxQi + �1

spri = b1 + b2soesi + b3vltyi + b4ndlri + b5liqDi + �2;
(27)

where i = 1; : : : ; I index the stocks and the variables in the equation system are: the probability

of a SOES cluster (soes), the bid-ask spread (sprd), the volatility of the stock returns (vlty), the

maximum quantity that can be traded in SOES (maxQ), the number of dealers in the stock (ndlr),

and the average size of liquidity trades (liqD).

The �rst equation determines the probability of observing a SOES cluster as a function of the

bid-ask spread, the volatility of the asset, and the maximum SOES quantity. The second equation

determines the spread as a function of the probability of a SOES cluster, the volatility of the asset,

the number of dealers, and the average size of liquidity trades. Our two main predictions are that

the e�ect of the spread on the bandit activity is negative, a2 < 0, and that the e�ect of the bandit

22We considered other possible speci�cations for the number of orders and the interval of time between orders
within a cluster. Our empirical results are robust with respect to the di�erent speci�cations.
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activity on the spread is positive, b2 > 0. Corollary 4 provides the expected signs for the other

independent variables.

7.2 Data

We use data provided by Nasdaq on transactions and dealer quotes for December 1996. Our sample

consists of stocks with an average price above $5 and a trading volume above four million shares

for this month, and it includes 310 stocks. Table 3 reports the mean, median, standard deviation,

minimum, and maximum in the cross-section for the variables we use in the analysis. The �rst three

rows report these statistics for the total number of SOES clusters, SOES trades, and non-SOES

trades. The bid-ask spread is measured as the time-weighted average inside spread. The standard

deviation and the range suggest that there is substantial variation in both of these variables.

The volatility is measured by the standard deviation of the half-hour returns based on the mid-

quotes, excluding overnight returns. The maximum SOES size is a discrete variable that is equal

to 1000 (for 294 stocks), 500 (for 10 stocks), and 200 (for 6 stocks). The number of dealers for

each stock is de�ned as the time-series average of the number of active dealers in the stock. The

liquidity demand is measured by the average size of all trades, i.e., SOES trades as well as other

trades that were not part of a cluster. As expected these trades are on average larger than the

maximum quantity that can be traded in the SOES system. The last two rows report statistics

for the market capitalization and the average price for the sample. These two variables are likely

to inuence the bid-ask spread (see Harris (1994)), although they do not play a direct role in our

model. We use them as control variables to improve the e�ciency of our estimation.

In the actual estimation we use transformations of some of the variables discussed above. In

the subsequent discussion our proxy for SOES bandit activity is de�ned as the logarithm of the

odds ratio for clusters, i.e., ln( p
1�p), where p is the proportion of clusters among all trades.23 We

normalize the average trade size by the maximum SOES quantity so that the resulting variable,

referred to below as the liquidity demand, corresponds to the � in the model. Finally, we take the

logarithm of the market capitalization and the average price.

Table 4 gives the correlation matrix for the variables that we use in the estimation. Notice that

23There are a total of twelve stocks for which the total number of clusters is zero; eight of these stocks have a
maximum SOES quantity of 1000 shares. To ensure that the log of the odds-ratio is always de�ned we add one to
both the number of clusters and the total number of trades.
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the correlation between the average bid-ask spread (sprd) and the proxy for SOES bandit activity

(soes) is �0:6835. Figure 4 plots the logarithm of the number of clusters (plus one) against the

spread. It is evident from this graph that a regression of the spread on the number of clusters would

generate a negative slope coe�cient. But this would simply reect the fact that more bandits are

active in stocks with smaller spreads (Proposition 10). This does not rule out that an increase in

bandit activity, holding everything else equal, leads to wider spreads as predicted by Proposition 9.

7.3 Empirical Results

Table 5 reports the parameter estimates and corresponding p-values for our model based on the

equation system given in Equation (27).24 The estimates for the endogenous variables provide

support for the predictions of the model. The parameter estimate for the bid-ask spread in the

SOES Equation is negative, with a p-value less than 0:001. This means that an increase in the

spread is an e�ective defense against trading by bandits. In fact, we �nd some support for the

dealers' claim that bandits' attacks forced them to widen their spreads: in the Spread Equation,

the coe�cient on bandit activity is positive. The e�ect of bandit on the spread is statistically

weak, however, with the coe�cient signi�cant only at the 10% level (p-value of 0.079). Possible

explanations for this �nding are provided in the next section.

The estimated coe�cients for the volatility and the maximum SOES quantity in the SOES

Equation are positive, with p-values below 0:001. In the Spread Equation the coe�cients on

volatility and the number of dealers are positive (p-value of 0.058) and negative (p-value < 0.001),

respectively. All the estimates above have the predicted signs. The trade size does not appear to

play an important role in determining the spread; the coe�cient has a p-value of 0.453. This may

be due to the fact that our empirical proxy for liquidity demand includes all other trades, including

trades that need not be executed at the posted quotes. Thus, it is not clear whether we should

expect a strong link between this variable and the quoted spreads a priori.

Each estimated parameter in Table 5 measures the direct impact on the spread (resp. bandit

activity) of one exogenous variable, holding other variables, including bandit activity (resp. the

spread), constant. We also report the results of a linear regression of the endogenous variables on all

24The system is estimated using three-stage least squares to account for cross-equation correlation in the distur-
bances. The log of the market capitalization and the average price are added to the spread equation as additional
control variables. A heteroscedasticity-consistent estimator yields qualitatively similar results.
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the exogenous variables (so-called \reduced-form" regressions). The coe�cients for these regressions

can be interpreted as a measure of the total impact of a change in one exogenous variable on both

the spread and bandit activity. The estimated parameters with p-values for these reduced form

regressions are reported in Table 6.

Recall that the e�ect of a change in the minimum quoted depth on the spread is of particular

interest. In Table 6, the coe�cient on the maximum SOES quantity, in the Spread Equation, is

positive (with a p-value of 0.058). Therefore, other things equal, stocks with a lower minimum

quoted quantity have tighter spreads, as predicted by Proposition 11. The relatively low p-value

may reect the �nding that SOES bandit activity has a moderately signi�cant impact on the spread.

Actually, according to our model, the e�ect of the minimum quoted depth on the spread is indirect:

An increase in this variable attracts bandit activity, which in turn tends to increase the spread.

In the zero expected pro�t equilibrium and in the Pareto-Dominant equilibrium (for � low

enough), an increase in the number of dealers decreases the spread and therefore indirectly leads to

more speculators. In line with this prediction, the coe�cient on the number of dealers is positive

in the SOES Equation and negative in the Spread Equation, with p-values below 0:001. Note that

bandits may also focus on stocks with a large number of dealers because stale quotes occur more

frequently in such stocks or because they can trade in larger sizes when the total depth available

in SOES is large.

In the SOES Equation we have a positive coe�cient on volatility, with a p-value of 0.259. Recall

that the total impact of volatility on bandit activity reects a direct positive e�ect (con�rmed in

Table 5) and an indirect negative e�ect via the spread. The predicted sign of the total e�ect is

positive, as explained in the previous section. However, our empirical results suggest that the

two e�ects essentially cancel so that volatility does not signi�cantly a�ect the bandit activity.

Interestingly, we observe the opposite phenomenon in the Spread Equation. Recall that the direct

e�ect of volatility on the spread was positive, with a p-value of 0.058. The total e�ect, which is

reinforced by the positive e�ect that volatility has on bandit activity, is positive, with a larger

p-value of 0.012. All the total e�ects for the variables discussed above have the expected signs.

Finally, the coe�cients on liquidity demand are insigni�cant, with p-values of 0.138 and 0.333,

respectively.
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7.4 Further Issues

While our results support the hypothesis that bandit activity has a positive e�ect on the spread, the

evidence is statistically weak (the coe�cient is signi�cant only at the 10% level.) This is somewhat

surprising given that this issue has been a source of long conict between the SOES bandits and

the dealers. We ascribe this �nding to several factors.

Given the endogeneity of the two key variables, the spread and the bandit activity, the validation

of our predictions in the data hinges on �nding good instruments. It is likely that a sample with

greater variation in the key instruments, the maximum SOES quantity and the number of dealers,

would produce more precise estimates. In the data that we use it is particularly hard to generate

variation in the maximum SOES quantity within a sample of active stocks with a large number of

dealers.

Previous research suggests that a lot of the SOES bandit activity is concentrated in a relatively

small number of large active stocks (HS (1998), Kandel and Marx (1999)). Thus, it is possible

that it would be easier to identify the e�ect of bandit activity on the spread in a time-series study

of such stocks. However, it is worth noting that in order to implement such a strategy a set of

restrictions, di�erent than the ones we used in a cross-section, would have to be developed in order

to test the two main predictions. For example, since there is little or no variation in a given stock's

maximum SOES quantity over time, an alternative instrument would be needed to replace the

maximum SOES quantity and to achieve identi�cation.

Finally, several features of the trading organization in Nasdaq that make it di�cult to measure

the impact of bandit activity on execution costs. First, in our sample period, the minimum price

increment was $1=8. For some stocks, this may be larger than the compensation required by dealers

for the risk of being picked o� by bandits. In such a case, an increase in bandit activity will have

no discernible impact on observed spreads even if it increases the cost of market-making. Second,

on Nasdaq, traders have the possibility of negotiating with the dealers, and many trades (especially

large trades) receive price improvements. In our model, dealers compensate the losses inicted

by bandits by posting larger spreads. In reality, they may decide to leave their quoted spread

unchanged but to o�er price improvements less frequently. For these reasons, it may be premature

to conclude based on our results that the SOES bandit activity has a negligible impact on the cost
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of market-making and/or execution costs in Nasdaq.

8 Conclusion

We present a model of market-making with costly monitoring. We use the model to shed light on

the main issues that arised in the SOES controversy. We �nd that when monitoring is costly, there

is a strong incentive for dealers to pool on the inside spread in order to share monitoring costs. This

incentive operates against price competition and leads to equilibria in which dealers earn strictly

positive expected pro�ts. This incentive is weakened, however, when speculators can quickly use

the information revealed by quote updates to pick o� dealers who are slow to adjust their o�ers.

For this reason automatic execution has an impact on market quality (spread and price e�ciency).

We also show that a reduction in the mandatory depth tightens the spread but weakens the traders'

incentive to monitor the information ow. The two main empirical predictions of our analysis are

that (i) stocks with larger spreads should feature lower levels of bandit activity, other things equal,

and that (ii) stocks with high levels of bandit activity should feature larger spreads, other things

equal. We �nd a strong support for the �rst prediction and a moderate support for the second.

The implications of our theoretical �ndings are discussed within the context of the SOES con-

troversy. More generally, our model provides insights regarding the implications of free-trading

options for the design of trading systems. This is important because electronic trading systems

increasingly feature automatic execution, which exposes liquidity providers to the risk of being

picked o�. This is the case of automated limit order markets (such as the Paris Bourse). In these

markets a trader submitting a limit order must trade o� the limit order price and quantity, and

the optimal monitoring strategy. An interesting topic for future research is to study how costly

monitoring a�ects liquidity and market quality in limit order markets and other trading systems

that feature automatic execution.

32



9 Appendix

Proof of Proposition 1.

Using Equation (6):

@�d(�i; ��i; ;Mb)

@�m
= ��

�
xs(Mb)

@Prob(f 2 N )

@�m
+ xs(Mb � 1)�

@Prob(f 2Mbni)

@�m

�
(� � Sb)Q

2

=
�

(�A + A)2

�
(1�

�xs(Mb � 1)

xs(Mb)
)A � (

�xs(Mb � 1)

xs(Mb)
)�i

�
(� � Sb)x

s(Mb)Q

2
8m 6= i: (28)

The R.H.S. of Equation (28) is positive if and only if the expression in square brackets is, i.e., as

long as (1� �xs(Mb�1)
xs(Mb)

)A � (�x
s(Mb�1)
xs(Mb)

)�i � 0. Hence �� follows directly.

Proof of Lemma 1.

Suppose (to be contradicted) that there exists a Nash equilibrium in which some dealers do not

choose the same monitoring levels. Consider two dealers i and i0 such that ��i > ��i0 . Using the fact

that Equation (7) must hold for these two dealers, we obtain the following equality:

�QT (Mb)(� � Sb)

2Mb(�A + A)2

�
(
�xs(Mb � 1)

xs(Mb)
)(��i0 � ��i )

�
= 	

0

(��i )�	
0

(��i0):

Since ��i > ��i0 , the L.H.S of this inequality is strictly negative. But since 	
0

(:) is increasing, the

R.H.S is strictly positive. This is impossible. This implies that in equilibrium all the dealers choose

the same monitoring level. In the same way we can prove that in equilibrium all the speculators

must choose the same monitoring level.

Proof of Proposition 2.

Dividing Equation (10) by Equation (11), we �nd that �� and � must satisfy:

N� +�0Mb�
�

(N��0)
N

Mb�� + (N � 1)�
= (

Mb�
�

�
):

This equation can be written as an equation with unknown � � Mb�
�

�
:

N +�0�
(N��0)

N
�+ (N � 1)

= �:
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Since the monitoring levels must be positive, it must be the case that � � 0. The previous equation

has two solutions but only one is positive. This solution is: � = N
(N��0) . Substituting �

� by ��

Mb

in Equation (11), we �nd that � solves:

�QT (� � Sb)(�(
N��0

N
) + (N � 1))

�(� +N)2
= c�:

There is a unique positive solution to this equation, which yields the closed form solution for �.

Since � and � are uniquely de�ned, there is a unique Nash equilibrium in the monitoring stage.

Substituting the expressions for �� and � in Equations (6) and (8) yield dealers' and speculators'

expected pro�ts.

Proof of Lemma 2.

There exists at least one equilibrium with M dealers posting the inside spread if and only if

Ŝ(M;�) � �S(M;�). Using Equations (18) and (21), we obtain that this inequality is satis�ed if

and only if:

xs(M)

xl(M)
C(M;�) � �C(M;�);

or (using Equation (20)):

xs(M)

xl(M)
C(M;�) � C(1; 0);

or (dividing both sides of this inequality by �):

omix(M)C(M;�) � omix(1)C(1; 0):

Proof of Lemma 3.

Using Equations (15) and (20), we get:

@C(M;�)

@�
> 0 and

@ �C(M;�)

@�
= �

xs(M)

(1� xl(M))

@C(M;�)

@�
< 0:

This proves the lemma, since Ŝ (resp. �S) increases with C(M;�) (resp. �C(M;�)).

Proof of Proposition 3.
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1st part. Suppose that the outcome of the quoting stage is fSb;Mbg, with Mb � 1. Note that

C(Mb; 0) decreases with Mb. Therefore if:

�d(�
�(Sb;Mb); 

�(Sb;Mb);Mb) =
xs(Mb)Q

2
[��(� � Sb)C(Mb; 0) + (1� �)��Sb] � 0;

then

�d(�
�(Sb;Mb+1); 

�(Sb;Mb+1);Mb+1) =
xs(Mb + 1)Q

2
[��(��Sb)C(Mb+1; 0)+(1��)��Sb] > 0:

This means that a sidelined dealer is always better o� matching the inside spread. Hence we cannot

construct an equilibrium in which a subset of dealers are sidelined when � = 0.

2nd part. Since C(M; 0) decreases with M , Inequality (22) is satis�ed when xs(M) = xl(M).

The second part of the proposition follows.

Proof of Lemma 4.

ForM � 2, C(M;�) decreases withM . Therefore we can proceed as in the proof of Proposition

3 (1st part) to show that there is no equilibrium in which a subset of two or more dealers post the

spread and some dealers are sidelined. We cannot discard the possibility that C(1; 0) < C(2;�),

however. Therefore we cannot exclude equilibria with only one dealer posting the inside spread.

This proves the lemma.

Proof of Proposition 4.

Let �̂(M;N) be the threshold value of � such that Inequality (22) is binding for xs(M) = xl(M).

It solves:

C(M;�)� C(1; 0) = (1 +N � �) [(1 +N)(1� 2�)� �]�
(N + 1)2

M
= 0:

This equation has only one solution in [0; 1] which is:

�̂(M;N) =
(1 +N)(2 +N)

3 +N
[1�

s
1�

(M � 1)(3 +N)

M(2 +N)2
]:

Since C(M;�) increases with �, C(M;�) � C(1; 0) if � � �̂ and C(M;�) > C(1; 0) otherwise.
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This proves the proposition. Notice that �̂(:; :) increases with M and N . It is always lower than

1=2.

Proof of Proposition 5.

When � > �̂, Inequality (22) does not hold, and there is no equilibrium in which all the dealers

pool on the inside spread. If an equilibrium exists, it must therefore feature a single dealer (an

implication of Lemma 4). We now prove that such an equilibrium exists.

In order for an equilibrium with only one dealer (say dealer m) posting the best o�ers to exist,

three conditions must be satis�ed. First dealer m should not be better o� widening his spread.

This requires S�b � Ŝ(1; 0) and the spread posted by the sidelined dealers is just slightly greater

than the inside spread. Second, sidelined dealers must not be better o� improving upon the inside

spread. This last condition requires that dealer m obtains zero expected pro�t, i.e., S�b = Ŝ(1; 0).

Third, among the sidelined dealers, none should be better o� pooling on the inside spread with

dealer m. This imposes Ŝ(2;�) > Ŝ(1; 0), or:

C(2;�) > C(1; 0):

We show that this is the case if � > �̂. Since C(M; :) increases with �, it is the case that

C(M;�) > C(M; �̂) when � > �̂(M;N). Furthermore C(:;�) decreases with M for M � 2. It

follows that:

C(2;�) � C(M;�) > C(M; �̂) for � > �̂:

Now recall from the proof of Proposition 4 that C(M; �̂) = C(1; 0). Hence C(2;�) > C(1; 0) for

� > �̂.

To sum up, we have proved that the case in which only one dealer posts the inside spread S�b =

Ŝ(1; 0) and all the other dealers post a spread slightly greater than this spread is an equilibrium.

Note that S�b = Ŝ(1; 0) is the unique possible value for the inside spread in this case.

Proof of Proposition 6. Immediate using Equation (14).

Proof of Proposition 7.
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Consider equilibria in which all the dealers post the inside spread. Recall that the set of

equilibrium spreads is non empty i� Inequality (23) holds true. Let:

�xs(M) =
C(1; 0)xl(M)

C(M; 0)

be the value of xs(M) such that Inequality (23) is binding. Note that: �xs(M) > xl(M) because

C(1; 0) > C(M; 0). Note also that �xs(M) < 1 because C(1; 0) < MC(M; 0);8M > 1. Furthermore

note that the L.H.S of Inequality (23) increases with xs(M). Therefore Inequality (23) is satis�ed

i� xs(M) � �xs(M).

Proof of Proposition 8.

If xs(M) = 100%;8M then xs(M) > �xs(M), since �xs(M) < 1;8M > 1 (see the proof of

Proposition 7). This means that there is no equilibrium with more than one dealer posting the

inside spread in this case. The case in which a single dealer posts a spread equal to Ŝ(1; 0) is an

equilibrium. The proof is similar to the proof of Proposition 5. In particular, the condition:

2C(2; 0) < C(1; 0)

is satis�ed. It means that Ŝ(2; 0) > Ŝ(1; 0), or no sidelined dealer can pro�tably match the quotes

of the dealer posting the inside spread. Note that in this case, the dealer posting the spread earns

zero pro�t.

Proof of Corollary 1. Immediate using Lemma 3.

Proof of Corollary 2.

From Proposition 2, we obtain:

��(�) =

s
N�Q(� � S�b )

cM2(1 +N � �)2
for � � �̂:

Hence, in the zero expected pro�t equilibrium, the monitoring level of a dealer is:

��(�) =

s
N(�(1 � �)�Q��)

cM2[�C(M;�) + (1� �)��](1 +N � �)2
for � � �̂:
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Using the de�nition of C(M;�), this can be written as:

��(�) =

vuut N(�(1� �)�Q��)

cM2
h
�
�
N(1 +N � �) + N

2Mb

�
+ ((1 � �)��)(1 +N � �)2

i :
It follows that @��

@� > 0 in this case. In the Pareto-Dominant equilibrium, we obtain the same

expression for ��, but C(M;�) is replaced by �C(M;�). As �C(M;�) decreases with �, it is direct

that dealers' monitoring level increases with �. Thus, independently of the equilibrium we consider

in the quoting stage, we obtain:

��(0) < ��(�) 8� � �̂:

This proves the result.

Proof of Corollary 3.

Recall that M�
b = M if � � �̂. Using Proposition 2, we obtain that the aggregate monitoring

level is:

��A(�) + �A(�) =M�� +N� = (� +N)�;

which yields:

��A(�) + �A(�) =

s
N�Q(� � S�b )

c
:

Consider the zero expected pro�t equilibrium. In this case, S�b = Ŝ(M;�). As Ŝ(M;�) increases

with �, it follows from the previous equation that:

��A(�) + �A(�) < ��A(0) + �A(0) 8� 2 (0; �̂]:

Now consider the Pareto-Dominant equilibrium. In this case, S�b =
�S(M;�). As �S(M;�) decreases

with �, we now obtain that:

��A(�) + �A(�) > ��A(0) + �A(0) 8� 2 (0; �̂]:

Proof of Proposition 9.

Case 1: � � �̂.
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Computations yield:

@C(M;�)

@N
=

(N + 1� �)[(1� �)2M + 1]� 2N

2M(1 +N � �)3
:

As � � �̂ < 1
2 (see the proof of Proposition 4), we obtain @C

@N
> 0, which implies that @Ŝ

@N
> 0.

Furthermore, we obtain:

@ �C(M;�)

@N
=

M(N+3)
2(N+1)3 �

@C(M;�)
@N

M � 1
:

Computations show that @2C(M;�)
@�@N < 0. It follows that @2 �C(M;�)

@�@N > 0. Now for � = 0, we get:

�C(M; 0) =
N

N + 1
+

(M + 1)N

2M(N + 1)2
;

which increases with N . This �nally yields (since @2 �C(M;�)
@�@N > 0):

@ �C(M;�)

@N
>

@ �C(M; 0)

@N
> 0:

It follows that �S(M;�) increases with N .

Case 2: � > �̂. In this case the equilibrium spread is:

Ŝ(1; 0) = ��(
C(1; 0)

�C(1; 0) + (1� �)��)
): (29)

C(1; 0) increases with N , which implies that Ŝ(1; 0) increases with N .

Proof of Proposition 10. Immediate using Equation (25).

Proof of Corollary 4.

Consider an increase in Q. It shifts speculators' net expected pro�t upward for a given value

of N (see Equation (25)). This induces entry of more speculators. The e�ect of � is identical. The

second part of the proposition follows directly from inspection of Equation (24).

Proof of Proposition 11.

1st part. We sign the total impact of a change in Q on the equilibrium number of speculators.

Let ��s(Q;N
�) be the net expected pro�t of speculators in equilibrium (the L.H.S of Equation (26)).
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We obtain:

dN�

dQ
= �

@��

s

@Q

@��

s

@N�

:

It is straightforward that @��

s

@Q
> 0 and that @��

s

@N� < 0. It follows that dN�

dQ
> 0. Since the spread

increases with the number of speculators (Proposition 9), we conclude that the spread increases

with Q.

2nd part. Using Proposition 2, we obtain that:

��A + �A = �� +N�� =

s
�N�Q(� � S�b )

c
:

The number of speculators in equilibrium is such that each speculator's expected pro�t is zero in

equilibrium. Hence, using Equation (25), we obtain:

�Q(� � S�b ) = K

"
4N�(N� + 1� �)2

2N�(N� + 1� �)� (N� � �)2

#
:

Thus we obtain:

��A + �A =

s
K

c

s�
4(N�)2(N� + 1� �)2

2N�(N� + 1� �)� (N� � �)2

�
:

It turns out that the term in brackets increases with N�. Consequently ��A+�A increases with N�.

As N� increases with Q, the proposition is proved.

Proof of Proposition 12.

The inside spread in the Pareto-Dominant equilibrium increases with �C(M;�), which is given

in Equation (20). Recall that we assume xs(M) = xl(M) = 1=M . Computations yield:

@ �C(M;�)

@M
=

1

(M � 1)2

�
C(M;�)� C(1; 0) +

N(M � 1)

2M2(1 +N � �)2

�
:

The term in brackets increases with �. It is strictly negative for � = 0 and strictly positive for

� = �̂ (because C(1; 0) = C(M; �̂)). Thus there exists �� 2 (0; �̂) such that @ �C(M;��)
@M

= 0. For

� < ��, @ �C(M;�)
@M

< 0 and for � > ��, @ �C(M;�)
@M

> 0.
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Table 3: Summary Statistics

Variable Mean Median Std. Dev. Minimum Maximum

Number of SOES clusters 204 61 540 0 6134
Total number of SOES trades 2466 1047 5651 50 62178
Total number of non-SOES trades 9998 5441 16470 924 151236
Bid-ask spread 1.30% 1.14% 0.68% 0.11% 3.97%
Volatility 0.87% 0.86% 0.34% 0.16% 2.68%
Maximum SOES quantity 968.39 1000 139.70 200 1000
Number of dealers 22.28 20.52 10.25 5.33 63.52
Average trade size 1666 1483 700 595 5381
Market capitalization 2457 791 8885 71 107500
Average price 26.71 23.53 17.27 5.02 130.94

Table 3: The mean, median, standard deviation, minimum, and maximum for variables in our
sample of 310 stocks are reported. A SOES cluster is de�ned as an uninterrupted sequence of three
SOES trades of maximum size, at the same price, within 30 seconds. The total number of SOES
trades includes all trades through the SOES system. The total number of non-SOES trades include
all trades during regular trading hours that were not submitted through the SOES system. The
bid-ask spread is measured as the time-weighted average of the relative inside spread. Volatility is
measured by the standard deviation of the half-hour returns computed based on the mid-quotes.
The maximum SOES size is a discrete variable with values equal to 1000, 500, or 200 shares. The
number of dealers is computed as a time-series average of the number of active dealer in each stock.
The average trade size is measured as the average number of shares traded in trades that are not
part of a SOES cluster. The market capitalization and the average price are based on monthly
CRSP data.
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Table 4: Correlation Matrix

soes sprd vlty maxQ ndlr liqD mkcp

sprd -0.6835
vlty -0.2344 0.4871

maxQ 0.2813 -0.0747 -0.1184
ndlr 0.1081 -0.2568 -0.3185 0.1882
liqD -0.1850 0.0438 -0.1262 -0.7325 -0.1707
mkcp 0.4636 -0.7509 -0.5240 0.0792 0.4249 -0.0074
avgP 0.5923 -0.7572 -0.3415 0.0569 -0.1691 -0.0225 0.6966

Table 4: The variables in the correlation matrix are de�ned as: the log odds ratio of the probability
of a SOES cluster (soes), the average time-weighted bid-ask spread (sprd), the maximum SOES
quantity (maxQ), the number of dealers (ndlr), the average trade size relative to the maximum
SOES quantity (liqD), the logarithm of the market capitalization (mkcp), the logarithm of the
average price (avgP).

Table 5: Estimation Results

SOES Equation Spread Equation
Coe�cient P-value Coe�cient P-value

Constant -2.528431 <0.001 0.0592633 <0.001
SOES proxy 0.0043574 0.079
Bid-ask spread -70.85455 <0.001
Volatility 31.93144 <0.001 0.1784688 0.058
Maximum SOES quantity 0.0010533 <0.001
Number of dealers -0.0003185 <0.001
Liquidity demand 0.0001834 0.453
Market capitalization 0.0002335 0.686
Average price -0.0109728 <0.001

Table 5: The parameter estimates with p-values for the system given in Equation (27), adding
market capitalization and the average price, are reported. The system was estimated using three-
stage least squares to account for cross-equation correlation in disturbances. A heteroscedasticity-
consistent estimator yields qualitatively similar results. The SOES proxy is the log odds ratio
for the probability of a SOES cluster, the bid-ask spread is the time-weighted inside spread, the
volatility is de�ned as the standard deviation of half-hour mid-quote returns, the maximum SOES
quantity is either 1000, 500, or 200, the number of dealers is a time-series average of the number
of active dealers, the liquidity demand is the average size of trades that are not part of a cluster
divided by the maximum SOES quantity. The logarithm of the market capitalization and the
average price are used in the Spread Equation.
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Table 6: Reduced Form Equations

SOES Equation Spread Equation
Coe�cient P-value Coe�cient P-value

Constant -5.196232 <0.001 0.0368048 <0.001
Volatility 13.36749 0.259 0.2412264 0.012
Maximum SOES quantity 0.0011604 <0.001 0.00000389 0.058
Number of dealers 0.0200559 <0.001 -0.0002404 <0.001
Liquidity demand 0.0444787 0.138 0.0001979 0.333
Market capitalization -.1212504 0.006 0.000063 0.857
Average price 0.7711062 <0.001 -0.008196 <0.001

R-squared 0.4570 0.7375
F(6, 303) 54.36 99.99

Table 6: The parameter estimates, with corresponding p-values, are reported for the reduced form
equations that correspond to the system of simultaneous equations of Equation (27). The SOES
proxy is the log odds ratio for the probability of a SOES cluster, the bid-ask spread is the time-
weighted inside spread, the volatility is de�ned as the standard deviation of half-hour mid-quote
returns, the maximum SOES quantity is either 1000, 500, or 200, the number of dealers is a time-
series average of the number of active dealers, the liquidity demand is the average size of trades
that are not part of a cluster divided by the maximum SOES quantity. The logarithm of the market
capitalization and the average price are used in the Spread Equation.
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Figure 1: Timing of the trading game
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Figure 2: Equilibrium Spreads
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Figure 3: This graph illustrates the simultaneous determination of the bid-ask spread and the
number of speculators. The S(N) curve represents the spread as a function of the number of
speculators. The N(S) curve represents the number of speculators as a function of the spread.
The initial equilibrium point is represented by N� and S�. The dotted line illustrates the e�ect
of increasing the liquidity demand, i.e., an increase in �. This change shifts the S(N) curve out
to S0(N), and the direct e�ect is to lower the spread without a�ecting N�. The indirect e�ect is
that the number of speculators increases as a result of the lower spread and this results in a new
equilibrium point N 0� and S0�.
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Figure 4: The log(number of SOES clusters) is plotted against the bid-ask spread. A SOES cluster
is de�ned as 3 maximum-size SOES trade submitted within 30 seconds at the same price.
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