
Issues in Hedging
Options Positions

S A I K A T  N A N D I  A N D  
D A N I E L  F .  W A G G O N E R
Nandi is a senior economist and Waggoner is an 

economist in the financial section of the Atlanta Fed’s

research department. They thank Lucy Ackert, Jerry

Dwyer, and Ed Maberly for helpful comments.

M
ANY FINANCIAL INSTITUTIONS HOLD NONTRIVIAL AMOUNTS OF DERIVATIVE SECURITIES

IN THEIR PORTFOLIOS, AND FREQUENTLY THESE SECURITIES NEED TO BE HEDGED

FOR EXTENDED PERIODS OF TIME. OFTEN THE RISK FROM A CHANGE IN VALUE OF A

DERIVATIVE SECURITY, ONE WHOSE VALUE DEPENDS ON THE VALUE OF AN UNDERLYING
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asset—for example, an option—is hedged by trans-
acting in the underlying securities of the option.
Failure to hedge properly can expose an institution
to sudden swings in the values of derivatives result-
ing from large unanticipated changes in the levels or
volatilities of the underlying assets. Understanding
the basic techniques employed for hedging deriva-
tive securities and the advantages and pitfalls of
these techniques is therefore of crucial importance
to many, including regulators who supervise the
financial institutions.

For options, the popular valuation models devel-
oped by Black and Scholes (1973) and Merton
(1973) indicate that if a certain portfolio is formed
consisting of a risky asset, such as a stock, and a
call option on that asset (see the glossary for a def-
inition of terms), then the return of the resulting
portfolio will be approximately equal to the return
on a risk-free asset, at least over short periods of
time.1 This type of portfolio is often called a
hedge/replicating portfolio. By properly rebalanc-
ing the positions in the underlying asset and the

option, the return on the hedge portfolio can be
made to approximate the return of the risk-free
asset over longer periods of time. This approach is
often referred to as dynamic hedging. However,
forming a hedge portfolio and then rebalancing it
through time is often problematic in the options
market. There are two potential sources of errors:
The first is that the option valuation model may not
be an adequate characterization of the option
prices observed in the market. For example, the
Black-Scholes-Merton model says that the implied
volatility should not depend on the strike price or
the maturity of the option.2 In most options mar-
kets, though, the implied volatility of an option does
depend on the strike price and time to maturity of
the option, a phenomenon that runs contrary to the
very framework of the Black-Scholes-Merton model
itself. The second potential source of error is that
many option valuation models, such as the Black-
Scholes-Merton model, are developed under the
assumption that investors can trade and hedge con-
tinuously through time. However, in practice,
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investors can rebalance their portfolios only at dis-
crete intervals of time, and investors incur transac-
tion costs at every rebalancing interval in the form
of commissions or bid-ask spreads. Rebalancing too
frequently can result in prohibitive transaction
costs. On the other hand, choosing not to rebalance
may mean that the hedge portfolio is no longer
close to being optimal, even if the underlying option
valuation model is otherwise adequate.

This article examines some strategies often used
to offset limitations in the Black-Scholes-Merton
model, describing how the risk of existing positions
in options can be hedged by trading in the underly-
ing asset or other options. It shows how certain
basic hedge parameters such as “deltas,” which are
defined and discussed later, are derived given an
option pricing model. Subsequently, the discussion
notes some of the practical problems that often
arise in using the dynamic hedging principles of
the Black-Scholes-Merton model and considers
how investors and traders try to circumvent some
of these problems. Finally, the hedging implica-
tions of the simple Black-Scholes-Merton model
are tested against certain ad hoc pricing rules that
are often used by traders and investors to get
around some of the deficiencies of the Black-
Scholes-Merton model. The Standard and Poor’s
(S&P) 500 index options market, one of the most
liquid equity options markets, is used to compare
the hedging efficacies of various models. This study
suggests that ad hoc rules do not always result in
better hedges than a very simple and internally
consistent implementation of the Black-Scholes-
Merton model.

How Are Option Payoffs Replicated and 
Deltas Derived?

To hedge an option, or any risky security, one
needs to construct a replicating portfolio of
other securities, one in which the payoffs of

the portfolio exactly match the payoffs of the
option. Replicating portfolios can also be used to
price options, but this discussion will be limited to

their hedging properties. Before considering the
hedging aspects of the Black-Scholes-Merton model,
a few simple examples will illustrate how such port-
folios are constructed.

One-Period Model.3 The first example is a
European call option on a stock, assuming that the
stock is currently valued at $100.4 In this example,
the option expires in one year and the strike or
exercise price is $100, and the annual risk-free
interest rate is 5 percent so that borrowing $1 today
will mean having to pay back $1.05 one year from
now. For simplicity, the assumption is that there are
only two possible
outcomes when the
option expires—the
stock price can be
either $120 (an up
state) or $80 (a
down state). Note
that the value of the
call option will be
$20 if the up state
occurs and $0 if the
down state occurs as
shown below (see
Chart 1).5

Since there are
only two possible
states in the future,
it is possible to replicate the value of the option in
each of these states by forming a portfolio of the
stock and a risk-free asset. If ∆ shares of the stock
are purchased and M dollars are borrowed at the
risk-free rate, the stock portion of the portfolio is
worth 120 × ∆ in the up state and 80 × ∆ in the
down state while 1.05 × M will have to be paid back
in either of the states. Thus, to match the value of
the portfolio to the value of the option in the two
states, it must be the case that

120 × ∆ – 1.05 × M = 20 (up state) (1)
and

80 × ∆ – 1.05 × M = 0 (down state). (2)

1. For the purposes of this article, the risk-free asset is a money market account that has no risk of default.
2. Implied volatility in the Black-Scholes-Merton model is the level of volatility that equates the model value of the option to the

market price of the option.
3. The fact that results reported in this article have been rounded off from actual values may account for small differences when

the computations are recreated.
4. The general principle of hedging discussed here applies not only to stock options but also to interest rate options and cur-

rency options. Although not discussed here, deltas for American options can be similarly derived for the example shown here.
See Cox and Rubinstein (1985) for American options.

5. Note that the risk-free interest rate of 5 percent lies between the return of 20 percent in the up state and –20 percent in the
down state. For example, if the interest rate were above 20 percent, then one would never hold the risky asset because its
returns are always dominated by the return on the risk-free asset.

Because of the simplicity
and tractability of the
Black-Scholes-Merton
model for valuing options,
the model is widely used
by options traders and
investors.
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C H A R T  1   Stock and Option Values in the One-Period Model
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The resulting system of two equations with two
unknowns (∆ and M) can be easily solved to get 
∆ = 0.5, and M is approximately 38.10. Therefore,
one would need to buy 0.5 shares of the stock and
borrow $38.10 at the risk-free rate in order for the
value of the portfolio to be $20 and $0 in the up
state and down state, respectively. Equivalently,
selling 0.5 shares of the stock and lending $38.10 at
the risk-free rate would mean payoffs from that
portfolio of –$20 and $0 in the up and down state,
respectively, which would completely offset the pay-
offs from the option in those states.6 It is also worth
noting that the current value of the option must
equal the current value of the portfolio, which is 100
× ∆ – M = $11.90.7 In other words, a call option on
the stock is equivalent to a long position in the stock
financed by borrowing at the risk-free rate.

The variable ∆ is called the delta of the option. In
the previous example, if C

u
and C

d
denote the val-

ues of the call option and S
u

and S
d

denote the price
of the stock in the up and down states, respectively,
then it can be verified that ∆ = (C

u
– C

d
)/(S

u
– S

d
).

The delta of an option reveals how the value of the
option is going to change with a change in the stock
price. For example, knowing ∆, C

d
, and the differ-

ence between the stock prices in the up and down
state makes it possible to know how much the
option is going to be worth in the up state—that is,
C

u
is also known.

Two-Period Model. A model in which a year
from now there are only two possible states of the
world is certainly not realistic, but construction of a
multiperiod model can alleviate this problem. As for
the one-period model, the example for a two-period
model assumes a replicating portfolio for a call
option on a stock currently valued at $100 with a

strike price of $100 and which expires in a year.
However, the year is divided into two six-month
periods and the value of the stock can either
increase or decrease by 10 percent in each period.
The semiannual risk-free interest rate is 2.47 per-
cent, which is equivalent to an annual compounded
rate of 5 percent. The states of the world for the
stock values are given in Chart 2. Given this struc-
ture, how does one form a portfolio of the stock and
the risk-free asset to replicate the option? The cal-
culation is similar to the one above except that it is
done recursively, starting one period before the
option expires and working backward to find the
current position.

In the case in which the value of the stock over
the first six months increases by 10 percent to $110
(that is, the up state six months from now), the
value of the option in the up state is found by form-
ing a replicating portfolio containing ∆

u
shares of

the stock financed by borrowing M
u

dollars at the
risk-free rate. Over the next six months, the value of
the stock can either increase another 10 percent to
$121 or decline 10 percent to $99, so that the option
at expiration will be worth either $21 or $0. Since
the replicating portfolio has to match the values of
the option, regardless of whether the stock price is
$121 or $99, the following two equations must be
satisfied:

121 × ∆
u

– 1.0247 × M
u

= 21 (3)
and

99 × ∆
u

– 1.0247 × M
u

= 0. (4)

Solving these equations results in ∆
u

= 0.9545 and
M

u
= 92.22. Thus the value of the replicating portfo-

lio is 110 × ∆
u

– M
u

= $12.78. If, instead, six months
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C H A R T  3
Option Values in the Two-Period Model
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C H A R T  2  
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from now the stock declines 10 percent in value, to
$90 (the down state), the stock price at the expira-
tion of the option will either be $99 or $81, which is
always less than the exercise price. Thus the option
is worthless a year from now if the down state is
realized six months from now, and consequently the
value of the option in the down state is zero. Given
the two possible values of the option six months
from now, it is now possible to derive the number of
shares of the stock that one needs to buy and the
amount necessary to borrow to replicate the option
payoffs in the up and down states six months from
now. Since the option is worth $12.78 and $0 in the
up and down states, respectively, it follows that

110 × ∆ – 1.0247 × M = 12.78, (5)
and

90 × ∆ – 1.0247 × M = 0. (6)

Solving the above equations results in ∆ = 0.6389
and M = 56.11. Thus the value of the option today is
100 × ∆ – M = $7.77. The values of the option are
shown graphically in Chart 3.

A feature of this replicating portfolio is that it is
always self-financing; once it is set up, no further
external cash inflows or outflows are required in the
future. For example, if the replicating portfolio is set
up by borrowing $56.11 and buying 0.6389 shares of
the stock and in six months the up state is realized,

the initial portfolio is liquidated. The sale of the
0.6389 shares of stock at $110 per share nets $70.28.
Repaying the loan with interest, which amounts to
$57.50, leaves $12.78. The new replicating portfolio
requires borrowing $92.22. Combining this amount
with the proceeds of $12.78 gives $105, which is
exactly enough to buy the required 0.9545 (∆

u
)

shares of stock at $110 per share. Replicating port-
folios always have this property: liquidating the cur-
rent portfolio nets exactly enough money to form
the next portfolio. Thus the portfolio can be set up
today, rebalanced at the end of each period with no
infusions of external cash, and at expiration should
match the payoff of the option, no matter which
states of the world occur.

In the replicating portfolio presented above, the
option expires either one or two periods from now,
but the same principle applies for any number of
periods. Given that there are only two possible
states over each period, a self-financing replicating
portfolio can be formed at each date and state by
trading in the stock and a risk-free asset. As the
number of periods increases, the individual periods
get shorter so that more and more possible states of
the world exist at expiration. In the limit, continu-
ums of possible states and periods exist so that the
portfolio will have to be continuously rebalanced.
The Black-Scholes-Merton model is the limiting case
of these models with a limited number of periods.

6. In other words, a long position in one unit of the option can be hedged by holding a short position in 0.5 shares of the stock
and lending $38.10 at the risk-free rate: the value of the total position is $0 in both states.

7. If the current value of the option were higher/lower than the value of the replicating portfolio, then an investment strategy
could be designed by selling/buying the option and forming the replicating portfolio such that one will always make money at
no risk, often called an arbitrage opportunity.
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Thus the Black-Scholes-Merton model must assume
that investors can trade, or rebalance, continuously
through time.8 Another assumption of the Black-
Scholes-Merton model concerns the volatility of the
stock returns over each time period. Volatility 
is related to the up and down movements in the 
limited-period models. The Black-Scholes-Merton
model assumes that the volatility of the stock
returns is either constant or varies in such a way
that future volatilities can be anticipated on the
basis of current information.9

Although the continuous trading assumption may
seem unrealistic, the Black-Scholes-Merton model
nevertheless provides traders and investors with a
very convenient formula in which all the input vari-
ables but one are observable. The only unobservable
input variable is the implied volatility, that is, the
average expected volatility of the asset returns until
the option expires. A reasonable guess about the
expected future volatility is not very difficult, how-
ever, because one can estimate the prevalent volatil-
ity from the history of asset prices to the present
time. From a trader’s or investor’s perspective, using
the Black-Scholes-Merton formula, then, requires
only guessing the implied volatility.10 A more sophis-
ticated option pricing model, in contrast, may
require the trader to guess values of model variables
more difficult to obtain in real time, such as the
speed of mean reversion of volatility and others. In
fact, the simplicity of the Black-Scholes-Merton
model largely explains its widespread use regardless
of some of its glaring biases from a theoretical per-
spective. Despite the Black-Scholes-Merton model’s
very convenient pricing formula, it seems to have
serious constraints: it does not allow forming a self-
financing replicating portfolio with the provision
that one can trade only at discrete intervals of time
with nonnegligible transaction costs such as com-
missions or bid-ask spreads.

Delta Hedging under the Black-Scholes-

Merton Model. Considering a European call option
on a nondividend paying stock will illustrate some 
of the shortcomings of the Black-Scholes-Merton
model.11 This example assumes that the option has a
strike price of $100 and expires in 100 days; that the
current stock price is $100 and the implied volatility
is 15 percent annually; and that the current annual
risk-free rate, continuously compounded, is 5 per-
cent. If 100 call options have been written (100
options typically constitute an options contract), a
delta-neutral portfolio will have to be formed to
hedge exposure to stock price movements. A delta-
neutral portfolio is one that is insensitive to small
changes in the price of the underlying stock. Using
the Black-Scholes-Merton option valuation formula

given in Box 1, the value of each option is approxi-
mately $3.8375, so that $383.75 is received by selling
or writing the option. Since the portfolio should be
self-financing, the proceeds from the options are
invested in the stock and risk-free asset. Thus
$383.75 is invested in a portfolio of N shares of the
stock and in M dollars of the risk-free asset.

Let ∆ denote the delta of the option and, in accor-
dance with the formula for ∆ for the Black-Scholes-
Merton model given in Box 1, ∆ = 0.5846. The delta of
the total position (option, stock, and risk-free asset)
is a linear combination of the deltas of the options,
the stock, and the risk-free asset. The delta of a long
(short) position in the option is Λ (–Λ), the delta of a
long (short) position in the stock is 1 (–1), and the
delta of the risk-free asset is zero. As 100 options
have been sold and N shares have been bought, the
delta of the portfolio is –100 × ∆ + N.

In order for the portfolio to be delta-neutral, the
following equation must be satisfied:

–100 × ∆ + N = 0. (7)

Similarly, for the portfolio to be self-financing, it has
to be the case that

N × 100 + M = 383.75. (8)

In solving the two equations above for N and M, 
N = ∆ × 100 = 58.46 and M = –5,462.25. Thus 100
options have been sold for a total of $383.75, 58.46
units of the share have been bought, and $5,462.25
has been borrowed at an annual interest rate of 
5 percent. The total value of the portfolio is zero
when it is formed because the portfolio is self-
financing. What happens, though, to the portfolio
value on the next trading day for three different lev-
els of the stock prices? Borrowing $5,462.25 has
incurred interest charges of approximately
$5,462.25 × 0.05/365.0 = $0.748. Thus the value of
the portfolio on the next day (denoted as t + 1) is

V(t + 1) = 58.46 × S(t + 1) – 100 (9)
× C(t + 1) – (5,462.25 + 0.748),

where S(t + 1) and C(t + 1) denote the values of the
stock and the call option, respectively, on the next
day. Table 1 gives the value of the option and there-
by the value of the delta-neutral portfolio for various
values of the stock price, assuming that everything
else (including the implied volatility) is the same.

The value of the delta-neutral portfolio is not zero
in any of these cases, even though in one the stock
price did not change from its initial value of $100.
The reason is that the delta has been derived from a
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8. This replication with continuous trading is possible due to a special property known as the martingale representation prop-
erty of Brownian motions (see Harrison and Pliska 1981).

9. However, with continuous trading, one can form a self-financing portfolio by trading in the stock and the risk-free asset even
if the volatility of the stock is random. All that is needed is that the Brownian motions driving the stock price and the volatil-
ity are perfectly correlated (see Heston and Nandi forthcoming).

10. Given the existence of multiple implied volatilities from different options (on the same asset), this task is a little more
complicated.

11. If the stock pays dividends, then the present value of the dividends that are to be paid during the life of the option must be
subtracted from the current asset price; the resulting asset price is used in the option pricing formula.

12. It is also worth noting that the portfolio is not self-financing on the next day because rebalancing would incur an external
cash flow in each of the three states.

13. One can also go to the Web site www.cboe.com/tools/historical/vix1986.txt to see the daily history of the implied volatility
index on the Standard and Poor’s 100, called the VIX. VIX captures the implied volatilities of certain near-the-money options
on the Standard and Poor’s 100 index (ticker symbol, OEX).

T A B L E  1
The Delta-Neutral Portfolio on the Next Day 

with No Change in Implied Volatility

Stock Price Option Price Portfolio Value

$ 99 $3.26 –$0.96

$100 $3.82 $1.53

$101 $4.42 –$0.84

T A B L E  2
The Delta-Neutral Portfolio on the Next 

Day When Implied Volatility Changes

Implied Volatility
Stock Price (Percent) Portfolio Value

$ 99 15.5 –$11.26

$100 15.0 $ 1.50

$101 14.5 $ 9.06

model that assumes continuous trading and thus
requires continuous rebalancing for the delta-neutral
portfolio to retain its original value. Transactions
costs, like broker commissions and margin require-
ments, would further deteriorate the performance
of the delta-neutral portfolio.12

Other Dynamic Hedging Procedures Using

the Black-Scholes-Merton Model. The previous
example assumed that the underlying Black-
Scholes-Merton model generated the option prices
so that the implied volatility was the same on both
days. However, in reality the implied volatility is not
constant but changes through time in almost all
options markets. The following example demon-
strates the outcome if the implied volatility changes
on the next day, assuming that the implied volatil-
ity on the next day (t + 1) is 15.5 percent, 15 per-
cent, and 14.5 percent, corresponding to three
different stock prices of $99, $100, and $101. The
fluctuation of implied volatility suggested here cor-
responds to stock price, increasing as the stock
price goes down and decreasing as it goes up—a
feature of many equity and stock index options
markets. Table 2 shows the values of the portfolio
corresponding to three different levels of stock
prices and implied volatilities.

Thus, with a change in the implied volatility of
around 0.5 percent (frequently observed in options
markets), the hedging performance of the Black-
Scholes-Merton model deteriorates quite sharply.
The hedge portfolios constructed on the previous
day are quite poor primarily because the model’s
assumption of constant variance is violated.
Extensive academic literature documents how
implied volatilities in the options market change
through time (Rubinstein 1994; Bates 1996; and
many others).13 Further, volatility often varies in
ways that cannot always be predicted with current
information. How could traders or investors set up
hedge portfolios that would account for the random
variation in volatilities? One alternative is to derive

the hedge portfolio from a more sophisticated (and
more complex) option pricing model such as a sto-
chastic volatility model (to be discussed later).
However, estimating and implementing such a
model can be difficult for an average trader or
investor. Practitioners may be better served by find-
ing ways to circumvent the hedging deficiencies of
the Black-Scholes-Merton model stemming from
implied volatilities that change through time but
sticking to the model as much as possible.

One way to get around the problem of time-varying
volatility that occurs with the Black-Scholes-Merton
model is to form a hedge portfolio that is insensitive
to both the changes in the price of the underlying
asset and its volatility. The sensitivity of an option
price with respect to the volatility is often
referred to as vega. In order to hedge against
changes in both the asset price and volatility, one
can form a portfolio that is delta-neutral as well as
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vega-neutral. The formation of such a portfolio is
indeed ad hoc: in fact, it is theoretically inconsis-
tent because under the Black-Scholes-Merton
model volatility is constant (or deterministic) and
therefore does not need to be hedged. Forming a
delta-vega-neutral portfolio would require trading
two options, the underlying asset and the risk-
free asset.

Adding to the previous example, in which an
option contract has been sold (with 100 days to
expire) and in which all other variables such as the
stock price and the strike price are the same as
before, N2 units of a second option, N3 units of the
stock, and M dollars of the risk-free asset are

required. The current values of the first and second
option are denoted as C(1) and C(2), respectively,
whereas the current stock price is denoted as S(t).
Since the second option can be chosen freely, an
option of the same strike ($100) but a maturity of
150 days is selected. Given these, C(1) = $3.8375
and C(2) = $4.898. The current deltas of the two
options are denoted as ∆(1) and ∆(2), and the
vegas, as vega(1) and vega(2) (see Hull 1997 for the
formula for vega).

For the delta of the portfolio to be zero, it is nec-
essary that

–100 × ∆(1) + N2 × ∆(2) + N3 = 0. (10)

The Black-Scholes-Merton formula gives the cur-
rent value of a European call/put option in

terms of (a) S(t), the price of the underlying asset;
(b) K, the strike or exercise price; (c) τ, the time to
maturity of the option; (d) r(τ), the risk-free rate or
the equivalent yield of a zero-coupon bond (that
matures at the same time as the option); and (e) σ ,
the square root of the average per period (for exam-
ple, daily) variance of the returns of the underlying
asset that will prevail until the option expires.1

Assuming that the underlying asset does not pay
any dividends until the option expires, the call and
put values are at time t.

C(t) = S(t) N(d1) (B1) 
– K exp[–r(τ)τ] N(d2), 

and
P(t) = K exp[–r(τ)τ] N(–d2) (B2)

– S(t) N(–d1),

where N() is the standard normal distribution function
and

d1 = {ln(S/K) + [r(τ)+ 0.5σ2]τ}/σ τ (B3)
and

d2 = d1 – σ τ. (B4)

(The tables for computing the function are found in
almost all basic statistics books.) If the underlying
asset pays known dividends at discrete dates until the
option expires, then the present value of the dividends
must be subtracted from the asset price to substi-
tute for S(t) in the above formulas.2 Of the above-
mentioned variables that are required as inputs to the
Black-Scholes-Merton formula, only σ is not readily
observable.

The delta of the option is the partial derivative of 
the option price with respect to the asset price, that is, 
dC/dS for call options and dP/dS for put options. An
important property of the Black-Scholes-Merton 
formula is that the option price is homogeneous of
degree 1 in the asset price and the strike price. Hence it
follows from Euler’s theorem on homogeneous functions
(see Varian 1984) that the delta of the call option is
N(d1) and that of the put option is N(d1) – 1.

The vega of a call or put option is dC/dσ or dP/dσ .
Hull (1997, 329) gives the formula for vega in terms 
of the same variables that appear in the valuation
formula.

Black-Scholes Price and Deltas

1. Actually the Black-Scholes (1973) model assumes that the risk-free rate is constant. However, Merton (1973) shows that even
if interest rates are random, the appropriate interest rate to use in the Black-Scholes formula for a stock option is the yield
of a zero-coupon bond that expires at the same time as the option. In that case, the simple Black-Scholes (1973) formula
serves as an extremely good approximation because the volatility of interest rates is relatively low compared with the volatil-
ity of the underlying stock.

2. The corresponding exact valuation formula for American put options (or call options on dividend paying assets) and deltas
are not known explicitly. However, there are good analytical approximations as in Carr (1998), Ju (1998), and, Huang,
Subrahmanyam, and Yu (1996).
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The Delta-Vega-Neutral Portfolio on the Next 

Day When Implied Volatility Changes
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Implied 
Stock Volatility Portfolio
Price (Percent) C(1)t + 1 C(2)t + 1 Value

$ 99 15.5 $ 3.36 $ 4.42 $ –0.30

$100 15 $ 3.81 $ 4.88 $ 0.51

$101 14.5 $ 4.32 $ 5.38 $ –0.34

but forming such a portfolio requires positions in
three options.

The hedging problems discussed thus far fall
under the rubric of dynamic hedging in that they
require a portfolio formed of the underlying asset
and a risk-free asset or options that must be rebal-
anced through time. Since the number of units of
the underlying asset and the risk-free asset or other
options are derived from an option pricing model,
such as the Black-Scholes-Merton model, the forma-
tion of the hedge portfolio is prone to model mis-
specifications; that is, the underlying options
valuation model is not consistent with the option
prices observed in the market. An alternative to
dynamic hedging is static hedging in which a portfo-
lio is formed as of today and requires no further
trading in the underlying asset and options.

Let S, K, P, and C denote the underlying asset
price, strike price, put price, and call price, respec-
tively. (Note that both the put and call have the
same strike price.) If r and τ denote the risk-free
rate and time to expiration, then the put-call parity
relationship for European options states that the
following has to hold exactly at any given point in
time (in the absence of transactions costs):

P = C – S + Ke–rτ. (13)

Thus, to replicate the payoff of a put option with
the strike price, K, and time to maturity, τ, a synthet-
ic portfolio must be constructed containing a call
option of the same strike and maturity as that of the
put, a short sell of the asset, and a long position on K
units of a discount bond (that pays off $1 at matu-
rity) that matures at the same time as the options.
Once the synthetic portfolio has been set up for the
put option, rebalancing is no longer necessary
because the price of the put option is identical to
that of the synthetic portfolio if put-call parity is to
be preserved. Since the put-call parity relationship is

For the vega of the portfolio to be zero, it is neces-
sary that

–100 × vega(1) + N2 × vega(2) = 0.14 (11)

For the portfolio to be self-financing, it is necessary
that

–100 × C(1) + N2 × C(2) (12)
+ N3 × S(t) – M = 0.

Solving the equations in this system of three equa-
tions with three unknowns (N2, N3, and M) shows
that N2 = 82.59, N3 = 8.64, and M = $884.96. Thus
82.59 units of the second option and 8.64 units of
the stock must be bought, and $884.96 must be bor-
rowed at the risk-free rate. Table 3 shows the value
of the delta-vega-neutral portfolio on the next day.
The terms C(1)

t + 1 and C(2)
t + 1 denote the prices of

the first and second option on the next day.
The delta-vega-neutral hedge portfolio performs

much better than a delta-neutral hedge portfolio
that uses just one option, especially if the implied
volatilities change. The only disadvantage in using
this kind of hedge is that the portfolio requires two
options, and options markets tend to be less liquid
than the market on an underlying asset, such as a
stock. On average, options have much higher bid-
ask spreads (relative to their transaction prices)
than those on an underlying asset such as a stock.
Using a second option to hedge the volatility risk
therefore could increase transaction costs, espe-
cially for a retail investor.

Similar to delta-vega hedging is what is known as
delta-gamma hedging. The gamma of an option
measures the rate of change of its delta with
respect to a change in the price of the underlying
asset. The more the delta of the option changes
with the asset price, the more a portfolio will have
to be rebalanced to remain delta-neutral. The pur-
pose of delta-gamma hedging is to create a portfo-
lio that is both delta-neutral and gamma-neutral.
Thus, ceteris paribus, the amount of rebalancing
required in a delta-gamma-neutral portfolio would
tend to be lower than that in a delta-neutral portfo-
lio over short periods of time, and lower rebalanc-
ing could be used to offset higher transactions
costs. Constructing a delta-gamma-neutral portfolio
also requires two options; the number of units of
the second option can be found by solving a similar
set of equations to those applied to the delta-vega-
neutral portfolio discussed previously. A delta-
vega-gamma-neutral portfolio can also be created,

14. The vega of a portfolio of options is a linear combination of the vegas of the individual options, and the vega of the underly-
ing asset is zero. Vega(1) = 20.41; vega(2) = 24.71; ∆(1) = 0.585; ∆(2) = 0.603.
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independent of any option valuation model, static
hedging may seem to be the preferable path.
However, static hedging is also prone to some of the
same drawbacks that occur when options are
hedged with options—namely, that options markets
are relatively illiquid, and the second option may not
be available in the right quantity. For example, in the
Standard and Poor’s 500 index options, a market
maker may have to satisfy huge buy order flows in
deep out-of-the-money put options—those with strike
prices substantially below the current S&P 500
level—from institutional investors who want to hedge
their positions against sharp downturns in the index.
However, the volume of deep-in-the-money call
options that would be required in the hedge/replicat-
ing portfolio (as per put-call parity) is relatively low,
and hedging deep-out-of-the-money puts via deep-in-
the-money calls may not be readily feasible.

Static hedging has often been advocated as a use-
ful tool for certain types of exotic options known as
barrier options.15 Barrier options tend to have
regions of very high gammas; that is, the delta
changes very rapidly and thus requires frequent
rebalancing in certain regions (for example, if the
asset price is close to the barrier). Dynamic hedging
may therefore turn out to be quite difficult and
costly for barrier options. Nevertheless, liquidity
issues concerning static hedging discussed previ-
ously also apply to barrier options. A further diffi-
culty is that some options needed as part of the
static hedge portfolios for barrier options may not
be traded at all, so close substitutes must be chosen.
In hedging exotic options such as barrier options, a
trade-off between the pros and cons of static and
dynamic hedging is thus inevitable.

Smile, Smirk, and Hedge. Because of its sim-
plicity (traders have to guess only one unobservable
variable—the average expected volatility of the
underlying asset over the life of the option) the
Black-Scholes-Merton model continues to be very
popular with most traders. However, from a theoret-
ical perspective, the model always exhibits certain
biases. One very prevalent and widely documented
bias is that the implied volatilities in the Black-
Scholes-Merton model depend on the strike price
and maturity of an option. Chart 4 shows the
implied volatilities in the Standard and Poor’s 500
index options for call options of different strike
prices on December 21, 1995, with twenty-eight and
fifty-six days to maturity. The implied volatilities in
the Standard and Poor’s 500 index options market
tend to decrease as the strike price increases; this
pattern is sometimes referred to as a volatility
smirk. Similarly, in some other options markets,
such as the currency options market, the implied

volatilities decrease initially as the strike price
increases and then increase a little—a U-shaped
pattern often referred to as a smile. Chart 4 also
makes it apparent that for options of the same strike
price, implied volatility differs depending on the
maturity of the option. For example, if the strike
price is $570, the implied volatility of the option
with twenty-eight days to maturity is 18.7 percent
whereas the implied volatility of the option with
fifty-six days to maturity is 16.7 percent. Such vari-
ations in implied volatilities across strike prices and
maturities are inconsistent with the basic premise of
the Black-Scholes-Merton model, which accommo-
dates only one implied volatility irrespective of
strike prices and maturities. Before examining the
hedging implications of this bias, it is important to
understand what could possibly be causing such a
phenomenon for index options.

One possibility for the existence of the smirk pat-
tern in implied volatilities is that the options market
expects the Standard and Poor’s 500 index to go
down with a higher probability than that suggested
by the statistical distribution postulated for the
returns of the index in the Black-Scholes-Merton
model. As a result, the market would put a higher
price on an out-of-the-money put than would the
Black-Scholes-Merton model. Since option prices
(both puts and calls) under Black-Scholes-Merton
increase as volatility increases, the implied volatility
using the Black-Scholes-Merton model would be
higher than it would otherwise be. In fact, if the dis-
tribution of the returns of the underlying asset is
seen as embedded in a cross section of option prices
with different strike prices (see Jackwerth and
Rubinstein 1996), the distribution appears to be one
in which, given today’s index level, the probability of
negative returns in the future is higher than the
probability of positive returns of equal magnitude.
Such distributions are said to be skewed to the left.16

In contrast, the statistical distribution that drives the
returns of an underlying asset under the Black-
Scholes-Merton model is Gaussian/normal, which
does not involve skewness. In other words, given
today’s index level, the probability of positive returns
is the same as the probability of negative returns of
equal magnitude.

Is it possible to get such negatively skewed distri-
butions under alternative assumptions of the statis-
tical process that generates returns? It turns out
that allowing for future changes in volatility to be
random and allowing volatility to be negatively cor-
related with the returns of the underlying asset can
generate negatively skewed distributions of the
returns of the underlying asset.17 Indeed, option
pricing models have been developed in which the
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volatility of the underlying asset varies randomly
through time and is correlated with the returns of
the underlying asset. One class of such models,
known as implied binomial tree/deterministic
volatility models, was first proposed by Dupire
(1994), Derman and Kani (1994), and Rubinstein
(1994). In these models the current volatility
(sometimes known as local volatility) is a function of
the current asset price and time, unlike in the Black-
Scholes-Merton model, in which volatility is con-
stant through time.18 These models are also known
as path-independent time-varying volatility models
in that the current volatility does not depend on the
history or path of the asset price. In another class of
models, sometimes known as path-dependent time-
varying volatility models, the current volatility is the
function of the entire history of asset prices and not
just the current asset price.19

Testing the hedging efficacy of an option valua-
tion model often involves measuring the errors
incurred in replicating the option with the pre-
scribed replicating portfolio of the model. In other
words, the replicating portfolio is formed today, and
at a future time the value of the replicating portfo-
lio is compared with the option price observed in
the market as of that time. In empirical tests of
path-independent time-varying volatility models,
Dumas, Fleming, and Whaley (1998) show that in
the Standard and Poor’s 500 index options market
the replication errors of delta-neutral portfolios of
path-independent volatility models are greater than
those of the very simple Black-Scholes-Merton
model. In fact, in terms of replication errors of
delta-neutral portfolios, a very simple implementa-
tion of the model also appears to dominate an ad
hoc variation of the model that uses a separate
implied volatility for each option to fit to the
smile/smirk curve. The Black-Scholes-Merton
model proves more useful for hedging despite the

fact that in terms of predicting option prices (that
is, computing option prices out-of-sample) it is
dominated by the ad hoc rule and the time-varying
path-independent volatility model.

Why is it more useful? As discussed above, the
hedge ratio, or the delta, which measures the rate
of the change in option price with respect to the
change in the price of the underlying asset, is an
important consideration. If a replicating/hedge
portfolio (from an option pricing model) is formed
to replicate the value of the option at the next
period, it can be shown that to a large extent the
hedging/replication error reflects the difference in
the pricing or valuation error between the two
periods (see Dumas, Fleming, and Whaley 1998).
Though one model, model A for example, may result
in a lower pricing error (even out-of-sample) than
another model, in order for model A to result in
lower hedging errors than model B, it could also
often be necessary that the change (across two time
periods) in valuation error under model A be less
than that under model B. More often than not, how-
ever, the differences in the valuation errors (across
two time periods) between models turn out not to
be very significant for most classes of options (that
is, options of different strike prices and maturities).
In other words, although the Black-Scholes-Merton
model exhibits pricing biases, as long as these 
biases remain relatively stable through time, its
hedging performance can be better than the perfor-
mance of a more complex model that can account for
many of the biases, especially if the more complex
model does not adequately characterize the way
asset prices evolve over time.

Hedging with Ad Hoc Models. How do traders
or investors who routinely use the Black-Scholes-
Merton model to arrive at hedge ratios/deltas use
the model, despite the fact that patterns in implied
volatilities across options of different strike prices

15. An example of a barrier option is a down-and-out call option in which a regular call option gets knocked out; that is, it ceases
to exist if the asset price hits a certain preset level.

16. The distribution that is skewed is the risk-neutral distribution of asset returns (see Nandi 1998 for risk-neutral probabili-
ties/distributions) and not necessarily the actual distribution of asset returns.

17. Negative correlation implies that lower returns are associated with higher volatility. As a result, the lower or left tail of the
distribution spreads out when returns go down, generating negative skewness. This negative correlation is often referred to
as the leverage effect (Black 1976; Christie 1982) in equities. One possible explanation for this effect is that as the stock
price goes down, the amount of leverage (ratio of debt to equity) goes up, thus making the stock more risky and thereby
increasing volatility. An argument against this explanation is that the negative correlation can be observed for stocks of cor-
porations that do not have any debt in their capital structure.

18. Since the future level of the asset price is unknown, the future local volatility is also not known, and, strictly speaking, unlike
in the Black-Scholes-Merton model, volatility is not deterministic in these models.

19. See Heston (1993) and Heston and Nandi (forthcoming) for option pricing models with path-dependent volatility models in
continuous and discrete time, respectively. These models are sometimes known as continuous time stochastic volatility and
discrete-time GARCH models, respectively. Continuous time models are very difficult to implement due to the fact that
volatility is unobservable given the history of asset prices.
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C H A R T  4   Implied Volatilities of Call Options
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Note: The chart shows the implied volatilities from Standard and Poor’s 500 call options of different strike prices on December 21, 1995. 
The Standard and Poor’s 500 index level was at approximately 610.
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There are many different ways in which a trader or
investor can input a value for volatility in the Black-
Scholes-Merton formula for computing the delta of
an option. The Black-Scholes-Merton model assumes
that the volatility of an asset’s returns is constant
through time. However, an investor trying to use the
model in the real world is not constrained to hold the
volatility constant and can periodically estimate
volatility from past observations of asset prices. As
an alternative to using the historical data, a single
implied volatility for all options (of different strikes
and maturities every day) can be estimated that
minimizes a criterion function involving the
squared price differentials between model prices
and the observed prices in the market (see Box 2
for details).

This approach results in a single implied volatility 
for all options every day. On the other hand, implied
volatility can be based on observation of a particu-
lar option so that a different implied volatility exists
for each option. As an alternative to using the exact
implied volatility for each option, a procedure that
“merely smoothes Black/Scholes implied volatilities
across exercise prices and times to expiration” is
used by some options market makers at the
Chicago Board Options Exchange (CBOE) (Dumas,
Fleming, and Whaley 1998). For example, given
that the shape of the smirk in implied volatilities
resembles a parabola, one can choose the implied
volatility to be a function of the strike price and the
square of the strike price. However, implied volatil-
ities differ across maturities even for the same
strike price. Thus the time to maturity—and possi-
bly the square of the time to maturity—can also be
included in the function. The equation below is
used in Dumas, Fleming, and Whaley (1998).

and maturities are inconsistent with the model? As
it turns out, such traders or market makers often
use certain theoretically ad hoc variations of the
basic Black-Scholes-Merton model to circumvent its
biases. Such ad hoc variations allow the implied
volatilities input to the Black-Scholes-Merton model
to differ across strike prices and maturities. Using a
separate implied volatility for each option is incon-
sistent with the basic theoretical underpinning of
the Black-Scholes-Merton model, but it is a common
practice among traders and market makers in cer-
tain options exchanges (Dumas, Fleming, and
Whaley 1998). In the course of implementing such
ad hoc variations, options traders or investors can
be thought of as using the Black-Scholes-Merton
model as a translation device to express their opin-
ion on a more complicated distribution of asset
returns than the Gaussian distribution that under-
lies the Black-Scholes-Merton model.

Ad hoc variations of the basic Black-Scholes-
Merton model, depending on the way they are
designed, may result in prices that better match
observed market prices. But do they necessarily
result in better hedging performance? Four versions
of the Black-Scholes-Merton model that differ from
one another in terms of fitting a cross section of
option prices (in-sample errors) and also in predict-
ing option prices (out-of-sample errors) will be 
presented; these examples illustrate that the differ-
ences between the models in terms of hedging/repli-
cation errors are not as significant as the differences
in valuation errors for most options. In fact, if the
models are ranked in terms of the replication errors
of the delta-neutral portfolios, the ranking could
prove different than when the models are ranked in
terms of valuation errors.

The Black-Scholes-Merton-2 version of the model
uses a procedure called nonlinear least squares

(NLS) to estimate a single implied volatility across
all options each Wednesday. The NLS procedure
minimizes the squared errors between the market
option prices and model option prices. The differ-
ence between the model price (given an implied
volatility, σ) and the observed market price of the
option is denoted by e

i
(σ). As mentioned in Box 1,

the midpoint of the bid-ask quote is used for the

observed market price of the option. Thus the crite-
rion function minimized at each t (over σ) is

where N
t

is the number of sampled bid-ask quotes on 
day t. In essence, this procedure attempts to find a 
single implied volatility that minimizes the squared
pricing errors of the model.

B O X  2

Parameter Estimation
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σ(K, τ) = a0+ a1K + a2 K
2 (14)

+ a3τ + a4τ
2 + a5 Kτ,

where K is the strike price and τ is the time to matu-
rity of the option. Since the implied volatility σ(K,τ)
is observable for each K and τ, one can use the
above equation as an ordinary least squares (OLS)
regression of the implied volatilities on the various
right-hand variables to get the coefficients a0, a1, a2,
and so on. These coefficients provide an estimated
implied volatility for each option.20 To summarize,
one can use the Black-Scholes-Merton model to
arrive at the delta in four different ways: (a) com-
pute the delta with volatility estimated from histori-
cal prices, (b) compute the delta using a single
implied volatility that is common across all options,
(c) compute the delta using the exact implied
volatility for each option, and (d) compute the delta
using an estimated implied volatility for each option
that fits to the shape of the smirk across strike
prices and time to maturities.

Of the four different versions of the Black-
Scholes-Merton discussed above, the two that allow
implied volatilities to differ across options of differ-
ent strike prices and maturities are indeed ad hoc.
The other two versions that result in a single implied
volatility across all strikes and maturities are much
less ad hoc. Implementing the four different ver-
sions of the Black-Scholes-Merton model in the
Standard and Poor’s 500 index options makes it pos-
sible to explore the differences in hedging errors
produced by these approaches.

The market for Standard and Poor’s 500 index
options is the second most active index options mar-
ket in the United States, and in terms of open inter-
est in options it is the largest. It is also one of the
most liquid options markets.21 These models test
data for the time period from January 5, 1994, to
October 19, 1994.22 Box 3 gives a detailed description
of the options data used for the empirical tests. The
replicating/hedge portfolios are formed on day t

from the first bid-ask quote in that option after 
2:30 P.M. (central standard time). The portfolio is liq-
uidated on one of the following days—t + 1, t + 3, or 
t + 5.23 The hedging error for each version of the
Black-Scholes-Merton model is the difference
between the value of the replicating portfolio and
the option price (measured as the midpoint of the
bid-ask prices) at the time of the liquidation.

The first panel of Table 4 shows the mean absolute
hedging errors (for the whole sample and across all
options) of the four versions of the Black-Scholes-
Merton (BSM) model.24 Black-Scholes-Merton-1 is
the version of the model in which volatility is com-
puted from the last sixty days of closing Standard

and Poor’s 500 index levels. Black-Scholes-Merton-2
is the version of the model in which a single implied
volatility is estimated for all options each day. Ad
hoc-1 is the ad hoc version of the Black-Scholes-
Merton model in which each option has its own
implied volatility each day, and ad hoc-2 is the other
ad hoc version, in which the implied volatility (on
each day) for each option is estimated via the OLS
procedure discussed previously.

The first panel clearly shows that judging models
on the basis of hedging/replication errors could be
somewhat different from judging them on the basis
of valuation errors, as discussed previously; valua-
tion errors could include either in-sample errors
that show how well the model values fit market
prices or out-of-sample/predictive error.25 For
example, ad hoc-2 yields substantially lower predic-
tion errors than the Black-Scholes-Merton-2 version
(Heston and Nandi forthcoming) but is the least
competitive in terms of hedging errors. On the other
hand, the magnitude of hedging errors of ad hoc-1, in
which the in-sample valuation errors is essentially
zero (as each option is priced exactly), is not very
different from that of Black-Scholes-Merton-1. In
fact, Black-Scholes-Merton-1, which has the highest
in-sample valuation errors (as volatility is not

T A B L E  4 Mean Absolute Hedging Errors

BSM-1 BSM-2 Ad Hoc-1 Ad Hoc-2

Whole Sample, All Options

One-day $0.46 $0.45 $0.43 $0.52

Three-day $0.66 $0.65 $0.62 $0.78

Five-day $0.98 $0.94 $0.87 $1.07

Far-out-of-the-Money Puts under Forty Days to Maturity

One-day $0.22 $0.16 $0.10 $0.19

Three-day $0.23 $0.19 $0.20 $0.26

Five-day $0.63 $0.50 $0.40 $0.64

Near-the-Money Calls under Forty Days to Maturity

One-day $0.25 $0.33 $0.24 $0.34

Three-day $0.49 $0.52 $0.44 $0.60

Five-day $0.98 $1.08 $0.90 $0.83

Near-the-Money Puts Forty to Seventy Days to Maturity

One-day $0.52 $0.56 $0.53 $0.62

Three-day $0.74 $0.76 $0.77 $0.91

Five-day $1.20 $1.34 $1.15 $1.17

Source: Calculated by the Federal Reserve Bank of Atlanta using
data from Standard and Poor’s 500 index options market
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20. If the number of options on a given day is too few, then there is a potential problem of overfitting in that more independent
variables exist in the right-hand side but only a limited number of observations. However, such a problem can be partially
mitigated by using a subset of the above regression (see Dumas, Fleming, and Whaley 1998).

21. One would want to test any options model in a very liquid options market so that prices are more reliable and do not reflect
any liquidity premium.

22. The 1994 data were the latest full-year data available at the time of this writing.
23. The day t is usually a Wednesday. If Wednesday is a holiday, then the next trading day is chosen.
24. The mean absolute hedging error is the mean of the absolute values of the hedging errors. The conclusions do not change if

a slightly different criterion is used, like root mean squared hedging error.
25. Prediction or out-of-sample valuation errors measure how well a given model values options based on the model parameters

that were estimated in a previous time period.

The data set used for hedging is a subset of the tick-
by-tick data on the Standard and Poor’s 500

options that includes both the bid-ask quotes and the
transaction prices; the raw data set is obtained direct-
ly from the exchange. The market for Standard and
Poor’s 500 index options is the second most active
index options market in the United States, and in terms
of open interest in options it is the largest. It is also
easier to hedge Standard and Poor’s 500 index options
because there is a very active market for the Standard
and Poor’s 500 futures that are traded on the Chicago
Mercantile Exchange.

Since many of the stocks in the Standard and Poor’s
500 index pay dividends, a time series of dividends for
the index is necessary. The daily cash dividends for
the index collected from the Standard and Poor’s 500
information bulletin for the years 1992–94 can be
used.1 The present value of the dividends (until the
option expires) is computed and subtracted from the
current index level. For the risk-free rate, the contin-
uously compounded Treasury bill rates (from the aver-
age of the bid and ask discounts reported in the Wall

Street Journal) are interpolated to match the maturi-
ty of the option.

The raw intraday data set is sampled every
Wednesday (or the next trading day if Wednesday is a
holiday) between 2:30 P.M. and 3:15 P.M. central stan-
dard time to create the data set.2 In particular, given a

particular Wednesday, an option must be traded on
the following five trading days to be included in the
sample. The study follows Dumas, Fleming, and
Whaley (1998) in filtering the intraday data to create
weekly data sets and use the midpoint of the bid-ask
as the option price. As in Dumas, Fleming, and
Whaley (1998), options with moneyness, | K/F – 1 | (K

is the strike price and F is the forward price), less
than or equal to 10 percent are included. In terms of
maturity, options with time to maturity less than six
days or greater than one hundred days are excluded.3

An option of a particular moneyness and maturity is
represented only once in the sample on any particular
day. In other words, although the same option may be
quoted again in our time window (with the same or dif-
ferent index levels) on a given day, only the first record
of that option is included in our sample for that day.

A transaction must satisfy the no-arbitrage relation-
ship (Merton 1973) in that the call price must 
be greater than or equal to the spot price minus the
present value of the remaining dividends and the dis-
counted strike price. Similarly, the put price has to be
greater than or equal to the present value of the
remaining dividends plus the discounted strike price
minus the spot price.

The entire data set consists of 7,404 records and
observations spanning each trading day from January 5,
1994, to October 19, 1994.

B O X  3

Data Description

1. Thanks to Jeff Fleming of Rice University for making the dividend series available.
2. Wednesdays are used as fewer holidays fall on Wednesdays.
3. See Dumas, Fleming, and Whaley (1998) for justification of the exclusionary criteria about moneyness and maturity.
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implied but is computed from history of returns of
the S&P 500 index), is quite competitive in terms of
hedging across the entire sample of options.

Given the hedging results in the previous para-
graph, which model would one choose among the
four for constructing a hedge portfolio? The answer
may very well depend on which option is to be
hedged. The other panels of Table 4 show the mean
absolute hedging errors of the four versions for
three different classes of options: near-the-money
call and put options and some relatively far-out-of-
the-money put options. Most of these options are
heavily traded in the Standard and Poor’s 500 index
options market.26

The table shows that the differences in hedging
errors among most of the versions are more clearly
manifested in far-out-of-the-money put options. The
ad hoc-1 version, in which the delta of an option is
computed from its exact implied volatility, clearly
dominates in terms of hedging out-of-the-money
puts, irrespective of the maturity. For near-the-
money options, the differences between the various
versions are not that significant, especially if the
portfolio is rebalanced on the next day. In fact, the
least complex of all the versions, Black-Scholes-
Merton-1, is quite competitive in terms of hedging
near-the-money options.
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Conclusion

Although the classic Black-Scholes-Merton
paradigm of dynamic hedging is elegant from
a theoretical perspective, it is often fraught

with problems when it is implemented in the real
world. Even if the Black-Scholes-Merton model
were free of its known biases, the replicating/hedge
portfolio of the model, which requires continuous
trading, would rarely be able to match its target
because trading can occur only at discrete intervals
of time. Nevertheless, because of its simplicity and
tractability, the model is widely used by options
traders and investors. The basic delta-neutral hedge
portfolio of the Black-Scholes-Merton model is also
sometimes supplemented with other options to
hedge a time-varying volatility (vega hedging).
Although hedging a time-varying volatility is incon-
sistent with the Black-Scholes-Merton model, it can
often prove useful in practice.

One would expect the presence of biases
observed in the Black-Scholes-Merton model, such
as the smile or smirk in implied volatilities, to result
in further deterioration of the model’s hedging per-
formance. More advanced option pricing models
(for example, random volatility models) that can
account for some of the biases turn out to be useful
mostly for deep out-of-the-money options but not

Call option: Gives the owner of the option the right
(but not the obligation) to buy the underlying asset at
a fixed price (called the strike or exercise price). This
right can be exercised at some fixed date in the future
(European option) or at any time until the option
matures (American option).

Put option: Gives the owner of the option the right
(but not the obligation) to sell the underlying asset at
a fixed price (called the strike or exercise price). This
right can be exercised at some fixed date in the future
(European option) or at any time until the option
matures (American option).

Long position: In a security, implies that one has
bought the security and currently owns it.

Short position: In a security, implies that one has
sold a security that one does not own, but has only bor-
rowed, with the hope of buying it back at a lower price
in the future.

Implied volatility: The value of the volatility in the
Black-Scholes-Merton formula that equates the model
value of the option to its market price.

In-sample errors: Errors in fitting a model to data
under a particular criterion function. For example, 
an options valuation model may have a few parame-
ters or variables, the values of which are not observed
directly. In such a case these parameters are esti-
mated by minimizing a criterion function, such as the
sum of squared differences between the model values
and the market prices; this procedure is often called
in-sample estimation. The differences between the
model option values, evaluated at the estimates of the
parameters, and the market option prices are called
in-sample errors.

Out-of-sample errors: Measure the difference be-
tween the model option values and the market option
prices on a sample of option prices that were observed
at a later date than the sample on which the parame-
ters of the model were estimated. In computing out-
of-sample option values, the model parameters are
fixed at the estimates obtained from the in-sample
estimation.

G L O S S A R Y
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26. Far-out-of-the-money puts are those for which K/F < 0.95 where K is the strike price and F is the forward price for matu-
rity τ—that is, F(t) = S(t)exp[r(τ)τ], where τ is the time to maturity of the option. Near-the-money options are those for
which | K/F – 1 | ≤ 0.01.

necessarily for near-the-money options. Ad hoc vari-
ations of the Black-Scholes-Merton model some-
times employed by options traders or investors to
overcome the biases may also generate higher hedg-
ing errors than the very basic model despite the fact
that ad hoc models often dominate the simple model
in terms of matching observed option prices and
predicting them. Although the simple Black-
Scholes-Merton model can exhibit pricing biases, it
is often competitive in terms of hedging because the
pricing biases that it exhibits remain relatively sta-
ble through time.

Static hedging, an alternative to dynamic hedging,
may seem promising because it is independent of
any particular option pricing model. In particular,
static hedging could prove useful for certain kinds of
exotic options. However, static hedging requires
hedging an option via other options so that the effi-
cacy of static hedging depends on the liquidity of
the options market, which often is not as liquid as
the market on the underlying asset.
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