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1 Introduction

Over the past decade, monetary policy theory and central banking practice have underscored

various desiderata for judicious policy. It is often argued that social welfare can be improved

by arranging for the central bank to conduct monetary policy according to a suitably chosen

instrument rule, dictating how interest rates should be adjusted in response to particular dis-

turbances to the economy. The discussions of Clarida, Gali, and Gertler (1999) and Woodford

(2002) present a coherent theory of monetary policy and make the case for such rules. In prac-

tice, however, monetary policy contends with many difficulties. Among these, the absence of a

correctly specified model of the economy with which to formulate policy is paramount.

This paper considers a potentially important source of model misspecification in the design of

instrument rules: the assumed manner in which expectations are formed. The motivation is two-

fold. First, even if rational expectations provide a reasonably accurate description of economic

agents’ behavior, a prudent policy should be robust to small deviations from rationality. Given

two policies that both implement a particular desired equilibrium, the policy that results in this

equilibrium under more general assumptions on expectations formation is presumably preferred.

Second, some have argued that policies that appear to be desirable, because they are consis-

tent with a desirable equilibrium, will almost surely have disastrous consequences in practice, by

allowing self-fulfilling expectations to propagate. For example, Friedman (1968) argued that a

monetary policy aimed at pegging the nominal interest rate would inevitably lead to economic

instability via a Wicksellian cumulative process. Moreover, he argued that due to small imple-

mentation errors, this would occur even if the nominal interest rate target was optimally chosen.

The argument proceeds as follows: suppose the monetary authority pegs the nominal interest

rate below the natural rate of interest. This policy would give rise to expectations of future

inflation, with the resulting lower real rate of interest tending to stimulate output and prices.

Such price rises would engender expectations of further price inflation in turn further lowering

the expected real rate and so on — generating self-fulfilling expectations of ever higher inflation.

This paper seeks to build on the research of Howitt (1992) by providing a formal analysis of
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such self-fulfilling expectations in the context of a model with optimizing behavior. Unlike the

analysis of Howitt, this paper postulates a framework where agents optimally make forecasts of

macroeconomic conditions many periods into the future when making current decisions.

The rational expectations paradigm comprises two stipulations: (i) agents optimize given their

beliefs about the joint probability distribution for various state variables that are independent of

their actions and that matter for their payoffs and (ii) the probabilities that they assign coincide

with the predictions of the model. Following a considerable literature on learning (see Sargent

(1993) and Evans and Honkapohja (2001) for reviews), this paper retains (i) while replacing (ii)

with the assumption that the joint probabilities are formed using an econometric model. The

predictions of this econometric model need not coincide with the predictions of the theoretical

model. The central question posed by the analysis is whether given sufficient data the predictions

of the econometric model eventually converge to those of the economic model?

Having departed from the rational expectations paradigm some care must be taken in speci-

fying an individual agent’s knowledge. Agents are assumed to know what they need to know to

behave according to (i): they know their own preferences and constraints, and, more generally,

they correctly understand the mapping from their actions to their expected payoff, given a proba-

bility distribution for the variables that are outside their control. However, they are not assumed

to know anything of the true economic model of how those variables outside of their control are

determined. For instance, they do not know that other agents have preferences just like their

own and that agents form expectations the way that they do, even if these things are true within

the model. It therefore is not appropriate to assume agents use knowledge that other agents’

consumption decisions satisfy a subjective Euler equation (for example) in deciding what to do

themselves. This has the crucial implication that agents have to make long-horizon forecasts in

the framework proposed by this paper.

Recent work by Bullard and Mitra (2002) and Evans and Honkapohja (2002a) is similarly

motivated. These authors, however, assume a log-linear model of the monetary transmission

mechanism in which agents need only forecast inflation and aggregate income one period in ad-

vance. In contrast, this paper assumes that agents face a multi-period decision problem, as in
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the microfoundations used in recent analysis of the implications of monetary policy rules under

rational expectations (see Bernanke and Woodford (1997), Clarida, Gali, and Gertler (1999) and

Woodford (1999)). This paper demonstrates that the aggregation of rationally modeled decisions,

when these decisions are based on subjective expectations, does not predict the aggregate dy-

namics that result from the microfoundations of these studies under the assumption of rational

expectations. In fact, in making current decisions about spending and pricing of their output,

agents must make forecasts of macroeconomic conditions many periods into the future. This pre-

diction is a direct result of agents not being able to base their decisions on knowledge of the actions

of other agents in the economy. The central methodological contribution of this paper is demon-

strating that long-horizon forecasts matter in the determination of current economic conditions

in a simple model of output gap and inflation determination with subjective expectations.

Learning occurs in the following manner. Agents conjecture the form of the equilibrium

dynamics of state variables and estimate an econometric model of this form. This econometric

model describes the agent’s perceived law of motion. The estimated model is then used to evaluate

forecasts of the future paths of state variables that are exogenous to private agents’ decision

problems which in conjunction with the model structure provides a solution for the actual path

of aggregate variables as a function of the current state. This is the actual law of motion. Each

period this process is repeated as additional data become available. A principal focus of the

analysis is the manner in which agents update their decision rules, and whether additional data

lead them to adopt perceived laws of motion that are closer to the actual laws of motion of the

economy. And, in particular: do agents learn the rational expectations dynamics over time?

The criterion by which this paper judges convergence of learning dynamics to rational expec-

tations dynamics is the notion of expectational stability, or E-Stability, proposed by Evans and

Honkapohja (2001). Given the requirements of E-Stability and the aggregate economic dynamics

implied by the model’s microfoundations, the analysis considers the implications of learning for

several standard prescriptions for monetary policy — specifically, whether certain policy rules are

able to ensure least-squares convergence to the associated rational expectations dynamics.

In this paper, monetary policy is specified as a commitment to one of two classes of state-
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contingent instrument rule: (i) nominal interest-rate rules that depend only on the history of

exogenous disturbances and (ii) Taylor rules that specify a path for the nominal interest rate

that depends on the model’s endogenous variables. The former class of rule is of considerable

interest as it has been argued to be a natural way to implement optimal monetary policy, by

specifying the optimal action in each possible state of the world. However, such rules, which

include nominal interest rate pegs as a special case, are subject to the critique of Friedman (1968)

and also Sargent and Wallace (1975) who showed that commitment to exogenously determined

interest rate paths can lead to multiple rational expectations equilibria. The latter feedback

rules, introduced by Taylor (1993), have been used in monetary policy both as a prescriptive and

descriptive tool. As initially demonstrated by McCallum (1983), interest rate rules that possess

sufficient feedback from endogenous variables can often deliver a determinate equilibrium. In the

present model under rational expectations, Woodford (2002, chap. 4) shows that a Taylor rule

leads to a determinate equilibrium if the so-called Taylor principle is satisfied.

Two main results emerge from the analysis of learning dynamics. First, interest-rate rules that

are specified as depending only on the history of exogenous disturbances are not expectationally

stable under learning dynamics. Such rules are therefore subject to self-fulfilling expectations,

consistent with the concerns of Friedman (1968). This, combined with the indeterminacy of

rational expectations equilibrium of this class of policy rule, suggest such rules to be ineffective in

eliminating economic instability due to self-fulfilling expectations, and therefore undesirable as a

means to implement optimal monetary policy. Second, for the Taylor rule, expectational stability

hinges critically on satisfaction of the so-called Taylor principle (which stipulates that feedback

from endogenous variables to nominal interest rates be sufficiently strong to ensure that increases

in inflation be associated with increases in the real interest rate). These findings are invariant to

the nature of learning dynamics considered and suggest the Taylor principle to be a remarkably

robust feature of the policy environment in the context of this model.

The analysis of this paper is most closely related to the work of Bullard and Mitra (2002)

and Evans and Honkapohja (2002a) who analyze a log-linear model of the monetary transmission
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mechanism, where agents forecast inflation and aggregate spending one period in advance.1 The

latter show that instrument rules that require the nominal interest rate to respond only to the

history of exogenous disturbances are not stable under learning dynamics. Moreover, they show

how to implement the optimal rational expectations equilibrium when the monetary authority is

constrained to be a discretionary optimizer and that this equilibrium is also E-Stable. Bullard and

Mitra (2002) show in the same model that for a monetary authority that is assumed to be able to

commit to a number of Taylor-type interest-rate rules that the associated rational expectations

equilibrium is E-Stable under learning dynamics so long as the Taylor principle is satisfied. That

these findings concur with the results of this paper is not necessarily to be expected. The presence

of long-horizon forecasts in the present paper gives rise to dynamics that are distinct from those

predicted by these analyses.

Companion papers, Preston (2002a) and Preston (2002b), demonstrate that the conclusions

of these authors for a number of more complicated rules differ to those obtained in the frame-

work developed here. The latter paper shows that forecast-based instrument rules, including the

classes of rules proposed by Bullard and Mitra (2002) and Evans and Honkapohja (2002b), are

frequently prone to self-fulfilling expectations in the present model if the central bank responds

to observed private-sector forecasts. But, if the central bank responds to the determinants of

these expectations this instability can be mitigated. The former paper shows that optimal mone-

tary policy can always be implemented using specific targeting rules if the central bank correctly

understands agents’ behavior. However, without such knowledge, decision procedures that seek

to control directly the path of the price-level, rather than the inflation rate, tend to perform

better under learning dynamics, even though these policies are equivalent in terms of the rational

expectations equilibrium they imply.

The paper proceeds as follows. Section 2 sketches the microfoundations of a simple dynamic

stochastic general equilibrium model under a general assumption on expectations. Section 3

develops the expectations formation mechanism adopted in this paper. Section 4 discusses the
1See also Bullard and Mitra (2000), Evans and Honkapohja (2002b), Honkapohja and Mitra (2001b) and

Honkapohja and Mitra (2001a) for further analyses of issues in monetary policy under learning dynamics in the
same framework.
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notion of expectational stability and provides a simple abstract example of learning analysis.

Section 5 considers the robustness of some common prescriptions for monetary policy to the

presence of learning dynamics. Section 6 provides a commentary on long-horizon forecasts, and

highlights some attractive features of the framework proposed to model learning dynamics. The

final section concludes.

2 The Framework

To develop a framework suitable for the analysis of monetary policy under alternative assump-

tions on expectations formation we make use of a simple dynamic stochastic general equilibrium

model with microfoundations found in Clarida, Gali, and Gertler (1999) and Woodford (2002).

To simplify the exposition, the analysis considers a special limiting case of this framework in

which there are no transactions frictions that can be mitigated by holding money — the so-called

cashless limit of Woodford (1998).2 The model is developed in several steps. The household’s

intertemporal allocation problem is considered followed by the firm’s optimal pricing problem.

The implications of the assumed expectations formation mechanism for monetary policy are then

explored.

2.1 Household’s Intertemporal Problem

The economy is populated by a continuum of households which seek to maximize future expected

discounted utility

Êit

∞X
T=t

βT−t

U(CiT ; ξT )− 1Z
0

v(hiT (j); ξT )dj

 (1)

where utility depends on a consumption index, Cit , of the economy’s available goods (to be

specified), a vector of aggregate preference shocks, ξt, and the amount of labor supplied for the

production of each good j, hi(j). The second term in the brackets therefore captures the total
2The results of this paper would be identical if instead real money balances were treated explicitly, so long as

they are assumed to be additively separable in the household’s utility function. See also Woodford (2002, chap. 2)
for further discussion of this model.
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disutility of labor supply. The consumption index, Cit , is the Dixit-Stiglitz constant-elasticity-

of-substitution aggregator of the economy’s available goods and has an associated price index

written, respectively, as

Cit ≡
 1Z
0

cit(j)
θ−1
θ dj


θ

θ−1

and Pt ≡
 1Z
0

pt(j)
1−θdj


1

1−θ

where θ > 1 is the elasticity of substitution between any two goods and cit(j) and pt(j) denote

household i’s consumption and the price of good j. The absence of real money balances from

the period utility function (1) reflects the assumption that there are no transaction frictions that

can be mitigated by holding money balances. However, agents may nonetheless choose to hold

money if it provides comparable returns to other available financial assets.

Êit denotes the subjective beliefs of household i about the probability distribution of the

model’s state variables: that is, variables that are beyond agents’ control though relevant to their

decision problems. The presence of a hat “^” denotes non-rational expectations and the special

case of rational expectations will be denoted by the usual notation Et. Beliefs are assumed to

be homogenous across households for the purposes of this paper (though this is not understood

to be the case by agents) and to satisfy standard probability laws so that ÊitÊ
i
t+1 = Êit. In

forming beliefs about future events, agents do not take into account that they will update their

own beliefs in subsequent periods, and this is the source of non-rational behavior in this model.

However, when households solve their decision problem at time t, beliefs held at that time satisfy

standard probability laws, so that standard solution methods apply. The specific details of beliefs

and the manner in which agents update beliefs are developed in section 3. The discount factor is

assumed to satisfy 0 < β < 1. The function U(Ct; ξt) is concave in Ct for a given value of ξt and

v(ht(i); ξt) is convex in ht(i) for a given value of ξt.

Asset markets are assumed to be incomplete: there is a single one-period riskless non-monetary

asset available to transfer wealth intertemporally. Under this assumption, the household’s flow

budget constraint can be written as

M i
t +B

i
t ≤

¡
1 + imt−1

¢
M i
t−1 + (1 + it−1)B

i
t−1 + PtY

i
t − Tt − PtCit (2)
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where M i
t denotes the household’s end-of-period holdings of money, B

i
t the household’s end-of-

period nominal holdings of risk-less bonds, imt and it are the nominal interest rates paid on money

balances and bonds held at the end of period t, Y it the period income (real) of households and

Tt denotes lump sum taxes and transfers. The household receives income in the form of wages

paid, w(j), for labor supplied in the production of each good, j. Furthermore, all household’s i

are assumed to own an equal part of each firm and therefore receive a common share of profits

Πt(j) from the sale of each firm’s good j (though agents do not know this to be true). Period

nominal income is therefore determined as

PtY
i
t =

1Z
0

[wt(j)h
i
t(j) +Πt (j)]dj

for each household i. The flow budget constraint indicates that financial assets at the end of

period t can be no more than the value of assets brought into this period, plus non-financial

income after taxes and consumption spending. This constraint must hold for in all future dates

and states of uncertainty.

Fiscal policy is assumed to be Ricardian so that goods prices, asset prices and output are

determined independently of fiscal variables. Preston (2002c) considers the fiscal theory of the

price level under learning dynamics.3 It will be assumed that the fiscal authority pursues a

zero-debt policy, so that bonds are in zero net supply.

To summarize, the household’s problem in each period t is to choose
©
cit(j), h

i
t (j) ,M

i
t , B

i
t

ª
for

all j ∈ [0, 1] so as to maximize (1) subject to the constraint (2) taking as parametric the variables©
pT (j), wT (j), ΠT , iT−1, imT−1, ξT

ª
for T ≥ t. The first-order conditions characterizing the

solution to this optimization problem are detailed in appendix A.1.
3See Leeper (1991), Sims (1994), Cochrane (1998), Woodford (2001). These papers show that non-Ricardian

fiscal policies can have important implications for monetary policy. Indeed, active monetary policies that satisfy
the Taylor principle can lead to indeterminacy of rational expectations equilibrium. Preston (2002c) demonstrates
that these insights continue to be relevant in the present model when agents must learn over time.
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2.1.1 A Consumption Rule Derived

In order to derive a linear decision rule describing the household’s optimal intertemporal allocation

of consumption, a log-linear approximation to the household’s first-order conditions is employed.

Appendix A.1 shows that a log-linear approximation to the household’s Euler equation and the

intertemporal budget constraint imply the relations

Ĉit = Ê
i
tĈ

i
t+1 − σ(̂ıt − Êit π̂t+1) + gt − Êitgt+1 (3)

and

Êit

∞X
T=t

βT−tĈiT = $
i
t + Ê

i
t

∞X
T=t

βT−tŶ iT (4)

where σ ≡ −Uc/(UccC̄) is the intertemporal elasticity of substitution, gt ≡ σUcξξt/Uc and where

for any variable zt, ẑt ≡ ln(zt/z̄) denotes the log-deviation of the variable from its steady state

value, z̄, defined in the Appendix. $it ≡W i
t /(PtȲ ) is the share of the household’s real wealth as

a fraction of steady-state income, where W i
t ≡ (1 + it−1)Bit−1. Solving (3) backwards recursively

from date T to date t and taking expectations at that time gives

ÊitĈ
i
T = Ĉ

i
t − gt + Êit

"
gT + σ

T−1X
T=t

(̂ıt − π̂t+1)

#

which on substitution into the intertemporal budget constraint yields

Ĉit = (1− β)$it + Ê
i
t

∞X
T=t

βT−t
h
(1− β)Ŷ iT − βσ(̂ıT − π̂T+1) + β(gT − gT+1)

i
(5)

as the desired decision rule: it describes optimal behavior given arbitrary beliefs (so long as

such beliefs satisfy standard probability laws). It follows that households necessarily make long-

horizon forecasts of macroeconomic conditions to determine their optimal current consumption

choice. Consumption varies across households according to differences in wealth and income.

Section 6 discusses why optimizing agents necessarily make decisions according to (5), rather

than just making use of the Euler equation (3) as has been assumed in the recent literature.

It is useful to contrast this derived decision rule to the predicted consumption allocation

under the permanent income hypothesis. Indeed, the first two terms capture precisely the basic
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insight of the permanent income hypothesis that agents should consume a constant fraction of the

expected future discounted wealth, given a constant real interest rate equal to β−1−1. The third
term arises from the assumption of a time-varying real interest rate, and represents deviations

from this constant real rate due to either variation in the nominal interest rate or inflation. The

final term results from allowing stochastic disturbances to the economy.

To determine aggregate behavior integrate over i to give

Ĉt = Êt

∞X
T=t

βT−t
h
(1− β)ŶT − βσ(̂ıT − π̂T+1) + β(gT − gT+1)

i
using the fact that

R
i$

i
tdi = 0 from market clearing (bonds are in zero net supply) and introducing

the notation
R
i z
i
tdi = zt for any variable z and specifically

R
i Ê

i
tdi = Êt to define the average

expectations operator. (In aggregating we have made use of the equilibrium property discussed

in the appendix that all agents will receive the same wage for each type of labor supplied. Since

all agents hold the same diversified portfolio of firm profits, it is necessarily true that Ŷ it = Ŷ
j
t for

all i, j and we call this common income stream Ŷt.) It is important to note that the expectations

operator, Êt, possesses no behavioral content, and simply defines the average expectations of a

distribution of agents in the economy. That this is true follows immediately from the assumed

knowledge of agents: they do not know the tastes and beliefs of other agents in the economy

and therefore do not have a complete economic model with which to infer the true aggregate

probability laws and how state variables beyond their control are determined.

Since equilibrium requires Ĉt = Ŷt, the aggregation of household’s decision rules can be written

in terms of the output gap, xt ≡ Ŷt − Ŷ nt , to give

xt = Êt

∞X
T=t

βT−t [(1− β)xT+1 − σ(̂ıT − π̂T+1) + r
n
T ] (6)

where Ŷ nt is the natural rate of output (to be defined) and rnt ≡ (Ŷ nt+1 − gt+1) − (Ŷ nt − gt) is
a composite of exogenous disturbances. The current output gap is therefore determined by the

current nominal interest rate and exogenous disturbance and the average of households’ long-

horizon forecasts of both these variables and also output and inflation into the indefinite future.
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2.2 Optimal Price Setting

Now consider the firm’s problem, again relegating details to the appendix. Calvo price-setting is

assumed so that a fraction 0 < α < 1 of good prices are held fixed in any given period, while a

fraction 1 − α of goods prices are adjusted. Given homogeneity of beliefs, all firms having the

opportunity to change their price in period t face the same decision problem and therefore set a

common price p∗t . The Dixit-Stiglitz aggregate price index must therefore evolve according to the

relation:

Pt =
h
αP 1−θt−1 + (1− α) p∗1−θt

i 1
1−θ

. (7)

Firms setting prices in period t face a demand curve yt(i) = Yt(pt(i)/Pt)−θ for their good and

take aggregate output Yt and aggregate prices Pt as parametric. Good i is produced using a single

labor input h(i) according to the relation yt(i) = Atf(ht(i)) where At is an exogenous technology

shock and the function f (·) satisfies the standard Inada conditions.

When setting prices in period t, firms are assumed to value future streams of income at

the marginal value of aggregate income in terms of the marginal value of an additional unit of

aggregate income today. That is, a unit of income in each state and date T is valued by the

stochastic discount factor

Qt,T = βT−t · Pt
PT

· Uc(YT , ξT )
Uc(Yt; ξt)

.

This simplifying assumption is appealing in the context of the symmetric equilibrium that is

examined in this model. Since all agents are assumed to have common beliefs and tastes, and

because all households are assumed to own an equal share of firm profits, it follows that in

equilibrium each receives a common income stream which is necessarily equal to aggregate income.

Having firms value future profits at the marginal value of aggregate income therefore corresponds

to each shareholder’s valuation.4

The firm’s price-setting problem in period t is therefore to maximize the expected present
4This assumption is not particularly important. In the employed log-linear approximation firms only use knowl-

edge of the long-run average value of Qt,T which equals the discount factor β. So long as firms know β, any number
of assumptions on the price-setting behavior of firms would be consistent with the presented analysis. Firms could
hold different beliefs about fluctuations in Qt,T so long as they all know the long run average to be equal to β.
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discounted value of profits

Êit

∞X
T=t

αT−tQt,T
£
ΠiT (pt(i))

¤
(8)

where

ΠiT (p) = YtP
θ
t p
1−θ −wt(i)f−1(YtP θ

t p
−θ/At) (9)

with the notation f−1 (·) denoting the inverse function of f (·). The factor αT−t in the firm’s
objective function is the probability that the firm will not be able to adjust its price for the next

(T − t) periods.

To summarize, the firm’s problem is to choose {pt (i)} to maximize (8) taking as given
{YT , PT , wT (j), AT , Qt,T} for T ≥ t and j ∈ [0, 1]. The first-order conditions characterizing
optimality are contained in Appendix A.2.

2.2.1 Price Decision Rule Derived

As for the household problem, we seek a log-linear approximation to firms’ price-setting behavior.

Appendix A.2 demonstrates that the first-order condition of the firm’s optimal pricing problem

satisfies the approximate log-linear relation

bp∗t (i) = Êit ∞X
T=t

(αβ)T−t
·
1− αβ

1 + ωθ
· (ω + σ−1)xT + π̂T

¸
(10)

where ω > 0 is the elasticity of firm i’s real marginal cost function (defined in the appendix) with

respect to its own output, yt (i). Thus firm i’s optimal price is determined as a linear function

of the future expected paths of the output gap and inflation. Analogously to the household’s

problem, firms optimally make long-horizon forecasts of general macroeconomic conditions in

deciding their current price, p∗t (i).

To infer the aggregate implications of the maintained theory of pricing, integrate (10) over i

to give bp∗t = Êt ∞X
T=t

(αβ)T−t
·
1− αβ

1 + ωθ
· (ω + σ−1)xT + π̂T

¸
.
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Noting that a log-linear approximation to the price index (7) gives π̂t = bp∗t · (1− α)/α the above

expression can be written as

π̂t = κxt + Êt

∞X
T=t

(αβ)T−t [καβ · xT+1 + (1− α)βπ̂T+1] (11)

where

κ ≡ (1− α)

α

1− αβ

1 + ωθ
(ω + σ−1) > 0.

Equation (11) indicates that current inflation is determined by today’s output gap and the average

of firms’ expectations of the future time path of both the output gap and the inflation rate. As

for the households’ problem, since private agents do not know the tastes and beliefs of others

and therefore are unable to infer true aggregate probability laws, this relation cannot be quasi-

difference to deliver a relationship between current inflation and expectations of next period’s

inflation rate. To simplify notation, for the remainder of the paper the “^” is omitted, with the

understanding that all variables are defined as log-deviations from steady-state values.

It is worth noting that the forgoing methodology is not specific to the model at hand. Different

theories of price setting or consumer behavior could be adopted. For instance, perfect competition

could be assumed to give fully-flexible prices. Alternatively, it could be assumed that some fraction

γ of firms have flexible prices, while a fraction 1− γ set prices a period in advance — this would

give the Lucas-supply curve, as shown by Woodford (2002, chap. 3). Long-horizon forecasts

do not matter under these theories of pricing because firms do not face a multi-period decision

problem — they are static and two period problems respectively. Assuming Calvo pricing is a

tractable way to develop a minimally realistic model for the analysis of monetary policy and

facilitates comparison to the recent literature on monetary policy and learning. It is an open

question whether other, possibly more realistic theories of pricing, have important implications

for monetary policy under learning.

3 Expectations Formation

The previous section derives the aggregate implications of household and firm behavior. Equation

(6) specifies the evolution of aggregate demand, while equation (11) is analogous to a forward
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looking Phillips curve determining current inflation as a function of expected future inflation and

the output gap. To close this stylized model of the macroeconomy assumptions on the expectations

formation mechanism and the nature of monetary policy — which determines the evolution of the

nominal interest rate {it} — are required. Given expectations, so long as monetary policy is
specified as being determined by the model’s exogenous variable and/or permitted to depend

only on the endogenous variables, inflation and the output gap (including future expected and

past values), then this equation together with (6) and (11) are sufficient to determine {πt, xt, it} .
The monetary policies considered in this paper satisfy this requirement. It remains to specify the

expectations formation mechanism.

3.1 Recursive Learning

To be precise about the learning dynamics of this model, adjoin an equation for the interest rate

to equations (6) and (11) to give the system

xt = −σit + Êt
∞X
T=t

βT−t [(1− β)xT+1 − σ(β · iT+1 − πT+1) + r
n
T ] (12)

πt = κxt + Êt

∞X
T=t

(αβ)T−t [καβ · xT+1 + (1− α)β · πT+1] (13)

it = i(x,π, rn). (14)

The final equation defines a general specification for monetary policy that satisfies the require-

ments discussed above. Conditional on expectations, there are three equations that determine the

three unknown endogenous variables {πt, xt, it} . It is clear from equations (12) and (13) that

agents require forecasts of the entire future path of each endogenous variable. Agents therefore

estimate a linear model in inflation, the output gap and the nominal interest rate, using as re-

gressors variables that appear in the minimum-state-variable solution to the model under rational

expectations. This conjectured model represents agents beliefs of the equilibrium dynamics of

the model’s state variables.5

5One might query the assumption that agents construct forecasts using just variables that appear in the
minimum-state-variable solution. After all, it is clear from the optimizing model developed that agents also ob-
serve (simultaneously) aggregate output and prices when making their own decisions about consumption and price
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Under the classes of monetary policies considered in Section 5 the minimum-state-variable

solution is always linear in the disturbance term, rnt . Suppose the natural rate of interest, r
n
t , is

determined by the stochastic process

rnt = f
0st

where

st = Cst−1 + εs,t (15)

and st is a (n× 1) vector, f is a (n× 1) coefficient vector, εs,t i.i.d disturbance vector, and
C a matrix with all eigenvalues being real and inside the unit circle. Thus the natural rate

shock is specified as a fairly arbitrary linear combination of exogenous disturbances. Defining

zt ≡ (πt, xt, it)0 the estimated linear model is assumed to be

zt = at + bt · st + ²t

where ²t is the usual error term and (at, bt) are coefficient vectors of dimension (3× 1) and (3× n)
respectively. The estimation procedure makes use of the entire history of available data in period

t, {zt, 1, st}t−10 . As additional data become available in subsequent periods, agents update their

estimates of the coefficients (at, bt) . This is neatly represented as the recursive least-squares

formulation

φt = φt−1 + t
−1R−1t wt(zt − φ0t−1wt) (16)

Rt = Rt−1 + t−1(wt−1w0t−1 −Rt−1) (17)

where the first equation describes how the forecast coefficients, φt = (a0t, vec(bt)0)
0, are updated

with each new data point and the second the evolution of the matrix of second moments of the

appropriately stacked regressors wt ≡ {1, st}t−10 . The forecasts can then be constructed as

ÊtzT = at−1 + bt−1 ·CT−t · st (18)

setting. It follows that these aggregate variables might be thought useful in constructing forecasts about the future
evolution of the economy. This informational assumption leads to the same substantive conclusions on E-Stability
as the case in which agents do not use this additional information, and resutls are available from the author. To
keep the ideas at the fore and the algebra at bay, the main analysis works under the assumption that forecasts are
constructed using only variables that appear in the minimum-state-variable solution.
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for T ≥ t. The matrix C is assumed to be known to agents for algebraic convenience. This is not
important to the conclusions of this paper — all results hold when agents have to learn the nature

of the auto-regressive process describing st, and the results are available from the author. That

agents form beliefs using (18) makes clear their irrationality — at time t agents make use of an

econometric model to assign probabilities to the evolution of state variables that does not account

for their own subsequent updating of beliefs at t+1 by use of (16) and (17). This completes the

description of the model.

To summarize, the model of the macroeconomy comprises: an aggregate demand equation,

(6), a Phillips curve, (11), a monetary policy rule, and the forecasting system (16), (17) and (18).

4 Analyzing Learning Dynamics

Subsequent analysis answers two related questions for a given assumption on monetary policy:

Under what conditions does a unique rational expectations equilibrium obtain? And, given

the existence of such an equilibrium, what conditions guarantee convergence to this equilibrium

when agents’ expectations are formed using a recursive least-squares algorithm rather than using

rational expectations? While analysis of determinacy is now commonplace in the monetary policy

literature, the conditions for convergence under least-squares learning dynamics are less familiar.6

The criterion adopted in this paper to judge convergence under recursive learning is the notion

of expectational stability of rational expectations equilibrium, called E-Stability by Evans and

Honkapohja (2001). Evans and Honkapohja show that local real-time convergence of a broad

class of dynamic models under recursive learning is governed by E-Stability. The following section

draws on Evans and Honkapohja (2001) to develop the ideas of E-Stability.

4.1 Expectational Stability

Agents use their econometric model to construct forecasts of the future path of endogenous

variables. For expositional purposes, this subsection assumes the evolution of rnt is a standard
6See Blanchard and Kahn (1980) for a detailed discussion of the conditions for uniqueness of rational expectations

equilibrium.
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AR(1) process, with coefficient |ρ| < 1. If monetary policy is conducted so that the minimum-

state-variable solution is linear in rnt , then forecasts can be constructed using

ÊtzT = at−1 + bt−1 · ρT−t · rnt

for T ≥ t. To obtain the actual evolution of the economy, substitute (18) into the system of

equations (12), (13) and (14). Collecting like terms gives a general expression of the form

zt = (Q+Aat−1) + (Bbt−1 +D) rnt

where the matrices A and B collect coefficients on the estimated parameter vectors (a0t, b0t), Q

collects constant terms and D collects remaining coefficients on the state variable, rnt . Leading

this expression one period and taking expectations (rational) provides

Etzt+1 = (Q+Aat−1) + ρ (Bbt−1 +D) rnt

which describes the optimal rational forecast conditional on private-sector behavior. Comparison

with (18) makes clear that agents are estimating a misspecified model of the economy — agents

assume a stationary model when in fact the true model has time-varying coefficients. Taken

together with (18) at T = t + 1 it defines a mapping that determines the optimal forecast

coefficients given the current private-sector forecast parameters (a0t−1, b0t−1), written as

T (at−1, bt−1) = (Q+Aat−1, Bbt−1 +D). (19)

A rational expectations equilibrium (REE) is a fixed point of this mapping. For such REE, we are

then interested in asking under what conditions does an economy with learning dynamics converge

to this equilibrium. Using stochastic approximation methods, Evans and Honkapohja show that

the conditions for convergence of the learning algorithm (16) and (17) are neatly characterized

by the local stability properties of the associated ordinary differential equation

d

dτ
(a, b) = T (a, b)− (a, b), (20)

where τ denotes “notional” time. The REE is said to be expectationally stable, or E-Stable, if this

differential equation is locally stable in the neighborhood of the REE. From standard results for
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ordinary differential equations, a fixed point is locally asymptotically stable if all eigenvalues of the

Jacobian matrix D [T (a, b)− (a, b)] have negative real parts (where D denotes the differentiation

operator and the Jacobian understood to be evaluated at the rational expectations equilibrium

of interest.) See Evans and Honkapohja (2001) for further details on expectational stability.

In the context of the above model the Jacobian matrices are (A− I) and (B − I) and have
dimension (3 × 3) (corresponding to the number of state variables that agents are forecasting).
For such matrices to have roots all having negative real parts, the coefficients of the associated

characteristic equation must satisfy three restrictions. It follows that E-Stability imposes six

restrictions on model parameters. Details of these conditions are provided in Appendix A.3.

The remainder of the paper concerns itself with the relationship between the conditions for

expectational stability and the requirements for determinacy when monetary policy is specified

as a commitment to a variety of interest rate rules.

5 Monetary Policy and Learning

This first part of this paper develops a framework in which agents face multi-period decision

problems and have subjective expectations. It shows that the aggregation of rationally formed

decisions of individual agents with such subjective expectations implies that current output and

inflation are determined by long-horizon forecasts of general macroeconomic conditions. The re-

mainder of the paper is devoted to the question of whether given policy rules in such an economy

leads the learning dynamics to converge to the dynamics predicted by rational expectations equi-

librium analysis. That is, in the language of the previous section, whether given sufficient data

agents adopt perceived laws of motion that converge to the actual laws of motion of the economy.

Since Taylor (1993) there has been a revived interest in monetary policy rules, both as a

prescriptive and descriptive tool. Taylor proposed a simple rule of the form

it = ı̄t + ψππt + ψxxt (21)

prescribing the nominal interest rate to be adjusted in response to variations of inflation from

18



target and the output gap and ı̄t is a stochastic constant.7 This work and Taylor (1999) provides

evidence that a rule of this form gives a remarkably good characterization of U.S. monetary

policy from the mid 1980’s onwards. More generally, some have argued that interest-rate rules

should be an integral part of a framework for monetary policy as such rules provide a possible

solution to the pitfalls of discretionary behavior by the central bank: by providing a systematic

response to economic shocks the central bank might be better able to stabilize inflation and

output and therefore improve social welfare. Furthermore, by specifying the optimal choice of the

nominal interest rate in each state of the world, interest-rate rules can in principle be designed

to implement optimal monetary policy. Clarida, Gali, and Gertler (1999) and Woodford (2002)

develop these ideas in considerable detail and present a coherent theory of monetary policy that

makes the case for such rules.

However, much of the literature on monetary policy rules regarding the desirability of one rule

versus another rests on the assumption of rational expectations. And while rational expectations

has obvious appeal as a modeling device, there is good reason to be cautious about policy recom-

mendations derived under its assumption. The model of this paper provides a natural framework

to evaluate the desirability of monetary policy rules given alternative assumptions on the expec-

tations formation mechanism. Indeed, the adaptive learning framework has considerable appeal

as it includes the rational expectations paradigm a special limiting case. It follows that such an

expectations formation mechanism presents a minimal deviation from rational expectations and,

therefore, that any rules that are found to induce economic instability under its assumption are

likely to be undesirable as a recommended policy. Indeed, Howitt (1992), Evans and Honkapohja

(2002a) and Bullard and Mitra (2002) argue convergence of least-squares learning to the predic-

tions of rational expectations equilibrium analysis to be a minimal requirement of any proposed

policy.

The use of interest-rate rules as a means to conduct monetary policy has also been criticized

on the grounds that even though a policy is consistent with a desirable equilibrium, it will
7The actual rule proposed by Taylor (1993) was it = πt+0.5(πt − 2)+ 0.5xt interpreting πt as the four quarter

ended inflation rate.
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almost surely have disastrous consequences in practice by allowing for self-fulfilling expectations

to propagate. For example, Friedman (1968) argued that any attempt by the monetary authority

to peg the nominal interest rate, even at an optimally chosen value, would inevitably lead to

economic instability via a cumulative Wicksellian process. Following Howitt (1992), the basic

logic of this criticism can be neatly formulated in a model where agents form expectations of

the future path of the economy by extrapolating from historical relationships in observed data.

The remaining analysis examines the possibility of self-fulfilling expectations when agents must

form long-horizon forecasts in order to make current decisions. Thus, given a candidate monetary

policy, the central question of interest is whether given sufficient data agents with subjective

expectations will be able to learn the predictions of rational expectations equilibrium analysis.

5.1 Monetary Policy Rules

Consider two classes of instrument rule: (i) nominal interest-rate rules that depend only on the

history of exogenous disturbances and (ii) Taylor-type feedback rules that specify a path for the

nominal interest rate that depends on the path of endogenous variables. The former class of rule is

of considerable interest since specifying the optimal action of the monetary authority in each state

of the world is a natural way to implement optimal monetary policy. However, such rules are an

example of the type of rule critiqued by Friedman (1968) and have also been criticized by Sargent

and Wallace (1975) who showed that commitment to exogenously determined interest-rate path

can lead to indeterminacy of rational expectations equilibria. The possibility of indeterminacy of

rational expectations equilibria raises an important challenge for the design of optimal monetary

policy as underscored by the work of Svensson and Woodford (2002), Woodford (1999), Giannoni

and Woodford (2002a) and Giannoni and Woodford (2002b) — even though an optimal interest-

rate rule, expressed as a function of the history of exogenous disturbances, can be designed to be

consistent with the optimal equilibrium, such rules are also equally consistent with many other

undesirable equilibria. In the context of the monetary policy literature under learning, Evans and

Honkapohja (2002a) have demonstrated an analogous result: such policy rules are in fact subject

to self-fulfilling expectations as argued by Friedman.
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Importantly, indeterminacy of rational expectations equilibrium is not a general property

of interest-rate rules. McCallum (1983) showed that rules that allow appropriate feedback from

endogenous variables can deliver a unique equilibrium. As mentioned, a prominent recent example

due to Taylor (1993) is given by (21). Woodford (2002, chap. 4) shows that this rule leads to

determinacy of rational expectations equilibrium if the so-called Taylor principle is satisfied. This

rule will be the central focus of our study of learning dynamics in this economy.

There are clearly many other possible rules for the conduct of monetary policy. Clarida, Gali,

and Gertler (1998) and Clarida, Gali, and Gertler (2000) have found that estimated central bank

reaction functions often find an important role for expectations of future inflation in the setting

of the current interest rate. This suggests rules of the form

it = ı̄t + ψxEtxt+1 + ψπEtπt+1 (22)

to be of practical interest.8

Alternatively, as argued by McCallum (1999), the informational assumptions implicit in the

Taylor rule are tenuous in practice. Monetary authorities typically do not have available current-

dated observations on the output gap and inflation rate when setting the current interest rate.

Many researchers have responded to this criticism by modifying the information set available to

the monetary authority when determining its instrument setting. Hence, the nominal interest rate

could be argued to be better modeled as being determined by lagged expectations of current-dated

output and inflation to give an instrument rule of the form

it = ı̄t + ψxEt−1xt + ψπEt−1πt. (23)

Finally, for a monetary authority concerned with stabilizing variation in output and inflation,

the optimal commitment equilibrium in the present model under rational expectations can be

shown to be implemented by a rule of the form

it =
1

σ

·
Etxt+1 − λ

λ+ κ2
xt−1 +

µ
βκ

λ+ κ2
+ σ

¶
Etπt+1 +

κ

λ+ κ2
ut + r

n
t

¸
8This is not the form of rule that these authors find best characterizes the central bank’s policy reaction function.

It is presented as being illustrative of a type of rule that might be of practical interest.
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where λ gives the weight placed on stabilizing output variation and ut a cost-push shock.9 All

three classes of monetary policy rule certainly warrant careful analysis when private agents have

subjective expectations and these rules are interpreted as responding to observed private forecasts.

Indeed, Evans and Honkapohja (2002b) and Bullard and Mitra (2002) have examined rules of

these types under learning dynamics in the context of a model where expectations of inflation

and output one period in advance matter. In the context of the model of this paper, analysis

of these rules leads to quite different conclusions about their desirability as a guideline for the

conduct of monetary policy. For this reason, discussion of these classes of rule are contained in

companion papers, Preston (2002b) and Preston (2002a), that seek to understand the desirability

of central bank decision procedures that attempt to implement monetary policy using forecast-

based instrument rules.

5.2 Learning Dynamics

5.2.1 Exogenous Policy Rule

To begin analysis of the model under learning, consider a monetary policy specified as a commit-

ment to an instrument rule of the form

it = ı̄t + ψc + ψrr
n
t (24)

that posits the nominal interest rate to be set in response to the disturbance in the natural rate of

interest. In the following propositions we assume the exogenous variables (̄ıt, rnt ) are determined

as  ı̄t

rnt

 = f 0st
redefining f as a (n× 2) matrix and with st determined as in (15). This postulates both the
natural rate disturbance and the stochastic constant of the Taylor rule to be a particular linear

combination of the elements of the disturbance vector st.
9As done in many recent analyses of this model under rational expections, a cost-push shock can be introduced

into the aggregate supply curve to ensure a non-trivial optimal monetary policy problem.
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Proposition 1 Under the interest rate rule (24) the associated REE of the economy given by
(12) and (13) is linear in the state variables st and is not E-stable under least-squares learning
dynamics.

Proof. It is easy to verify the existence of a REE that is linear in the state variable, st.

Therefore, assume that agents have forecast functions of the form (18). Substituting the assumed

instrument rule and forecast functions (18) into the system (12), (13) gives

zt = Aat−1 + {terms independent of at−1} (25)

where

A =


(1−α)β
1−αβ + κσ

1−β
καβ
1−αβ + κ − κσβ

1−β
σ
1−β 1 − σβ

1−β
0 0 0


Leading (25) and taking expectations delivers the optimal forecast of the evolution of the endoge-

nous variables given the current forecast parameters of private agents. The required mapping

between the perceived and optimal laws of motion follows immediately. E-Stability requires

det(A− I) < 0, but
det(A− I) = κσ

1− β
+

αβκσ

(1− β)(1− αβ)
> 0.

The desired result follows.

Not only do exogenous interest rate rules suffer from an indeterminacy of equilibrium but also

any such equilibrium fails to be expectationally stable, giving credence to Friedman’s critique

of nominal interest rate pegs (a form of interest rate rule).10 This result is related to Evans

and Honkapohja (2002a) which finds an analogous result in the context of a model with a more

restrictive class of learning dynamics. The present paper assumes agents know less about the

economy and, as one might expect, this does not make agents better able to learn the rational

expectations equilibrium. It is also worth noting that one of the motivations of the bounded ratio-

nality literature in macroeconomics was the possibility that learning mechanisms would provide
10Honkapohja and Mitra (2001a) show in their model that learning does bite in the sense that all non-

fundamentals based equilibria are also not stable under learning dynamics. However, given that no rational
expectations equilibria are then learnable in that model, this class of rule has little to recommend itself.
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an equilibrium selection criterion in the case of multiple rational expectations equilibria.11 In the

context of this model, learning is not able to overcome indeterminacy of equilibrium induced by

an exogenous interest rate rule.

Proposition 1 also implies that to design optimal monetary policy rules it is generally not

enough to specify a rule in terms of exogenous disturbances to implement optimal monetary

policy. While such rules are consistent with the desired equilibrium they are equally consistent

with the propagation of self-fulfilling expectations. The challenge to design rules that are immune

to such instability is taken up in Preston (2002a) and Preston (2002b).

5.2.2 The Taylor Rule

In contrast to interest-rate rules that depend only on the history of exogenous disturbances,

Taylor rules can deliver determinacy of rational expectations equilibrium so long as the Taylor

principle is satisfied. Under learning dynamics, the Taylor principle is necessary and sufficient for

E-Stability.

Proposition 2 Suppose agents construct forecasts using the perceived law of motion given by
(18). Under the Taylor rule (21), the model given by (12) and (13) has minimum-state-variable
rational expectations equilibria which are linear in the state variables, st, for which the Taylor
principle

κ(ψπ − 1) + (1− β)ψx > 0

is necessary and sufficient for E-Stability under least-squares learning dynamics.

Proof. A sketch of the proof now follows. The appendix shows the E-Stability mapping

implies the associated ordinary differential equation

∂φ

∂τ
=

 A3 − I3 0

0 H3n − I3n

φ
where φ =

¡
a0, vec (b)0

¢0, and all matrices being square and of indicated dimension and I an

identity matrix. E-Stability requires all 3n + 3 eigenvalues of this system to have negative real
11Sargent (1993) provides several examples where learning dynamics provide a criterion for equilibrium selection.
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parts. It is immediate that the eigenvalues are determined by the properties of the matrices

A3− I3 and H3n− I3n. The proof establishes that these two matrices have negative real roots so
long as the Taylor principle holds. The following treats the matrix A3 − I3 which characterizes
the stability properties of the constant dynamics, leaving H3n − I3n to the appendix.

Since the constant dynamics are independent of the dynamics describing the forecast para-

meters vec (b) we can analyze the subsystem

∂a

∂τ
= [A3 − I3] a.

Noting that an REE implies the coefficient restriction

ai = ψxax + ψπaπ

make a change of variables according to the relation

aj = ψxax + ψπaπ − ai

where aj = bj = 0 in an REE. This yields the system

∂ã

∂τ
=

 Ã− I2 Ã2

0 −1

 ã
where ã = (aπ, ax, aj)

0 and all matrices are of dimension (2× 2). Ã2 has elements that are

composites of model primitives. The matrix Ã can be shown to have elements

ã11 = (κσ (1− αβ) (1− βψπ) + β (1− α) (1− β) (1 + βσψx)) /Γ1

ã12 = κ (1− β(1 + (1− α)σψx) /Γ1

ã21 = σ
¡
1− αβ (1− ψπ)− 2βψπ + β2ψπ

¢
/Γ1

ã22 = ((1− β) (1− αβ)− σβψx (1− αβ)− αβκσψπ (1− β)) /Γ1

where

Γ1 = (1− β) (1− αβ) (1 + σψx + σκψπ)

and aij denotes the (i, j) element of the matrix Ã.
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For E-Stability, the Jacobian D ∂ã
∂τ must have roots with negative real parts. It is immediate

that one root is equal to negative unity. Ã − I2 must have positive determinant and negative

trace for the remaining to eigenvalues to have the desired property. These restrictions imply the

inequalities

ψπ +
(1− β)

κ
ψx > 1

and

ψπ +
ψx
κ
· (1− αβ) + (1− β)2

(1− αβ) + (1− β)
>

κσ(1− αβ)− (1− β)2

κσ [(1− αβ) + (1− β)]

respectively. The first inequality clearly establishes the Taylor principle to be necessary for E-

Stability. To show that it is sufficient, note that the right-hand side of the second restriction is

necessarily less than one. Furthermore, the slope coefficient on the parameter ψx is necessarily

greater than (1− β) /κ — for it to be less than this value requires β < 0 contradicting the

maintained model assumptions. It follows that any policy parameter pairs (ψx, ψπ) satisfying the

Taylor principle must also satisfy this second inequality. The appendix applies similar arguments

to the restrictions implied by H3n − I3n to establish the desired result.

To give some intuition, particularly for the presence of the two eigenvalues equal to negative

one, consider the following. Suppose that agents, serendipitously, happen to forecast a nominal

interest rate path coinciding with what would be determined by the Taylor rule given the agent’s

forecasts for the output gap and inflation. It follows that the economy would produce data for

the output gap and inflation that are in turn consistent with estimating parameters that would

generate forecasts in subsequent periods for the path of the nominal interest rate that would

again be obtained under the Taylor rule. It follows that the Taylor rule itself cannot be a source

of instability and agents, by observing the realized values for output, inflation and the nominal

interest rate, can easily discern the restriction between these variables that is required by the

Taylor rule in a rational expectations equilibrium. It follows that only the inflation and output

gap dynamics are relevant for E-Stability. This basic insight is important more generally: Preston

(2002b) shows that a common property of desirable optimal monetary policies is that they ensure

the instrument rule itself is not a source of instability — that is, the associated eigenvalues are

independent of private agents’ beliefs as for the Taylor rule examined here.
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Bullard and Mitra (2002) show a similar result in a learning analysis based on equations (29)

and (30) (discussed in the subsequent section) and assuming the natural rate, rnt , to be specified

as an AR (1) stochastic process. It should be emphasized that this is not obviously to be expected.

The framework given by (12) and (13) allows for both significantly more general out-of-equilibrium

behavior, with output, inflation and the nominal interest rate depending on average expectations

of these same variables into the indefinite future and a more general stochastic process for the

disturbances. The presence of additional expectational variables relative to the analysis of Bullard

and Mitra (2002) is a potential source of instability under learning dynamics. That the Taylor

principle continues to be the relevant condition for E-Stability in the more general framework

developed in this paper, suggests it to be a robust result for this class of instrument rule.

As discussed by Honkapohja and Mitra (2001a), results of this kind also provide an alternative

interpretation of the performance of monetary policy in the U.S. in the 1970’s relative to later

decades. Clarida, Gali, and Gertler (1998) argue that the inflationary episode of the 70’s was

the result of a monetary policy that was not consistent with a determinate price level. As a

result the economy was prone to “sunspot” equilibria and self-fulfilling expectations. In contrast,

the results of this paper suggest that an equally consistent interpretation of this episode is that

monetary policy, rather than inducing indeterminacy, was conducive to agents expecting ever

higher inflation on the basis of their experience with past inflation — and hence to propagating

self-fulfilling expectations.

6 Commentary on Long-Horizon Forecasts

A number of previous papers have proposed analyses of learning dynamics in the context of

models where agents solve multi-period (indeed, infinite horizon) decision problems, but without

requiring that agents make forecasts regarding outcomes more than one period in the future. In

these papers, agents’ decisions depend only on forecasts of future variables that appear in the

Euler equations that can be used to characterize rational expectations equilibrium. For example,

Bullard and Mitra (2002) propose an analysis of learning dynamics in a model which is intended

to have the same underlying microfoundations as the model presented above — that is, intended to
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consider the consequences of least-squares learning in the context of the standard new Keynesian

model of inflation and output gap determination.

However, section 2 demonstrates that under learning dynamics, private-sector optimization

implies the aggregate structural relations

xt = Êt

∞X
T=t

βT−t [(1− β)xT+1 − σ(iT − πT+1) + r
n
T ] (26)

πt = Êt

∞X
T=t

(αβ)T−t [κxT + (1− α)β · πT+1] (27)

so that long-horizon expectations of general macroeconomic conditions matter for the evolution

of aggregate output and inflation.

Since these relations hold for arbitrary beliefs satisfying standard probability laws, they must

also hold under rational expectations. Under this assumption, (26) and (27) can be simplified by

application of the law of iterated expectations, as agents, having complete knowledge of the tastes

and beliefs of other agents, are able to compute the equilibrium probabilities and associated laws.

Leading the aggregate demand relation (26) one period and taking rational expectations at date

t gives

Etxt+1 = EtEt+1

∞X
T=t+1

βT−t−1 [(1− β)xT+1 − σ(iT − πT+1) + r
n
T ]

= Et

∞X
T=t+1

βT−t−1 [(1− β)xT+1 − σ(iT − πT+1) + r
n
T ] (28)

where the second equality follows from the law of iterated expectations. It follows that

xt = Et[(1− β)xt+1 − σ(it − πt+1) + r
n
t ] +

Et

∞X
T=t+1

βT−t [(1− β)xT+1 − σ(β · iT − πT+1) + r
n
T ]

= Et[(1− β)xt+1 − σ(it − πt+1) + r
n
t ] + βEtxt+1

= Etxt+1 − σ(it −Etπt+1) + rnt

where the second equality makes use of (28). Similar manipulations for the Phillips curve relation
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give the rational expectations model of the monetary transmission mechanism

xt = Etxt+1 − σ(it −Etπt+1) + rnt
πt = κxt + βEtπt+1.

This simple model of the economy has been used in recent studies of monetary policy rules by

Bernanke and Woodford (1997), Clarida, Gali, and Gertler (1999) and Woodford (1999). A

rational expectations equilibrium analysis therefore predicts that only one-period-ahead forecasts

of inflation and the output gap matter for the evolution of the economy. The approach of Bullard

and Mitra (2002) is to take these relations and replace the rational expectations assumption with

the learning assumption outlined in section 3. This gives the system

xt = Êtxt+1 − σ(it − Êtπt+1) + rnt (29)

πt = κxt + βÊtπt+1 (30)

obtained by substituting the rational expectations operator, Et, with the learning dynamics

operator, Êt.

However, aggregation of rationally formed decisions by households and firms, when these de-

cisions are made under subjective expectations, does not predict aggregate dynamics of this form

— the economy under subjective expectations is described by (26) and (27). That consumption

decisions based on the Euler equation are not optimal stems from the approaches failure to ensure

satisfaction of the intertemporal budget constraint, and, in particular, to not properly account

for wealth.

To make clear that the Euler equation approach does not give rise to optimal decisions, recall

the optimal decision rule is given by

C̃it = (1− β)$it + Ê
i
t

∞X
T=t

βT−t [(1− β)xT − βσ(iT − πT+1) + βrnT ]

where we have defined C̃it ≡ Cit−Y nt . Agents having a positive initial wealth endowment, $it > 0,
will have higher than average consumption (given the the income process is the same for all agents
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in the equilibrium described in section 2) while those having a negative initial wealth endowment,

$it < 0, will have lower than average consumption.

It is immediate then that using the Euler equation alone cannot lead individual households to

make the correct consumption allocation each period, since it does not lead them to take account

of their wealth in anyway whatsoever. Suppose we interpret the Euler equation (29) as saying

that household i forecasts the aggregate output gap, xt+1, then bases its consumption decision

C̃it on this, so that

C̃it = Ê
i
txt+1 − σ(it − Êitπt+1) + rnt . (31)

describes household behavior.12 Such a procedure will lead to systematic under-consumption by

households with $it > 0 and over-consumption of those households with $it < 0. Similarly, if

the Euler equation approach is interpreted as saying that the household forecasts its own future

consumption C̃it+1 (based on the past time series of own consumption spending) and then bases

current consumption on this, we have

C̃it = Ê
i
tC̃

i
t+1 − σ(it − Êitπt+1) + rnt . (32)

For this procedure, it will remain true that individual household’s spending levels will remain

permanently too high or two low. Note that under this proposed learning mechanism, the in-

terpretation of Êit is distinct from the behavior postulated in this paper: agents, rather than

forecasting future state variables that are beyond their control though pertinent to their decision

problem, adopt a pure statistical model of their own future consumption choice.

Furthermore, even if agents were all to have zero initial wealth, so that in equilibrium no
12Honkapohja, Mitra, and Evans (2002) argue that this Euler equation can be derived from the framework of

this paper (in the case of zero initial wealth endowments) with the additional assumption that agents understand
that market clearing requires C̃it = xt (or C

i
t = Yt) in all periods. While this assumption might appear appealing in

the context of a model with homogenous agents that are constrained in equilibrium to consume identical incomes,
more generally it lacks appeal on two grounds. First, market clearing conditions are part of the set of rational
expectations equilibrium restrictions that agents are attempting to learn — why are they any more likely to be
endowed with knowledge of one restriction over another? This will be particularly important in more general
models when agents receive differing income streams and have incentives to trade assests in equilibrium. Second,
even if it is assumed that agents are aware of this market clearing condition, so that the Euler equation of the form
(31) can be derived, such a decision rule does not describe optimal behavior: households would never choose to
adopt such a learning rule given the maintained assumption that agents optimize conditional on their beliefs. This
point is discussed in detail below.
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agent holds a net position in bonds, it would still be true that the above Euler equation-based

learning procedures would result in suboptimal decisions. Any sequence of disturbances that has

the effect of decoupling the evolution of recent income from “permanent” income will tend to lead

agents to consume too much or too little when using only the Euler equation to make decisions.

More formally, the optimal decision rule for consumption when agents have zero initial wealth

endowment is

C̃it = Ê
i
t

∞X
T=t

βT−t [(1− β)xT − βσ(iT − πT+1) + βrnT ] .

obtained from the optimal decision rule with $it = 0 for all i. Since in the optimal program this

rule governs consumption decisions in all future periods, it follows that households expect next

period’s optimal consumption choice to be

ÊitC̃
i
t+1 = Ê

i
t

∞X
T=t+1

βT−t [(1− β)xT − βσ(iT − πT+1) + βrnT ] (33)

obtained by forwarding the optimal decision rule one period and taking expectations at time t. It

follows immediately that for the Euler equation to provide the optimal consumption allocation,

under the interpretations in the preceding paragraph given to (31) or (32) above, requires Êitxt+1

and ÊitC̃t+1, respectively, to coincide with this optimal forecast given by (33). But in general,

there is no reason for forecasts of xt+1 and C̃it+1constructed from regression of past observations of

these variables on observed aggregate disturbances to coincide with (33). The optimal forecast is a

particular linear combination of forecasts of the state variables relevant to the household’s decision

problem. Importantly, such forecasts will only coincide in a rational expectations equilibrium:

that is, when agents know the true probability laws — the very laws agents are attempting to

learn. Thus consumption decisions made according to either Euler equation (31) or (32) lead to

suboptimal behavior.

A final advantage of the learning procedure developed in this paper is the following property: if

the econometric model used by agents to produce forecasts is correctly specified then the resulting

behavior is asymptotically optimal. That is, behavior under the learning algorithm differs from

what would be optimal behavior under the true probability laws by an amount that is eventually

arbitrarily small. For the examined monetary policies, a correctly specified econometric model

31



posits inflation, output and the nominal interest rate to be linear functions of the lagged natural

rate disturbance, with a residual term orthogonal to the natural rate. The consistency of the

ordinary least squares estimator implies that the coefficients that agents use in forming their

beliefs are eventually close to the true coefficients. Since the optimal decision rule is a continuous

function of the coefficients of the agents’ forecasting rule, beliefs that are arbitrarily close to the

correct ones imply behavior that is arbitrarily close to being optimal. The above discussion should

make clear that a learning procedure based on the Euler equation (29) does not have this property

even when agents’ form beliefs according to a correctly specified econometric model in the case that

agents have an initial wealth endowment. Indeed, an analysis of (29) and (30) when the central

bank is committed to a Taylor rule implies that the learning dynamics converge if the Taylor

principle is satisfied. But the Euler equation approach, say under the interpretation provided

by relation (31), would imply all agents make identical consumption decisions, and permanently

consume too much or too little — the learning dynamics converge, but agents’ asymptotically

violate their intertemporal budget constraint. This highlights a potential risk of basing analysis

on aggregate structural relations predicted by a rational expectations equilibrium analysis, rather

than analyzing microfoundations under learning.

7 Conclusion

This paper develops a framework to analyze the robustness of monetary policy rules to an impor-

tant source of model misspecification — the assumed form of expectations formation. The principal

contribution is methodological in nature: the solution to a simple micro-founded model under a

non-rational expectations assumption. Analysis of the multi-period decision problems of house-

holds and firms under subjective beliefs shows that the predicted aggregate model dynamics are

qualitatively different to those obtained under rational expectations. Indeed, the determination

of inflation and output depends on the average of agents’ long-horizon forecasts of the model’s

endogenous variables into the indefinite future.

The principal substantive contribution is the analysis of whether instrument rules that have

been of particular interest to the monetary policy literature over the past decade are robust to
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deviations from rational expectations. When policy is specified as a commitment to an exogenous

interest rate rule, agents are unable to learn the associated rational expectations dynamics. Such

rules are therefore undesirable both due to inducing multiple equilibria under rational expectations

and to being subject to the Friedman (1968) critique that nominal interest rate rules of this type

are subject to self-fulfilling expectations. In contrast, for Taylor-type feedback rules, agents are

able learn the associated rational expectations dynamics so long as the Taylor principle is satisfied.

Interestingly, this finding is invariant to a number of different information assumptions on the

agent’s forecasting model, making it a robust feature of the policy environment in this model.

This suggests the Taylor rule to be desirable from the point of view of eliminating instability due

to self-fulfilling expectations.
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A Appendix

A.1 Household Optimality

DefiningW i
t+1 = (1 + i

m
t )M

i
t +(1 + it)B

i
t as the total beginning-of-period wealth at time t allows

the flow budget constraint (2) to be written as

PtC
i
t +∆tM

i
t +

1

1 + it
·W i

t+1 ≤W i
t +

£
PtY

i
t − Tt

¤
(34)

where

∆t ≡ it − im
1 + it

is the opportunity cost of holding wealth in a monetary form. Since (34) must hold in all states,

s, and dates, t, the flow budget constraint can be solve forward recursively, given the appropriate

No-Ponzi constraint limj→∞Rt,t+jWt+j+1 = 0, to give

W i
t ≥

∞X
j=0

Rt,t+j
£
Pt+jC

i
t+j +∆t+jM

i
t+j − (Pt+jY it+j − Tt+j)

¤
where

Rt,t+j =

jY
s=1

µ
1

1 + it+s−1

¶
.

Standard analysis shows that household intertemporal optimality is characterized by the first-

order conditions for consumption and labor supply:

1

1 + it
= βEt[

Pt
Pt+1

· Uc(C
i
t+1, ξt+1)

Uc(Cit ; ξt)
] (35)

and
vh(ht(j); ξt)

uc(Cit ; ξt)
=
wt(j)

Pt
(36)

for dates, t, and goods j ∈ [0, 1]. Since we are assuming a cashless economy, where the transaction
frictions that money is usually held to mitigate are essentially zero, optimization also requires

M i
t = 0
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or

it = i
m
t .

In each period t households also face the intratemporal problem of allocating expenditures

across goods j. Optimality for all j ∈ [0, 1] implies

ct(j) = C
i
t

µ
pt(j)

Pt

¶−θ
(37)

so that total expenditure is given by PtCit .
13 To obtain the total consumption demand for good

j integrate over i to obtain

ct(j) = Ct

µ
pt(j)

Pt

¶−θ
introducing the notation

R
i z
i
tdi = zt for any variable z. In equilibrium, markets must clear for

each good and aggregate output. This requires yt (j) = ct (j) for all j and Ct = Yt. Substitution of

the market clearing conditions into the above relation gives the demand curve for output produced

by firm j. Asset market clearing implies Mt =M
s
t and Bt = B

s
t where

R
Bitdi = Bt and similarly

for Mt. Since Ms
t > 0 this implies it = imt . Finally, the intertemporal budget constraint and

the transversality condition must hold with equality. Since we have a zero-debt fiscal policy with

bonds in zero net supply, it follows that

Tt = (1 + it−1)Mt−1 −Mt

so that the intertemporal budget constraint can be written as

W i
t =

∞X
j=0

Rt,t+j
£
Pt+jC

i
t+j − Pt+jY it+j

¤
redefining W i

t ≡ (1 + it−1)Bt−1.

To obtain a log-linear approximation to the household’s decision problem, define the lin-

earization point to be the steady state characterized by ξt = 0 and Yt = Ȳ (defined in Appendix
13Total expenditure is obtained by multiplying (37) by pt(j) and integrating over j. Applying the definition of

the price index delivers the result.
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A.2) for all t.14 Inspection of the household’s first-order conditions imply a solution of the form

πt = Pt/Pt−1 = 1, and ı̄t = β−1 − 1 for all t, where a bar denotes steady-state value. For any
variable z, define log-deviation as ẑt ≡ log(zt/z̄), except for the nominal interest rate for which
ı̂ = log[(1 + i)/(1 + ı̄)] is used.15 The analysis seeks a log-linear solution in which all variables

fluctuate forever near these steady state values.

A.2 Firm Problem

This appendix characterizes the firm’s optimal pricing problem, defines the notion of the natural

rate of output and the provides some details of the log-linear relations used in Section 2.2. For a

thorough analysis, see Woodford (2002, Chapter 3). Differentiating (8) with respect to pt(i) gives

firm i’s first-order condition

Êit

∞X
T=t

αT−tQt,TYTP θ
T [p̂

∗
t (i)− µPT st,T (i)] = 0 (38)

where µ = θ/(θ − 1), st,T (i) the firm i’s real marginal cost function (defined below) in period

T ≥ t given the optimal price p∗t (i) determined in period t. To derive a log-linear approximation
to the firm’s optimal pricing condition, recall the steady-state is defined as ξt = 0 and Yt = Ȳ

for all t. Inspection of (38) indicates there exists a solution with p∗t /Pt = Pt/Pt−1 = 1 in each

period t. Therefore, we look for a log-linear approximation in which Pt/Pt−1 and p∗t/Pt remain

forever close to one. Before deriving this log-linear approximation, several other useful relations

are derived.

Combining the household’s optimal labor supply condition (36) with the firm’s production

function and differentiating with respect to pt(i) gives the firm’s real marginal cost function

s(y, Y ; ξ̃) =
vh(f

−1(y/A; ξ))
uc(Y ; ξ)A

· 1

f 0(f−1(y))
(39)

14Given that this paper explores a form of bounded rationality that is a minimal deviation from rational expecta-
tions, and, moreover, that the analysis will be later concerned with whether an economy under learning dynamics
can converge to the associated rational expectations equilibrium, the linearization point is chosen to coincide with
that same rational expectations equilibrium.
15Thus all hatted variables are interpreted as percentage deviations. The nominal interest rate is treated dif-

ferently so that it corresponds to percentage point deviations of the continuously compounded nominal interest
rate.
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where ξ̃ ≡ (At, ξt)0 is a composite vector of all preference and technology shocks. Real marginal
costs therefore depend on both firm-specific and aggregate conditions.

Now suppose that firms have full information about the current state of the economy and are

able to set prices each period — the case of fully flexible price setting. Then, a standard result

from model of monopolistic competition, is that prices are optimally set according to the mark-

up relation pt(i)
Pt

= θ
θ−1 · s(yt(i), Yt; ξ̃t) = µs(yt(i), Yt; ξ̃t).Under this assumption on price-setting

behavior, firms, regardless of beliefs, face a symmetric problem. It follows that in equilibrium

pt (i) = Pt and yt (i) = Yt for all i and t and combining with the optimality condition (38) implies

s(Y nt , Y
n
t ; ξ̃t) = µ

−1 (40)

where the level of output Y nt that satisfies this condition is called the natural rate of output.

It is the rate of output that occurs under fully flexible prices and varies in accordance with

fundamental shocks ξ̃t. The quantity of output, Ȳt, used in the definition of the steady state

satisfies s(Ȳ , Ȳ ; 0) = µ−1.

To obtain a log-linear approximation to (38), log-linearize equation (39) to give

ŝt,T (i) = ωŷT (i) + σ−1ŶT − (ω + σ−1)Ŷ nT .

It follows that the real marginal cost of producing average or aggregate output, yt (i) = Yt, is

ŝT (i) = (ω + σ−1)(ŶT − Ŷ nT ) = (ω + σ−1)xT

where the latter equality implicitly defines the output gap xt = Ŷt − Ŷ nt . This provides a rela-
tionship between the marginal cost of producing output yt(i) and the average marginal cost of

producing total output Ŷt of the following form:

ŝt,T (i) = ŝT − ωθ

"
pt (i)−

TX
τ=t+1

πτ

#
(41)

making clear that a firm’s marginal cost in producing its good differs from average marginal cost

to the extent that its price differs from the aggregate price.
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Substituting into the firm’s first-order condition, (38), for the discount factor using (35),

linearizing and substituting for real marginal costs using (41) gives the prediction that optimal

price of firm i satisfies the approximate log-linear relation

bp∗t (i) = Êit ∞X
T=t

(αβ)T−t
·
1− αβ

1 + ωθ
· (ω + σ−1)xT + π̂T

¸
.

Thus firm i’s optimal price is determined as a linear function of the future expected paths of the

output gap and inflation. Variation in the optimal prices set by firms in period t can be due only

to differences in beliefs.

A.3 Conditions for Eigenvalues to have Negative Real Parts

Consider the matrix A with dimension (3× 3) . From |A− λI| = 0 the characteristic equation is

λ3 − c1λ2 + c2λ− c3 = 0

where c1 =Trace(A), c2 is the sum of all second-order principal minors of A and c3 = |A|. The
following restrictions on the coefficients ci must be satisfied for all eigenvalues to have negative

real parts:

c1 < 0

c3 − c1c2 > 0

c3 < 0.

For a matrix A with dimension (2× 2) , |A− λI| = 0 implies the characteristic equation is

λ2 − c1λ+ c2 = 0

where c1 =Trace(A) and c2 = |A|. For both eigenvalues to have negative real parts c1 < 0 and
c2 > 0 must be satisfied
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A.4 Proof of Proposition 2

Agents are assumed to construct forecasts according to the relation

EtzT+1 = az + bzC
T−tst (42)

where zT = (πT , xT , iT )
0and az and bz are estimated coefficient matrices of appropriate dimen-

sion. It follows that:

Êt

∞X
T=t

βT−tzT+1 = az (1− β)−1 + bz (In − βC)−1 st

and

Êt

∞X
T=t

(αβ)T−tzT+1 = az (1− αβ)−1 + bz (In − αβC)−1 st.

Denoting these infinite sums by fβ and fα respectively and substituting into (12) and (13) implies:

xt = −σψπ

w
[(1− α)β, καβ, β] · fα + 1

w
[σ, (1− β) ,−σ] · fβ − σ

w
· [1 − 1]fγ

πt =

µ
1− κσψπ

w

¶
[(1− α)β, καβ, β] · fα + κ

w
[σ, (1− β) ,−σ] · fβ − κσ

w
· [1 − 1]fγ

where w = 1 + σψx + σκψπ and

fγ = f
0 (In − βC)−1 st.

Recalling the nominal interest rate is given by the Taylor rule

it = ı̄t + ψππt + ψxxt

the system can be written compactly as

zt = A1fα +A2fβ +A3fγ

where A1, A2 and A3 collect obvious coefficients and have dimension (3× 3). Substituting for
fα, fβ, fγ gives

zt =
h
(1− αβ)−1A1 + (1− β)−1A2

i
az

+
h
A1bz (1− αβC)−1 +A2bz (1− β)−1 +A3f 0 (In − βC)−1

i
st.
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This expression combined with (42) for T = t defines the E-stability mapping from current private

forecast parameters to the optimal forecast coefficients as

T

 az

bz

 =

 h
(1− αβ)−1A1 + (1− β)−1A2

i
azh

A1bz (1− αβC)−1 +A2bz (1− β)−1
i
C

 .
The associated ODE can then be written as

∂φ

∂τ
=

 A− I3 0

0 H − I3n

φ
where φ =

¡
a0z, vec (bz)

0¢0 and
A = (1− αβ)−1A1 + (1− β)−1A2

H =
h
(In − αβCn)

−1Cn
i0 ⊗A1 + h(In − βCn)

−1Cn
i0 ⊗A2

are (3× 3) and (3n× 3n) matrices respectively. The Jacobian is then given as

D
∂φ

∂τ
=

 A− I3 0

0 H − I3n

 .
To complete the proof of this proposition it remains to consider the properties of the eigen-

values of the matrix H − I3n, since A− I3 was considered in the main text. Note that C can be
diagonalized to give:

C = SΛS−1 (43)

where Λ is a diagonal matrix with elements given by the eigenvalues, ρk, of C and S a matrix

composed of the corresponding eigenvectors, vk. Also note that we can write

(In − αβC)−1C = SΛ (In − αβΛ)−1 S−1

(In − βC)−1C = SΛ (In − βΛ)−1 S−1.

The matrix H can therefore be written as

H =
h
SΛ (In − αβΛ)−1 S−1

i0 ⊗A1 + hSΛ (In − βΛ)−1 S−1
i0 ⊗A2

=
¡
S−10 ⊗ I3

¢ h
Λ (In − αβΛ)−1 ⊗A1 + Λ (In − βΛ)−1 ⊗A2

i ¡
S0 ⊗ I3

¢
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Note that

G ≡ Λ (In − αβΛ)−1 ⊗A1 + Λ (In − βΛ)−1 ⊗A2

is block diagonal with elements

Gk (ρk) = ρk (1− αβρk)
−1 ⊗A1 + ρk (1− βρk)

−1 ⊗A2

where each Gk (ρk) is (3× 3). Let vk be an eigenvector of C associated with the eigenvalue ρk

and let λi (ρk) be an eigenvector of the associated diagonal block Gk (ρk) (note that there are

three such eigenvectors).

Conjecture that the matrix H has eigenvectors of the form vk⊗λi (ρk). Then in the particular
case of v1 ⊗ λi (ρ1) (where, without loss of generality, assume ρ1 to be the first diagonal element

of Λ and v1 the first column vector of S) we have:

(v1 ⊗ λi (ρ1))
0H = (v1 ⊗ λi (ρ1))

0 ¡S−10 ⊗ I2¢ hΛ (In − αβΛ)−1 ⊗A1 +Λ (In − βΛ)−1 ⊗A2
i ¡
S0 ⊗ I2

¢
= (

¡
S−1v1)0 ⊗ λi (ρ1)

0¢ hΛ (In − αβΛ)−1 ⊗A1 + Λ (In − βΛ)−1 ⊗A2
i ¡
S0 ⊗ I2

¢
= [λi (ρ1)

0 ...01×(3n−3)]
h
Λ (In − αβΛ)−1 ⊗A1 + Λ (In − βΛ)−1 ⊗A2

i ¡
S0 ⊗ I2

¢
= [λi (ρ1)

0G1 (ρ1)
...01×(3n−3)]

¡
S0 ⊗ I2

¢
= [λi (ρ1)

0 γi (ρ1)
... 01×(3n−3)]

¡
S0 ⊗ I2

¢
= γi (ρ1) (v1 ⊗ λi (ρ1))

0

Thus v1 ⊗ λi (ρ1) is in fact an eigenvector of H with associated eigenvalue γi (ρ1). Since for each

ρk there are three eigenvalues γi (ρk) and corresponding eigenvectors vk and λi (ρk) there are

therefore 3n eigenvectors of the form vk ⊗ λi (ρk) that span the space of H.

To complete the proof requires demonstrating that all 3n eigenvalues γi (ρk) are less than

unity. Consider the properties of the matrix

Gk (ρk)− I3
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formed from the k0th diagonal block of G. Using Mathematica it is easily shown that one eigen-

value (corresponding to the coefficient relevant to the interest rate dynamics) is equal to negative

unity, while the remaining two have properties determined by the quadratic equation

aλ2 + bλ+ c.

A sufficient condition for there to be two roots with negative real parts is a, b, c > 0. It is easily

shown that

a = (1− βρk) (1− αβρk) (1 + σψx + κσψπ) .

For the remaining two conditions to hold requires the restrictions

ψπ +
(1− βρk)

κ
ψx > ρk −

(1− ρk) (1− βρk)

κσ

and

ψπ +
ψx
κ
· (1− αβρk) + (1− βρk)

2

(1− αβρk) + (1− βρk)
>

κσ(1− αβρk)−
£
(1− αβρk)(1− ρk) + (1− βρk)

2
¤

κσ [(1− αβρk) + (1− βρk)]

to be satisfied. To show that satisfaction Taylor principle is necessary and sufficient for this first

restriction to hold, note that the constant term of first inequality is less than unity by inspection

and that the slope coefficient on ψx is necessarily greater than (1− β) /κ for ρk ∈ (−1, 1). Thus
for all positive (ψπ,ψx) the Taylor principle ensures satisfaction of this inequality. Finally consider

the second inequality above. The constant is again less than unity by inspection. For the Taylor

principle to be sufficient, consider the slope coefficient. If the restriction

(1− αβρk) + (1− βρk)
2

(1− αβρk) + (1− βρk)
> 1− β

holds then the Taylor principle is indeed sufficient. Rearranging yields the restriction

f (ρk) ≡ β (1− αβρk) + (1− βρk)
2 − (1− β) (1− βρk) > 0

which satisfies f (−1) , f (0) , f (1) > 0. Since f 0 (ρk) < 0 for all ρk ∈ (−1, 1), f (ρk) > 0 for all
ρk ∈ (−1, 1). The Taylor principle is therefore necessary and sufficient for the restrictions b, c > 0
to hold. Thus all eigenvalues of Gk (ρk)− I3 have negative real parts and Gk (ρk) all eigenvalues
less than unity if and only if the Taylor principle holds. It follows that all eigenvalues of H must

be less than unity and therefore that the eigenvalues of H − I3n all have negative real parts. The
conditions E-Stability are therefore satisfied if and only if the Taylor principle holds.
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