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1 Introduction

The Keynesian tradition of the 60’s and 70’s saw the effects of monetary policy as powerful
and long-lasting both in the short and the long-run. This Keynesian prediction was based
on the assumption that economic agents were victims of persistent money illusion. This
point was consistently made by Friedman and Phelps (e.g., Friedman (1968) and Phelps
(1972)). They argued that analyses of the effects of policy changes that were based on the
money illusion assumption were unsound and unconvincing. Their argument was eventually
formalized in a forceful way by neoclassical economists such as Lucas (1972) and Sargent
and Wallace (1976). They developed rational expectations models in which persistent money
illusion was explicitly ruled out. In these models, permanent changes in the inflation rate
induced by monetary policy had limited real effects in the short run and no real effects in
the long run: that is, money was long-run superneutral. Most of the profession mistakenly
took the Lucas and Sargent-Wallace’s contributions as meaning that Neoclassical models
would invariably deliver long-run superneutrality of money. This mistake helps explain the
proliferation of monetary policy theoretical and empirical models with emphasis in the short-
run.

Sargent and Wallace (1981) was one of the first Neoclassical models to introduce the
foundation for an alternative mechanism to money illusion in which monetary policy could
have long-run real effects. Key in the introduction of this analysis was the explicit study of
intertemporal government budget policy. Although the seminal work of Sargent and Wallace
(1981) open the door to the analysis of the long-run real effects of monetary policy, it deliv-
ers “unpleasant” monetarist arithmetic (UMA): a permanent monetary tightening produces
higher inflation in the long-run (and in some instance even in the short-run) exactly the
opposite of the inflation-economic activity trade-off suggested by the standard Keynesian
model. Wallace (1984) uses a pure exchange model with reserve requirements and an en-
dogenous, policy-dependent real rate of interest to study the effects of permanent changes
in monetary policy across steady states. He uses the bonds-money ratio, instead of the
money growth rate, as his policy variable. His model delivers steady state UMA. This is
the first analysis of permanent policy changes across steady states, and the first to use the
bonds-money ratio as a policy instrument. Since then a number of Neoclassical studies have

emerged. These analyses study the long-run real effects of monetary policy that do not rely



on money illusion and are direct descendants of Sargent-Wallace (1981).

For example, Espinosa and Russell (1998a,b) use Wallace’s (1984) model, and draw out
some of the ultimate implications for inflation and the real interest rate from introducing
the conditions under which Darby’s (1984) observation hold. Darby points out that the
real-rate of interest has been lower than the real rate of economic growth for long periods of
time. Espinosa-Russell show that either pleasant (PMA) or UMA can conceivably occur in
the long-run. Bhattacharya, Guzman and Smith (1998) use a model with linear storage and
reserve requirements [as in Freeman (1987)] to show that steady state UMA can hold under
some conditions even under Darby’s scenario. Their policy instrument is the bonds-money
ratio. Bhattacharya and Kudoh (2001) use a Diamond model with reserve requirements
and find, like in Espinosa and Russell (1998a), either steady state PMA or steady state
UMA can occur. They focus on UMA. Their policy instrument is bonds-money ratio. Their
reserve requirement assumptions allow without additional intermediation assumptions that
the long-run real rate of interest be lower than the real rate of growth in the economy, and
they show that UMA can hold in that case.

A natural question is what do we know about the local dynamic properties of PMA and
UMA equilibria? In this paper we show that in the long-run, whether the instrument is
the money growth rate or the bonds-money ratio is of little relevance. From a short-run
dynamics perspective matters can be significantly different. Bhattacharya and Kudoh show
that under the fixed-saving preference assumptions of Wallace (1984), all the interesting
steady states are dynamically stable. Under more general preference assumptions, none of
the steady states are stable, but they are all dynamically approachable. Bhattacharya and
Kudoh use these findings to defend the empirical plausibility of UMA. In this paper, we
study the stability properties of Espinosa-Russell (1998b), a model that allows permanent
changes in the money growth and inflation rates to have effects on the steady-state levels
of real interest rates and output consistent with key aspects of the pre-1970s conventional
wisdom; money growth and inflation rates increases associated with a real interest rate drop
and output increases — PMA equilibrium.

We organize the bulk of our analysis around the properties of the government’s seignior-
age revenue function, which describes the dependence of total revenue from currency and

bond seigniorage on the values of the real interest rate and the real rate of return on cur-



rency. This approach allows us to present more complete descriptions of the regions of the
parameter space that deliver policy effects of different types. We show that if the govern-
ment’s monetary policy rule involves a fixed money supply growth rate, then a steady state
is dynamically stable if and only if it is on the left (upward-sloping) side of the seigniorage
revenue curve. This result is particularly interesting because these are the same steady
states from which a permanent increase in the money growth and inflation rates produces
a permanent decrease in the real interest rate and a permanent increase in the level of out-
put. The next section of the paper lays out the model that provides the framework for our

analysis.

2 The model

2.1 The market environment

At each discrete date t>1 a positive number of identical two-period-lived households are
born. This number N; grows at an exogenous gross rate of n>1 per period: N; = n'Ny,
where Ny > 0. Each two-period-lived household is endowed with a single unit of labor in
the first period of its life and has no endowment of any kind in the second period. At date 1,
there are Ny “initial old” households who live for one period. These households are endowed
only with bank deposits (see below).

Households derive satisfaction from consuming the single good in the first and/or second
periods of their lives. Since households incur no disutility from providing labor, they supply
their entire labor endowment at any positive real wage. Thus, the total supply of labor at
any date is equal to the total population of young agents at that date.

The preferences of the households are assumed to have standard properties, plus the
property that the fraction of their labor income they save is invariant to the rate(s) of return
on the assets available to them. In particular, each young household born at date t saves
an amount s w;, where s represents the fraction of its income it devotes to saving and w;
represents the real wage rate at date t. We assume s € (0,1).!  Given our endowment

assumptions, an intertemporal utility function that will generate this behavior is u(cy, o) =

1 This assumption follows Wallace (1984) and Espinosa and Russell (1998). It is adopted primarily for
purposes of analytical tractability. There is, however, considerable empirical evidence that aggregate gross
saving is relatively insensitive to changes in the real rate of return.



log c; + ?1/) log co, where p > —1 and ¢; and ¢y represent household consumption in the first
1

and second life-periods, respectively. This function produces s = T

takes the form of consumption deposits at financial intermediaries (“banks”): see below.

Household saving

At each date there are an indeterminate number of one-period competitive firms that
produce the single good. The firms purchase labor from the households and rent physical
capital from the financial intermediaries. The firms use the Cobb-Douglas constant-returns
production technology Y; = Fy(Ky, L;) = A(l_a)(t_l)KtaLtl*a and must thus earn zero profits
in equilibrium. Here Y; represents date ¢ output of the single good, which can be consumed
at date t or stored and used as capital at date t+1. In addition, K; represents the total
stock of capital used in production at date ¢, L; represents the total quantity of labor used
at that date, a € (0,1), and A > 1. If A > 1 then there is exogenous technical progress at a
gross rate of A per period.

After consumption goods have been produced during a period they may be consumed
or stored. Banks organized at date ¢ purchase goods from young households. The banks
may place these goods in storage, or they may use them to make consumption loans to
young households or to purchase government liabilities (see below). The principal motive for
storage is that goods that have been stored for one period can be used as physical capital,
unit for unit. The banks may rent the capital to the firms at date t+1; afterwards, any goods
that have not depreciated revert to being consumption goods and form part of the banks’
gross revenue. Goods stored at date ¢ depreciate at a net rate of 6 from date ¢ to t+1. This
depreciation occurs after production takes place at date t+1, whether or not the particular
goods in question have been used in production. For simplicity we set § = 1.2

Banks issue consumption deposits to young households at a gross real deposit rate R4.3
In a perfect foresight competitive equilibrium, arbitrage requires that the gross consumption
lending rate R, satisfies Ry = 1 4+ ;.1 — 8, where 7, is the rental rate on capital at date
t+1 and 6 is the net rate of depreciation. Since we have assumed 6 = 1, zero profits for the
banks requires R; = ;1. As all young households are identical, equilibrium consumption

lending may be taken to be zero.

2 This assumption is not unreasonable in a two-period model: if we think of a period as thirty years, an
annual depreciation rate of 0.1 corresponds to a per-period rate of almost 0.96.

3 The budget contraints of a household born at date ¢t > 1 are ¢1; + s; < wy and cg 41 < Rf s¢. The budget
constraint of an initial old household is co; = dy where dy represents the real value of its maturing bank
deposits (see below).



We assume that financial intermediation consumes resources when it involves physical
capital or household consumption loans. At date ¢t+1 the banks incur a non-negative
proportional cost ¢ on each unit of the consumption good that they stored or lent at date ¢.
Government bonds, in contrast, are intermediated costlessly.* As a result, if the banks are

to earn zero profits and the government is to succeed in selling bonds then we must have
R? = Rt -G, (1)

where R; is the gross real interest rate on loans to the firms and R? is the gross real interest
rate on government bonds (see below).
The goods price of a unit of fiat currency at date t is denoted p;. The price level at date
t (the money price of a unit of goods) is P, = 1/p;. We will confine ourselves to the study
of “monetary” equilibria, which are equilibria in which p; > 0 for all t>1. The gross real
rate of return on fiat currency is Ry = pyy1/py = 1/11;, so that II, is the gross inflation rate.
The nominal price of a unit-face-value nominal bond is P?, so R?™ = 1/P/ is the nominal
interest rate on government bonds. Arbitrage in the markets for currency and government
bonds requires e
Ry = ?tb ) (2)
where R the real interest rate on the bonds. Thus, P} = R"/R! and Ry°™ = RY/R™. 1f

bonds and capital are to coexist with currency then we must have PP < 1, so that either

R™ = R! or
R™ < Rb. (3)

We assume there are “initial banks” endowed with the initial capital stock K7, Hy nominal
units of fiat currency, and By nominal units of one-period government bonds (payable in fiat
currency) which are due at date 1. The initial banks distribute the gross revenue from these
assets to the initial old in the form of maturing deposits, so that the total real value of the
maturing deposits is Dy = RoK1 + p1(Ho + By), where Ry = ak$™" and k; = K;/N,. Each

initial old household is endowed with a maturing deposit whose value is dy = Dy/Np.

4 We think of ¢ as a proxy for the information and diversification costs that are associated with the existence
of default risk on private liabilities, and also, perhaps, for the “equity premium” on undiversifiable risk.



At each date ¢>1 the government may issue new bonds and/or additional units of fiat
currency. The government must finance a fixed real deficit G; > 0 by a combination of

currency and bond seigniorage. The government’s budget constraint at dates t>1 is
Gy=p [(H — Hi1) + (PPB,— B 1)] - (4)

Here H; represents the nominal stock of fiat currency at date t, so that M; = p,H; is the
real value of the stock of currency, and B; represents the nominal face value of the stock
of bonds, so that B; = p:B; is the real face value of the bond stock and B; = Ptht is the
corresponding real present value. Thus, B; = p; P’B; for t > 1. We assume that the central

bank manages the nominal stock of fiat currency by setting
Ht =z Ht—l (5)

for some fixed value z, starting at ¢t = 1.

In a competitive equilibrium, the rental rate r, must be equal to the marginal product
of capital, so we have r, = A(lfa)(tfl)akta*l, where 1kt = K,/L,;. Financial market arbitrage
ensures 7, = R;_; (see above), so k;, = A" (%)ﬁ

In equilibrium, aggregate private credit demand at date ¢t must equal firms’ aggregate
demand for capital at date t+1. In addition, labor market equilibrium requires L; = N;.
Thus, aggregate private credit demand at date t is given by

_1
Kip1(R) = () Ny (&) o (6)

(8%

In a competitive equilibrium, the real wage rate is given by w, = A1790=D(1 — o) k2.
Ry 1

Using the expression for k;, we have w;, = A" (1—a) (T) *. 1t follows that the aggregate

savings function (that is, aggregate net credit supply by the young) is

Sy(Rit) = ()" Ny 5 (R“) o (1)

«

Note that S;(+) is a function of R; 1, which determines young households’ income at date ¢,
but not of RY, which is the gross real rate of return they will receive on assets acquired at
date t (see above). In addition, since Y; = L A1~ o yeal output at each date ¢ can

be written

o

VilReey) = () (22) 7

«

6



Credit market clearing requires
Se(Ry-1) — K1 () = My + By (8)

that is, the aggregate excess supply of private credit at each date must be equal to the
aggregate government demand for credit, which is the aggregate real market value of the
outstanding fiat currency and the newly-issued government bonds, at the same date.

The government requires each bank to hold a quantity of fiat currency no smaller than
a fraction 6 of its nominal deposit liabilities. If P} < 1 <& R™ < R? then the reserve
requirement is binding and fiat currency is held only to satisfy it. We will confine ourselves

to studying equilibria of this type. In these equilibria real fiat currency balances M, satisfy
Mt - 0 St(Rt—l) . (9)

Since banks must earn zero profits in equilibrium, the gross real deposit interest rate RY

must satisfy®

RI=(1-60)R +0R".

The assumption that binding reserve requirements are the only source of currency demand
is not essential for obtaining the results we report. We think of the reserve demand in our
model as a proxy for base money demand from all sources, including both bank reserves and
currency held by the public. Empirical studies of the demand for base money indicate that it
is relatively insensitive to changes in the nominal interest rate and roughly proportional to the
level of real income. So our reserve-requirements-only assumption, under which real currency
demand is completely insensitive to the nominal interest rate and exactly proportional to the
level of labor income, seems reasonable as a first approximation. Augmenting our model to
include an explicit source of household currency demand does not change its basic features.®

But the additional complexity prevents us from obtaining the relatively clean analytical

results we present in this paper.

5 If a bank that is organized at date ¢t purchases and stores k;y1 units of the consumption good, purchases
bonds with a market value of b; and acquires real fiat currency balances of my, then its profits at date t+1
are Ry ki1 + Rgbt + R;mmt —ckip1 — RgAt, where Ay = kip1 + by + my.

6 Alternative versions of this example in which binding reserve requirements are supplemented by household
money demand deriving from (1) transactions costs or (2) random relocation [as in Bencivenga and Smith
(1991)] are available from the authors.



2.2 Equilibria

Given Ky > 0, Hy > 0, By > 0, 0 € (0,1), z > 1 and {G,}2, strictly positive, a binding
competitive equilibrium from date 1 consists of strictly positive sequences {R;}2°,, { R0},
{p}ee,, {P}ee,, {H,}5°, and a nonnegative sequence {B;}°, that satisfy conditions (1)-(5)
and (8)-(9), given definitions (6)-(7) as well as R™ = p;,1/pi, My = p;H; and B, = p; PP,
(see above).

In most of the paper we will focus on studying binding steady states. In these steady
states the rate-of-return variables R;, R}, R, and P} will be date-invariant. The nominal
values of all goods-aggregate variables will grow at a gross rate of WII per period, where
IT = 1/R™, and the real values of these variables will grow at a gross rate of ¥ per period.
The government budget deficit must be assumed to grow at the same rate. The real wage
rate w; and the capital-labor ratio k; which will grow at a gross rate of A per period.

A binding steady state is not an equilibrium from date 1 unless the values of K; and
By happen to be consistent with achievement of the steady state starting from date 1.
Nevertheless, the conditions that characterize a binding steady state can be expressed in
terms of the situation at date 1.

In a steady state we have M;,; = WVM,, where M,y = p;1Hy1 and M, = p,Hy, so

L= Hiq B Mt+1/pt+1 i v v z

= & )
H; M/ py R™ z \J

Defining the steady-state capital-demand (or private asset-supply) function

K>(R) = UN, <§>ﬁ . (10)

«

Note that this function has a 2-subscript because the capital goods that are employed at

date 2 must be acquired by households at date 1. In addition, define the steady-state saving

(or asset demand) function

Si(R) = Ny s (1 —a) (-)ﬁ. (11)

Given 0 € (0,1), z > 1 and {G,}2, with G; > 0 and G;y; = UGy, a binding steady

state consists of positive values R, R’, R™, M, and a non-negative value B; that satisfy the

8



following conditions, given definitions (10) and (11):
v
pr— 12
- (12)
RP=R—c, 13

14

S1(R) — Ko(R) = My + By,

(13)
(14)
M, =05/(R), (15)
(16)
(17)

UG, = (¥ — R™) M, + (V — R®) By. 17

We can define Y;(R) = N, (1—?‘)%, with Y/(R) = 2 (5)ﬁ < 0. Thus, the steady-

« a—1 \«

state level of output at any particular date is a strictly decreasing function of the steady-state

real interest rate. However, total output grows at gross rate of ¥ in any steady state.

2.3 Supplementary assumptions

Henceforth we will drop the date subscripts on functions and variables. We will also make

three important supplementary assumptions:

I. There is a laissez faire (6 = G = 0) steady state with a low real interest rate. The

values of a, s and ¢ are consistent with the existence of an R € (0, ¥ + ¢) such that
S(R) - K(R) = 0.

II. There is no nonbinding steady state. The equation [V — (R — ¢)] [S(R) — K(R)] = VG
has no real solutions on R € (R, ¥ + ¢).

II1. Intermediation costs are not too high. The values of «, s and ¢ satisfy

A
U os(l—a)

Lemma 1 For R e (0,¥ +d, [1] S'(R) > K'(R) and [2] S"(R) < K"(R).

Proof. [1] Equations (10) and (11) imply

K'(R) 1w
SR s(-a) R (18)




Assumption III gives us
1 v +ec

s(1—a) T
and it follows immediately that K'(R)/S’(R) > 1 on (0, ¥ +¢]. Since both K'(R) and S'(R)
are negative, we have K'(R) < S’(R) on (0, V¥ + ¢J.
[2] Equations (10) and (11) also imply

K'(R)  2-a ¥

S"(R)  s(l—a)R’
Since o € (0,1) implies 2 —a > 1 we have K”(R)/S"(R) > 1 on (0, ¥ + ¢| (see above). Here
K"(R) and S”(R) are positive, so we have K”(R) > S”(R) on (0, ¥ + ¢|.

The Lemma implies that the aggregate outside-asset demand function S(R) — K(R) is
strictly increasing on (0, ¥ + ¢|]. Consequently, Assumption I holds if and only if there exists
a laissez faire (0 = G = 0) steady state in which unbacked government liabilities are valued,
which is to say iff S(V+c¢) — K(¥ +¢) > 0. Equations (10) and (11) can be used to show

that a necessary and sufficient condition for this to be the case is

c «
1 —)> : 19
S(+\If 1—a’ (19)
they also imply
a U
R = —. 20
- l1l—-as (20)

Assumption I also implies that for at least some positive values of 6 the equation (1—0) S(R)—
K(R) = 0, which characterizes binding steady states in which there are no government bonds,

has a unique solution Ry € (R, ¥V + ¢). It is readily seen that

R
Ry=1—5. (21)

When Assumption I holds, the least upper bound of the set of values of 6 that produce

Ry <V +cis
« 1

s(l—a)l+¢°

0oy =1— (22)

For the moment we will adopt € < 6.« as a provisional Assumption IV (call it Assumption
IV-p). But we will strengthen this assumption slightly below.
Assumption IT implies that the government cannot finance its deficit without imposing

a binding reserve requirement. Assumption III is a technical assumption that is used in

10



the proof of Lemma 1 and holds for virtually any plausible (which is to say, relatively
low) values of ¢, given that Assumption I holds. Assumptions I and III collectively imply

a<(l-a)s (1+&)<1.

2.4 The seigniorage revenue function
Equations (15) and (16) imply
B=(1-6)S(R)— K(R) = B(R), (23)

This equation can be combined with equations (13), (15) and (17) to produce the seigniorage

revenue function
T(R,R™;0) = (¥ — R™) 0 S(R) + [V — (R — )] B(R). (24)

This function describes the dependence of the level of government seigniorage revenue on
the value of the gross real interest rate R, the real currency return rate R™, and the re-
quired reserve ratio 6.”  The revenue from currency seigniorage is (¥ — R™) 0 S(R), while
[ — (R —¢)] B(R) is the revenue from bond seigniorage.

Given 0, a binding steady state can be characterized as values of R and R™ such that
Ry < R<VY+4¢ 0< R"<R,and I'(R,R™;0) = ¥VG. For purposes of exposition, we
will treat the seigniorage revenue function as a function of R, with domain [Ry, ¥ + ¢, and

"8 In

we will refer to a plot of the function against R as the “seigniorage revenue curve.
this section, we will conduct policy experiments in which the central bank holds the reserve
ratio fixed and uses a permanent change in the money growth rate to produce a permanent
change in the inflation rate. In terms of the symbolic arguments of our seigniorage revenue
function, these are experiments in which 6 remains constant while R™ rises or falls. The
change in R™ will shift the seigniorage revenue curve, and we will use the properties of the

curve to determine the effects of these changes on the real interest rate.

The slope of the seigniorage revenue curve is

ar

o= (U= R0 (R) + [0 — (R—c)] B(R) - B(R). (25)
7 Note that this actually returns the product of total seigniorage revenue and the gross real growth rate .
8 However, in a binding steady state we must have R,, < RY = R — ¢, and if R™ >Rj then there are points
on the seigniorage Laffer curve to the left of R™. These points are not potential equilibrium points.

11



Lemma 2 For R € (Ry,V +¢|, B'(R) >0 and B(R) > 0.

Proof. Since K'(R) < 0, B'(R) > 0 < (1-0) S'(R)/K'(R) < 1, whichis (1-0) s (1—a) & <
1 (see the proof of Lemma 1, part [1]). Assumption IIT gives us s (1 —a) < ¥/(V¥ + ¢), so
sufficient is (1 — 0) R /(¥ + ¢) < 1, which holds for any R € (0, ¥ + ¢] when § > 0. We
know that B(R,) = 0, and Assumption IV-p gives us Ry < ¥ 4 ¢. Thus, B'(R) > 0 on

R € (0,¥ + ¢] implies B(R) > 0 on .R € (R,, ¥ + .

Proposition 1 is proved in the appendix and it establishes three important facts about

the seigniorage revenue curve:

Proposition 1 The function T'(R, R™;0) is [1] strictly concave in R on [Ry, ¥+ ¢], [2] pos-
itive and decreasing in R at R =V + ¢, [3] positive and increasing in R at R = R, if

0 < Y 0max7

where
1+

(1+5

+ |ele

Y

_a
1,

Henceforth we will add

IV. 0 < 0

to our list of supplementary assumptions. Note that 0 < v < 1 and that ~ is increasing in ¢
with a least upper bound of unity. Also, if ¢ = 0 then v = 1 —«. Assumption IV is sufficient,
but not necessary, for part [3] of Proposition 1 to hold.’

Assumption IV ensures that for given values of # and R™, the seigniorage revenue curve is
upward-sloping at its left endpoint (see Figure 1). Under this assumption, the curve associ-
ated with each admissible vector (6, R™) is a positive-valued, downward-opening paraboloid
on (R, ¥ + ¢], and thus has a unique peak on the interior of this domain. As we shall see,
both the dynamic stability properties of a steady state and the results of comparative statics
experiments beginning from it depend critically on whether the steady state in question is

on the left (upward-sloping) or the right (downward-sloping) side of this curve.

9 The sufficiency of Assumption IV for part [3] of Proposition 1 is established under the very conservative
assumption that R™ = 0. As R™ increases the required condition becomes weaker, and it can be shown that
if R,, > Ry, then part [3] holds for all values of 6 consistent with Assumption I. (See the proof of Proposition

1)
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For values 6 and R™ with R™ < R,, the portion of the seigniorage revenue curve that is
relevant to our analysis begins at domain value R, and range value I'y = (¥ — R™) 0 S(Ry);
it ends at domain value ¥ + ¢ and range value I'y = (¥ — R™)0S(¥ +¢). If R™ > R,
then the lowest relevant domain value is R™ and the corresponding range value is I'} =
(I — R™)0S(R™). Note that I'y > I'y. Let Rpeax and I'eax denote the domain and range
values associated with the peak of the seigniorage revenue curve. We shall assume, for
expository purposes, that R™ < Ry, so that the relevant portion of the curve has two
sides. Given € and R™, a binding steady state will exist only if VG € (Fg,fpeak]. If
UG e (I, Fpeak) then there will be two values of R that support binding steady states. One
of these will be a relatively low value of the left side of the seigniorage revenue curve and
the other will be a relatively high value on the right side of the curve. If, on the other
hand, WG € (T, T'1], then there will be only one steady state and the associated R-value

will be on the right side of the curve. We shall also assume, for expository purposes, that

UG e (', Dpeak)-

2.5 Stability of steady states

Equation (4) can be rewritten
Gt - Mt - RﬁlMt—l + Bt - Rf—l Bt—1~

We know from equation (5) that My =p,z H, 1 = 2 R7* M, 1 < R M, 1 = M;/z. So we
can write
1
Gt == Mt (]_ - ;) + Bt — (Rt—l — C) Bt—1~ (26)
Equations (8) and (9) give us B, = (1 —0) S(R,—1) — K(R;). Substituting this equation and

equation (8) into equation (25) produces

Gy =051 1) (1—1)+[(1 = 0) Si(Ry1) — K1 (Ry)]=(Ry1—c) [(1 = 0) Sy 1(Ry2) — Ki(Re 1)) -

z

We know Si(+) = ¥S;_1(:) and K;(-) = VK;_4(-), and if we are interested in steady states we
must assume Gy = ¥G,_;. So we are free to define S(-) = S1(-), K(-) = K;i(-) and G = G,

and write
UG =V |(1- g) S(Ri-1) = K(R) | — (Ri-1 — ) [(1 = 0) S(Ri—z) — K(Ri—1)] . (27)
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This is the implicit second-order difference equation that characterizes binding competitive
equilibrium paths for R;. We can use this equation to study the local stability properties of
binding steady states. We find that

Theorem 1 A binding steady state is locally stable if and only if it is on the left (upward-
sloping) side of the seigniorage revenue curve.

Proof. [See Azariadis (1993), chs. 1,6.] The univariate second-order difference equation
for Ry is WG =W [(1 = &) S(Ri_1) — K(Ry)] — (Ri—1 —¢) [(1 — 0) S(Ri—s) — K(Ry—1)]. We
define Z; = R; 1, so that Z; | = R; 5. 'This gives us the bivariate second-order equation
UG =V [(1-2)S(Ri-1) — K(Ry)] — (Ri—1 — ¢) [(1 — 0) S(Zy—1) — K (Ry—1)] . Total differen-
tiation with respect to R; and R;_; produces 0 = W(1 — g) S'(Ri—1)dR;_1 — VK'(R;) dR; —
[(1—-0)S(Z; 1) — K(Ry1)] dRy 1 + (Ri1 — ¢) K'(R,_1) dR;_1and thus

OR, Y(1—-2)S(R1)—[(1-0)S(Z1) — K(Ri1)] + (Ri1 — ¢) K'(Ry 1)
OR; 1 VK'(Ry)

Total differentiation with respect to R; and Z;_; produces 0 = —VK'(R;) dR; — (Ry—1 —
¢)(1—0)S"(Zi1)dZ,_qand thus

OR,  —(Re1—c)(1—0)S(Z 1)
0Zy 1 VK'(R,)

Since Z; = R;_q, we have 0Z;/0R;_1 = 1 and 0Z;/0Z;_1 = 0. So the Jacobian matrix is

OR: OR: OR: OR:
ORt—1  0Zi— ORi_1 0Zi—
J - —
82t 6Zt 1 0

ORy_1  0Zi1

Define J = J ’(I_%,E)' To determine the stability properties of binding steady states, we
calculate the eigenvalues of J and investigate their dependence on possible steady state real
interest rates R.

We begin by constructing the characteristic equation p(A) = [J — M| = AN — (tr J) X+
det J. The solutions of the equation p()\) = 0 are the eigenvalues of the Jacobian matrix.
We have

_ Y1 -95(R)+(R-)K'(R) — B(R)
R, VK'(R) ’

14



and

det T=D = —f _R-0(-0S5R)

o7, (R VK'(R)
The seigniorage revenue curve is I'(R, R™) = (V — R™) 0 S'(R) + [V — (R — ¢)] B'(R) —
B(R) and its slope is OI'/OR = (VY —R™) 0 S'(R)+ [V — (R — ¢)] B'(R)—B(R) , which, given
R™=V/z, is
2—2 —(R) = v |(1— g) S'(R)— K'(R)| — (R—¢) B/(R) — B(R).
DefineT' =I"(R). WehaveT' = WK'(R)T— (R—c) K'(R)—VK'(R)—(R — ¢) B/(R) =
VK'(R)T — (R—¢)(1—-0)S'(R) — YK'(R), so

— — =/

_T+(R-o(1-6)3(R)+YK'(R) _ (1+D)+ —— .
UK'(R) VK'(R)

N
=

The eigenvalues of the Jacobian matrix solve A*> — T A4+ D = 0, so they are

T++/T2—4D T IR A
{\} = = (1+D)+\DK’(R)iJ{(1+D)+\DK’(R)} —4D

j

[\
N —

Notice that if ' = 0, so that the steady state is at the peak of the seigniorage revenue curve,

then we have

{)\}:% [(Hb)i\/(ub)?_@] :%[(1+D)i(1—D)] ,

so in this case

1 _ _
M= g [(1+D)+(1-D)] =1
1 — — —
A= g [(1+D)-(1-D)]=D.
Define .
___'®
- —VK'(R)
Note that T and I"(R) have the same sign. In the general case we have
1 — — —
Moo= g {{(1+D) -T}+ \/{(1+D) —3}2—4D]

Ao = %[{(1@)_5}_¢{<1+5)_z}2_@} .

15



Lemma3 0<D<1.

Proof. We know D > 0 because S'(R) < 0 and K'(R) < 0. Since S'(R)/K'(R) =

£s(1 — a), we have
— RR-¢)(1—0
D= ( \1;)2( )s(l—a).
[Note that B
S'(R) v —

oL/ D]
K'(R) (R—c)(1-0)

We will show that D < E\; ¢ which is sufficient for D < 1. We need

R (1-0) —
——s(1— <l R< .
g cl-a) 1-0)s(1—a)
We know R < U + ¢, so sufficient is
Y Y
v < S (1-0)s(l—a)< .
R ey vy sy B G R G A s
And we know from Assumption IV that
c 1 v
14+4=<—- 1-— .
+\If<3(1—oz)<:>s( a)<\D+c

Theorem 1 establishes that equilibria on the left side of the seigniorage revenue curve are
dynamically stable. Comparative statics experiments involving these equilibria — “PMA”
experiments — can be interpreted as the consequences of interaction between an active central
bank (the Fed) and a passive budgetary authority (the Treasury) that issues the quantity
of debt necessary to reconcile the monetary policy decision of the Fed with the fiscal policy
decisions that produced the government’s budget deficit. The initial values of K; and By
support a steady state from date 1, given initial values of 8 and z. So we can think of
the economy as starting out in that steady state. However, the Fed unexpectedly decides,
at date 1, to reduce z by the amount necessary to move the real interest rate to a higher
long-run target level. This decrease in the currency growth rate produces a shortage of
revenue from currency seigniorage, relative to the steady state. The Treasury responds by
increasing its borrowing in order to cover the shortfall, and the ratio of the government debt
to output rises. As the real bond stock rises from period to period, however, the amount

of new borrowing necessary to cover the revenue shortage gradually falls. The Treasury
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ultimately finds that it is able to cover the deficit by borrowing an amount that keeps the
debt-output ratio constant at a new, higher level, and thus supports a new steady state.
But there is no need for the Treasury to make any active decision to change the real interest
rate or the real stock of debt, and there is no need for it to cooperate with the Fed in any
way except to borrow just enough, at each date, to cover the portion of the budget deficit
that is not covered by revenue from currency seigniorage.

We conclude this section by reconciling our description of the mechanics of monetary
policy changes with descriptions presented elsewhere in the literature. Let [ represent the
ratio of the real present value of the stock of government bonds to real balances of fiat
currency, so that 5 = B/M. As we noted in our introduction, Wallace (1984) and Espinosa
and Russell (1998a), Bhattacharya, Joydeep, Mark G. Guzman and Bruce D. Smith (1998)
and Bhattacharya and Kudoh (2001), among others, identify the bonds-currency ratio as
the central bank’s active policy variable, with z and R™ changing passively to accommodate
changes in the ratio.!®  They describe an increase in bonds-currency ratio as a monetary
tightening, and vice-versa. In our model, conditions (15) and (16) imply that across steady

states, ) B(R) 1o K(R)
b= 0S(R) 0  0S(R)

It is readily seen that for a given value of 6, the relationship between 3 and R is monotone

(28)

increasing. Stated formally,

Proposition 2 When 0 is fized, the relationship between ( and R across binding steady
states is monotone increasing.
Proof. Equation (27) implies
[(1—-0)S"(R) — K'(R)|6 S(R) —05'(R) [(1 - 0) S(R) — K(R)]

[0.S(R)]? '
Since S’(R) > 0, and (1—6) S(R)— K(R) > 0 on [Ry, ¥+¢], Lemma 1 implies that 5'(R) > 0
on [R,, ¥ + ¢].

B(R) =

Thus, for initial equilibria on the left “PMA” side of our seigniorage revenue curve, the

two natural definitions of monetary tightening are equivalent. An active decrease in the

100ther papers with this feature include Miller and Todd (1995), Bhattacharya et. al (1997,1998) and Schreft
and Smith (1998). In this paper we define 8, = B;/M;. A few of the papers just cited use this definition,
but most follow Wallace (1984) by defining 35, = B;/H; =B;/M;. If we call the Wallace version of the ratio
By, then our 8 = B, (R/R™). We adopt our definition because it simplifies the analysis.
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money growth rate z, which is the definition of monetary tightening we use here [following
Sargent and Wallace (1981) and Miller and Sargent (1984), among many others| produces
both an increase in the real interest rate and a passive increase in the bonds-money ratio 3.
It follows that an active increase in the bonds-money ratio would produce both an increase
in the real interest rate and a passive decrease in the money growth rate. From a stability
perspective, however, whether the instrument is # or  makes a big difference as can be
corroborated by contrasting our results in this paper against those in Bhattacharya and
Kudoh (2001) .

3 Concluding remarks

In this paper, we have integrated the model of monetary policy devised by Wallace (1984)
with Diamond’s (1965) neoclassical model of production and capital. The result is a general
equilibrium model in which monetary policy can have long-run real effects consistent with
the Keynesian conventional wisdom: a “tightening” of policy, engineered by a decrease in the
money supply growth rate or by an in the required reserve ratio, reduces the rate of inflation
and increases the real interest rate. This “conventional wisdom” is also a version of the
so-called PMA described above. The increase in the real interest rate produces a permanent
decrease in the level of output, and thus persistent but ultimately temporary declines in the
growth rate of output. Espinosa and Russell (1998b) show that, under certain conditions,
the increase in the real interest rate produced by a move to tighten policy can be large
enough to allow the nominal interest rate to rise. Under these conditions the ratio of the
increase in the real interest rate to the associated decrease in the inflation rate can become
quite large, which means that monetary policy can have substantial real effects. We show
that if the government’s monetary policy rule involves a fixed money supply growth rate,
then a steady state is dynamically stable if and only if it is on the left (upward-sloping) side
of the seigniorage revenue curve. If the criterion to choose relevant steady states is whether
the equilibria are dynamically stable or unstable, one can conclude that PMA of the type
studied in Espinosa and Russell (1998b) is the most likely equilibrium to be observed.
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Appendix

4

Proof of Proposition 1: [1] We need to show that

o (0 .

Differentiating equation (24) produces the derivative
(U= R")0S5"(R) +[¥ = (R = )] [(1 - 0)S"(R) = K"(R)] - 2[(1 = 0)5"(R) - K'(R)] -
Sufficient would be
voS"(R)—2[(1-0)S"(R)— K'(R)] <0,

since WO S"(R) > (V—R™)0 S"(R) for R™ € [0,¥) , and (V—R—c) [(1-0)S"(R)—K"(R)] <
0 for R € (Ry,V + ¢). The latter inequality follows from the fact that K”(R) > S”(R) on
(Ry, ¥ + ¢), which was established in Lemma 1.

Now
UHS"(R)—2[(1—-6)S(R)— K'(R)] <0< ¥O<2|(1-0) ;//((};)) — ?:Egi

Equations (10) and (11) imply

S'(R) K'(R) V¥

SI(R) ~ —(1—a)R and SR~ s
which gives us

; R i
U <2 ;—(1—9)(1—04)}% e g < =0 0—a)

We have R < ¥ +c << R/V <1+ ¢/U, so sufficient would be

Nl

Yy cacoa-a

Assumption I gives us

LA
U o s(l—a)
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so sufficient would be

0
-4 1-0 1

s(l—a) (1 59)( @) s s

0
= <——§@s<2.D

[2] Equation (24) implies that at R = ¥ + ¢ the slope of the seigniorage revenue curve is

(P —R™OS'(V+c)— [(1-0)S(¥+c)— K(¥+c).

Lemma 2 gives us (1 —6) S(¥ +¢) — K(¥ +¢) > 0. Since S’ < 0, we have our result.

[3] Equation (24) implies that at R = R, the slope of the seigniorage revenue curve is

(U —R™)0S"(Ry) + [V — (Rg — )] [(1-0)S"(Ry) — K'(Ry)] -

We need to show that this is positive. Since S’(R) < 0 and R™ € [0, V), sufficient would be

VO S (By) + [¥ — (By — o)] [(1 - 0)S"(By) — K'(By)] >0,

which is equivalent to

VO < [0 (B~ o) g~ (1-0).

Equations (A.1) and (20) imply

K'(Ry)) 1-—90 K'(Ry) 1 -«
— = d — —(1-0)=(1-96 .
S/(Ea) a an S/(Ea) ( ) ( ) o
This leaves us with
1—
VO <[V~ (By— )] (1-0) .
Equation (20) also gives us
U (Ry—c)=0 [1— — =S
o~ 6= l—as(1-20) ¢
producing the condition
l—-a 1
—(1-9 _
* = la-o =2 -]

<l -

o )< (1—04) +C(1Ta 1 ‘;) 8(1 ) _ (1+%)_s(lga)
1+0(1 @) %_}_% (1+%)+L
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Now define

55 (1 + %) - s(lga) '
(1+3)+ 125
We have
G ()

0= Omax- U

T8+ %
Supplementary note: If R™ > 0 then the threshold value of 8 will be higher than 9. In

particular, if R™ > 0 then the appropriately revised version of inequality (A.3) is

«

(W= R")0 < (¥ —LBy—c)(1-0) ]

l—«a
or equivalently
6 - (V—Ry—c¢)1l —«
1-46 (W —R™)  «a
If R™ > Ry, then sufficient would be

0 11—«
0<1—
<o ef<l-a,

and it is readily seen that this condition holds for any 6 € (0, 0.x). Thus, in this case there

does not need to be any additional restriction on 6.
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