
olatility is a measure of the dispersion of an asset price about its
mean level over a fixed time interval. Careful modeling of an as-
set’s volatility is crucial for the valuation of options and of portfo-
lios containing options or securities with implicit options (for
example, callable Treasury bonds) as well as for the success of

many trading strategies involving options. The problem of pricing options is
one confronting not only option traders but also, increasingly, a broad spec-
trum of investors. In particular, institutional investors’ portfolios frequently
contain options or securities with embedded options. More and more, risk-
management practices of financial institutions as well as of other corporate
users of derivatives require frequent valuation of securities portfolios to de-
termine current value and to gauge portfolios’ sensitivities to market risk
factors, including changes in volatility (see Peter A. Abken 1994). A model
of volatility is needed for managing portfolios containing options (including
derivatives and other securities containing options) for which market quotes
are not readily available and that consequently must be marked to model
(that is, valued by model) rather than marked to market. Accurate assess-
ments of volatility are also key inputs into the construction of hedges, which
limit risk exposures, for such portfolios.

Because of the central role that volatility plays in derivative valuation and
hedging, a substantial literature is devoted to the specification of volatility
and its measurement. Modeling volatility is challenging because volatility in
financial and commodity markets appears to be highly unpredictable. There
has been a proliferation of volatility specifications since the original, simple
constant-volatility assumption of the famous option pricing model devel-
oped by Fischer Black and Myron S. Scholes (1973). This article gives an
overview of different specifications of asset price volatility that are widely
used in option pricing models.
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The Effect of Volatility

A simple example will illustrate the importance of
volatility for options. Consider a call option that gives
the holder of the option the right to buy one unit of a
stock at a future date T at a particular price (also called
the strike or the exercise price of the option). Let the
strike price of the option, denoted by K, be equal to
$50. Note that the value of a call option at maturity is
given by max(St – K, 0), where St denotes the stock
price at the maturity of the option. Thus, the call op-
tion at its maturity has a value equal to the difference
between the stock price at maturity and the strike price
if St > K and zero otherwise. If the stock price at matu-
rity of the option is less than the strike price, the op-
tionholder would rather buy the stock from the market
than exercise the option and pay the higher strike price
K for the stock. Now consider the following two stock
price scenarios in which an option exists that has a
strike price of $50:

High-Volatility Scenario

Stock Price $30 $40 $50 $60 $70 
Option Payoff 0 0 0 $10 $20 

Low-Volatility Scenario

Stock Price $40 $45 $50 $55 $60
Option Payoff 0 0 0 $ 5 $10

The average stock price (across the five states of the
world) is $50 in both scenarios, but volatility is higher
in the first scenario because of the wider dispersion of
possible stock prices. In contrast to the constant average
stock price in each scenario, the average option payoff
is $7.50 in the low-volatility scenario and $15.00 in
the high-volatility scenario. The reason is that the
downside of the payoff to the optionholder is limited
to zero because the option does not have to be exer-
cised if the stock price at maturity is less than the
strike price. The optionholder merely loses the price
paid to the option writer (or seller) for the purchase of
the option. However, the optionholder gains if the
stock price at maturity is greater than the strike price.
The higher the volatility, the higher is the probability
that the option payoff at maturity will be greater than
the strike price and consequently will be of value to
the optionholder. Very high stock prices can increase
the value of the call option at maturity without limit.
However, very low stock prices cannot make the value

of the option payoff at maturity less than zero. Thus
the asymmetry of the payoffs due to the nature of the
contract implies that volatility is of value to the op-
tionholder at the maturity of the option. In general,
since the price of the option prior to its maturity is the
expectation of the option payoff at maturity (discount-
ed at an appropriate rate), an increase in the volatility
of the underlying asset increases the expectation—and
consequently the price of the option today.

In general, future volatility is difficult to estimate.
While the historical volatility of an asset return is
readily computed from observed asset returns (see
Box 1), this measure may be an inaccurate estimate of
the future volatility expected to prevail over the life of
an option. The future volatility is unobservable and
may differ from the historical volatility. Hence, unlike
the other parameters that are important for pricing op-
tions (namely, the current asset price, the strike price,
the interest rate, and time to maturity), the volatility
input has to be modeled. For example, the Black-
Scholes option pricing model is a simple formula in-
volving these five variables that prices European op-
tions. (Such options can be exercised only upon
maturity. See John C. Cox and Mark Rubinstein 1985
for an exposition of the Black-Scholes formula.) The
Black-Scholes model assumes that volatility is con-
stant, the simplest possible approach. However, a pre-
ponderance of evidence (see Tim Bollerslev, Ray Y.
Chou, and Kenneth F. Kroner 1992) points to volatility
being time-varying. In addition, that variation may be
random or, equivalently, “stochastic.” Randomness
means that future volatility cannot be readily predicted
using current and past information.

Before proceeding with an overview of the various
approaches for treating time-varying volatility, the
discussion examines a frequently documented phe-
nomenon known as the volatility smile to motivate the
consideration of different volatility specifications. The
existence of the smile is an indication of the inadequa-
cy of the constant-volatility Black-Scholes model. A
common feature of all time-varying volatility models
reviewed below is that they have the potential to give
prices that are free of the Black-Scholes biases, such
as the smile.

For the Black-Scholes model, the only input that is
unobservable is the future volatility of the underlying
asset. One way to determine this volatility is to select a
value that equates the theoretical Black-Scholes price
of the option to the observed market price. This value
is often referred to as the implied (or implicit) volatility
of the option. Under the Black-Scholes model, implied
volatilities from options should be the same regardless
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The standard way to measure volatility from asset
prices is straightforward. Assuming no intermediate cash
flows like dividend payments, suppose rt = (Pt – Pt–1)/Pt–1
represents the return of an asset as measured by buying
the asset at time t –1 at Pt–1 and selling it at t at Pt, that is,
over a single period of time. Further assume that these
returns are not dependent on each other: the fact that to-
day’s return is high or low reveals nothing about tomor-
row’s return. A statistical description of the behavior of
returns is that they are just different realizations of a ran-
dom variable that is evolving through time. If these single-
period asset returns are calculated from time t = 1 to time
t = T, then the mean or average return over this period,
denoted by  , is estimated by

(1)

The above equation is the symbolic representation for
summing the returns from t = 1 to t = T and then dividing

by the length of the time interval (T) over which the re-
turns are measured. Having estimated the mean, the stan-
dard deviation, a measure of volatility, is estimated by

(2)

Variance, denoted by s2, is the square of the above quan-
tity and is also a measure of volatility. In other words, in
order to estimate the standard deviation, one sums the
squared deviations of the individual returns from the
mean return, divides by T – 1, and takes the positive
square root of the resultant quantity. This measure is usu-
ally referred to as historical volatility. The relevant volatil-
ity for pricing options is not that which occurred in the
past but that which is expected to prevail in the future.
However, historical volatility may be useful in forming that
expectation inasmuch as volatility is correlated through
time.

Box 1
Measurement of Historical Volatility
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of which option is used to compute the volatility. How-
ever, in practice, this is usually not the case. Different
options (in terms of strike prices and maturities) on the
same asset yield different implied volatilities, outcomes
that are inconsistent with the Black-Scholes model.
The pattern of the Black-Scholes implied volatilities
with respect to strike prices has become known as the
volatility smile. The existence of a smile also means
that if only one volatility is used to price options with
different strikes, pricing errors will be systematically
related to strikes. The smile has also been shown to de-
pend on options’ maturities.

The existence of pricing biases for the Black-Scholes
model has been well documented. These biases have
varied through time. For example, Rubinstein (1985)
reports that short-maturity out-of-the-money calls on
equities have market prices that are much higher than
the Black-Scholes model would predict. On the other
hand, since the stock market crash of 1987, the volatil-
ity smile has had a persistent shape, especially when
derived from equity-index option prices—as the strike
price of index-equity options increases, their implied
volatilities decrease. Thus, an out-of-the-money put
(or in-the-money call) option has a greater implied vol-
atility than an in-the-money put (or out-of-the-money
call) of equivalent maturity. 

Buying an out-of-the-money put can serve as insur-
ance against market declines. The surprising severity

of the market crash of 1987 increased the cost of crash
protection, as manifested by a relatively high cost for
out-of-the-money put options. Because the option
price, for calls or puts, increases as volatility rises,
higher option prices are associated with higher implied
volatilities. Thus, relatively high out-of-the-money put
prices are mirrored in high implied volatilities for
those options.

The smile in equity index options is often referred
to as a skew because the high implied volatilities for
out-of-the-money puts (or, equivalently, for in-the-
money calls) progressively decline as puts become
further in-the-money (or as calls become further out-
of-the-money). Box 2 gives more detail about the
volatility skew in the S&P 500 index-equity options.

This article reviews two overarching approaches
to generalizing the constant-volatility assumption of
the Black-Scholes model that have appeared in the
option pricing literature. Both lines of research have
developed concurrently. The first approach assumes
that variations in volatility are determined by vari-
ables known to market participants, such as the level
of the asset price. Models of this type are referred to
as deterministic-volatility models. This approach con-
trasts with the second, more demanding one, common-
ly called stochastic volatility, in whicππh the source of
uncertainty that generates volatility is different from,
although possibly correlated with, the one that drives
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asset prices. Therefore, knowledge of past asset prices
is not sufficient to determine volatility (using discrete-
ly observed prices). For reasons that will be explained
more fully below, the first approach has been the most
popular as a modeling strategy because of its relative
simplicity.

The models under consideration in this article have
been developed for equity, currency, and commodity
options. Practitioners have also used the Black-Scholes
model to price and hedge such options. Stochastic
volatility is even more challenging to incorporate into
models of fixed-income securities because of the com-
plexities of modeling the term structure of interest
rates. The Black-Scholes model has not been the
benchmark model for pricing options in fixed-income
markets, and less work has been done on stochastic-
volatility bond pricing models. Thus, this topic is be-
yond the scope of this article.

Within the first approach, three types of models
have been proposed. These are (1) implied binomial
tree models, (2) general autoregressive conditional
heteroscedasticity (GARCH) models, and (3) expo-
nentially weighted moments models. Although some-
what arcane sounding on first reading, each will prove
to have its own intuitive appeal. Each type of model
also has the potential to closely or exactly match mod-
el option prices with actual market option prices. For
the second approach involving stochastic volatility,
models may be divided into those that have closed-

form solutions for option prices and those that do not.
Closed-form solutions refer to pricing formulas that
are readily computed, given current computer technol-
ogy. The distinction is a matter of practicality because
the time it takes to compute prices is relevant to practi-
tioners who trade options or hedge positions using op-
tions. Advances in computer technology will gradually
blur the distinction among current stochastic-volatility
models as time-consuming computations become less
so in the future.

Deterministic Volatility

The first approach that has been used to address the
deficiencies of the benchmark Black-Scholes model
and the volatility smile involves deterministic-volatility
specifications. The Black-Scholes formula for pricing
European options is predicated on the assumption of
constant volatility. The simplest relaxation of the con-
stant volatility assumption is to allow volatility to de-
pend on its past in such a way that future volatility can
be perfectly predicted from its history and possibly
other observable information. As an example, suppose
the variance of asset returns s2

t+1 is described by the
following equation:

s2
t+1 = u + ks2

t .
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Box 2
The Volatility Skew in S&P 500 Index Options

The chart illustrates the skew on four different days.1

The skew is computed from S&P 500 index options that
are traded at the Chicago Board Options Exchange
(CBOE). These are standard European options, for
which exercise can occur only on the option expiration
date, and their payoffs are determined by the level of the
S&P 500 index on the option maturity date. The Black-
Scholes equation is used to infer the volatility using the
other option formula inputs and the quoted option price.
Each chart contains implied volatilities from puts and
calls that were traded between 10:00 A.M. and 2:30 P.M.
All options had forty-five days to maturity. Diamonds
are the implied volatilities derived from individual put
transactions, and squares are implied volatilities from in-
dividual call transactions. The volatilities are plotted
against the ratio of the option strike to the index level.
Thus, a value of one corresponds to puts or calls being at

the money. Ratios less than one represent strike prices
that are out-of-the-money for puts and in-the-money for
calls. The most noticeable feature of each of these plots
is that the deep-out-of-the-money puts have implied
volatilities substantially above the volatilities of other
options. These volatilities decline almost linearly as the
strike-index ratio increases. Similar smile effects have
been observed in interest rate option markets (see Amin
and Morton 1994 for Eurodollar futures options and
Abken and Cohen 1994 for Treasury bond futures op-
tions) and in foreign exchange markets (Bates 1995).

Note

1. These prices are from a CBOE data base that covers the
years 1990-92. More recent smiles computed from settle-
ment price data have the same shape as those illustrated in
the charts.
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The future volatility depends on a constant and a
constant proportion of the last period’s volatility. In
this case, the constant variance of the asset returns in
the Black-Scholes formula can be replaced by the av-
erage variance that is expected to prevail from time t
until time T (the expiration time), which is approxi-
mately given by

and the Black-Scholes formula can continue to be used.
A more general case specifies volatility as a func-

tion of other information known to market partici-
pants. One alternative of this kind posits volatility as a
function of the level of the asset price: s(S). One par-
ticular model of this type, known as the constant elas-
ticity of variance (CEV) model, in which volatility is
proportional to the level of the stock price raised to a
power, appeared early in the option pricing literature
(Cox and Steve Ross 1976). However, the CEV model
proved not to be free of pricing biases (David Bates
1994). A more recent variation on this volatility speci-
fication was developed by Rubinstein (1994). Instead
of assuming a particular form of the volatility func-
tion, Rubinstein’s method effectively infers the depen-
dence of volatility on the level of the asset price from
traded options at all available strike prices. He calls
the model “implied binomial trees” because the im-
plied risk-neutral distribution (which depends on the
volatility) of the asset price at maturity is inferred
from option prices by constructing a so-called binomi-
al tree for movements of the asset price.1 (See Box 3
for a discussion of risk-neutral valuation.) Related
models have been proposed by Emanuel Derman and
Iraz Kani (1994), Bruno Dupire (1994), and David
Shimko (1993).

In a recent empirical test of deterministic-volatility
models, including binomial tree approaches, Bernard
Dumas, Jeffrey Fleming, and Robert Whaley (1996)
show that the Black-Scholes model does a better job
of predicting future option prices. The option delta,
which is derived from an option pricing model and
measures the sensitivity of the option price to changes
in the underlying asset price, can be used to specify
positions in options that offset underlying asset price
movements in a portfolio. The authors demonstrate
that the Black-Scholes model resulted in better hedges
than those from models based on deterministic-volatility
functions. 

For their tests based on using S&P 500 index op-
tions prices, they conclude that “simpler is better”
(20). The authors note that one reason for the better

performance of the Black-Scholes model is that errors,
from various sources, in quoted option prices distort
parameter estimates for deterministic-volatility models
and consequently degrade these models’ predictions.
However, hedging performance, which is a key con-
sideration for risk managers and traders alike, has not
been systematically tested across all option pricing
models. As noted below, other research indicates that
some versions of stochastic-volatility models may out-
perform the simple Black-Scholes model in terms of
hedging.

ARCH Models. Autoregressive conditional het-
eroscedasticity (ARCH) models for volatility are a
type of deterministic-volatility specification that
makes use of information on past prices to update the
current asset volatility and have the potential to im-
prove on the Black-Scholes pricing biases. The term
autoregressive in ARCH refers to the element of per-
sistence in the modeled volatility, and the term condi-
tional heteroscedasticity describes the presumed
dependence of current volatility on the level of volatil-
ity realized in the past. ARCH models provide a well-
established quantitative method for estimating and
updating volatility.

ARCH models were introduced by Robert F. Engle
(1982) for general statistical time-series modeling. An
ARCH model makes the variance that will prevail one
step ahead of the current time a weighted average of
past squared asset returns, instead of equally weighted
squared returns, as is done typically to compute vari-
ance (see Box 1). ARCH places greater weight on more
recent squared returns than on more distant squared
returns; consequently, ARCH models are able to cap-
ture volatility clustering, which refers to the observed
tendency of high-volatility or low-volatility periods to
group together. For example, several consecutive ab-
normally large return shocks in the current period will
immediately raise volatility and keep it elevated in
succeeding periods, depending on how persistent the
shocks are estimated to be. Assuming no further large
shocks, the cluster of shocks will have a diminishing
impact as time progresses because more distant past
shocks get less weight in the determination of current
volatility. 

Some technical features of ARCH models also
make them attractive compared with many other types
of option pricing models that allow for time-varying
volatility. In an ARCH model, the variance is driven
by a function of the same random variable that deter-
mines the evolution of the returns.2 In other words,
the random source that affects the statistical behav-
ior of returns and volatility through time is the same.
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Box 3
Risk-Neutral Valuation

The risk-neutral approach to option valuation was pio-
neered by Cox and Ross (1976) and then developed sys-
tematically by Harrison and Kreps (1979) and Harrison
and Pliska (1981). It was motivated by the observation
that the Black-Scholes option pricing formula does not
depend on any parameters that reflect investors’ prefer-
ences toward risk—that is, their risk-return trade-offs.
The key assumption is merely that investors prefer more
wealth to less wealth. In particular, the option price does
not depend on the expected return of the asset, which
is determined by investor preferences. Since the option
price does not depend on investors’ attitudes toward risk,
the same option price will result irrespective of the form
of investor preferences. A very convenient preference is
“risk neutrality.” A risk-neutral investor cares only about
the average level of wealth that can be attained by trading
in a risky asset and pays no attention to the associated
risk. If investors are risk-neutral, then in equilibrium the
expected returns on all assets in the economy have to
equal the risk-free rate; otherwise, investors would at-
tempt to buy (sell) those securities that have expected re-
turns greater (less) than the return on the risk-free rate,
driving the expected return to equality with the risk-free
rate. Therefore, under risk neutrality, the dynamics of the
returns process—that is, the statistical behavior of returns
through time—has to be adjusted to make the mean re-
turn on the risky asset equal to the risk-free rate. 

As an example, consider an asset whose returns pro-
cess is described by the following equation: 

rt = µ + ste1,t , (1)

where e1, t is a random variable that is distributed normal-
ly with mean zero and variance of unity (a unit normal
random variable). This equation is sometimes called the
law of motion or dynamics for the return process. The
mean return on the asset is µ. The realizations of the ran-
dom variable e1,t make the returns rt (at time t) different
from µ, and these realizations are referred to as innova-
tions. The above equation can be rewritten using a differ-
ent normal random variable v1,t, with zero mean and unit
variance,

rt = rft + st v1,t,, (2)

where rft is the risk-free rate. Thus, under the law of mo-
tion governed by the innovation process, v1,t, the mean

return of the asset, equals rft . For option pricing, the law
of motion of the asset returns that is relevant is (2) and
not (1). Since the mean return of the asset under (2) is the
risk-free rate, (2) is also known as the law of motion of
the asset under the risk-neutral distribution—an environ-
ment in which all risky assets have expected returns
equal to the risk-free rate. 

One of the key results of option pricing theory is that
the price of an option, or any financial claim that has an
uncertain future payoff, is given by the mathematical ex-
pectation of its payoff at its maturity, discounted at the
risk-free rate. The computation of this expectation as-
sumes that the returns of the asset follow risk-neutral dy-
namics, such as the example given by equation (2).

If there is a second random variable that affects the
price of the option, then, as in the previous example, the
mean of that state variable is adjusted to give the dynam-
ics of the state variable in a risk-neutral world. Suppose
the variance s2

t  follows the random process

s2
t = s2

t –1 + k(u – s2
t –1) + gst e2,t , (3)

where e2,t is a standard normal random variable. The
above equation is the discrete-time counterpart of the
continuous-time variance process given in Heston (1993),
in which the variance “reverts” to its long-term mean u at
rate k, and the volatility of the variance itself is measured
by g. A risk-neutralized representation of the above pro-
cess analogous to (2) is

s2
t = s2

t –1 + k*(u* – s2
t –1) + gste

*
2,t. (4)

The shock e*
2,t is another standard normal random vari-

able, and k* and u* are obtained from k and u by a risk-
adjustment procedure (see Heston 1993). In this case, the
value of the option is equal to the mathematical expecta-
tion under the risk-neutral distribution as generated by (2)
and (4), although the statistical behavior of returns and
variance in the real world is generated by (1) and (3).

The risk-neutral distribution itself can be inferred
from traded option prices. See Abken (1995) for a basic
illustration and Abken, Madan, and Ramamurtie (1996)
and Aït-Sahalia and Lo (1995) for advanced approaches.
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As a result, volatility can be estimated directly from
the time series of observed returns on an asset. In con-
trast, the direct estimation of volatility from the returns
process is very difficult using stochastic-volatility
models.

There are many different types of ARCH mod-
els that have a wide variety of applications in macro-
economics and finance. In finance, the two most
popular ARCH processes are generalized ARCH
(GARCH) (Bollerslev 1986) and exponential GARCH
(EGARCH) (Daniel B. Nelson 1991). The technical
distinctions are beyond the scope of this article; howev-
er, researchers have tended mostly to use the GARCH
process and its variations for option pricing.3 Although
GARCH captures the evolution of the variance process
of asset returns quite well, it turns out that there is no
easily computable formula, like the Black-Scholes for-
mula, for European option pricing under a GARCH
volatility process. Instead, computer-intensive meth-
ods are used to simulate the returns and the volatility
under the risk-neutral distribution in order to compute
European option prices and hedge ratios. (Recent ex-
amples include Kaushik Amin and Victor Ng 1993
and Jin C. Duan 1995.)

Owing to the lack of efficient pricing and hedging
formulas for GARCH models, practitioners—and
some researchers—often substitute the expected aver-
age variance from a GARCH model for the variance
input in the Black-Scholes formula (see Engle, Alex
Kane, and Jaesun Noh 1994). However, the Black-
Scholes formula does not hold if the variance of asset
returns follows a GARCH process; such a substitution
is theoretically inconsistent but may work in practice.
Another problem with using the extant GARCH op-
tion pricing models is that they do not value American
options, which account for most of all traded options.
American options can be exercised at any time before
maturity, and consequently their prices equal or exceed
the prices of comparable European options by the val-
ue of this extra flexibility, termed the early-exercise
premium. A simple approximation is achieved by
adding an estimate of the early-exercise premium to the
European price derived from a GARCH model. (There
are numerical methods, such as Monte-Carlo simu-
lations, that can value American options, but these
methods are currently impractical because of the enor-
mous number of computations required.) The value of
the early-exercise premium is often evaluated using
the Barone-Adesi-Whaley (1987) formula for the
Black-Scholes model.

An early test of a GARCH option pricing model is
Engle and Chowdhury Mustafa (1992), who examined

S&P 500 index options. Their results show that the
GARCH pricing model cannot account for all of the
pricing biases observed in the option market. Engle,
Kane, and Noh (1994) compared the trading profits
resulting from a particular trading rule by using two
alternatives for the variance forecasts needed for
Black-Scholes: the variance forecast from a GARCH
model and the variance forecast in the form of the
Black-Scholes implied volatility from a previous peri-
od. As noted above, plugging a GARCH forecast into
the Black-Scholes formula is ad hoc; however, in an
experiment using S&P 500 index options, Engle, Kane,
and Noh produced greater hypothetical trading profits
using the GARCH volatility forecast than they did us-
ing the Black-Scholes implied volatility.

To summarize, although GARCH is a good descrip-
tion of the evolution of the variance process of the as-
set returns, option pricing models based on GARCH
are computationally demanding and may not be very
useful for many practitioners given current computing
technology. In addition, only a limited number of em-
pirical tests have been done to date on GARCH option
pricing models; as a consequence, it is hard to say how
well the model does in pricing options and evaluating
hedge ratios.4 

Exponentially Weighted Moments Models. David
G. Hobson and L.C.G. Rogers (1996) propose a new
type of option pricing model for time-varying volatili-
ty that also has the potential to match the observed
volatility smile. Their mathematical specification
allows past asset-price movements to feed back into
current volatility. This characteristic has some of the
flavor of a GARCH model in terms of a similar feed-
back effect; however, the type of feedback can be much
more general than encountered in standard GARCH
models. Also like GARCH, but unlike standard
stochastic-volatility models, there is only one source
of uncertainty that drives both the asset price and its
volatility.5

The Hobson-Rogers model captures past asset price
volatility through a so-called offset function. The feed-
back relationship is primarily embodied in the func-
tional dependence of the volatility on the offset
function. The intuition behind the offset function is
apparent from its form:

where St
(m) is the value of the function at time t and m

is the order of the function.6 This function simply
weights deviations of a transformed current price Zt (a
“discounted” logarithm of the price) from its value u
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periods ago, (Zt – Zt–u), raised to the power m. The
power applied to the deviation, or order of the offset
function, is technically the statistical moment of the
offset that is employed. For example, a first-order off-
set function (m = 1) considers the deviation itself,
whereas a second-order offset function takes the
squares of those deviations and therefore consists of a
measure related to the variances of those deviations.
The weighting is done by an exponential function that
through the parameter l places more or less impor-
tance on the past relative to the present. A high value
for l implies that recently experienced changes in the
asset price have a much greater impact on volatility
(and the drift) than more distant past shocks. This
weighting is similar to the treatment of past return
shocks in ARCH modeling. A low l gives relatively
more weight to the past shocks. The persistence of
past shocks l can be estimated indirectly from options
prices.

The feedback mechanism in this model works pri-
marily through the asset price volatility, which can
take any number of functional forms. Hobson and
Rogers consider one simple form in detail in their pa-
per. They show that even a simple version of the offset
function, with m = 1, can give option prices that when
substituted into the Black-Scholes equation generate a
volatility smile in implied Black-Scholes volatilities
evaluated at different strike prices, mimicking the smile
observed in actual markets.

The impact of the Hobson-Rogers assumption
about the volatility specification and the persistence of
volatility on option prices needs to be evaluated empir-
ically to see how it compares with Black-Scholes or any
other model. The model’s ability to trace out a smile is
suggestive and may indicate the model’s potential to
match actual prices well; an empirical evaluation of
this model has not been performed to date.

Stochastic Volatility

Stochastic volatility implies that the future level of
the volatility cannot be perfectly predicted using infor-
mation available today. The popularity of stochastic
volatility in option pricing grew out of the fact that
distributions of the asset returns exhibit fatter tails than
those of the normal distribution (Benoit Mandelbrot
1963 and Eugene F. Fama 1965). In other words, the
observed frequency of extreme asset returns is much
higher than would occur if returns were described by a
normal distribution. Stochastic-volatility models can

be consistent with fat tails of the return distribution.
The occurrence of fat tails would imply, for example,
that out-of-the-money options would be underpriced
by the Black-Scholes model, which assumes that re-
turns are normally distributed. However, the fat-tailed
asset return distributions can also come from ARCH-
type volatility as well as from jumps in the asset re-
turns (Robert C. Merton 1976). Stochastic-volatility
models could also be an alternative explanation for
skewness of the return distribution. Despite the rela-
tive complexity of stochastic-volatility models, they
have been popular with researchers, and additional
justification for these models has recently come to
light in the literature on asymmetric information about
the future asset price and its impact on traded options.7

In a stochastic-volatility model, volatility is driven
by a random source that is different from the random
source driving the asset returns process, although the
two random sources may be correlated with each other.
In contrast to a deterministic-volatility model in which
the investor incurs only the risk from a randomly evolv-
ing asset price, in a stochastic-volatility environment,
an investor in the options market bears the additional
risk of a randomly evolving volatility. In a deterministic-
volatility model, an investor can hedge the risk from
the asset price by trading an option and a risk-free asset
based on a risk exposure computed using an option
pricing formula (see Cox and Rubinstein 1985). (Equiv-
alently, the option’s payoff can be replicated by trading
the underlying asset and a risk-free asset.) However,
with a random-volatility process, there are two sources
of risk (the risk from the asset price and the volatility
risk); a risk-free portfolio cannot be created as in the
Black-Scholes model. After hedging, there is a residual
risk that stems from the random nature of the volatility
process. Since there is no traded asset whose payoff is
a known function of the volatility, volatility risk cannot
be perfectly hedged. In order to bear this volatility risk,
rational investors would demand a “volatility risk” pre-
mium, which has to be factored into option prices and
hedge ratios.8

A feature of stochastic-volatility models that is not
shared by deterministic-volatility models is that the
price of an option can change without any change in
the level of the asset price. The reason is that the op-
tion price is driven by two random variables: the asset
price and its volatility. In stochastic-volatility models,
these two variables may not be perfectly correlated,
implying that the expected volatility over the life of
the option may change without any change in the asset
price. The change in volatility alone can cause the op-
tion price to change. 
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Most stochastic-volatility models assume that
volatility is mean reverting. That is, although volatility
varies from day to day, there is a presumed long-run
level toward which volatility settles in the absence of
additional shocks. Market participants refer to this fea-
ture as “regressing to the mean” of the volatility. (The
evidence for this phenomenon is especially strong in
markets for interest rate derivatives. See, for example,
Robert Litterman, Jose Scheinkman, and Laurence
Weiss 1991 and Amin and Andrew Morton 1994.) 

Stochastic-volatility models can be classified into
two broad categories: those that lack closed-form solu-

tions for European options and those that have closed-
form solutions.9 Even if a model’s parameters are
known, most stochastic-volatility option pricing models
are computationally demanding for pricing European
options and especially so for pricing American op-
tions. A notable exception is the model of Steven Hes-
ton (1993) that gives closed-form solutions for prices
and hedge ratios of European options. All other mod-
els compute option prices either by numerically solv-
ing a complicated partial differential equation or by
Monte Carlo simulation. However, many key parame-
ters are not readily estimated from data, particularly
those of the volatility process, because, unlike the re-
turns process of the underlying asset, the volatility
process is not directly observable. Since parameter esti-
mation is often time-consuming, the lack of readily
computed solutions for option prices in many stochastic-
volatility models can compound the difficulties of esti-
mation. 

Although stochastic-volatility pricing models give
only closed-form solutions for European options, a
good approximation for the price of an American op-
tion can be obtained by adding an early exercise pre-
mium using the Barone-Adesi-Whaley approximation

in the same way as for ARCH models. Examples of
this practice are in Hans J. Knoch (1992) and Bates
(1995). At present, the only other way to price Ameri-
can options under stochastic volatility is by solving
a second-order partial differential equation (Angelo
Melino and Stuart Turnbull 1992), which is extremely
computationally burdensome.

Stochastic-Volatility Option Models without
Closed-Form Solution. John C. Hull and Alan White
(1987), Louis O. Scott (1987), and James B. Wiggins
(1987) were among the first to develop option pricing
models based on stochastic volatility. Hull and White
as well as Scott made the questionable assumption that
the risk premium of volatility is zero—that is, the vol-
atility risk is not priced in the options market—and that
volatility is uncorrelated with the returns of the under-
lying asset. Wiggins, who also assumed a zero-volatility
risk premium, found that the estimated option values
under stochastic volatility were not significantly
different from Black-Scholes values, except for long
maturity options. For equity options, Christopher
Lamoureux and William Lastarapes (1993) offer
evidence against the assumption of a zero-volatility
risk premium. For currency options, Melino and Turn-
bull (1992) found that a random-volatility model yields
option prices that are in closer agreement with the ob-
served option prices than those of the Black-Scholes
model. While the numerical methods and computers cur-
rently available allow computation of these stochastic-
volatility option prices, they are still largely impractical
for determining hedge ratios, which are vital to market-
makers, dealers, and others. As a result, these stochas-
tic-volatility models may not currently be useful for
practitioners. Nevertheless, development of stochastic-
volatility models continues as researchers attempt to
find more tractable models.

Stochastic-Volatility Models with Closed-Form
Solutions. Elias M. Stein and Jeremy C. Stein (1991)
develop a European option pricing model under
stochastic volatility that is somewhat easier to evaluate
than the models described above.10 Although less
computationally expensive than the other models, the
authors make the unrealistic assumption of zero corre-
lation between the volatility process and the returns of
the underlying asset. 

Heston (1993) was the first to develop a stochastic-
volatility option pricing model for European equity
and currency options that can be easily implemented,
is computationally inexpensive, and allows for any
arbitrary correlation between asset returns and volatili-
ty.11 The model gives closed-form solutions not only
for option prices but also for the hedge ratios like the
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The modeling of volatility and its dynamics

is a difficult task because the path of

volatility during the life of an option is

highly unpredictable.
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deltas and the vegas of options. (Delta and vega mea-
sure the sensitivity of the option price to changes in
the asset price and to changes in the volatility, respec-
tively. Knowledge of these measures enables the con-
struction of hedges for options or for portfolios
containing embedded options.) 

In this model, the asset returns rt and the variance
s2

t are assumed to evolve through time as 

rt = µ + ste1,t

and

s2
t = s2

t–1 + k(u – s2
t–1) + gste2,t,

respectively, where e1,t and  e2,t are two standard nor-
mal random variables that could be correlated with
each another, either positively or negatively, with a
correlation coefficient, r. Equivalently, this coefficient
also measures the correlation between the return of the
asset and the volatility process. 

In this model, the variance evolves through time in
such a way that its long-run average level is measured
by u and the speed with which it is pulled toward this
long-run mean is measured by k, also known as the
mean-reversion coefficient. The variable g is a mea-
sure of the volatility of variance. If g is zero, the mod-
el simplifies to a time-varying deterministic-volatility
model. In the finance literature, this process for the
volatility is also known as a square-root volatility pro-
cess. The particular nature of the process ensures that
volatility “reflects” away from zero: if volatility ever
becomes zero, then the nonzero k ensures that volatili-
ty will become positive. 

Note that s2
t in this model is not directly compara-

ble to the implied variance from the Black-Scholes
model. The reason is that s2

t represents the instanta-
neous variance (at time t), whereas the implied
variance in the Black-Scholes model is the average ex-
pected variance through the life of an option and need
not equal the instantaneous variance if the model is
not true. In Heston’s model, the average expected vari-
ance during the life of an option is a function of the in-
stantaneous variance, the long-run average variance,
the speed with which the instantaneous variance ad-
justs, and the time to expiration of the option. 

The option price and hedge ratios in Heston’s mod-
el are functions not only of the parameters that appear
in the Black-Scholes formula but also of k, u, r, g, and
an additional parameter, l. The parameter l is a con-
stant such that ls2

t measures the risk premium of
volatility. The volatility risk premium is assumed to be

directly proportional to the level of the volatility. The
need for an assumption about the form of the volatility-
risk premium is a weakness of any stochastic-volatility
model because the form of the volatility-risk premium
cannot be deduced from the weak assumption that all
investors prefer more wealth to less wealth, as dis-
cussed in Box 3, but requires assumptions on investor
tolerance toward risk that in general are difficult to
justify. In this model, the form of the volatility-risk
premium is crucial because it enables the derivation of
the closed-form solutions for option prices and hedge
ratios. However, it should not be interpreted as a
weakness of this model vis-à-vis other stochastic-
volatility models of option prices because others make
the even stronger and less plausible assumption that
the risk premium of volatility is zero.

The parameters r and g are very important for de-
termining the form of the risk-neutral distribution of
the asset price at the time of the option’s expiration
(the terminal asset price) and hence the current option
price. In other words, they may be important for ac-
counting for the smile effects seen in the chart. For ex-
ample, consider the probability that a European call
option will finish in the money. Ceteris paribus, an in-
crease in g (an increase in the volatility of volatility)
makes the tails of the risk-neutral distribution fatter:
the occurrence of extreme returns is more likely.12 The
sign and magnitude of r determines the sign and ex-
tent of skewness in the risk-neutral distribution of the
terminal asset price. Positive correlation implies that
an increase in the returns of the underlying asset is as-
sociated with an increase in the volatility, tending to
make the right tail of the distribution thicker and the
left tail thinner than those of a normal distribution of
asset returns. In other words, the frequency of extreme
positive outcomes is higher and the frequency of ex-
treme negative outcomes is lower than in the Black-
Scholes model—that is, the returns have positive
skewness. As a result, prices of out-of-the-money calls,
which benefit from this scenario of positive skewness,
are higher in the stochastic-volatility model than cor-
responding Black-Scholes call prices, and those of
out-of-the-money puts (that lose under this scenario)
are lower. On the other hand, a negative correlation
implies that a decrease in the returns of the underlying
asset is associated with an increase in the variance.
Therefore, the left tail would be thicker and the right
tail thinner than assumed for the Black-Scholes model.
Since out-of-the-money puts benefit from a thicker left
tail, market prices for these options would be higher
than in the Black-Scholes model (underpricing by the
Black-Scholes model), and, similarly, out-of-the-money
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calls that lose from a thicker left tail would be over-
priced by the Black-Scholes model. 

This last scenario is consistent with observations in
the market for S&P 500 index options since the crash
of 1987. As noted earlier, out-of-the-money puts have
tended to command much higher prices than can be ex-
plained by the Black-Scholes model, whereas out-of-
the-money calls are overpriced by the Black-Scholes
model. According to the stochastic-volatility model,
the underpricing of the out-of-the-money puts and
overpricing of out-of-the-money calls by the Black-
Scholes model—the volatility skew—could be the re-
sult of a negative correlation between index returns
and a random volatility process.

The empirical work done on Heston’s model in-
cludes that by Knoch (1992), Saikat Nandi (1996), and
Bates (1995). In order to take into account the possi-
bility of sudden large price movements, such as the
crash of 1987, Bates generalizes Heston’s model by al-
lowing for jumps in asset prices. While Knoch and
Bates study the pricing issues of this model for options
on foreign currencies, Nandi examines both pricing
and hedging issues using the S&P 500 index options.
All of these studies find that Heston’s model is able to
generate prices that are in closer agreement with mar-
ket option prices than those of the Black-Scholes mod-
el. However, it is not the case that this model is able to
explain all biases of the Black-Scholes model. While it
is true that the remaining pricing biases are of smaller
magnitude than those of the Black-Scholes model,
Nandi finds that there are still substantial biases for
out-of-the-money puts and calls in the S&P 500 index
options market. In particular, the model underprices
out-of-the-money puts and overprices out-of-the-money
calls. It is possible that the square-root volatility pro-
cess and therefore the model itself are misspecified.

This misspecification would be unfortunate because
the particular form of the volatility process is what
makes this stochastic-volatility model tractable.

If the Black-Scholes assumption of constant volatil-
ity were true, a hedge portfolio (hedged against the
risk from the asset price) would simply earn the risk-
free rate of return. Such a portfolio would typically
consist of a position in the underlying asset and an op-
tion. The position would be altered through time by
trading, based on the formulas for hedge ratios deter-
mined by the Black-Scholes model (see Cox and Ru-
binstein 1985) or other option pricing models. When
volatility is stochastic, as it probably is in the real
world, hedging using the Black-Scholes model does
not result in risk-free positions. A stochastic-volatility
model may do a better job of hedging against price
and volatility risks. Nandi (1996) finds that for S&P
500 index options the returns of a hedge portfolio con-
structed using Heston’s stochastic-volatility model
come closer to matching a risk-free return through
time better than hedge portfolio returns obtained using
the Black-Scholes model.

Volatility Jumps. All the time-varying volatility
models that have been discussed so far assume that the
volatility of the underlying asset as well as its price
evolves “smoothly,” though randomly, through time:
there are no jumps in the volatility process. However,
a likely cause of financial market volatility is the ar-
rival of information and its subsequent incorporation
into asset prices through trading. To the extent that
information—“news”—arrives in discrete lumps, it is
possible that volatility shifts between episodes of low
and high volatility. For example, uncertainty about an
impending news release (concerning some macroeco-
nomic variable, like an anticipated change in the fed
funds rate by the Federal Open Market Committee)
may cause the volatility of an asset price to rise. How-
ever, after a few rounds of trading, with the information
having been incorporated into asset prices, volatility
may revert back to its previous level. 

To account for jumps like those in the example,
Vasantlilak Naik (1993) develops a pricing model for
European options in which volatility switches between
low and high levels. Each level or “regime” is expect-
ed to last for a certain period of time that is not known
a priori. One tractable version of his model assumes
that the risk from the volatility jumps is not priced by
market participants. The model takes the same param-
eters that enter the Black-Scholes formula as well as
additional parameters such as the probabilities of
jumps from one regime to another regime, given that
volatility is currently in a particular regime. Naik finds

A likely cause of financial market 

volatility is the arrival of information 

and its subsequent incorporation into 

asset prices through trading.
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1. Instead of taking a wide range of values as in the real
world, a binomial tree restricts stock price movements at
any moment in time to be either up with one probability or
down with another (see Cox and Rubinstein 1985).

2. Although there is one source of uncertainty that drives both
the asset returns and the volatility in a GARCH model,
which is a special case of ARCH, the asset returns are dis-
tributed continuously—that is, one out of an infinite num-
ber of possible uncertain returns will be realized over the
next period. Therefore, with discrete trading (as in a GARCH
model), it is not possible to replicate all possible uncertain
returns outcomes (see Duffie and Huang 1985) by trading
in the option and a risk-free asset (or, equivalently, a unique
risk-free portfolio cannot be created by trading in the under-
lying asset and an option). Hence, a risk premium associat-
ed with the returns of the underlying asset is required in a
GARCH model. 

3. The NGARCH of Engle and Ng (1993) is one such varia-
tion.

4. GARCH can capture the volatility smile. In a GARCH
model, such as Duan’s (1995), the price of an option, be-
sides being a function of the variables that appear in the

Black-Scholes formula, is also a function of variables that
describe the time variation in volatility as well as a variable
that accounts for the risk premium of the asset returns, that
is, the excess return over a risk-free asset. Since the risk
premium summarizes investor preferences, the GARCH op-
tion pricing model is not preference-free—a key attribute of
the Black-Scholes model. Duan shows that under the risk-
neutral distribution, the value of the GARCH variance at a
point in time is negatively correlated with past asset returns
if the risk premium of the asset is greater than zero. Such a
negative correlation can give rise to negative skewness in
the risk-neutral distribution, which seems to be a feature of
the empirical data, as discussed in Bates (1995). GARCH
models can therefore potentially generate option prices that
are consistent with the observed volatility skew.

5. The Hobson-Rogers model is also preference-free. This
model, unlike GARCH, is set in continuous time. There be-
ing a single source of uncertainty and continuous trading,
all possible uncertain returns outcomes of the underlying
risky asset over the next period can be replicated by trading
in an option and a risk-free asset (Duffie and Huang 1985),
and there is no need for any risk premium of returns.

that short-maturity options are much more sensitive to
volatility shifts than long-maturity options. The reason
is that, over a long period of time, expected upward
and downward jumps in volatility are canceled by
each other, resulting in a volatility that is close to the
normal level. 

This model has not been empirically tested and there-
fore cannot yet be evaluated against other stochastic-
volatility models. In general, jump models can be
difficult to verify empirically because jumps occur in-
frequently. The parameters of such models may be im-
precisely estimated using relatively small historical
data series on option prices or underlying asset prices. 

Conclusion

Since volatility of the underlying asset price is a
critical factor affecting option prices, the modeling of
volatility and its dynamics is of vital interest to traders,
investors, and risk managers. This modeling is a diffi-
cult task because the path of volatility during the life of
an option is highly unpredictable. Clearly, the Black-
Scholes assumption of constant volatility can be im-
proved upon by incorporating time variation in volatility.

While deterministic-volatility models can capture the
dynamics of the volatility reasonably well, many of
these option pricing models, such as ARCH models,
are computationally expensive, especially for Ameri-
can options. Deterministic-volatility option pricing
models have the advantage that most parameters can be
estimated directly from the observable time series of
returns data. However, superior hedging performance
of such models relative to that of the Black-Scholes
model has not been demonstrated. On the other hand,
there is evidence that some stochastic-volatility option
pricing models provide better hedges than Black-
Scholes, although for stochastic-volatility option pric-
ing models and volatility-jump models, parameter esti-
mation is typically demanding and problematic. 

The development of tractable stochastic-volatility
models as well as more efficient methods of model pa-
rameter estimation are currently an area of intensive
research. For both academic researchers and market
practitioners, no consensus exists regarding the best
specification of volatility for option pricing. Although
a number of alternative approaches can account, at
least partially, for the pricing deficiencies of the
Black-Scholes model, none dominates as a clearly su-
perior approach for pricing options.
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6. The Hobson-Rogers equation actually is written with an in-
tegral rather than a summation.

7. Back (1993) shows how stochastic volatility might be intro-
duced endogenously in asset markets due to asymmetric in-
formation about the future price of an underlying asset on
which an option is traded. 

8. In an ARCH option pricing model the risk premium that en-
ters is the risk premium of asset returns and not the risk pre-
mium of volatility.

9. For American options, a closed-form solution in a stochastic-
volatility model has not yet been derived.

10. Their model requires the numerical evaluation of a two-
dimensional integral (that is computationally easier) rather

than the solution of a second-order partial differential equa-
tion. However, the volatility process is allowed to become
negative, an undesirable feature.

11. Heston’s (1993) paper gives the closed-form solution for
prices of call options. The price of a put option can be easi-
ly obtained using the put-call parity for European options.

12. A tail of a probability distribution is the area under the dis-
tribution that assigns probabilities to extreme outcomes. For
example, in the typical bell-shaped normal distribution,
there are two tails, the right tail and the left tail, that slowly
taper off. 
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