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Introduction

In recent years, several papers have tested the international version of the Capital Asset

Pricing Model (I—CAPM). Some of these papers have found that in addition to compensation

for global market risk, investors require compensation for inflation and foreign exchange risk.

However, the evidence on the ability of different specifications of the I—CAPM to correctly

price international asset returns is mixed. Dumas and Solnik (1995) and De Santis and

Gérard (1998) cannot reject a specification of the I—CAPM that includes global market risk

and foreign exchange risk. Their analysis is consistent with the hypothesis of integration of

international equity and foreign exchange markets. On the contrary, Vassalou (2000) rejects

the adequacy of several nested versions of the I—CAPM with foreign exchange and inflation

risks to explain most of the cross—sectional variation in stock excess returns. Her work seems

to support the hypothesis of at least mild segmentation in international stock markets.

Moreover, the evidence regarding the size and significance of the economic risk premia is

less than conclusive. While there is some evidence of time variation in the premia, the pat-

terns of time variation are somewhat unclear. For example, De Santis and Gérard (1997,1998)

find that exposure to global market risk commands a positive and significant average risk

premium only when a conditional, fully parametric specification of the I—CAPM with time—

varying price of risk is assumed. Similarly, Ferson and Harvey (1993) find a positive and

significant risk premium for exposure to global market risk in a time—varying multi—beta in-

ternational asset pricing model. Dumas and Solnik (1995) provide evidence of time variation

in the global market risk premium, but do not report size and statistical significance of the

average conditional market premium. Vassalou (2000) does not comment on the sign and the

significance of the unconditional global market premium. The evidence on the premia asso-

ciated with foreign exchange risk and inflation risk is also unclear. For example, De Santis

and Gérard (1998) find support for a specification of the conditional I—CAPM that includes

both global market risk and foreign exchange risk under the assumption of time variation in

all prices of risk. Their results are globally consistent with the findings of Dumas and Solnik

(1995). Even if both studies assume time—varying prices of risk, the main difference between
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the two approaches is that Dumas and Solnik (1995) test an unconditional version of the

conditional I—CAPM using the generalized method of moments, while De Santis and Gérard

(1998) explicitly model time variation in the first two conditional moments using VGARCH

specifications. On the other hand, Vassalou (2000) finds strong support for versions of the

I—CAPM that take inflation risk into account, mixed evidence for versions of the I—CAPM

with foreign exchange risk, and no support for international asset pricing models where

both foreign exchange premia and inflation premia are jointly estimated. In addition, the

magnitudes of the estimated risk premia change substantially from one study to the other.

Two main issues emerge from the previous discussion. First, it is hard to reconcile

home bias in international equity and foreign exchange markets with the findings that stock

markets are perfectly integrated and that the I—CAPM holds. One of the reasons why the

I—CAPM holds in some studies and not in others might be that the testing procedure used

crucially depends on the level of aggregation of the equity portfolios used in the analysis. For

example, Vassalou (2000) considers not only cross—country variation but also within—country

variation in equity returns in order to control for home bias. On the other hand, Dumas

and Solnik (1995) and De Santis and Gérard (1998) use aggregated stock return data from

Morgan Stanley Capital International (MSCI). In the effort to control for home bias, the

authors include in the analysis idiosyncratic risks and country—specific effects. Nonetheless,

De Santis and Gérard (1997,1998) reach a quite puzzling result. They find that when the

restriction of non—negativity of the conditional global market risk premium is imposed, there

is some residual predictability in stock excess returns that can be explained by idiosyncratic

risk and country—specific effects. On the other hand, when the restriction of non—negativity

is relaxed, this residual predictability disappears and they cannot reject the hypothesis of

integration of international stock markets. Second, the patterns of time variation in the first

two conditional moments of excess asset returns and in the prices of risk are not clear. The

I—CAPM in its unconditional version does not seem to hold.1 It also does not seem to hold

in its conditional version unless all prices of risk are assumed to be time—varying.2 I try to

1See, for example, Solnik (1974), and Stehle (1977).
2See, for example, Hodrick (1981), De Santis and Gérard (1998), Dumas and Solnik (1995), and Bekaert

and Harvey (1995).
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clarify the above-mentioned two issues by separating the problem of economic risk premia

estimation from the problem of testing intertemporal international asset pricing models and

by implementing a convenient new approach to the estimation of economic risk premia. I

also implement a comprehensive set of tests of asset pricing models with foreign exchange

and inflation risks.

This paper contributes to the existing literature in three different ways. First, I use a new

methodology to estimate the inflation and foreign exchange risk premia which is based on

the minimum-variance stochastic discount factors of Hansen and Jagannathan (1991) (HJ).

This pricing kernel prices, by construction, the asset returns under consideration, and has

the minimum variance among all kernels consistent with asset returns. The economic risk

premia that I estimate are those assigned by the minimum—variance kernel. This approach

has several advantages on the traditional methods:

• I do not need to specify all relevant sources of risk; i.e., the estimate of a risk premium
does not change depending on which other sources of uncertainty are simultaneously

considered.

• The estimates are robust to the form of the pricing kernel. Any admissible pricing

kernel has the same price implications and, hence, assigns the same risk premia as the

HJ minimum—variance kernel.

• The estimation procedure is quite simple. I estimate the parameters of the minimum—
variance kernel and the covariance of the kernel with the different sources of uncertainty.

By comparison, studies based on multi—beta models require the estimation of linear

factor models for each of the securities, and then the estimation of the risk premia.

• I show that when the non—negativity restriction on the pricing kernel is not imposed,
the proposed economic risk premia reduce to the expected cash flows on the portfolios

that best hedge the risk factors, financed at the riskless rate. This result makes it clear

that the risk premia estimates crucially depend on the hedging portfolios composition,

and hence on the assets available for investment.
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Second, I model the time variation of economic risk premia by specifying a pricing kernel

linear in the set of instruments used in the analysis. Finally, I use a new methodology to

test the international CAPM, which is based on the construction of portfolios mimicking the

behavior of global market risk, foreign exchange, and inflation risks. Specifically, I test the

International Static CAPM (IS-CAPM), the International CAPM with demands hedging

against foreign exchange and inflation risks (I-CAPM), and the International Intertemporal

CAPM (II-CAPM) by using a variety of diagnostics: the standard J—test of overidentifying

restrictions of Hansen and Singleton (1982); the Hansen—Jagannathan (1991) variance bound;

and the Hansen—Jagannathan (1997) distance measure. I am not aware of any formal test

of the I—CAPM with demands hedging against variations in the investment opportunity set

of an international investor in presence of deviations from Purchasing Power Parity (PPP)

and currency risk.3

The main results of the paper can be summarized as follows: First, I show that only

global market risk commands a highly positive and significant unconditional risk premium

as indicated by its relative Sharpe ratio. Inflation risk does not seem to be priced both un-

conditionally and conditionally, while global market and exchange risks exhibit interesting

patterns of time variation. Second, none of the international asset pricing models are rejected

by the data when, following Hansen and Singleton (1982), I perform tests of the overiden-

tifying restrictions that they impose. On the contrary, testing the same specifications with

the HJ variance bounds and distance measures leads to a strong rejection of all models.4

Hence, even if all international asset pricing models deliver different pricing implications,

none of them seems to hold when the testing procedure adopted is stringent enough. Large

and statistically significant inflation-hedging demands explain the better pricing implications

delivered by the II-CAPM in presence of deviations from PPP. Interestingly, this analysis

is able to rationalize recent findings in the international asset pricing literature and, at the

same time, shed some light on the controversial home bias puzzle. Even if I cannot explain

3Hodrick, Ng, and Sengmüller (1999) test an international version of Campbell’s (1996) intertemporal

CAPM, but do not consider deviations from PPP.
4See Zhang (2001) for an evaluation of domestic and international asset pricing models using the HJ

(1997) distance measure.
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home bias in international equity markets, I can argue that my results are consistent with

the hypothesis of at least mild segmentation of international stock markets.

The remainder of this paper is organized as follows: Section I discusses the economic

risk premia assigned by the minimum—variance admissible kernel and explicit international

asset pricing models;5 Section II illustrates the methods used for estimation and testing;

Section III describes the data; Section IV identifies the investment opportunity set of an

investor; Section V presents the results of the risk premia estimation and relative Sharpe

ratios; Section VI presents the results of the tests of international asset pricing models and

empirically identifies the size of the hedging demands; and Section VII concludes.

I. Methodology: Economic Risk Premia and Interna-

tional Asset Pricing Models

This section derives a general pricing result for nominal asset returns denominated in terms

of a reference currency. Namely, I show that the expected nominal returns in excess of

the nominal risk-free rate of the reference country are directly related to the covariance

of a nominal pricing kernel, scaled by the risk-free rate, with nominal asset returns. I then

consider economic variables that are believed to be relevant for international asset prices: the

rate of return on the world market portfolio; the rate of appreciation of the reference currency

relative to the other currencies; and the rates of inflation in the different countries. If I can

construct portfolios that exactly replicate the conditional variability of these variables, then

the cross moments of the scaled (or normalized) pricing kernel translate into risk premia.

Specifically, these cross moments reduce to the expected nominal cash flows on zero-net-

investment positions long in the mimicking portfolio and short in the riskless asset. If the

nominal (normalized) pricing kernel is linear in the economic variables described above,

as is often assumed in international asset pricing models, then the risk premia also enter

familiar “beta” pricing results. In addition, I show how to test several specifications of the

5The analysis of risk premia mainly follows Balduzzi & Kallal (1997) and Balduzzi & Robotti (2001).
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international capital asset pricing model using a variety of diagnostics.

A. A General International Asset Pricing Result

Assume there are L+1 countries and a set of N = n+1 assets, other than the measurement-

currency nominally risk-free asset. These include n risky assets, or portfolios of risky assets,

and the world portfolio of risky assets.

Consider now the N × 1 vector of (gross) nominal returns on the N assets, r. From now

on, I shall assume all returns to be denominated in terms of the reference currency. By the

law of one price, I have

Et(mt+1rt+1) = 1 (1)

for some admissible nominal pricing kernel m,6 where 1 is an N×1 vector of ones. Note that
the restriction stated in equation (1) prevents arbitrage in the security markets, but not in

the commodity markets where Purchasing Power Parity (PPP) may not hold.

Let rft denote the nominally risk-free rate of the reference country. I then have

Et(mt+1rft) = 1 . (2)

It is convenient to perform the analysis that follows in terms of the pricing kernel scaled by the

risk-free rate. That is, I use the normalized pricing kernel, mt+1rft ≡ qt+1, where Et(qt+1) =

1. As a consequence, I circumvent the problem of explicitly modeling the conditional mean

of the pricing kernel m.

Using equations (1) and (2), I obtain the familiar orthogonality conditions

Et[qt+1(rt+1 − 1rft)] = 0 . (3)

Rearranging, I obtain

Et(qt+1)[Et(rt+1)− 1rft ] = Et(rt+1)− 1rft = −Covt(qt+1, rt+1) . (4)
6See Harrison and Kreps (1979). The set of pricing kernels can be interpreted as the set of nominal

intertemporal marginal rates of substitution compatible with the distribution of returns.
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The conditional risk premium on any asset equals the opposite of the conditional covariance

between the normalized pricing kernel and the asset return.

B. Economic Variables and Exact Mimicking Portfolios

Consider now a K × 1 vector of economic variables y. Without loss of generality, I assume
these variables to have constant zero mean and unit variance: i.e., Et(yk,t+1) = 0 and

Et(y
2
k,t+1) = 1, for k = 1, . . . , K.

The reason for assuming a constant zero mean is that security markets only price unan-

ticipated variability; the relevant economic variables are, in fact, innovations. Finally, the

reason for scaling the risk factors to have constant unit variance is that I can compare the

“prices” attached to the economic variables without having to worry about differences in

variability.

Assume now that there exist portfolios that exactly mimic the behavior of the risk factors.

Let ry,t+1 ≡ yt+1, denote the K × 1 vector of mimicking portfolio returns. According to (4),
I have

Et(ry,t+1)− rft1 = −Et[yt+1(qt+1 − 1)] ≡ λyt , (5)

which is the vector of conditional risk premia on the corresponding economic variables.

Hence, the conditional cross moments between the normalized pricing kernel q and the

economic variable yk equals, with the opposite sign, the conditional risk premium on the

variable. Assuming stationarity and using the law of iterated expectations, I have

λy ≡ E(λyt) ≡ −E[(qt+1 − 1)yt+1] ,

which is the vector of unconditional or mean risk premia on y. The unconditional cross

moment between the normalized pricing kernel q and the economic variable yk equals, with

the opposite sign, the mean risk premium on the variable.
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C. The Minimum-Variance Kernel

Using the definition of the normalized pricing kernel q, I can rewrite equations (1) and (2)

as

Et(qt+1rt+1) = rft1 (6)

and

Et(qt+1) = 1 . (7)

Following HJ, I can construct an admissible (normalized) pricing kernel, i.e., a random

variable that satisfies equations (6) and (7), that is linear in rt+1: q
?
t+1 ≡ α0t+ r

>
t+1αt, where

α0t is a scalar and αt is an N × 1 coefficient vector. I then have

Et(qt+1)Et(rt+1) + Covt(qt+1, rt+1) = rft1 . (8)

Using (6) and q?t+1 ≡ α0t + r
>
t+1αt, I have

−Σrrtαt = Et(rt+1)− rft1 , (9)

where Σrrt is the conditional covariance matrix of risky asset returns (which I assume to be

invertible). I obtain

αt = −Σ−1
rrt[Et(rt+1)− rft1] (10)

while

α0t = 1− Et(rt+1)
>αt . (11)

Using the results in equations (10) and (11), I have

q?t+1 = 1− [rt+1 − Et(rt+1)]
>Σ−1

rrt[Et(rt+1)− rft1] . (12)

This minimum-variance normalized pricing kernel, q?t+1, has several properties worth

noting. First, the vector αt is proportional to the vector of portfolio weights of the tangency
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portfolio obtained from the risky security returns rt+1.
7 Hence, q?t+1 is perfectly negatively

correlated with the rate of return on the tangency portfolio, rτ,t+1. Another important

property is that the conditional variance of q?t+1 equals the squared conditional Sharpe ratio

of the tangency portfolio, Sτt. I have

[Covt(q
?
t+1, rτ,t+1)]

2 = Vart(rτ,t+1)Vart(q
?
t+1) . (13)

Since q?t+1 correctly prices all the securities under consideration, it also correctly prices the

tangency portfolio, and I have −Covt(q?t+1, rτ,t+1) = Et(rτ,t+1) − rft. Using this result and
rearranging equation (13) above, I obtainEt(rτ,t+1)− rftq

Vart(rτ,t+1)

2

≡ S2
τt = Vart(q

?
t+1) . (14)

Finally, since Vart(q
?
t+1) = Et[(q

?
t+1 − 1)2], then Var(q?t+1) = E[(q

?
t+1 − 1)2], and

Var(q?t+1) = E(S
2
τt) . (15)

Hence, the unconditional variance of q?t+1 equals the average squared Sharpe ratio of the

tangency portfolio.

D. Hedging Portfolios and Risk Premia

Now consider the conditional projection of the risk variable yk,t+1 on a constant and rt+1

(y?k,t+1 ≡ α0ykt + r
>
t+1αykt, where α0ykt is a scalar and αykt is an N × 1 coefficient vector).

Let λ?kt ≡ −Covt(qt+1y
?
k,t+1) = −Covt(q?t+1y

?
k,t+1). Since q

?
t+1 satisfies the conditional moment

restriction (6) by construction, I have

λ?kt = −Covt(q?t+1, y
?
k,t+1) = −Covt(q?t+1,α

>
ykt
rt+1)

= −α>yktCovt(q?t+1, rt+1) = α
>
ykt
[Et(rt+1)− rft1] , (16)

which is the mean cash flow generated by the portfolio hedging the risk variable yk financed

at the riskless rate. In other words, λ?kt is the risk premium on the hedging portfolio for the

7For example, see Ingersoll (1987), p. 89.
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risk variable yk,t+1. This implies that λ
?
kt does not depend on the choice of the (normalized)

pricing kernel, but only on the asset returns under scrutiny. If the conditional volatility of

yk,t+1 equals one and the factor is exactly replicated by asset returns, then λ
?
kt is also the

conditional Sharpe ratio on the exact hedging portfolio.

The hedging portfolios defined here are analogous to the ”economic tracking portfolios”

of Lamont (2001). The main difference in his approach is that the portfolios are constructed

to track changes in expectations of future realizations of the economic variables. Instead,

the proposed hedging portfolios are designed to track the contemporaneous realizations of

economic variables.

The composition of the hedging portfolios is worth further discussion. First, the hedging

portfolios contain allocations to the riskless asset in the amount α0ykt/rft. (The rate of

return on the hedging portfolio contains a constant component, α0ykt, resulting from the

investment in the riskless asset.) Second, the hedging portfolio quantities do not sum up to

one. In order to have a “true” hedging portfolio I have to scale the coefficients α0ykt and

αykt by α0ykt/rft + 1
>αykt. Finally, the composition of the hedging portfolios corresponds

to the coefficients of a regression of the risk factors on the asset returns

[α0ykt,α
>
ykt
]> = [Et(rt+1r

>
t+1)]

−1Et(rt+1yk,t+1) . (17)

Hence, the hedging portfolios are the discrete-time counterparts of the portfolios held by a

dynamic portfolio optimizer to hedge against changes in the investment-opportunity set.8

Two properties relating to the estimation of the risk premia are also worth noting. First,

while the conditional expected excess cash flow on a mimicking portfolio equals the condi-

tional covariance between the factor and the minimum-variance kernel, the realized excess

cash flow on the mimicking portfolio, α>ykt(rt+1−rft1), in general differs from−(q?t+1−1)yk,t+1.

In fact,

Et(yk,t+1r
>
t+1)Et(rt+1r

>
t+1)

−1(rt+1 − rf1) 6= [rt+1 − Et(rt+1)]
>Σ−1

rrt[Et(rt+1)− rft1]yk,t+1 . (18)

This observation is important because the estimates of the risk premia may differ in small

8See Merton (1973).
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samples, depending on which approach is used, and the precision of the estimates may

also differ. Second, the conditional Sharpe ratios of the hedging portfolios, Sy?kt, depend

on how closely a risk variable is replicated. Since the replication is not perfect, in general

Vart(y
?
k,t+1) < Vart(yk,t+1). This means that

S2
y?kt
=

(λ?kt)
2

Vart(y?k,t+1)
>

(λ?kt)
2

Vart(yk,t+1)
.

This observation is important because a hedging portfolio might receive a “small” risk pre-

mium and yet command a high Sharpe ratio. This is because it only captures a small fraction

of the variability of a risk variable.

Appendix A relates my approach to the estimation of economic risk premia to two al-

ternative approaches widely considered in the literature: 1) Principal components approach;

and 2) Multi—beta models approach. The first approach assumes that a number of unob-

servable factors drive the variation in asset returns. The realizations of these factors, while

not directly observable, can be inferred from the statistical properties of asset returns. The

second approach explicitly identifies the factors with observable macro-economic variables,

and assumes the pricing kernel and/or asset returns to be linear in the factors.

E. Hedging Portfolios and Linear Kernels

In this section, I describe the link between hedging portfolios and linear kernels. This link is

then used in Section F to formulate and test competitive international asset pricing models.

Without loss of generality, I assume Et(yt+1) = 0 and Et(yt+1y
>
t+1) ≡ Σyyt = I. Consider

now an admissible kernel qy,t+1 which is linear in the risk variables

qy,t+1 = 1− y>t+1λt . (19)

Equation (4) above becomes

Et(rt+1)− 1rft = βtλt , (20)

where βt = Et(rt+1y
>
t+1) ≡ Σryt. This implies that returns satisfy the linear factor model

rt+1 = 1rft + βtλt + βtyt+1 + ²t+1 , (21)
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where λt is aK×1 vector of conditional risk premia and ²t+1 is anN×1 vector of disturbances
orthogonal to yt+1.

Now consider the projection of the risk variables onto the span of asset returns augmented

of a unit-constant. I have y?t+1 ≡ α0yt + αytr
>
t+1, where α0yt is a K × 1 vector and αyt is a

K ×N coefficient matrix. I have

αyt = ΣyrtΣ
−1
rrt , (22)

α0yt = −αytEt(rt+1) , (23)

and

y?t+1 ≡ αyt[rt+1 − Et(rt+1)] . (24)

If, in the admissible linear pricing kernel qt+1, I replace yt+1 with y
?
t+1, the pricing result

(20) does not change. In other words, the projection of qy,t+1 onto the augmented span of

asset returns, qy?,t+1 ≡ (y?t+1)
>λt, is also an admissible pricing kernel.

Consider now the minimum-variance kernel constructed based on the cash flows of the

hedging portfolios q?y?,t+1. This is the kernel with minimum variance that correctly prices

the hedging portfolios. I have

q?y?,t+1 = 1− (y?t+1)
>Σ−1

y?y?tαyt[Et(rt+1)− rft1] , (25)

whereΣy?y?t is the covariance matrix of the hedging-portfolio cash-flows. It is straightforward

to verify that

Σy?y?t = ΣyrtΣ
−1
rrtΣryt (26)

holds.9

Hence,

q?y?,t+1 = 1− (y?t+1)
>(ΣyrtΣ−1

rrtΣryt)
−1ΣyrtΣ

−1
rrt[Et(rt+1)− rft1] . (27)

9I have

Σy?y?t = Et[αyt(rt+1 − Et(rt+1))(rt+1 − Et(rt+1))
>α>yt] = ΣyrtΣ

−1
rrtΣrrtΣ

−1
rrtΣryt = ΣyrtΣ

−1
rrtΣryt .
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Under the null of the multi-beta model, Et(rt+1)− rft1 = Σrytλt, and the expression above
simplifies to

q?y?,t+1 = 1− (y?t+1)
>λt . (28)

In other words, under the null, the projection of qy,t+1 onto the augmented span of asset

returns equals the minimum-variance kernel constructed using the hedging portfolio cash-

flows.

F. Hedging Portfolios and Tests of Asset-Pricing Models

One appealing property of the kernel q?y?,t+1 is that, under the null, it is the minimum-

variance admissible kernel. In other words, any other admissible kernel is at least as volatile

as q?y?,t+1. This minimum-volatility property is obviously appealing. When it comes to tests

of overidentifying restrictions (the standard J test of Hansen, 1982), low volatility of the

kernel implies low volatility of the pricing errors, q?y?,t+1rt+1 − rft1. This, in turn, reduces
the likelihood that a poor model is not rejected simply because the volatility of the candidate

pricing kernel is high.

One additional feature that makes the kernel q?y?,t+1 appealing is that the statistics as-

sociated with tests of the Hansen-Jagannathan variance bounds (HJV) and the Hansen-

Jagannathan distance (HJD) are the same, and can be interpreted in terms of comparisons

of expected squared conditional Sharpe ratios of the unrestricted tangency portfolio and a

restricted tangency portfolio.

The unconditional variance of q?y?,t+1 equals the expectation of the squared conditional

Sharpe ratio of the tangency portfolio obtained using the hedging portfolios, instead of all

the assets available. Hence, when I test whether q?y?,t+1 satisfies the HJ variance bound, I test

whether Var(q?t+1)−Var(q?y?,t+1) > 0. This is equivalent to a test that E(S
2
τt)− E(S2

y?τt) > 0

where Sy?τt is the Sharpe ratio of the restricted tangency portfolio.

The HJD test is a test that the projection of a candidate kernel onto the augmented span

of asset returns and the minimum-variance kernel are sufficiently “close”: under the null, the
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second moment of the difference between the minimum-variance kernel and the projection

of the candidate kernel onto the augmented span of asset returns should be “small”. In

particular, using qy?,t+1 as the candidate kernel (note that the projection of q
?
y?,t+1 onto a

constant and rt+1 is q
?
y?,t+1 itself) the HJD statistic is the sample counterpart of

E[(q?t+1 − q?y?,t+1)
2] = E{Et(q?t+1 − q?y?,t+1)

2} = E[Vart(q?t+1 − q?y?,t+1)] . (29)

Now note that

Covt(q
?
t+1 − q?y?,t+1) = [Et(rt+1 − rft1)]>Σ−1

rrtΣrrα
>
yΣ

−1
rr αy[Et(rt+1)− rft1]

= [Et(rt+1)− rft1]>α>yΣ−1
rr αy[Et(rt+1)− rft1]

= Vart(q
?
y?,t+1) . (30)

Hence

E[Vart(q
?
t+1 − q?y?,t+1)] = E[Vart(q

?
t+1)]− E[Vart(q?y?,t+1)]

= Var(q?t+1)−Var(q?y?,t+1) . (31)

Up to this point, I have assumed the existence of a pricing kernel qt+1 which prices ex-

actly the securities under consideration. I now investigate theories which postulate the form

of qt+1. For concreteness, I consider here four models: the International Static CAPM (IS—

CAPM); the International CAPM in presence of deviations from PPP (I-CAPM (PPP)); the

International CAPM in presence of currency risk (I-CAPM (SPOT)); and the International

Intertemporal CAPM (II—CAPM). The IS—CAPM was first derived by Solnik (1974) and pos-

tulates a linear relationship between the cross-section of international expected excess equity

returns and the excess return on a world market portfolio. The I-CAPM, as introduced by

Adler and Dumas (1983), links nominal excess returns on international equity denominated

in a reference currency to a world market portfolio and portfolios hedging against deviations

from PPP. The II-CAPM is a combination of Merton’s (1973) intertemporal CAPM and

Adler and Dumas’s (1983) international CAPM. Namely, the cross-section of nominal excess

returns denominated in a reference currency is explained by three hedging funds: a nationless

(or logarithmic) world market portfolio; portfolios hedging against deviations from PPP; and
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portfolios hedging against variations in the investment opportunity set of an international

investor. Consider the II-CAPM in its discrete-time approximate version. The vector wl
t of

the l-country (l = 1, ..., L+ 1) optimal weights on the risky assets is given by

wl
t = α

lΣ−1
rrt[Et(rt+1)− rft1] + (1− αl)Σ−1

rrts
l
rπt + β

lΣ−1
rrts

l
rykt

, (32)

where slrykt and s
l
rπt are the vectors of time-varying covariances between each country’s

security returns and the k-th state variable and level of inflation, respectively. Moreover, I

define αl ≡ − J lWt

J lWWtW
l
t
and βl ≡ (αl)2× J lWykt

W l
t
.10 Let wτt denote the N × 1 vector of unscaled

weights of the tangency portfolio

wτt = Σ−1
rrt[Et(rt+1)− rft1] . (33)

Let wl
yt and w

l
πt denote the N × 1 vectors of unscaled weights hedging against variations in

the investment opportunity set and against deviations from PPP, respectively, so that

wl
yt = Σ−1

rrts
l
rykt

and (34)

wl
πt = Σ−1

rrts
l
ryt . (35)

Then I can rewrite (32) as

wl
t = α

lwτt + (1− αl)wl
πt + β

lwl
yt . (36)

Aggregating over countries and defining αm =
PL+1

l=1
αlW lPL+1

l=1
W l
, αlπ =

(1−αl)W lPL+1

l=1
W l
, αly =

βlW lPL+1

l=1
W l
, I

obtain

wmt = α
mwτt +

L+1X
l=1

αlπw
l
πt +

L+1X
l=1

αlyw
l
yt . (37)

Hence the tangency portfolio, which prices all security returns, is a combination of the global

market portfolio and the portfolios hedging against deviations from PPP and movements

in the investment opportunity set of an international investor. Notice that the II-CAPM

collapses to the IS-CAPM when the investment opportunity set is constant and there are

no deviations from PPP.11 The II-CAPM collapses to the I-CAPM when the investment

10See Appendix B for a derivation of (32).
11Note that in this case, using either nominal or real stock returns to test the CAPM returns the same

results.
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opportunity set is constant or, equivalently, when the weights associated with the hedging

demands are set equal to zero. Moreover, when the inflation rate of country l, expressed in

its home currency, is zero or non stochastic, the L+ 1 inflation hedging funds of Adler and

Dumas model collapse to L exchange rate hedging funds:12 the I-CAPM (PPP) collapses

to the I-CAPM (SPOT). The previous setup provides a rationale for using nominal returns

in the analysis. The absence of money illusion also makes it possible to express nominal

returns in a reference currency and, without loss of generality, in excess of a measurement

currency risk-free rate.13 The problem of testing these different versions of the international

CAPM simply reduces to the problem of testing that the tangency portfolio is mean—variance

efficient. The international asset pricing models discussed above can be conveniently stated

in terms of their assumptions on the nominal (normalized) minimum—variance kernel q?.14

Hence, I define the vector yt+1 as

yt+1 ≡ [ym,t+1,yf,t+1,yπ,t+1,yh,t+1]
> ,

where ym,t+1 is the rate of return on the world market portfolio, yf,t+1 is the L × 1 vector
of logarithmic changes of the rates of appreciation of the measurement currency, yπ,t+1 is

the (L+ 1)× 1 vector of innovations in the inflation rates, and yh,t+1 is the K × 1 vector of
demands hedging against variations in the investment opportunity set, where K represents

the number of economic factors used in the analysis. The corresponding mimicking-portfolio

returns, y?t+1, are formed using the methodology described in Section I.D.

Consider, for example, the II-CAPM. The corresponding normalized minimum—variance

12See, for example, Solnik (1974), Sercu (1980), and Grauer, Litzenberger and Stehle (1976).
13In the IS-CAPM, translating returns into a new currency and measuring excess returns relative to the

new currency risk-free rate would leave the intercept term equal to zero. In the I-CAPM and II-CAPM,

the new currency foreign exchange premium would be replaced by the old currency exchange risk premium.

Nonetheless, the introduction of conditioning information and the expansion of the set of primitive securities

to include managed portfolios might be affected by the choice of the measurement currency. Hence, the

pricing implications delivered by alternative asset pricing models might differ according to the reference

currency considered. Dumas and Solnik (1995) found that the choice of the measurement currency did not

affect their conclusions in terms of rejection and acceptance of the international CAPM.

14See Dumas and Solnik (1995) for a similar interpretation of international asset pricing models.
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pricing kernel, q?t+1, can be written as

q?t+1 = 1− y?m,t+1λmt − y?>π,t+1λπt − y?>h,t+1λht , (38)

or, when inflation rates in each country are non-random, as

q?t+1 = 1− y?m,t+1λmt − y?>f,t+1λft − y?>h,t+1λht , (39)

where λmt, λft, λπt and λht are commensurable coefficient vectors.

Using (5), I have

Et(rt+1)− 1rft = Et(rt+1y
?
m,t+1)λmt + Et(rt+1y

?>
π,t+1)λπt + Et(rt+1y

?>
h,t+1)λht (40)

and

Et(rt+1)− 1rft = Et(rt+1y
?
m,t+1)λmt + Et(rt+1y

?>
f,t+1)λft + Et(rt+1y

?>
h,t+1)λht . (41)

Let βmt ≡ Et(rt+1y
?
m,t+1), βft ≡ Et(rt+1y

?>
f,t+1), βπt ≡ Et(rt+1y

?>
π,t+1), and βht ≡ Et(rt+1y

?>
h,t+1)

denote the (arrays of) the conditional “betas” associated with the economic variables y. I

can rewrite (40) and (41) to obtain the international intertemporal CAPM linear pricing

results

Et(rt+1)− 1rft = βmtλmt + βπtλπt + βhtλht (42)

and

Et(rt+1)− 1rft = βmtλmt + βftλft + βhtλht . (43)

Equations (42) and (43) state that the conditional risk premium on any asset is a linear

combination of the conditional risk premia on the different sources of economic and financial

risks. The previous equations collapse to the IS-CAPM when PPP holds and hedging de-

mands are equal to zero while they reduce to the Adler and Dumas I-CAPM when hedging

demands are equal to zero.15

15Specifically, in testing the II-CAPM, I overparameterize the model and use demands hedging against

inflation and foreign exchange risk simultaneously.
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II. Estimation

This section describes the methodology I use in the empirical analysis. First, I illustrate the

approach taken to document time variation in the first and second moments of international

asset returns. Second, I illustrate the estimation of the coefficients of the minimum-variance

kernel. Third, I illustrate the estimation of the economic risk premia using two approaches

based on the minimum-variance kernel and mimicking portfolios. Fourth, I illustrate how

the explicit asset pricing models discussed in the previous section are tested.

A. Selecting Instruments

Let zt denote a J × 1 vector of instruments whose realizations belong to the information set
at the beginning of each investment period. Without loss of generality, I assume the first

element of zt to be unity, z1t = 1. I model the conditional mean and conditional volatility

of asset returns as linear functions of the instruments. Namely, I assume

Et(rt+1) = µr1 + µr2z2t + . . .+ µJ1zJt , and

Et[|rt+1 − Et(rt+1)|] = vr1 + vr2z2t + . . .+ vJ1zJt . (44)

Hence, the mean and volatility coefficients can be estimated by exactly-identified GMM.

B. The Minimum-Variance Kernel

I postulate that the coefficients α0t and αt of the minimum-variance pricing kernel are linear

functions of the instruments zt;

α0t = 1− Et(rt+1)
>αt = α0(zt) , (45)

and

αt = −Σ−1
rrt[Et(rt+1)− rft1] = α(zt) , (46)

where αj, j = 1, . . . , J , are N × 1 coefficient vectors.

18



Note that this approach can be interpreted as the scaling of asset returns with instruments

(or the expansion of the set of securities to include managed portfolios) which is common in

the asset pricing literature.16 In fact, I can write

Et(q
?
t+1)zt = zt , and (47)

Et(q
?
t+1rt+1)⊗ zt = rft1⊗ zt . (48)

Assuming stationarity, and applying the law of iterated expectations, I have

E(q?t+1zt) = E(zt) , and (49)

E(q?t+1rt+1 ⊗ zt) = E(rft1⊗ zt) . (50)

The two conditions above ensure that, conditioning on zt, q
?
t+1 has mean one and correctly

prices the securities under consideration.

It is convenient at this point to define

ιt ≡
 1

rft1

 (51)

and let ιzt ≡ ιt ⊗ zt. Also, I define

ra,t+1 ≡
 1

rt+1

 (52)

and rza,t+1 ≡ ra,t+1 ⊗ zt. Hence, I can rewrite (49) and (50) as

E(q?t+1r
z
a,t+1) = E(ι

z
t ) . (53)

The minimum-variance kernel satisfying (53) has the form q?t+1 ≡ rz>a,t+1α
z
a, where α

z
a is an

(N + 1)J coefficient vector. I have

αza = [E(r
z
a,t+1r

z>
a,t+1)]

−1E(ιzt ) . (54)

16This scaling procedure has an intuitive interpretation. The scaled returns are the returns on managed

portfolios in which the manager invests more or less according to the signals zt.
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Hence, the minimum-variance kernel satisfying (53) has the form

q?t+1 = (αza1 + α
z
a2z2t + . . .+ α

z
aJzJt)

+(αza,J+1 + α
z
a,J+2z2t + . . .α

z
a,2JzJt)r1,t+1

+ . . .

+(αza,NJ+1 + α
z
a,NJ+2z2t + . . .α

z
a,J(N+1)zJt)rN,t+1 , (55)

which is equivalent to imposing the assumptions (45) and (46). The analysis above still

applies when the positivity constraint is imposed.17 In this case the minimum-variance

kernel has the form q̃t+1 ≡ (rz>a,t+1α̃
z
a)

+.

Note that when the set of instruments used in the analysis only contains a constant,

this approach can be interpreted as projecting the minimum—variance kernel on the set of

primitive securities.

C. Economic Risk Premia

In order to estimate the conditional risk premia associated with the variables ykt, I use

two approaches. First, I consider the conditional covariance between the minimum-variance

kernel and yk. Second, I construct mimicking portfolios and I estimate their conditional risk

premia.

In implementing the first approach, I assume

λ?kt ≡ −Covt(q?t+1, yk,t+1) = −Et[(q?t+1 − 1)yk,t+1] = λk1 + λk2z2t + . . .+ λkJzJt . (56)

Without loss of generality, I also assume Var(zjt) = 1. Hence the coefficients λkj can be

interpreted as the change in the conditional risk premium for a one-standard-deviation change

in the instrument. The assumption that the conditional risk premia are determined by the

set of instruments zt is quite natural: the conditional risk premia assigned by the minimum-

variance kernel are the mean cash flows generated by the hedging portfolio financed at the

17Appendix C shows how to estimate economic risk premia under the no arbitrage condition of non-

negativity of the normalized pricing kernel.
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riskless rate. Hence, if the variables in zt are predictors of asset returns, they should also

predict excess returns on the hedging portfolios. In fact, modeling the time-variation of risk

premia in this fashion is common to other studies (Ferson and Harvey (1991), for example).

Note that, without loss of generality, I can assume E(zjt) = 0, i = 2, . . . , J . This means

that

E(λ?kt) = λk1 . (57)

The distinction between conditional and unconditional risk premia is important because,

even if the unconditional premium is close to zero, the conditional premia may take values

over time which are significantly different from zero.

When the positivity restriction is imposed, I have

λ̃kt ≡ −Covt(q̃t+1, yk,t+1) = −Et[(q̃t+1 − 1)yk,t+1] = λk1 + λk2z2t + . . .+ λkJzJt . (58)

The second approach to the estimation of the economic risk premia is based on the

construction of hedging portfolios. I postulate that the coefficients α0ykt and αykt of the

hedging portfolio are linear functions of the instruments zt. Hence, I have y
?
k,t+1 = α

z
ayk
rza,t+1,

where

αzayk = [E(r
z
a,t+1r

z>
a,t+1)]

−1E(rza,t+1yk,t+1) . (59)

As with the coefficients of the minimum-variance kernel, one can show that this approach

is equivalent to projecting the risk variables on both the returns on the primitive securities

and the cash flows of dynamic strategies. In particular, when zt = z1t = 1 this approach is

equivalent to projecting the risk variables only on the set of primitive securities.

Finally, I estimate the Sharpe ratios of the hedging portfolios, since they might differ

substantially from the conditional risk premia (see discussion above). Hence, I take the ratio

between the risk premium and the volatility of the hedging portfolios cash flows.
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D. Tests of International Asset-Pricing Models

Each of the international asset-pricing models I considered has specific pricing implications,

as previously discussed. For convenience, I discuss my tests with respect to the implications

of the static international capital asset pricing model (IS-CAPM). The approach to test the

other models is analogous.

Recall that the IS-CAPM implies that the portfolio hedging global market risk prices all

securities. Using a standard GMM test I test whether a pricing kernel linear in the cash

flows of this portfolio, q?m,t+1, prices all securities. I have q
?
m,t+1 = y

?
ma,t+1α

z
ma, where

αzma = E(y
?
ma,t+1y

?>
ma,t+1)

−1E(ιmt) (60)

and

y?ma,t+1 ≡
 zt

rz>a,t+1α
z
aym

 (61)

ιmt ≡
 zt

ιz>t α
z
aym

 . (62)

I test the moment conditions

E(q?m,t+1r
z
a,t+1) = E(ι

z
t+1) . (63)

This corresponds to the test of overidentifying restrictions pioneered by Hansen and Singleton

(1982). I have J+K coefficients in the vector αzma and J+NJ moment conditions, for a total

of NJ −K overidentifying restrictions. If the test failed, this would mean that the pricing

errors generated by the IS-CAPM are statistically significant, and the model is rejected.

Second, I compare the standard deviation of q?m,t+1 to the standard deviation of the

minimum-variance normalized kernel, q?t+1. Namely, I estimate the differenceq
Var(q?m,t+1)−

q
Var(q?t+1) . (64)

This corresponds to the HJV test. Since the variances of the two kernels correspond to

the average squared Sharpe ratios of the global market-hedging portfolio and the tangency
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portfolio, this test is equivalent to a test of the mean-variance efficiency of the world market-

hedging portfolio.

Third, I calculate the standard deviation of the difference between q?m,t+1 and q
?
t+1,q

Var(q?t+1 − q?m,t+1) . (65)

This corresponds to the HJD test.18 If the test failed, this would mean that the difference be-

tween the pricing kernel generated by the IS-CAPM and any admissible kernel is statistically

significant, and the model is rejected.

III. Data

This section illustrates the data used in the empirical analysis. The period considered is

April 1970 through October 1998 for stock returns and economic variables and March 1970

through September 1998 for instrumental variables. Data are monthly. The starting and

ending dates for the sample are dictated by macroeconomic and financial data availability.

A. Asset Returns

I use the Morgan Stanley Capital International (MSCI) national equity indices. The nominal

returns are denominated in U.S. dollars and are calculated with dividends. All indices have

a common basis of 100 in December 1969. The indices are constructed using the Laspeyres

method, which approximates value weighting.19 U.S. dollar returns are calculated by using

the closing European interbank currency rates from MSCI. I choose the four countries with

the largest market capitalization: United States; United Kingdom; Japan; and Germany.20

Table I shows summary statistics for monthly returns on stock indices from MSCI.

18Since I allow a constant in q?
m,t+1, E(q

?
m,t+1) = E(q

?
t+1) = 1. Hence,

q
E(q?

t+1 − q?
m,t+1)

2, which is the

Hansen-Jagannathan distance, equals
q
Var(q?

t+1 − q?
m,t+1).

19See MSCI Methodology & Index Policy for a detailed description of MSCI’s indices and properties.
20As of 1996, the market capitalization weight for these countries is 76.2% of the market capitalization

world.
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B. Economic Variables and Instruments

I use inflation rates, spot exchange rates, and the rate of return on the world market portfolio

as the relevant sources of risk in this study. Consumer price indices are from International

Financial Statistics (IFS) and are denominated in local currency. Spot exchange rates are

from MSCI. The world equity market index is a value—weighted combination of the country

returns tracked by MSCI. I proxy foreign exchange risk with logarithmic changes in the

spot exchange rates (SPOT); inflation risk with an ARIMA(0,1,1) for inflation (INFL); and

global market risk with the level of world equity returns (WLDMK). Note that the variable

INFL represents unexpected inflation and that the variable SPOT represents innovations

in the exchange rate if I assume that spot rates follow a random walk. Table II contains

summary statistics for the relevant risk variables. In choosing the set of instruments, I

concentrate on a set of variables which have been previously used in tests of multiple-beta

models and/or in studies of stock-return predictability.21 These variables are statistically

significant in multivariate predictive regressions of means and volatilities and/or they have

special economic significance. The instruments include a constant, a January dummy, and

the following five variables:

DINFLUS is the lagged difference in the U.S. monthly rate of inflation (IFS).

EURO represents the one—month Eurodollar deposit rate (DRI) and performs as the

conditionally nominal risk—free asset in the analysis.

USDIVYLD denotes the U.S. monthly dividend yield (MSCI) in excess of the 1-month

Eurodollar deposit rate. Specifically, the monthly dividend yield is equal to 1/12 of

the ratio between the previous year dividend and the index at the end of each month.

WLDMK denotes the lagged value of the world stock market monthly returns (MSCI).

DEFPREM denotes the U.S. default premium as given by the return difference between

Moody’s Baa-rated and Aaa-rated bonds (SBBI Yearbook).

21See, for example, Ferson and Harvey (1993), Dumas and Solnik (1995), and De Santis and Gérard (1998).
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I select as instruments the previous variables as a proxy for the information investors use to

set prices in the market.

Table III presents summary statistics of the instrumental variables.

IV. Selecting Instruments

In this section I select a set of instruments by performing an analysis of predictability. Specif-

ically, I look at the ability of some variables used in previous studies of international asset

pricing to predict variation in the first and second conditional moments. This preliminary

analysis is relevant for three reasons. First, it identifies the information set of an interna-

tional investor. Second, it makes it possible to study the patterns of time variation in the

conditional risk premia. Third, it provides a rationale for including a third hedging portfolio

in alternative international CAPM specifications besides portfolios hedging against global

market and inflation (or currency) risks.

Table IV presents my results. I report the coefficients of the mean and variance equations,

as well as three statistics: µ̄r is the average slope coefficient in the mean equations; v̄r is the

average slope coefficient in the variance equations; and µ̄r − v̄r is the difference between the
two average slope coefficients. These statistics provide an indication of the net effect of the

instruments on the investment opportunity set.

The following patterns emerge from this analysis (see especially Panel C):

The lagged change in the U.S. inflation rate (DINFLUS) has a negative and significant

average impact on returns and a negative, but insignificant, average impact on return

volatility. The net effect on the investment-opportunity set is strongly negative.

The Eurodollar deposit rate (EURO) has a positive and significant average impact on

returns and a negative and significant average impact on return volatility. The net

effect is strongly positive.

The U.S. dividend yield in excess of the EURO (USDIVYLD) has a positive and
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significant average effect on returns and a negative and significant overall effect on

volatility. The net effect is positive.

The lagged world market equity return (WLDMK) has an overall positive, but insignif-

icant, impact on returns. The impact on volatility is negative and partially significant.

The net effect is positive but not large.

The U.S. default premium (DEFPREM) positively affects returns and is partially sig-

nificant. The overall effect on volatility is negative and partially significant. The net

effect is positive.

In summary, I can rank the net effects of the different variables on the investment-

opportunity set as follows (from largest to smallest): USDIVYLD, EURO, DEFPREM,

WLDMK, DINFLUS.22

V. Risk Premia and Sharpe Ratios

In this section I report estimates of the risk premia associated with the economic variables

and look at their patterns of time variation.23 I use the instrumental variables selected in

the previous section to document the patterns of time variation of the conditional premia.

Table V reports estimates of the coefficients of the economic risk premia estimated using

the minimum-variance kernel q?t+1. Since the instruments are demeaned, the intercept term

can be interpreted as the unconditional risk premium on yk,t+1. I do not report coefficient

estimates of the economic risk premia estimated using the non-negative minimum-variance

kernel q̃t+1 because there is no substantial difference with respect to the estimates reported

in Table VI. Table VII reports coefficient estimates of the economic risk premia estimated

using the hedging portfolios.

22Note that Germany, among all countries in the study, exhibits the weakest patterns of predictability.
23Note that the instruments do not coincide with the past values of the economic variables included in the

analysis, with the exception of the world market portfolio.
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As noted in section I.D. above, the expected excess cash flows on the hedging portfolios

coincide with risk premia assigned by q?t+1. Yet, the realized excess cash flows on the hedging

portfolios in general differ from (q?t+1 − 1)yk,t+1. Hence, the estimates of the unconditional

risk premia using the “q?” and the “hedging portfolio” approaches will coincide, although

their standard errors may differ. In addition, the impact of the conditioning variables on the

conditional risk premia will also differ. Note that when y? and q? are mapped onto the space

spanned by the primitive securities and are estimated inside of the algorithm, the standard

errors of the unconditional risk premia coincide (see Panel A of Tables V and VI).

The tables report two sets of t-ratios. The first t-ratio is obtained using a two-step

procedure: I first estimate the coefficients of q?t+1 and y
?
k,t+1; I then estimate the risk pre-

mia by exactly-identified GMM algorithm. The second t-ratio is obtained estimating all

parameters inside the GMM algorithm. The reason for the two separate approaches is that

I am concerned with the large number of estimated parameters when the coefficients of the

minimum-variance kernels and the hedging portfolios are estimated by GMM. As it turns

out, the t-ratios change only marginally across the two procedures. In all tests, standard

errors are adjusted for heteroskedasticity and serial correlation.

The results are also very similar across estimation methods. The main difference is that

the estimation based on the q? tends, in most of the cases, to yield tighter standard errors.

The following patterns emerge from the tables:

The unconditional inflation risk premia are negative (except for Germany) but not sig-

nificant. When managed portfolios are ruled out from the analysis, only U.S. inflation

seems to be priced and to be significant across estimation techniques. No significant

pattern of time variation emerges from the analysis of the foreign inflation conditional

premia.

The unconditional foreign exchange risk premia are negative. Even if I am not using

any equilibrium model to compute economic risk premia, this result is consistent with

the predictions of Adler’s and Dumas’ international CAPM. They show that if the

degree of risk aversion of investors is greater than one, foreign exchange risk premia
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should be negative. Nonetheless, the unconditional estimates of currency risk premia

are not statistically significant. This result also supports Adler and Dumas (1995)

and De Santis and Gerard (1998). I also find time variation in the estimates of the

conditional premia statistically significant.

The unconditional global market risk premium is positive and statistically significant

across estimation techniques. This result seems to be robust and does not support the

analysis of Adler and Dumas (1995) or De Santis and Gérard (1998). They actually

find that the world market unconditional risk premium is positive but insignificant. On

the other hand, my findings are supported by the work of Hodrick, Ng, and Sengmüller

(1999). Moreover, I find significant time variation in the global market conditional risk

premium.

In addition, I estimated the unconditional and conditional premia implied by the set

of economic and financial factors. Estimation results (not reported in the paper) do not

provide any evidence of statistical significance of these premia. Even if the factors exhibit

some non—trivial patterns of predictability for the first and second moment of asset returns,

they do not seem to be priced.

In summary, I find that the signs of the risk premia associated with foreign exchange

and inflation risks are largely consistent with the theoretical predictions of several models of

international asset pricing. At the same time, foreign inflation unconditional and conditional

risk premia and foreign exchange unconditional risk premia are imprecisely estimated. On

the contrary, I document significant patterns of time variation of foreign exchange premia

and find that constant and time-varying global market risk premia are precisely estimated.

The remaining economic and financial factors are not priced, both unconditionally and con-

ditionally.

The risk premia estimated above coincide with the Sharpe ratios of exact mimicking port-

folios. But, in general, economic factors can be tracked only imperfectly by asset returns.

Hence, in order to obtain Sharpe ratios on traded portfolios I need to standardize the esti-

mates obtained above by the volatility of the approximate mimicking portfolio returns. The
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composition of the mimicking portfolios is estimated separately from the Sharpe ratios.

Table VII presents the Sharpe ratios on the eight hedging portfolios. I find that the

volatilities of the mimicking portfolios cash flows are strongly significant. On the other

hand, given the statistical insignificance of the mean estimates, the Sharpe ratios on the

hedging portfolios are insignificant, with the exception of the global market portfolio.

VI. Hedging Demands and Tests of International Asset

Pricing Models

In this section I discuss the results of tests of four explicit asset pricing models: IS-CAPM,

I-CAPM (PPP), I-CAPM (SPOT), and II-CAPM.24 Results of the tests are presented in

Table VIII and in Table IX. The tests are performed using the full set of instruments zt

(“With conditioning information”).

In Table VIII, I report the χ2 statistic associated with a test of the overidentifying

restrictions, the difference between the standard deviation of the candidate pricing kernel

and the standard deviation of q?t+1, the HJV statistic, and the standard deviation of the

difference between the candidate pricing kernel and q?t+1, the HJD statistic. I also report

the p-values associated with the χ2 test, and the t-ratios associated with the HJV and HJD

statistics.

In the test of overidentifying restrictions, the coefficients of the candidate kernel are

estimated by GMM, although the composition of the mimicking portfolios is estimated sepa-

rately, outside of the GMM algorithm. In the other two tests, the coefficients of the candidate

kernel are estimated separately.

I find that the χ2 tests do not reject all five models conditionally. In particular, the

24The additional mimicking portfolios considered in the II-CAPM specification are obtained via an OLS

regression of DINFLUS, EURO, USDIVYLD and DEFPREM on the augmented span of managed portfolio

returns.
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II-CAPM(PPP) can be weakly rejected at the 5% significance level but not at the 1% level.

On the contrary, tests of the HJ bounds and of the HJ distance measure indicate that

all the models are rejected by the data — the standard deviation of the candidate kernels

is always substantially lower than that of q?t+1. Nonetheless, as shown in Table IX, there

are differences in performance. The IS-CAPM generates the least volatile pricing kernel.

The I-CAPM (SPOT) of Grauer, Litzenberger, and Stehle (1976) generates pricing kernels

with somewhat higher volatility. The second most volatile pricing kernel is generated by the

Adler and Dumas model. The most volatile kernel is generated by the II-CAPM (PPP).

The difference between the volatility of the II-CAPM (PPP) and I-CAPM (SPOT) kernels

is substantial (68 percent) while the difference between the volatility of the II-CAPM (PPP)

and I-CAPM (PPP) kernels is close to 16 percent. Note that the standard deviation of a

pricing kernel coincides with the average Sharpe ratio of the tangency portfolio constructed

using the underlying set of assets. Hence, the HJV statistic can be interpreted as the

difference between two average Sharpe ratios.

Overall, the evidence from these tests is that while all five models are not rejected by

the Hansen and Singleton (1982) χ2 test of overidentifying restrictions, the same models are

formally rejected by the tests of HJ variance bounds and HJ distance. These results are in

sharp contrast with the findings of Dumas and Solnik (1995) as well as De Santis and Gérard

(1998). These authors do not reject the international CAPM in its conditional version on the

basis of tests of overidentifying restrictions and cross-equations restrictions. The use of test

statistics that do not reward the variability of alternative admissible pricing kernels allows

me to reject the conditional international CAPM in all its specifications.

I also investigate the size and the significance of the unconditional demands induced by

hedging against global market, inflation, and foreign exchange risks. The estimates of these

hedging demands correspond to the coefficients of the mimicking portfolios that appear in

the kernel specification described in Section II.D. The hedging demands are normalized to

sum up to one. Standard errors are computed using the delta method.

As shown in Table X, the scaled hedging demands are precisely estimated. In particular,
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the coefficients associated with the cash-flows of the inflation hedging portfolios are large in

magnitude and statistically significant. This result further explains why the international

intertemporal CAPM in presence of deviations from PPP has better pricing implications

than the other asset pricing models.25

VII. Conclusions

This paper presents a new approach for the estimation of risk premia associated with ob-

servable sources of risk, which is based on the moments of the minimum-variance kernel of

Hansen and Jagannathan (1991). I also provide extensive evidence on the performance of

four explicit asset pricing models: the IS-CAPM; the I-CAPM (PPP); the I-CAPM (SPOT);

and the II-CAPM in presence of deviations from PPP.

In sharp contrast with Dumas and Solnik (1995) and De Santis and Gérard (1998), but

in line with Hodrick, Ng, and Sengmüller (1999), I find the global market risk is priced both

conditionally and unconditionally.

All international asset-pricing models are formally rejected by the data when the testing

methodology is stringent enough. In addition, the II-CAPM (PPP) that I construct and test

using mimicking portfolios outperforms the IS-CAPM. It generates a pricing kernel which is

72% more volatile than the one of the IS-CAPM. For these models, the differences is Hansen

& Jagannathan variance bounds and distance measures are large and statistically significant.

Hence, I add to the existing literature showing that, introducing deviations from PPP and

dynamic hedging, the II-CAPM (PPP) is able to generate more accurate pricing implications

than the other versions of the international CAPM. My findings show that the II-CAPM

(PPP) outperforms the competitive international asset-pricing models because most of the

economic and financial factors considered significantly affect the first and second conditional

moments of asset returns. Finally, the result that the international CAPM in its alternative

25The inflation-mimicking portfolios make the II-CAPM(PPP) kernel more volatile and hence closer to

the bounds of the minimum-variance kernel.
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specifications does not hold is consistent with the evidence of at least mild segmentation of

international equity markets and is supported by Hodrick, Ng, and Sengmüller (1999).

Future work should investigate the sensitivity of these results to the level of aggregation

of asset returns, to the choice of the investment opportunity set of an investor, and to the

measurement currency used in the analysis.
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Appendix A

A. Unobservable Factors: Principal Components

One common approach to the study of asset returns is based on principal-component analysis.

Let St denote the matrix whose columns are the orthonormal eigenvectors of Σrrt. Since

S>t St = I, I have

rt+1 = S
>
t Strt+1 ≡ S>t rp,t+1 , (66)

where rp,t+1 ≡ Strt+1 is the vector of orthogonal factor-portfolio returns.
26 This makes it

possible to rewrite the kernel q?t+1 as

q?t+1 = 1− [rt+1 − Et(rt+1)]
>S>t StΣ

−1
rrtS

>
t St[Et(rt+1)− rft1]

= 1− [rp,t+1 − Et(rp,t+1)]
>V−1

t [Et(rp,t+1)− rftS>t 1] , (67)

where Vt is a diagonal matrix whose viit element is the i-th eigenvalue of Σrrt.

Three main insights can be developed based on the expressions above. First, the minimum-

variance kernel is a linear combination of the factor-portfolio returns

q?t+1 = 1−
NX
i=1

rpi,t+1 − Et(rpi,t+1)√
viit

Spit , (68)

where Spit is the Sharpe ratio on the i-th factor-portfolio. Hence, the (standardized) risk

premia associated with the factor portfolios are the coefficients relating the (standardized)

innovations in the factor portfolio returns to the minimum-variance kernel. Moreover, equa-

tion (68) highlights how the variance of the minimum-variance kernel, and hence the squared

Sharpe ratio of the tangency portfolio, can be decomposed according to the squared Sharpe

ratios of the factor portfolios

Vart(q
?
t+1) = S

2
τt =

NX
i=1

S2
pit . (69)

26Note that the weights of the factor portfolios do not sum to one: the eigenvectors are normalized so that

the sum of the squared elements is one.
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Second, since the factor portfolio returns are orthogonal to each other, the covariance

between q?t+1 and any risk variable yk,t+1 can be written as a linear combination of the sum

of the covariances between each of the factor portfolio returns and yk,t+1:

λkt = −
NX
i=1

Covt(rpi,t+1, yk,t+1)√
viit

Spit . (70)

This expression allows for a breakdown of the risk premium on an observable risk variable

into the components due to the different factor portfolios.

Third, the ability of a subset of the factor portfolios to price all assets can be tested in

the same way as any candidate pricing kernel.

B. Observable Factors: Multi-beta Models

A multi-beta model implies that expected excess returns are linear in the sensitivities of the

returns to the risk variables, with coefficients given by the risk premia associated with the

factors:

Et(rt+1)− rft1 = βtλt , (71)

where βt is an N ×K matrix of projection coefficients of the returns on the risk variables.

Hence, excess returns are described by the model

rt+1 − rft1 = βtλt + βtyt+1 + et+1 , (72)

where et+1 is a vector of N ×1 mean-zero perturbances orthogonal to the risk variables yt+1,

with covariance matrix Σeet.

Consider now the risk premia assigned by the minimum-variance kernel q?t+1. From (16)

I have

λ?t = αytβtλt

= ΣyrtΣ
−1
rrtΣrytΣ

−1
yytλt . (73)
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In the special case where Σyyt = I, i.e., the factors are orthogonal with unit variance, the

equation above simplifies to

λ?t = ΣyrtΣ
−1
rrtΣrytλt . (74)

It is straightforward to verify that theΣyrtΣ
−1
rrtΣryt matrix equals the covariance matrix of the

projections of the risk variables onto the span of asset returns, Σy?y?t,
27 i.e., λ?t = Σy?y?tλt.

Hence, the risk premia assigned by q?t+1 are linear combinations of the multi-beta premia

through coefficients, which depend on the covariance matrix of the hedging-portfolio cash

flows. In the two-factor case, for example,

λ?1t = σ
2
y?1tλ1t + σy?12tλ2t , (75)

where σ2
y1t is also the R

2 of the projection of the first risk variable on the span of returns. In

the special case where y1t is perfectly tracked by the hedging portfolio, σ
2
y?1t = 1, σy?12t = 0,

and λ?1t = λ1t.

Appendix B

Equation (32) combines Merton’s (1973) intertemporal CAPM with Adler and Dumas (1983)

international asset pricing model in presence of deviations from PPP. The continuous-time

portfolio selection problem of a representative investor can be stated as follows:28

Max E
Z T

t
V (C, P, s) ds , (76)

where C = C(W,P, yk, t) denotes nominal consumption expenditures, P is the price level

index, V is a function homogeneous of degree zero in C and P expressing the instanta-

neous rate of indirect utility, and yk is a state variable that affects utility through nominal

consumption. Following Merton (1969), the wealth dynamics can be written as

dW = [
NX
i=1

wi(µi − rf ) + rf ]Wdt− Cdt−
NX
i=1

wiσidzi , (77)

27I have Vart(y
?
t+1) = Vart(αytrt+1) = ΣyrtΣ

−1
rrtΣrrtΣ

−1
rrtΣryt = ΣyrtΣ

−1
rrtΣryt .

28See Appendix in Adler and Dumas (1983) for a detailed explanation of the necessary assumptions.
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where w = {wi} is (N + 1)× 1 vector of weights, µi is the instantaneous expected nominal
rate of return on security i expressed in a reference currency, σi is the instantaneous standard

deviation of the nominal rate of return on security i, rf is the risk-free rate expressed in a

reference currency, and dzi is the white noise of a standard Wiener process. Denoting with

J(W,P, yk, t) the maximum value of (76) subject to (77), the Bellman principle states that

total expected rate of increase of this function must be identically zero, so that

0 =
Max

(C,w)
{V (C, P, yk, t) + Jt + JW [−C +W (

NX
i=0

wi(µi − rf) + rf )] + Jykα

+JPPπ +
1

2
JWWW

2
NX
i=1

NX
j=1

wiwjσij +
1

2
Jyys

2 +
1

2
JPPσ

2
πP

2 + JWPWP
NX
i=1

wiσiπ

+JykWW
NX
i=1

wiσiyk + JykPσykπ} , (78)

where π is the inflation rate in each country expressed in local units, σij are the instantaneous

covariances of the nominal rates of return on the various securities, σ2
π is the instantaneous

variance of the inflation rate, α is the mean value of the state variable yk, σiπ is the co-

variance between security i and the inflation rate π, and σykπ is the covariance between the

state variable yk and the inflation rate π.
29 Moreover, the homogeneity of degree zero of

the function V implies that J(W,P, yk, t) and C(W,P, yk, t) that satisfy (78) must be homo-

geneous of degree zero in W and P : JP ≡ −(W/P )JW , JPW ≡ (−1/P )JW − (W/P )JWW ,

JPP = 2(W/P
2)JW + (W/P )

2JWW . Hence, (78) can be rewritten as

0 =
Max

(C,w)
{V (C, P, yk, t) + Jt + JW [−C +W (

NX
i=0

wi(µi − rf) + rf)] + Jykα−WπJW

+
1

2
JWWW

2
NX
i=1

NX
j=1

wiwjσij +
1

2
Jyys

2 +WJWσ
2
π +

1

2
σ2
πW

2JWW − JWW
NX
i=1

wiσiπ

−W 2JWW

NX
i=1

wiσiπ + JykWW
NX
i=1

wiσiyk + JykPσykπ} . (79)

Taking the first order conditions of (79) with respect to C and w, I obtain

VC = JW , and (80)

0 = JW (µi − rf ) +WJWW

NX
j=1

wjσij − JWσiπ −WJWWσiπ + JykWσiyk . (81)

29See Chapter 13 of Ingersoll (1987) for a definition of the dynamics of the state variables.
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Solving (79) for the optimal portfolio of risky assets of investor l directly in vector notation

and reintroducing the time dimension, I obtain (32)

wl
t = α

lΣ−1
rrt[Et(rt+1)− rft1] + (1− αl)Σ−1

rrts
l
rπt + β

lΣ−1
rrts

l
rykt

, (82)

where slrykt and s
l
rπt are the vectors of time-varying covariances between each country’s

security returns and the k-th state variable and level of inflation respectively. Moreover, I

define αl ≡ − J lWt

J lWWtW
l
t
and βl ≡ (αl)2 × J lWykt

W l
t
.

Appendix C

While the minimum-variance pricing kernel, q?t+1, satisfies the law of one price (equation

(1)), in general it does not satisfy the no-arbitrage condition, q?t+1 > 0. Nonetheless, as in

HJ, I can extend the analysis to take this restriction into account.

Let α̃t denote an N ×1 coefficient vector, and define q̃t+1 ≡ [1− (rt+1−Et(rt+1))
>α̃t]+ ≡

max{1− (rt+1 − Et(rt+1))
>α̃t, 0}. Assume

Et(q̃t+1rt+1) = rft1 . (83)

The random variable q̃t+1 has the smallest variance among all nonnegative random variables

satisfying restriction (83).

Consider the risk premium λ̃kt assigned by q̃. I can write

λ̃kt ≡ −Et[(q̃t+1 − 1)yk,t+1]

= −Et[(q̃t+1 − 1)y?k,t+1]− Et[(q̃t+1 − 1)(yk,t+1 − y?k,t+1)]λ̃kt

= λ?kt − Et[(q̃t+1 − 1)(yk,t+1 − y?k,t+1)] , (84)

where, in general, Et[(q̃t+1− 1)(yk,t+1− y?k,t+1)] 6= 0. Hence, when the positivity restriction is
imposed, the risk premium assigned by the minimum-variance kernel differs from the mean

cash flow generated by the hedging portfolio by the quantity −Et[(q̃t+1− 1)(yk,t+1− y?k,t+1)].

If q̃t+1 is volatile, and if yk,t+1 is mimicked poorly by its nearest hedge, then there is the

potential for the discrepancy to be substantial.
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Table I
Summary Statistics of Asset Returns

I report summary statistics of monthly returns on the equity indices of four countries from MSCI. Indices include dividends.
The sample covers the period April 1970 through October 1998 (343 observations). All returns are in percentage points per
month and are denominated in U.S. dollars. “Corrτ” denotes the autocorrelation coefficient of order τ . “Q36” denotes the
Ljung—Box Q statistics of order 36 (p—values in parenthesis).

Panel A: Means, Standard Deviations, and Autocorrelations

Country Mean Std. Dev. Corr1 Corr2 Corr3 Corr4 Corr12 Corr24 Corr36 Q36

United States 1.1113 4.4171 0.002 -0.034 0.007 -0.018 0.048 0.005 -0.033 27.586
(0.842)

United Kingdom 1.3304 7.0525 0.085 -0.101 0.052 0.013 -0.023 0.047 -0.026 48.085
(0.086)

Japan 1.2296 6.6757 0.091 -0.022 0.078 0.043 0.032 0.006 0.033 46.582
(0.111)

Germany 1.2099 5.9069 -0.017 -0.013 0.052 0.067 -0.017 0.022 0.029 41.417
(0.246)

Panel B: Correlation Matrix

Country United States United Kingdom Japan Germany

United States 1.000 0.505 0.264 0.367
United Kingdom 1.000 0.358 0.425
Japan 1.000 0.366
Germany 1.000
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Table II
Summary Statistics of Economic Variables

I report summary statistics of economic risk factors for the United States, the United Kingdom, Japan and Germany. The sample covers the period
April 1970 through October 1998 (343 observations). INFL denotes the unexpected rate of inflation (percentage points per month). SPOT denotes
the change in the logarithm of the spot exchange rate (percentage points per month). WLDMK denotes the rate of return on the world market index
from MSCI (percentage points per month). “Corrτ” denotes the autocorrelation coefficient of order τ . “Q36” denotes the Ljung—Box Q statistics of
order 36 (p—values in parenthesis).

Panel A: Means, Standard Deviations, and Autocorrelations

Variable Mean Std. Dev. Corr1 Corr2 Corr3 Corr4 Corr12 Corr24 Corr36 Q36

INFLUS -0.0002 0.2406 0.160 -0.023 -0.112 -0.154 0.167 0.093 0.138 95.189
(0.000)

INFLUK -0.0001 0.6130 0.164 -0.019 -0.061 -0.119 0.475 0.418 0.387 295.03
(0.000)

INFLJAP 0.0004 0.6770 0.100 -0.220 -0.060 -0.013 0.439 0.397 0.378 373.09
(0.000)

INFLGER -0.0007 0.3129 0.188 0.051 -0.019 -0.082 0.299 0.094 0.165 134.34
(0.000)

SPOT$/GBP 0.1049 3.0593 0.086 0.025 -0.019 0.012 -0.011 -0.038 -0.023 33.924
(0.568)

SPOT$/Y EN -0.3288 3.3611 0.080 0.033 0.048 0.039 0.073 -0.045 -0.085 37.342
(0.407)

SPOT$/DM -0.2312 3.2740 0.036 0.070 0.014 -0.005 -0.007 0.004 0.017 32.180
(0.651)

WLDMK 1.0551 4.1392 0.068 -0.055 0.013 -0.021 0.053 0.045 -0.019 45.179
(0.140)

Panel B: Correlation Matrix

Variable INFLUS INFLUK INFLJAP INFLGER SPOT$/GBP SPOT$/Y EN SPOT$/DM WLDMK

INFLUS 1.000 0.057 0.141 0.157 0.016 0.013 0.095 -0.196
INFLUK 1.000 0.337 0.224 -0.089 -0.015 -0.081 0.110
INFLJAP 1.000 0.082 -0.009 0.029 -0.014 -0.008
INFLGER 1.000 0.033 0.082 0.097 0.019
SPOT$/GBP 1.000 0.472 0.650 -0.261
SPOT$/Y EN 1.000 0.578 -0.310
SPOT$/DM 1.000 -0.228
WLDMK 1.000
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Table III
Summary Statistics of Instrumental Variables

I report summary statistics of the intruments used in the analysis. The sample covers the period March 1970 through September 1998 (343 observa-
tions). DINFLUS denotes the lagged change in the U.S. rate of inflation. EURO denotes the Eurodollar deposit rate. USDIV Y LD denotes the
U.S. dividend yield in excess of the Eurodollar rate. WLDMK denotes the world rate of return. DEFPREM represents the U.S. default premium.
All variables are expressed in percentage points per month. “Corrτ” denotes the autocorrelation coefficient of order τ . “Q36” denotes the Ljung—Box
Q statistics of order 36 (p—values in parenthesis).

Panel A: Means, Standard Deviations, and Autocorrelations

Variable Mean Std. Dev. Corr1 Corr2 Corr3 Corr4 Corr12 Corr24 Corr36 Q36

DINFLUS -0.0012 0.2719 -0.355 -0.054 -0.033 -0.077 0.142 0.157 0.169 140.350
(0.000)

EURO 0.6503 0.2780 0.967 0.920 0.879 0.844 0.667 0.343 0.151 4051.0
(0.000)

USDIVYLD -0.3353 0.2172 0.950 0.880 0.822 0.771 0.543 0.150 -0.088 2768.6
(0.000)

WLDMK 1.1672 4.1166 0.068 -0.035 0.015 -0.024 0.062 0.046 -0.016 46.196
(0.119)

DEFPREM 0.0141 1.1768 -0.198 -0.036 -0.005 0.013 -0.067 -0.054 0.028 65.046
(0.002)

Panel B: Correlation Matrix

Variable DINFLUS EURO USDIVYLD WLDMK DEFPREM

DINFLUS 1.000 -0.008 0.000 -0.075 0.098
EURO 1.000 -0.952 -0.126 -0.046
USDIVYLD 1.000 0.131 0.077
WLDMK 1.000 -0.003
DEFPREM 1.000
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Table IV
Instruments Selection and Heteroskedasticity

T-statistics, in parentheses, are adjusted for heteroskedasticity and serial correlation.

Panel A: Slope Estimates of Mean Equations

Var CONST JAN DINFLUS EURO USDIVYLD WLDMK DEFPREM

United States 0.971
(4.099)

1.716
(1.696)

−0.408
(−1.759)

1.266
(1.453)

1.605
(1.893)

−0.101
(−0.349)

0.231
(0.882)

United Kingdom 1.076
(2.976)

3.114
(1.393)

−0.469
(−1.294)

2.828
(2.468)

3.408
(2.964)

0.086
(0.194)

0.084
(0.150)

Japan 1.193
(3.236)

0.448
(0.371)

−0.772
(−2.229)

2.273
(2.137)

2.835
(2.677)

0.629
(1.508)

0.154
(0.392)

Germany 1.243
(3.781)

−0.410
(−0.373)

−0.659
(−2.051)

0.457
(0.476)

0.863
(0.898)

0.161
(0.434)

0.574
(1.475)

Panel B: Slope Estimates of Variance Equations

Var CONST JAN DINFLUS EURO USDIVYLD WLDMK DEFPREM

United States 3.192
(21.212)

1.062
(1.739)

0.105
(0.840)

0.039
(0.070)

−0.224
(−0.414)

−0.472
(−2.739)

−0.359
(−2.438)

United Kingdom 4.809
(20.170)

1.521
(0.847)

0.098
(0.427)

1.587
(1.848)

1.362
(1.578)

−0.079
(−0.256)

−0.375
(−0.887)

Japan 5.083
(22.131)

−0.528
(−0.709)

−0.364
(−1.595)

−1.262
(−1.956)

−1.194
(−1.867)

−0.016
(−0.057)

−0.056
(−0.221)

Germany 4.458
(21.111)

−0.252
(−0.351)

0.048
(0.238)

−0.825
(−1.361)

−1.028
(−1.712)

−0.216
(−0.932)

0.106
(0.423)

Panel C: Average Slope Estimates and Differences in Slope Estimates

Var DINFLUS EURO USDIVYLD WLDMK DEFPREM

µ̄r
−0.577

(−2.441)
1.706

(2.360)
2.178

(3.051)
0.194

(0.712)
0.261

(0.876)

v̄r
−0.028

(−0.222)
−0.115
(0.263)

−0.271
(−0.630)

−0.196
(−1.181)

−0.171
(−0.967)

µ̄r − v̄r −0.549
(−1.972)

1.821
(2.095)

2.449
(2.855)

0.390
(1.361)

0.432
(1.499)
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Table V
Economic Risk Premia: q? Approach

I report coefficients of the economic risk premia on the following eight economic factors: INFLUS , INFLUK , INFLJAP , INFLGER, SPOT$/GBP ,
SPOT$/Y EN , SPOT$/DM , WLDMK. T-statistics, in parentheses, are adjusted for heteroskedasticity and serial correlation. The t-statistics refer
to the case where the composition of q? is estimated outside and inside of the GMM algorithm, respectively. This table presents estimates of the
conditional premia when the set of returns is augmented to include managed portfolios. In this case, note that the intercept can be interpreted as the
unconditional risk premium with the larger set of securities.

Conditional Risk Premia

Risk Premia INFLUS INFLUK INFLJAP INFLGER SPOT$/GBP SPOT$/Y EN SPOT$/DM WLDMK

CONST
−0.0128
(−0.61)
(−0.45)

−0.0198
(−0.94)
(−0.85)

−0.0145
(−0.73)
(−0.62)

0.0102
(0.45)
(0.48)

−0.0317
(−1.52)
(−0.95)

−0.0233
(−1.10)
(−0.63)

−0.0275
(−1.12)
(−0.75)

0.1171
(3.52)
(2.28)

JAN
−0.0680
(−1.84)
(−1.54)

0.0329
(0.81)
(1.11)

0.0258
(1.16)
(0.93)

0.0276
(0.64)
(1.15)

−0.0035
(−0.17)
(−0.12)

−0.0016
(−0.11)
(−0.05)

−0.0222
(−0.87)
(−0.57)

0.0895
(1.59)
(1.56)

DINFLUS 0.0077
(0.26)
(0.17)

0.0069
(0.30)
(0.20)

0.0432
(1.49)
(1.06)

0.0565
(1.59)
(1.43)

0.0203
(0.89)
(0.74)

0.0381
(1.41)
(1.22)

0.0457
(1.28)
(1.35)

−0.1249
(−2.37)
(−2.20)

EURO
−0.0149
(−0.23)
(−0.18)

0.0231
(0.34)
(0.35)

0.0313
(0.53)
(0.41)

−0.0948
(−1.25)
(−1.13)

−0.0666
(−0.98)
(−0.72)

−0.3286
(−3.45)
(−2.09)

−0.1126
(−1.51)
(−1.02)

0.2888
(2.65)
(1.67)

USDIV Y LD
−0.0570
(−0.89)
(−0.72)

0.1027
(1.48)
(1.48)

0.0433
(0.66)
(0.52)

−0.0973
(−1.11)
(−1.04)

−0.1472
(−1.92)
(−1.50)

−0.3706
(−3.80)
(−2.44)

−0.1827
(−2.16)
(−1.56)

0.4617
(3.80)
(2.73)

WLDMK
−0.0280
(−1.07)
(−0.88)

0.0189
(0.64)
(0.67)

−0.0542
(−1.58)
(−1.57)

−0.0062
(−0.35)
(−0.23)

−0.0416
(−1.42)
(−1.36)

−0.0449
(−1.78)
(−1.20)

−0.0420
(−1.31)
(−1.20)

0.0331
(0.87)
(0.60)

DEFPREM 0.0108
(0.32)
(0.29)

−0.0254
(−0.70)
(−0.84)

−0.0508
(−1.60)
(−1.74)

−0.0344
(−0.84)
(−0.70)

−0.0201
(−0.78)
(−0.60)

−0.0589
(−1.88)
(−1.34)

−0.0708
(−1.66)
(−1.39)

0.0527
(0.82)
(0.91)
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Table VI
Economic Risk Premia: y? Approach

I report coefficients of the economic risk premia on the following eight economic factors: INFLUS , INFLUK , INFLJAP , INFLGER, SPOT$/GBP ,
SPOT$/Y EN , SPOT$/DM , WLDMK. T-statistics, in parentheses, are adjusted for heteroskedasticity and serial correlation. The t-statistics refer
to the case where the composition of q? is estimated outside and inside of the GMM algorithm, respectively. This table presents estimates of the
conditional premia when the set of returns is augmented to include managed portfolios. In this case, note that the intercept can be interpreted as the
unconditional risk premium with the larger set of securities.

Conditional Risk Premia

Risk Premia INFLUS INFLUK INFLJAP INFLGER SPOT$/GBP SPOT$/Y EN SPOT$/DM WLDMK

CONST
−0.0128
(−0.57)
(−0.45)

−0.0198
(−1.05)
(−0.85)

−0.0145
(−0.98)
(−0.62)

0.0102
(0.85)
(0.48)

−0.0317
(−0.95)
(−0.95)

−0.0233
(−0.65)
(−0.63)

−0.0275
(−0.81)
(−0.75)

0.1171
(2.28)
(2.28)

JAN
−0.0198
(−0.59)
(−0.46)

0.0244
(0.68)
(0.65)

−0.0252
(−1.40)
(−0.97)

0.0300
(1.79)
(1.24)

0.0108
(0.34)
(0.31)

0.0055
(0.20)
(0.17)

−0.0013
(−0.04)
(−0.03)

0.0859
(1.51)
(1.49)

DINFLUS 0.0361
(1.09)
(0.92)

−0.0358
(−1.32)
(−1.16)

0.0075
(0.50)
(0.33)

−0.0102
(−0.74)
(−0.47)

0.0493
(1.51)
(1.33)

0.0931
(2.41)
(2.20)

0.0830
(2.55)
(2.30)

−0.1249
(−2.24)
(−2.23)

EURO
−0.0805
(−1.15)
(−0.89)

0.0828
(1.22)
(1.01)

0.0320
(0.62)
(0.42)

0.0310
(0.80)
(0.47)

−0.2296
(−2.31)
(−2.21)

−0.2157
(−1.92)
(−1.92)

−0.1636
(−1.58)
(−1.52)

0.3384
(1.97)
(1.97)

USDIV Y LD
−0.1200
(−1.72)
(−1.35)

0.1027
(1.52)
(1.24)

0.0491
(0.90)
(0.61)

0.0091
(0.23)
(0.15)

−0.2806
(−2.79)
(−2.72)

−0.2693
(−2.41)
(−2.43)

−0.2259
(−2.22)
(−2.11)

0.5189
(3.07)
(3.07)

WLDMK 0.0089
(0.31)
(0.27)

0.0298
(1.18)
(1.06)

−0.0007
(−0.03)
(−0.02)

0.0097
(0.68)
(0.52)

−0.0501
(−1.23)
(−1.28)

−0.0914
(−1.84)
(−1.92)

−0.0444
(−1.06)
(−1.06)

0.0364
(0.64)
(0.63)

DEFPREM
−0.0674
(−1.83)
(−1.52)

−0.0076
(−0.27)
(−0.22)

−0.0231
(−1.22)
(−0.80)

−0.0184
(−0.98)
(−0.68)

−0.0439
(−0.96)
(−0.93)

−0.0358
(−0.72)
(−0.73)

−0.0675
(−1.28)
(−1.26)

0.0600
(1.00)
(1.00)
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Table VII
Unconditional Risk Premia, Volatility of Hedging Portfolios and Sharpe Ratios

I report unconditional economic risk premia (λ0), volatilities of the mimicking portfolios’ excess cash flows (v0) and Sharpe ratios
(Sy?

k
) commanded by the following economic factors: INFLUS, INFLUK, INFLJAP , INFLGER, SPOT$/GBP , SPOT$/Y EN ,

SPOT$/DM , WLDMK. T-statistics, in parentheses, are adjusted for heteroskedasticity and serial correlation. The t-statistics
refer to the case where the composition of y? is estimated outside the GMM algorithm.

Sharpe Ratios λ0 v0 Sy?
k

INFLUS
−0.0128
(−0.56)

0.4279
(16.06)

−0.0301
(−0.56)

INFLUK
−0.0198
(−1.03)

0.3563
(9.61)

−0.0558
(−0.98)

INFLJAP
−0.0145
(−0.97)

0.2782
(17.60)

−0.0522
(−0.97)

INFLGER
0.0102
(0.84)

0.2262
(16.17)

0.0450
(0.85)

SPOT$/GBP
−0.0317
(−0.93)

0.6336
(21.75)

−0.0501
(−0.93)

SPOT$/Y EN
−0.0233
(−0.63)

0.6846
(20.55)

−0.0339
(−0.63)

SPOT$/DM
−0.0275
(−0.79)

0.6447
(18.63)

−0.0427
(−0.79)

WLDMK 0.1170
(2.18)

0.9947
(18.93)

0.1177
(2.10)
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Table VIII
Tests of IS-CAPM, I-CAPM and II-CAPM

I perform conditional tests of the International Static CAPM (IS-CAPM), the International CAPM in presence of deviations
from PPP (I-CAPM (PPP)), the International CAPM in presence of currency risk (I-CAPM (SPOT)) and the international
intertemporal CAPM (II-CAPM(PPP) and II-CAPM(SPOT)) by using region subset tests (χ2), Hansen-Jagannathan vari-
ance bounds (HJV), and Hansen-Jagannathan distance measures (HJD), respectively. The benchmark standard deviation of
the scaled unrestricted normalized minimum—variance kernel is 0.3865. The standard deviations of the restricted normalized
minimum—variance kernels with conditional information are reported in column two. With q?IS, q

?
I−PPP , q

?
I−SPOT , q

?
II−PPP , and

q?II−SPOT I denote the normalized minimum—variance kernels with conditional information for the IS-CAPM, I-CAPM (PPP),
I-CAPM(SPOT), II-CAPM (PPP), and II-CAPM(SPOT), respectively.

Models With conditioning information

Statistics
χ2

(dof)

(p−value)
HJV

(t−stat.)
std(q?r ) r=IS,I−PPP,I−SPOT,II−PPP,II−SPOT

HJD
(t−stat.)

IS—CAPM 33.09(27)

(0.19)

−0.2630
(−10.68)

std(q?IS)=0.1231

0.3659
(12.62)

I-CAPM(PPP) 31.16(23)

(0.12)

−0.2038
(−7.48)

std(q?I−PPP )=0.1825
0.3402
(12.47)

I-CAPM (SPOT) 31.17(24)

(0.14)

−0.2595
(−10.46)

std(q?I−SPOT )=0.1266
0.3646
(12.43)

II-CAPM(PPP) 30.37(19)

(0.05)

−0.1826
(−7.26)

std(q?II−PPP )=0.2037
0.3280
(12.28)

II-CAPM(SPOT) 30.42(20)

(0.06)

−0.2549
(−10.21)

std(q?II−SPOT )=0.1313
0.3630
(12.35)

48



Table IX
Differences in Hansen-Jagannathan Variance Bounds and Distance Measures

I test whether the pricing implications delivered by the International Static CAPM (IS-CAPM), the International CAPM in
presence of deviations from PPP (I-CAPM (PPP)), the International CAPM in presence of currency risk (I-CAPM (SPOT))
and the international intertemporal CAPM (II-CAPM(PPP) and II-CAPM(SPOT)) are statistically different from each other.
The estimates of the differences in HJV and HJD measures are obtained by exactly identified GMM. T-statistics are obtained
using the delta method.

Statistics
(HJVr−HJVs)

(t−stat.)
std(q?

r ) r,s=IS,I−PPP,I−SPOT,II−PPP,II−SPOT,r 6=s
(HJDr−HJDs)

(t−stat.)
IS—CAPM — I-CAPM(PPP) 0.0592

(6.92)
−0.0256
(−2.26)

IS—CAPM — I-CAPM(SPOT) 0.0035
(1.85)

−0.0012
(−0.62)

IS—CAPM — II-CAPM(PPP) 0.0804
(9.23)

−0.0378
(−2.33)

IS—CAPM — II-CAPM(SPOT) 0.0081
(2.89)

−0.0028
(−0.79)

I-CAPM(PPP) — I-CAPM (SPOT) 0.0557
(6.32)

−0.0244
(−2.09)

I-CAPM(PPP) — II-CAPM(PPP) 0.0212
(2.89)

−0.0122
(−1.57)

I-CAPM(PPP) — II-CAPM(SPOT) −0.0511
(−6.03)

0.0227
(2.00)

I-CAPM(SPOT) — II-CAPM(PPP) 0.0770
(8.52)

−0.0366
(−2.19)

I-CAPM(SPOT) — II-CAPM(SPOT) 0.0047
(2.20)

−0.0016
(−0.59)

II-CAPM(PPP) — II-CAPM(SPOT) 0.0723
(8.13)

−0.0350
(−2.11)
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Table X
Hedging Demands

I report the unconditional normalized hedging demands for global market, inflation, and foreign exchange risks. T-statistics, in
parentheses, are adjusted for heteroskedasticity and serial correlation.

Hedging Demands α

SPOT$/GBP
0.129
(5.26)

SPOT$/Y EN
0.038
(1.76)

SPOT$/DM
0.058
(2.38)

WLDMK 0.109
(10.04)

INFLUS
0.222
(8.91)

INFLUK
0.364

(12.32)

INFLJAP
0.173
(4.86)

INFLGER
−0.093
(−3.04)
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