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1 Introduction

Learning and Monetary Policy Shifts 
The effects of monetary policy are closely linked to the expectation formation of

agents in the economy. Vector autoregressions (VAR) in the tradition of Sims (1980)

have emerged as a tool to assess the consequences of policy interventions. The

intervention is modelled as an unanticipated deviation – a policy shock – from the

perceived policy rule, and its consequences are evaluated through impulse response
functions. However, extended systematic deviations from the perceived policy rule

may lead agents to change their beliefs about the conduct of monetary policy and

invalidate the VAR impulse response predictions.

One method to overcome this problem is to estimate a fully-specified dynamic

stochastic general equilibrium (DSGE) model that can be re-solved for alternative

policy rules to predict effects of fundamental changes in the policy regime. However,

this approach faces some conceptual difficulties as well (e.g. Sims (1982) and Coo-

ley, LeRoy, and Raymon (1984)). First, for several periods after the regime change

the agents are potentially uncertain whether the policy shift was temporary or per-

manent and the transition dynamics are possibly affected by the learning process.

Second, the extent to which past data can be used to validate the predictions is very

limited, since the policy change typically has no precedent.

In this paper we estimate a basic New Keynesian monetary DSGE model, along

the lines of King (2000), in which monetary policy follows a regime switching pro-

cess. Agents do take the possibility of regime shifts into account when they translate

observed monetary policy into expectations about future output, prices, and inter-

est rates. Unlike in the model considered in Sargent (1999), our regime switching

framework offers no explanation why monetary policy shifts occur over time. We

simply assume that there are high-inflation and low-inflation regimes and that the

transition probabilities stay constant. While firms and households learn about the

conduct of monetary policy, the central bank itself does not attempt to learn about

the effectiveness of their policy and choose policy in an optimal manner.

We use a Bayesian approach that combines a prior distribution with the likeli-
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hood function derived from the structural model to obtain posterior estimates. Our

empirical analysis has three parts. First, together with the parameter estimates we

generate estimates of the monetary policy regimes in the post-war U.S. Our esti-

mates are consistent with the popular view that policy was marked by a shift to

a high-inflation regime in the early 1970’s which ended with Volcker’s stabilization

policy at the beginning of the 1980’s.

Second, we study the empirical evidence in favor of the learning mechanism. As

an alternative, we consider a version of the DSGE model in which agents have full

information about the current state of monetary policy. While Bayesian posterior

odds favor the ‘full-information’ version of the model, the fall of inflation and interest

rates in the disinflation episode in the early 1980’s is better captured by the delayed

response of the ‘learning’ specification.

Third, we examine the magnitude of the expectations-formation effect of mon-

etary policy interventions in the ‘learning’ specification by comparing impulse re-

sponses to a version of the model in which agents ignore the information contained

in current and past monetary policy shocks about the likelihood of a regime shift.

The likelihood-based estimation of a DSGE model with policy-regime shifts in

general leads to a very complicated non-linear filtering problem that would take a

long time to solve on a conventional computer.1 We make two simplifications. First,

we use a log-linear approximation of the DSGE model, and second we assume that

the policy rule depends only on observed variables, except for the regime indicator

and the policy shock, and not on latent model variables such as potential out-

put. We show that under these assumptions it is fairly straightforward to compute

the likelihood function of the regime switching model, using a modification of the

Kalman filter. Methods described in Schorfheide (2000) are employed to evaluate

the posterior distributions.

Markov-switching models have been used by Sims (2000a) and Sims and Zha

1Substantial progress in this direction has been made by Fernandez-Villaverde and Rubio-

Ramirez (2002), who implement the likelihood-based estimation of a stochastic growth model with-

out using a log-linear approximation of the model solution.
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(2002) to study monetary policy. Sims (2000a) considers a univariate policy reaction

function that is subject to regime shifts, whereas Sims and Zha (2002) extend the

analysis to an identified VAR. While both papers find frequent oscillation between

regimes that indicate no fundamental shift of U.S. monetary policy in the post-war

period, our estimation uncovers essentially two distinct shifts of monetary policy.

DSGE models with shifting policy regimes have recently been analyzed by An-

dolfatto, Moran, and Hendry (2002), Andolfatto and Gomme (2003), and Erceg and

Levin (2001). The first two papers consider cash-in-advance models. Andolfatto,

Moran, and Hendry (2002) show that the agents’ learning can explain the failure of

conventional tests of unbiasedness of inflation expectations. Andolfatto and Gomme

(2003) use their model to study the Canadian disinflation episode. Our findings with

respect to the effects of a disinflation policy in the ‘learning’ and ‘full-information’

environment, by and large, resemble the results reported by Andolfatto and Gomme

(2003). Erceg and Levin (2001) demonstrate that the ‘learning’ mechanism is able

to generate inflation persistence in a DSGE model with staggered nominal contracts.

However, none of these papers formally estimates the full DSGE model.

Leeper and Zha (2002) examine the important question to what extent monetary

policy interventions trigger significant expectation-formation effects. The authors

consider a simple two-equation model with an exogenous money-growth rate rule

that is subject to regime shifts and propose a measure of modesty of policy inter-

ventions. This measure can be computed from an identified VAR and, under certain

assumptions, provides an indication of the magnitude of the expectation-formation

effects. In the third part of our empirical analysis we directly study the magnitude of

the expectation formation based on our estimated DSGE model. We find that even

small interventions can trigger a substantial ‘learning’ effect and lead to different

predictions than the ‘full-information’ version of the model. We offer two explana-

tions. First, in a model with a feedback monetary policy rule ‘learning’ affects the

contemporaneous impact of the policy shock. Second, small policy shocks are his-

torically associated with the low inflation regime. Hence, Bayesian updating leads

agents to interpret a modest intervention as evidence for the low inflation target
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and, vice versa, large interventions as evidence for the high inflation regime.

The paper is organized as follows. Section 2 presents the monetary DSGE model

and its approximation. Section 3 describes the econometric approach and provides

some details about the computation of the likelihood function. Empirical results are

presented in Section 4 and Section 5 concludes.

2 The Model Economy

We consider a monetary business cycle model with optimizing households and mo-

nopolistically competitive firms that face price stickiness. The model is a variant of

the so-called New Keynesian IS-LM model. The main difference is that the monetary

policy rule is subject to regime shifts. To keep the paper self-contained we outline

the structure of the model. Detailed derivations can be found, for instance, Gaĺı

and Gertler (1999), King (2000), King and Wolman (1999), and Woodford (2000).

The main difference between the model presented below and the earlier work is that

the policy rule is subject to regime shifts.

2.1 The Firms

The production sector is described by a continuum of monopolistically competitive

firms each of which faces a downward-sloping demand curve for its differentiated

product j ∈ [0, 1]:

pt(j) =

(
yt(j)

Yt

)−1/ν

Pt. (1)

This demand function can be derived in the usual way from Dixit-Stiglitz prefer-

ences. yt(j) and pt(j) are quantity and price of good j, whereas Yt and

Pt =

[∫ 1

0
pt(j)

1−ν

]1/(1−ν)

refer to the aggregate demand and price level, respectively: The parameter ν is the

elasticity of substitution between two differentiated goods. As ν →∞ the demand

function becomes perfectly elastic and the differentiated goods become substitutes.
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Production is assumed to be linear in labor nt(j), which each firm hires on a

competitive labor market:

Yt(j) = Atnt(j). (2)

Total factor productivity is an exogenous process that follows a random walk with

drift

lnAt = γ + lnAt−1 + z̃t, (3)

where z̃t is an AR(1) process

z̃t = ρz z̃t−1 + εz,t.

The technology At induces a stochastic trend in the model economy. The autore-

gressive structure of z̃t captures the observed serial correlation in output growth, as

the benchmark model lacks a sophisticated internal propagation mechanism.

To introduce nominal rigidity, we follow Calvo (1983) and assume that each

firm has a constant probability 1 − η of being able to re-optimize its price Pt(j).

Whenever, firms are not able to re-optimize they adjust their price from the previous

period by the steady state (gross) inflation rate π. The optimal price P o
t (j) is

determined by maximizing

IEt

[
∞∑

s=0

(βη)sqt+sΠt+s

]
, Πt+s =

(
P ot (j)π

s

Pt+s
Yt+s(j)−Wt+snt+s(j)

)
(4)

subject to (1) and (2), where Wt+s is the wage, β is the fixed discount factor, and

qt+s is a (potentially) time-dependent discount factor that firms use to evaluate

future profit streams. The firms take aggregate demand and price level in (1) as

given. The aggregate price level is derived by noting that the fraction of firms that

optimized its price s periods ago and charges the price P o
t (j)π

s is (1− η)ηs. Thus,

Pt =

[
(1− η)

∞∑

s=0

ηs(πsP ot−s)
1−ν

]1/(1−ν)

(5)

=

[
(1− η)(P ot )

1−ν + η(πPt−1)
1−ν

]1/(1−ν)

.

Define the inflation rates πt = Pt/Pt−1 and πot = P ot /Pt−1 and divide (5) by Pt−1 to

obtain the following law of motion for aggregate inflation:

πt =

[
ηπ1−ν + (1− η)(πot )

1−ν

]1/(1−ν)

. (6)
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2.2 The Representative Household

The economy is populated by a representative household that derives utility from

consumption

Ct =

[∫ 1

0
Ct(j)

1−νdj

]1/(1−ν)

and real balances Mt/Pt, and disutility from working:

Ut = Et

[
∞∑

s=0

βs

(
(Ct+s/At+s)

1− 1
τ − 1

1− 1
τ

+ χ log
Mt+s

Pt+s
− ht+s

)]
, (7)

where τ is the intertemporal substitution elasticity, χ is a scale factor, and ht+s

is hours worked. To ensure a balanced growth path, consumption in the utility

function is adjusted for the level of technology, which can be interpreted as an

aggregate habit stock.

The household supplies perfectly elastic labor services to the firms period by

period for which it receives the real wageWt. The household has access to a domestic

capital market where nominal government bonds Bt are traded that pay (gross)

interest Rt. Furthermore, it receives aggregate residual profits Πt from the firms

and has to pay lump-sum taxes Tt. Consequently, the household maximizes (7)

subject to its budget constraint:

Ct +
Bt
Pt

+
Mt

Pt
+
Tt
Pt

=Wtht +
Mt−1

Pt
+Rt−1

Bt−1

Pt
+Πt. (8)

The usual transversality condition on asset accumulation applies which rules out

Ponzi-schemes.

2.3 Fiscal Policy

The fiscal authority follows a ‘passive’ rule by endogenously adjusting the primary

surplus to changes in the government’s outstanding liabilities. It is assumed that

the government levies a lump-sum tax (or subsidy) Tt/Pt to finance any shortfall in

government revenues (or to rebate any surplus):

Tt
Pt

= Gt +
Mt −Mt−1

Pt
−
Bt −Rt−1Bt−1

Pt
. (9)
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Gt denotes aggregate government purchases. We assume for simplicity that the

government consumes a fraction of each individual good: Gt(j) = ζtYt(j). Define

gt = 1/(1− ζt). The aggregate demand can then be written in log-linear form as

lnYt = lnCt + ln gt, (10)

where ln gt is assumed to be an exogenous process of the form

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (11)

The process ln gt can more generally be interpreted as a shift that affects the rela-

tionship between output and the marginal utility of consumption.

2.4 Monetary Policy

The central bank supplies money to the economy to control the nominal interest

rate. We assume that it systematically reacts to the inflation rate according to the

rule

Rt = (R∗
t )

1−ρRRρRt−1 exp{ε
∗
R,t}, (12)

where the desired nominal interest rate is given by

R∗
t = (rπ∗t )

(
πt
π∗t

)ψ
. (13)

Here r denotes the steady-state real rate, ρ determines the degree of interest rate

smoothing, and ψ is the elasticity of the desired interest rate with respect to the

deviation of inflation from its target π∗t . The monetary policy shock ε∗R,t captures

unanticipated deviations from the systematic component of the policy rule due to a

deliberate choice by the policy maker or an implementation error.

While in most of the literature the target rate π∗t is assumed to be constant over

time and known to the public, we assume in this paper that it is stochastic from the

perspective of the public. Our model provides no explanation for the central bank’s

choice of π∗t . We assume that there are periods in time when the desired inflation
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is high, π∗t = π∗H , and periods when it is low, π∗t = π∗L. More specifically, the log

target rate evolves according to a two-state Markov-switching process:

lnπ∗t (st) =





lnπ∗L if st = 1

lnπ∗H if st = 2
(14)

with transition matrix

P =


 φ1 1− φ2

1− φ1 φ2


 ,

where φj is the transition probability IP [st = j|st−1 = j]. The expected value of the

log target inflation rate is

lnπ∗ =
1− φ2

2− φ1 − φ2
lnπ∗L +

1− φ1

2− φ1 − φ2
lnπ∗H . (15)

Since it has been emphasized by some authors, e.g., Sims (2000a), that the variance

of the policy shock ε∗R,t has changed over time, we let the standard deviation σR(st)

be a function of the regime. The state st is unobserved by the public and hence

agents have to learn from past inflation and interest rates whether they are in a high

inflation or low inflation regime.

2.5 Detrending, Steady States, and Log-linear Approximation

To induce stationarity we detrend consumption, output, wages, and real money

balances by the level of technology, At. In terms of the detrended variables, the

model economy has a unique steady state. The system is in steady-state if the

shocks εz,t, εg,t, and ε∗R,t are zero and there is no uncertainty about the inflation

target, that is, π∗L = π∗H = π∗. It is straightforward to verify from the first-order

conditions of the optimization problems (4) and (7), not reported here, that the

steady-state relationships are given by

π = π∗, r =
eγ

β
, w = 1−

1

ν
, c =

(
1−

1

ν

)1/τ

, y = g

(
1−

1

ν

)1/ν

.

There is no trade-off between output and inflation in the steady state.
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Define the deviations of output, inflation, nominal interest rate, and government

spending from their respective steady states as

ỹt = ln
Yt
yAt

, π̃t = ln
πt
π
, R̃t = ln

Rt
R
, g̃t = ln

gt
g
.

A log-linear approximation of the market-clearing conditions and the first-order con-

ditions of the household’s and firms’ problems leads to the following two equations:

ỹt = IEt[ỹt+1]− τ(R̃t − IEt[π̃t+1])− IEt[∆g̃t+1] + τIEt[zt+1], (16)

π̃t =
eγ

r
IEt[π̃t+1] + κ[ỹt − g̃t]. (17)

Equation (16) is an intertemporal consumption Euler equation. The expectational

Phillips curve (17) is derived from the firms’ optimal price-setting decision and

governs inflation dynamics around the steady state. The parameter κ is a function

of the probability that firms can re-optimize their price. In the absence of stickiness

kappa = 0. The term [ỹ − g̃t]/τ corresponds to the marginal costs of production.

Since g̃t in this model links output to the marginal utility of consumption it can be

broadly interpreted as preference shifter.

While (16) and (17) are standard components of New Keynesian models, we now

turn to the approximation of the policy rule. Our derivation follows the approach

in Andolfatto, Moran, and Hendry (2002). Divide (12) by the steady-state nominal

rate R = rπ and take logs

ln
Rt
R

= (1− ρR) ln
π∗t
π

+ (1− ρR)ψ[ln
πt
π
− ln

π∗t
π
] + ρR ln

Rt−1

R
+ ε∗R,t.

Thus,

R̃t = (1− ρR)ψπ̃t + ρRR̃t−1 + εR,t, (18)

where the composite monetary policy shock εR,t is defined as

εR,t = (1− ρR)(1− ψ)π̃
∗
t + ε∗R,t

and π̃∗t = ln(π∗t /π).
2 The agents face a signal extraction problem, as they observe

the composite shock εR,t at time t, but are uncertain about the target rate π̃∗t . They

2Equation (18) is less general than the specification in Sims (2000a) who also allows for time-

variation in ρR and ψ.
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will use a Bayesian learning rule to update their beliefs about π̃∗t . Equations (3),

(11), (14), (16) - (18), together with a learning rule for π̃∗t determine the evolution

of output, inflation, and nominal interest rates.

Recent work on the stability of monetary policy reaction functions, e.g., Clarida,

Gaĺı, and Gertler (2000), has suggested that the elasticity of the interest rate target

with respect to inflation deviations has changed at the beginning of the 1980’s during

Paul Volcker’s tenure as chairman of the Board of Governors. However, in a log-

linear approximation of R∗
t , the effect of a change in ψ is of smaller order than

the effect of a shift in the target inflation rate π∗t and therefore not explored in this

paper. Lubik and Schorfheide (2002) estimate a New Keynesian DSGE model based

on subsamples and allow for a simultaneous change in the target inflation rate as

well as the elasticity ψ but without taking ‘learning’ effects into account.

2.6 Model Solution

We have to solve the linear rational expectations system that consists of Equa-

tions (16) to (18), the law of motion for technology, government spending, and the

Markov process for the inflation target. Define the vector of relevant model variables

xt = [ỹt, π̃t, R̃t, IEt[ỹt+1], IEt[π̃t], yt−1, g̃t, z̃t]
′, the vector of exogenous shocks εt(st) =

[εg,t, εz,t, εR,t(st)]
′, and the vector of expectation errors ηt = [(ỹt − IEt−1[ỹt]), (π̃t −

IEt−1[π̃t])]
′, where the expectations are taken with respect to the information set of

the agents. The log-linearized model can be written as

Γ0xt = Γ1xt−1 +Ψεt +Πηt (19)

and has a solution of the form (see Sims (2000b)):

xt = Θ1xt−1 +Θ0εt +Θx

∞∑

j=1

Θj−1
f ΘεIEt[εt+j ]. (20)

While the shocks to the technology and government spending process are assumed

to be martingale differences, the composite technology shock εR,t has non-zero con-

ditional expectations.
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Based on the model specification all information that agents have about the state

of monetary policy, st, is contained in the sequence of composite monetary policy

shocks εtR = {εR,1, . . . , εR,t}. Let ξt = [1, 0]′ if st = 1 and ξt = [0, 1]′ otherwise.

Denote the estimate of ξt based on time t information by

ξ̂t|t =


 IP [st = 1|εtR]

IP [st = 2|εtR]


 . (21)

Future monetary policy regimes, ξt+j , can be forecasted based on the Markov tran-

sition matrix P:

ξ̂t+j|t = P
j ξ̂t|t. (22)

Under the assumption that the monetary policy shock ε∗R,t is normally distributed

with regime-dependent standard deviation σR(st) the regime conditional distribu-

tion of εR,t+1 is

εR,t+1|st ∼ N

(
(1− ρR)(1− ψ)π̃(st), σ

2
R(st)

)
. (23)

Once the new composite policy shock εR,t+1 has been observed, beliefs about the

state of monetary policy can be updated using Bayes theorem. Let ζt be the 2× 1

vector that stacks the conditional densities p(εR,t+1|st = j), j = 1, 2. Then

ξ̂t+1|t+1 =
ξ̂t+1|t ¯ ζt

ξ̂′t+1|tζt
, (24)

where ¯ denotes element-by-element multiplication.

The conditional expectations of the composite shock are given by

IEt[εR,t+j ] = (1− ρR)(1− ψ)[π̃
∗
L, π̃

∗
H ]P

j ξ̂t|t(ε
t
R). (25)

Overall, the solution that takes into account the agents’ learning about the state of

monetary policy has the structure

xt = Θ1xt−1 +Θ0εt(st) + fl
(
εtR(st)

)
. (26)

The solution can be computed recursively. It depends on st only through the com-

posite monetary policy shock εR,t. However, the solution is a function of the entire

history of shocks. The term fl(ε
t
R) arises through the learning process of the agents.
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In our empirical analysis we will contrast the ‘learning’ solution of the monetary

business cycle model with a ‘full-information’ solution in which the current state of

monetary policy, st, is known by households and firms. This knowledge could stem

from a credible announcement of the current policy regime by the central bank.

However, there is uncertainty about future states of monetary policy. In this case

the conditional expectations of the composite monetary policy shock are given by

IEt[εR,t+j ] = (1− ρR)(1− ψ)[π̃
∗
L, π̃

∗
H ]P

jξt (27)

and the law of motion of xt is of the form

xt = Θ1xt−1 +Θ0εt(st) + ff (st). (28)

3 Econometric Approach

The model presented in the previous section is fitted to observations on output

growth, inflation, and the nominal interest rate, stacked in the vector yt. The

observables yt can be expressed as a linear function of the model variables xt

yt = A0 +A1xt. (29)

Equations (14), (26) or (28), and (29) provide a state-space model for yt with regime

switching. We assume that the vector of shocks εt has a normal distribution with

diagonal covariance matrix conditional on the regime st. The system matrix of this

state space model depend on the vector of structural parameters

θ = [γ, π∗L, π
∗
H , r

∗, τ, κ, ψ, ρg, ρz, ρR, σg, σz, σR,L, σR,H ]
′,

where σg, σz, σR,L, σR,H are the standard deviations of the structural shocks. The

transition probabilities are stacked in the vector φ = [φ1, φ2]
′, and the histories

of yτ , xτ , sτ , τ = 1, . . . , t are denoted by Y t, Xt, and St, respectively. We will

place a prior distribution on the parameter vectors θ and φ and conduct Bayesian

inference, described in Section 3.1. Section 3.2 will focus on the computation of the

likelihood function for the state space model and our strategy to generate draws

from the posterior distribution of θ, φ and the history of latent states ST . The use

of posterior probabilities as a tool for model comparisons is discussed in Section 3.3.
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3.1 Posterior Inference

The analysis in the remainder of this paper is is conditional on an initial observation

y0. The latent state vector ST is treated in the same way as the parameter vectors

θ and φ. Once a prior distribution has been specified, Bayesian inference is concep-

tually straightforward. All the information about the parameters is summarized in

the posterior distribution, which is obtained through Bayes theorem

p(θ, φ, ST |Y T ) =
p(Y T |θ, φ, ST )p(ST |φ)p(φ, θ)

p(Y T )
, (30)

where p(Y T |θ, φ, ST ) is the likelihood function, p(ST |φ) is the prior for the latent

states – given by the Markov process (14), and p(φ, θ) is the prior for θ and φ. The

term in the numerator is often referred to as marginal data density and defined as

p(Y T ) =

∫
p(Y T |θ, φ, ST )p(ST |φ)p(φ, θ)d(θ, φ, ST ). (31)

The practical difficulty is to characterize the posterior distribution. For the models

at hand, we will describe an algorithm that allows us to generate draws of θ, φ, and

ST from this posterior distribution.

In many Markov-switching models it is convenient to use a Gibbs-sampling ap-

proach and draw iteratively from the following conditional posterior distributions

(see Kim and Nelson (1999) for details):

p(ST |θ, φ, Y T ), p(φ|θ, ST , Y T ), and p(θ|φ, ST , Y T ),

because all three conditionals can be characterized in terms of well-known distribu-

tions that can be easily simulated.

For the model presented in the previous section, however, it is difficult to gener-

ate draws from p(θ|φ, ST , Y T ) due to the nonlinear relationship between θ and the

system matrices of the state space model. Hence, we factorize the joint posterior as

p(θ, φ, ST |Y T ) = p(θ, φ|Y T )p(ST |θ, φ, Y T ) (32)

and use the Metropolis-Hastings algorithm described in Schorfheide (2000) to gen-

erate draws from p(θ, φ|Y T ). Conditional on the latent states we use Kim’s (1994)
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smoothing algorithm to generate draws from the history ST of latent states. The

smoothing algorithm is exact for the ‘learning’ specification and provides an approx-

imation in the case of the ‘full-information’ specification.3

3.2 The Likelihood Function

To generate draws from the posterior distribution of θ and φ with the Metropolis-

Hastings algorithm it is necessary to evaluate the likelihood function p(Y T |θ, φ). In

linear Gaussian state space models without regime switching the likelihood func-

tion can be easily computed with the Kalman Filter (see, for instance, Hamilton

(1994)). The Kalman filter tracks the means and variances of the following condi-

tional distributions recursively (for the sake of brevity θ and φ are omitted from the

conditioning set):

(i) Initialization: p(xt|Y t).

(ii) Forecasting: p(xt+1|Y
t) =

∫
p(xt+1|xt)p(xt|Y

t)dxt,

p(yt+1|Y
t) =

∫
p(yt+1|xt+1, Y

t)p(xt+1|Y
t)dxt+1.

(iii) Updating: p(xt+1|Y
t+1) = p(yt+1|xt+1, Y

t)p(xt+1|Y
t)/p(yt+1|Y

t).

The likelihood function is obtained from

p(Y T |θ, φ) =
T∏

t=1

p(yt|Y
t−1, θ, φ). (33)

Unfortunately, the presence of a latent Markov state st complicates the computation

of the various conditional distributions. We will distinguish between the ‘learning’

and the ‘full-information’ specification.

3.2.1 Learning Specification

The policy rule has a special structure that allows us to recover the composite

monetary policy shocks directly from the observables conditional on θ and φ:

εR,t(st) = lnRt − ρR lnRt−1 − (1− ρR)ψ lnπt (34)

−(1− ρR) ln r − (1− ρR)(1− ψ) lnπ
∗.

3The accuracy of this approximation does not affect our inference with respect to θ and φ.
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Since xt in Equation (26) depends on st only through εR,t, we can deduce that xt

provides no information about st conditional on the observables Y t. Thus, at the

initialization step of the filter

p(st, xt|Y
t) = p(xt|Y

t)p(st|Y
t). (35)

Define the vector λ(θ) such that

λ′yt = lnRt − ρR lnRt−1 − (1− ρR)ψ lnπt (36)

= (1− ρR) ln r + (1− ρR)(1− ψ) lnπ
∗ + εR,t.

We factorize the distribution of yt+1 given Y t as

p(yt+1|Y
t) = p(λ′yt+1|Y

t)p(yt+1|λ
′yt+1, Y

t) (37)

and examine the two components separately. According to Equation (36) the history

of Xt provides no additional information about λ′yt+1 conditional on Y t. Thus, it

is straightforward to compute

p(λ′yt+1|Y
t) =

2∑

j=1

p(λ′yt+1|st+1 = j, Y t)IP [st+1 = j|Y t], (38)

where IP [st+1 = j|Y t] can be obtained from Equation (22). The beliefs about the

latent Markov state st+1 can be updated according to Equation (24), which yields

p(st+1|Y
t+1). Note that all the information in yt+1 with respect to st+1 is contained

through εR,t+1 in the linear combination λ′yt+1. To analyze the second term in (37)

recall that st+1 provides no information about xt+1 conditional on λ′yt+1 and Y t.

Therefore, one can evaluate

p(yt+1|λ
′yt+1, Y

t) =

∫
p(yt+1|λ

′yt+1, xt+1, Y
t)p(xt+1|λ

′yt+1, Y
t)dxt+1 (39)

and

p(xt+1|Y
t+1) = p(yt+1|λ

′yt+1, xt+1, Y
t)p(xt+1|λ

′yt+1, Y
t)/p(yt+1|Y

t) (40)

using the standard formulas of the Kalman filter.
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3.2.2 Full-Information Specification

The evaluation of the likelihood function for the ‘full-information’ specification is

more complicated since the Markov state st enters the conditional distribution of xt

directly (see Equation 28). In this case, the distribution of xt given the trajectory

Y t is a mixture of 2t components and it is even for very small sample sizes com-

putationally cumbersome to keep track of all the mixture components. As noted

in the literature (see Kim and Nelson (1999) for a survey), the key to keeping the

filter operable is to collapse some of the mixture components at the end of each

iteration. We are using an algorithm that approximates p(xt|Y
t) by a mixture with

2k components.4 For each component and conditional on st+1 = 1 and st+1 = 2 the

standard Kalman filter iterations are used to compute

p(xt+1|Y
t) =

2∑

j=1

p(xt+1|Y
t, st+1 = j)IP [st+1 = j|Y t]

p(yt+1|Y
t) =

2∑

j=1

p(yt+1|Y
t, st+1 = j)IP [st+1 = j|Y t]

IP [st+1 = j|Y t+1] = p(yt+1|Y
t, st+1 = j)IP [st+j = j|Y t]/p(yt+1|Y

t)

p(xt+1|Y
t+1) =

2∑

j=1

p(xt+1|Y
t+1, st+1 = j)IP [st+1 = j|Y t+1].

The updated distribution p(xt+1|Y
t+1) is a mixture with 2k+1 components, half

of which we eliminate. Components with approximately zero weight are removed

and pairs of components that are based on similar histories of st+1, . . . , st−k+2 are

aggregated into a single component with the same mean and variance.5

3.3 Posterior Model Probabilities

In the subsequent empirical analysis we are interested in comparing different spec-

ifications of the model economy. We do this by computing posterior odds. The

4The results in Section 4 are based on k = 3. To assess the accuracy of the fixed-mixture

approximation we evaluated the likelihood function at the posterior mode for k ranging from 3 to

20. The log likelihood differentials were less than 0.01.
5Details of the algorithm are provided in a Technical Appendix that is available upon request.
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posterior odds of a specification M0 versus a specification M1 are given by6

π0,T

π1,T
=

(
π0,0

π1,0

)(
p(Y T |M0)

p(Y T |M1)

)
. (41)

The first factor is the prior odds ratio in favor of M0. The second term is called

the Bayes factor and summarizes the sample evidence in favor of M0. The term

p(Y T |Mi) is called Bayesian data density and given by Equation (31). The loga-

rithm of the marginal data density can be interpreted as maximized log-likelihood

function penalized for model dimensionality, see, for instance, Schwarz (1978). We

use a numerical technique known as modified harmonic mean estimation, proposed

by Geweke (1999), to approximate the data density.7

4 Empirical Analysis

The log-linearized monetary DSGE model described in Section 2 is fitted to quarterly

U.S. data on output growth, inflation, and nominal interest rates from 1960:I to

1997:IV.8 The first step in the empirical analysis is the specification of a prior

distribution for the structural parameters. Table 1 provides information about the

distributional forms, means, and 90% confidence intervals. The model parameters

are assumed to be independent a priori. The target inflation rates π∗L and π∗H ,

the steady-state real interest rate r, and the standard deviations of the monetary

policy shock σR,L and σR,H are annualized. Since the solution of the linear rational

expectations model may be non-existent or exhibit multiple equilibria, we truncate

6According to Jeffreys (1961) the posterior odds may be interpreted as follows: π0,T /π1,T > 1

null hypothesis is supported; 1 > π0,T /π1,T > 10−1/2 evidence against M0 but not worth more than

a bare mention; 10−1/2 > π0,T /π1,T > 10−1 substantial evidence against M0; 10
−1 > π0,T /π1,T >

10−3/2 strong evidence against M0; 10
−3/2 > π0,T /π1,T > 10−2 very strong evidence against M0;

10−2 > π0,T /π1,T decisive evidence against M0.
7We actually found that Geweke’s (1999) approach is more stable than the procedure proposed

by Chib and Jeliazkov (2001).
8The time series are extracted from the DRI·WEFA database. Output growth is log difference

of real per capita GDP (GDPQ), multiplied by 100 to convert into percent. Inflation is annual-

ized percentage change of CPI-U (PUNEW). Nominal interest rate is average Federal Funds Rate

(FYFF) in percent.
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the joint distribution at the boundary of the indeterminacy region.9 Our initial prior

assigns about 15% probability to indeterminacy. Mean and confidence intervals are

reported for the truncated version of the prior.

The prior confidence intervals for the parameters of the policy rule are fairly

wide. The elasticity of the nominal interest rate with respect to inflation deviations

from the the target lies between 1.0 and 2.2, whereas the interval for the smoothing

coefficient ρR ranges from 0.2 to 0.8. We identify regime st = 1 as the low inflation

regime with target rate π∗L and impose that the differential π∗H ≥ π∗L. The intervals

for both lnπ∗L and lnπ∗H−lnπ
∗
L range from 1.3 to 4.5 percent. The standard deviation

of the monetary policy shock is, in both regimes a priori between 25 and 100 basis

points. Our prior for the transition probabilities φ1 and φ2 implies that the duration

of the policy regimes lies between 6 and 50 quarters. The prior for the annualized

real interest rate is centered at 2 percent, which translates into a quarterly discount

factor β of 0.995. The slope coefficient in the Phillips curve, κ, is chosen to be

consistent with the range of values typically found in the New Keynesian literature

(see, for instance, Gaĺı and Gertler (1999)). The prior mean for the intertemporal

substitution elasticity is τ = 0.5.

4.1 Estimation of Parameters and Policy Regimes

We begin by estimating three specifications of the monetary DSGE model: the

‘learning’ specification given in (26), the ‘full-information’ specification (28), and a

version of the model without regime switching in the monetary policy rule for which

π∗H = π∗L and σR,L = σR,H . Posterior means and confidence intervals are reported

in Table 2. We will focus our discussion on the estimated policy parameters.

Most striking is the estimated difference in the target inflation rates: 4.8 percent

in the BL specification and 5.2 percent under full information. The estimated prob-

abilities of a regime shift are small, 5 percent or less, which means that the duration

9Lubik and Schorfheide (2002) estimate a version of the model without Markov switching based

on subsamples and allow for the possibility of indeterminacy and sunspot driven business cycle

fluctuations.
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of the regimes is more than 5 years. The Bayes factor reported in Table 3 clearly

favors the BL specification over the no-regime-shift version of the DSGE model.

To gain better insight in the evolution of monetary policy over time, we plot

the smoothed posterior probabilities of the high-inflation-target regime in Figure 1

together with the NBER business cycle dates. The graph is consistent with the

view that policy makers in the late 1960’s and early 1970’s attempted to exploit a

Phillips curve relationship by raising the inflation target in order to achieve lower

unemployment. The high inflation episode ended with Volcker’s stabilization in the

early 1980’s after growing scepticism about an exploitable long-run trade-off between

unemployment and inflation.10 Of course, our analysis itself cannot rule out other

explanations of the shift in the target rate. The ‘learning’ estimates suggests that the

Fed shifted to the high-inflation regime during the 1970 recession , shortly lowered

the target between 1971 and 1973 and raised it again subsequently.

Our findings are in sharp contrast to the results reported in Sims (2000a) and

Sims and Zha (2002). Both papers examine the evolution of monetary policy with

autoregressive Markov-switching models. Sims (2000a) estimates a univariate reac-

tion function with regime-dependent coefficients and finds no evidence in favor of

two-time shifts in the early 1970’s and the beginning of the 1980’s. Instead, his esti-

mates, as well as the multivariate analysis in Sims and Zha (2002), suggest frequent

switching between regimes throughout the post-war period.

To understand the source of the discrepancy it is useful to consider the composite

monetary policy shock

εR,t = (1− ρ)(1− ψ)π̃∗t + ε∗R,t.

According to the posterior mean estimates of the ‘learning’ specification, the term of

εR,t that is due to the shifting inflation target takes the value 0.33 with probability

0.63 and -0.55 with probability 0.37. Thus, its standard deviation is about 0.43,

which is smaller than the estimated standard deviation of ε∗R,t. Based on a univariate

10Sargent (1999) offers two explanations for this scepticism: the ‘triumph of the natural rate

theory’ and the ‘vindication of econometric policy evaluation’.
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estimation of the policy function it is very difficult to detect shifts in π̃∗t .
11 Hence,

the identification of the regimes comes effectively from the inflation equation of

the DSGE model, not from the policy rule. Since the model does not imply time-

variation in the price-setting behavior of the firms, nor allows for fundamental shifts

in the marginal cost process (except through output variation and the g̃t process),

the observed rise in inflation and the subsequent decline are attributed to two policy

regime shifts.

The estimates in Table 2 indicate that the high-inflation-target regime coincides

with a high volatility of the monetary policy shock and more erratic behavior of

the Fed.12 To assess the importance of time-variation in the size of the disturbance

to the policy rule we re-estimate the ‘learning’ and ‘full-information’ specifications

under the homoskedasticity restriction σR,L = σR,H . According to the posterior odds

reported in Table 3 the homoskedasticity restriction is rejected both under ‘learning’

and ‘full information’. In fact, the ‘learning’ specification with homoskedastic policy

shocks is dominated by the version of the DSGE model that is not subject to regime

shifts.

A question that has received a lot of attention in the recent literature is whether

post-war monetary policy has been active or passive. A monetary policy is con-

sidered active if it involves strong enough eventual reaction of the interest rate to

the inflation rate to guarantee a unique equilibrium. While the estimation method

used in this paper rules out regions of the parameter space that lead to equilibrium

indeterminacy it is nevertheless interesting to examine the estimates of ψ. Both in

the ‘learning’ and ‘full-information’ specification ψ̂ is about 1.7 and the confidence

interval is clearly bounded away from one. In the absence of regime switching, the

estimate of ψ is much closer to the indeterminacy region as the confidence inter-

val ranges from 1 to 1.3. Inflation enters the policy reaction function through the

term ψ ln(πt/π
∗
t ). The interpretation of the experience in the 1970’s provided by

11In fact, a univariate estimate of the reaction function used in this paper leads to frequent rather

than two-time shifts.
12To some extent the policy shock might capture changes in the systematic part of monetary

policy that are omitted from our model.
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the no-regime-shift model is that the deviation from the inflation target was large

while ψ was small. The regime switching estimates on the other hand, indicate that

the target inflation rate was high in the 1970’s and the observed interest rate move-

ments are not inconsistent with a ψ that is substantially larger than one.13 The

regime-switching model studied here ignores possible time variation in ψ. However,

the analysis in Lubik and Schorfheide (2002) does suggest that even after adjusting

for different target inflation rates through sample splitting there is evidence in favor

of passive monetary policy and equilibrium indeterminacy in the 1970’s.

4.2 Evidence on the Importance of Learning

While in most monetary DSGE models it is assumed that the agents have full in-

formation about the state of monetary policy, the goal of this paper is to study the

effect of learning about policy regimes on the dynamics of output growth, inflation,

and interest rates. Since we have fitted both the ‘learning’ and ‘full-information’

specification to the data we can compare the two using the Bayes factor reported in

Table 3. Under the assumption that the two specifications have equal prior proba-

bility, the Bayes factor implies that the posterior odds are 314 to 1 in favor of the

‘full-information’ specification. Thus, overall, incorporating the learning mechanism

into the model does not lead to an improvement of fit. However, Bayesian marginal

data densities and Bayes factors provide only a broad measure of model fit that cap-

tures one-step-ahead predictive performance.14 Hence, it is useful to take a closer

look at the dynamics generated by the learning mechanism.

We will study Volcker’s disinflation policy through the lens of the monetary

DSGE model. In addition to the ‘learning’ and ‘full-information’ specifications we

also estimate a ‘no-learning’ specification of the form

Xt = Θ1xt−1 +Θ0εt(st) (42)

13This point was raised by Eric Leeper in response to the results reported in Lubik and Schorfheide

(2002).
14Since ln p(Y T |M) =

∑T
t=1 ln p(yt|Y

t−1,M) the data density can be interpreted as predictive

score.
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in which the agents ignore the serial correlation in the composite shock εR,t when

they form their expectations. The disinflation corresponds to a shift from the high-

inflation regime, sT∗ = 2, to the low-inflation regime, sT∗+h = 1, h = 1, . . .. Ac-

cording to our regime estimates the transition occurs between 1982:III and 1982:IV.

However, these estimates seem to capture the end rather than the beginning of the

disinflation period. Hence, we choose T∗ to be 1980:I in the subsequent experiment.

For each model specificationMi we use the appropriate filter described in Section 3

to compute p(xT∗ |Y
T∗). For the BL model we also have to compute IP [sT∗ = 2|Y T∗ ]

which is close to one by the beginning of 1980. We then set sT∗+1 = . . . = sT∗+12 = 1

(low inflation target) and compute expected values for xT∗+1, . . . , xT∗+12.
15 The re-

sults are depicted in Figure 2.

Under the assumption that the disinflation is announced by the Central Bank

and that the announcement is credible, the probability of the high-inflation regime

drops from one to zero. If agents are Bayesian learners, skeptical about policy an-

nouncements, the belief about π∗t change gradually. After two years the probability

of the high-inflation regime has dropped to about 10 percent. In the ‘no-learning’

scenario agents’ beliefs correspond to the estimated steady state regime probabil-

ities. The beliefs about the policy regimes are reflected in the predicted path of

expected inflation. Under ‘full information’, expected inflation drops rapidly from

12 to 5 percent, whereas under the assumption of ‘learning’ the decay is sluggish

and expected inflation stays above 7 percent until 1983.

According to the price setting equation current inflation is an increasing func-

tion of expected inflation. Hence, the drop in the latter is associated with a fall

of the inflation rate. Under ‘full information’ the nominal rate falls immediately,

whereas it rises initially under ‘learning’. The decay of the nominal interest rate is

delayed through the interest rate smoothing. Overall, the transition to low inflation

and nominal interest rate is much quicker under full information. This result is

15Since the learning model is non-linear in εR,t(st) we generate random draws of εR,t and average

the trajectories of xt. For all three specifications we average over θ and φ with respect to the

posterior distributions p(θ, φ|Y T ).
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consistent with the findings reported by Andolfatto and Gomme (2003). During the

disinflation period the inflation forecast bias is larger under ‘learning’ than under

‘full information’, a point that has been emphasized by Andolfatto, Moran, and

Henry (2002). However, the bias is with less than 1 percent, fairly small in our

analysis. The ‘learning’ version of the DSGE model predicts a rise of the ex-post

real interest from 4 percent in 1980:I to about 9 percent in 1980:III and a subsequent

decay. Under ‘full-information’ the real rate drops almost monotonically, starting

from 9 percent in 1980:I.

Output growth is slightly negative in the first quarter of 1980 before it rises

to 1 percent in the second quarter. Under ‘learning’ output growth starts to rise

immediately. It peaks in 1981 and falls to about 0.5 percent by 1983. Conditional

on information up to 1980:I our model predicts positive technology growth rates for

the subsequent quarters, which offset the contractionary effect of the disinflation

policy.

In the data the decline of inflation and the nominal interest rate was indeed

sluggish. Figure 2 suggests that the updating of beliefs about current and future

monetary policy may have delayed the disinflation. With the exception of a drop

in the third quarter of 1980, the ex-post real rate rises from about 2 percent in

1980:I to more than 10 percent in 1982:III and slowly falls afterwards. Thus, its

path vaguely resembles the hump-shaped response of the ‘learning’ specification.

However, none of the DSGE model specifications is able to predict the third quarter

drop of the interest rates. While the full-information version of the DSGE model

predicts a slight recession at the beginning of 1980, the actual drop in output growth

was much larger. Moreover, the assumed average output growth over the 12 periods

is smaller than the growth predicted by any of the specifications.

4.3 Learning and Policy Interventions

The effects of monetary policy in dynamic models are often predicted with impulse

responses to monetary policy shocks, i.e., unanticipated deviations from the policy
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reaction function. However, if a policy intervention is sustained over a long period

in time, agents are likely to interpret the policy as a regime shift to a ‘new’ policy

rule rather than a one-time deviation from the ‘old’ policy rule and the intervention

generates an expectation-formation effect of the kind that Lucas (1976) emphasized.

The regime-switching model estimated in this paper allows us to quantitatively

assess the importance of this expectation-formation effect.

The subsequent analysis is closely related to work by Leeper and Zha (2002).

Leeper and Zha consider a calibrated two-equation model of output and money, in

which money evolves according to a no-feedback money growth rate that is subject

to Markov-switching. They model interventions through a sequence of policy shocks

and define the expectation-formation effect of a policy intervention as the difference

between the total effect and the effect under the assumption that agents know the

actual regime. In our setup the former corresponds to the responses in the ‘learn-

ing’ specification, whereas the latter is equivalent to the ‘full-information’ response.

Leeper and Zha argue based on their model that the expectation-formation effect is

likely to be small whenever the effect of the intervention lies within two standard

deviations of the policy effects that have been observed historically in a particular

regime. Such interventions are called modest. The authors use an identified VAR to

assess whether the interventions of the Federal Reserve Bank in the past have been

modest.

We will use our estimated DSGE model to calculate the magnitude of the

expectation-formation effect directly. We consider two types of interventions. The

first intervention consists of a one-period interest increase of 25 basis points, the

second intervention raises the interest rate by 100 basis points for five consecutive

periods. To compute the responses we assume that the system is initially in the

steady state and then construct the sequence of policy shocks that leads to the

desired interest path. Formally, the responses are given by16

IE[yt|x0, {y3,τ}
h
τ=1], t = 1, . . . , 20.

16As before, we average over θ and φ with respect to the appropriate posterior distributions.



25

Thus, we also integrate over st, with the following exception: to compute the re-

sponses for the full information specification in the second policy scenario, we as-

sume that the policy is accompanied by a period-by-period announcement of a low

inflation target.

Figure 3 depicts the responses to the interventions for ‘learning’, ‘full-information’,

and ‘no-learning’. In the first experiment, the full-information and the ‘no-learning’

solutions differ by the term Θf (st) which has expected value zero. Hence, both

responses are identical. The most striking difference between the ‘learning’ and the

‘full-information’ responses is the magnitude of the intervention effect on output

growth and inflation. Consider the log-linearized reaction function:

R̃t = (1− ρR)ψπ̃t + ρRR̃t−1 + εR,t

A positive policy shock εR,t lowers the demand for money has the tendency to reduce

inflation. Hence, the shock εR,t has to exceed the desired nominal interest rate. In

the learning model a positive εR,t leads agents to believe that the probability of the

low-inflation-target regime has increased (to more than 75 percent). Thus, expected

inflation drops and current falls further. The shock εR,t associated with a one-

percent increase in interest rates is much larger under ‘learning’. This can be seen

in the fourth panel of Figure 3. The magnitude of the composite shock εR,t can be

compared to the estimated standard deviations σR,L and σR,H given in Table 2.

The second column of Figure 3 depicts the effects of the second intervention. In

the ‘full-information’ case, it is assumed that the agents associate the intervention

with a shift to the low-inflation-target regime. The ‘learning’ responses of output

and inflation lie between the ‘full-information’ and the ‘no-learning’ response. The

disinflation effect of the interest rate policy is strongest under ’full-information’ and

weakest under ‘no-learning’. The two experiments suggest that ignoring the effect of

‘learning’ if it is indeed present can generate quantitatively misleading predictions

about the effect of a policy even if the intervention itself appears to be small and

short-lived.

A major difference between the model used by Leeper and Zha (2002) and the
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New Keynesian model in this paper is that current inflation feeds back into the

policy rule and the ‘learning’ effect Θf (ε
t
R in Equation (26) is important for the

determination of the composite policy shock εR,t. In other words, the presence

of learning effects the identification of the policy shock. Some of the differences

between the responses disappear if a more accurate identification is used for the

‘no-learning’ specification. We consider the following approximating model:

xt = Θ1xt−1 +Θ0εt +Θf (εR,t). (43)

This model has the property that it correctly predicts the initial effect ∂xt/∂εR,t of

the policy shock but ignores the dependence of the ‘learning’ effect on the entire past

history of shocks. Hence, the approximating model model provides a more accurate

identification of the policy shock εR,t given xt and xt−1 than the ‘no-learning’ spec-

ification. The responses for this approximating model are summarized in Figure 4.

The discrepancy between the output and inflation responses is now much smaller and

the adjustment of the identification assumption to the presence of ’learning’ leads

to more accurate predictions of the BL response with the approximating model.

Due to the heteroskedasticity of the monetary policy shock and the Bayesian

learning mechanism agents associate large shocks with the high-inflation regime and,

vice-versa, small interventions with the low-inflation regime. In Figure 5 we compare

the ‘learning’ responses with responses that are calculated by setting σR,H = σR,L.

Consider the first experiment. Under heteroskedasticity the 25 basis point interven-

tion is interpreted as evidence of the low inflation regime. Hence, upon impact of the

shock, the probability associated with the high-inflation regime drops to about 20

percent. Under homoskedasticity this probability stays about 33 percent. Hence, the

predicted drops in inflation and output growth is less severe and closer to the ‘full-

information’ responses. In the second experiment the intervention is fairly large and

hence interpreted as evidence in favor of the high-inflation regime. Consequently,

the probability associated with high inflation is larger under heteroskedasticity than

under homoskedasticity.
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4.4 Robustness and Caveats

The posterior estimates of the persistence, ρg, of the g̃t process reported in Table 2

is close to unity which suggests that the price-setting Equation (17) cannot en-

dogenously generate the persistence in the inflation series. Gaĺı and Gertler (1999)

propose a hybrid Phillips curve that involves lagged inflation on the right-hand-

side. In the context of the model presented in Section 2, such an equation can be

derived from the assumption that a fraction ω of the firms, that we are unable to

re-optimize their price, adjust their price charged in the previous period, Pt−1(j),

by the lagged inflation rate πt−1 rather than the steady state inflation rate π. The

resulting Phillips curve is of the form

π̃t =
ω

1 + ωeγ/r
πt−1 +

eγ/r

1 + ωeγ/r
IEt[π̃t+1] +

κ

1 + ωeγ/r
[ỹt − g̃t]. (44)

It involves an additional parameter ω and nests Equation (17) as the special case

ω = 0.

We place a diffuse prior on the share ω, that is centered at ω = 0.5 and estimate

the ‘learning’ and the ‘full-information’ version of the monetary DSGE model. The

posterior estimates of ω are around 0.2. A comparison of the two specifications

based on the Bayes factor, see Table 3, indicates that the ‘full-information’ version

is preferred. However, overall the introduction of backward looking price setting

does not lead to an improvement over the ω = 0 versions of the DSGE model.

Following Erceg and Levin (2001), we also consider a model in which the central

bank reacts to output growth in addition to inflation:

R∗
t = (rπ∗t )

(
πt
π∗t

)ψ1
(
yt/yt−1

eγ

)ψ2

. (45)

Under ‘learning’ the posterior mean estimate of ψ2 in terms of annualized output

growth is 0.14, and under ‘full information’ the estimate increases to 0.48. According

to the Bayes factor, the inclusion of output growth in the policy rule does not

improve the fit of the ‘learning’ version. However, it does improve the fit of the ‘full-

information’ version of the DSGE model. As before, the latter strictly dominates

the ‘learning’ specification in terms of time series fit.
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The monetary DSGE models that have been estimated in this paper are very

stylized. Labor supply is inelastic and investment and capital accumulation, which

provide an important intertemporal link, are not modelled. Nevertheless, it has

become one of the benchmark monetary DSGE models in recent years. To provide

a reference for the overall fit of the model we also estimate a constant-coefficient

VAR(1) with Minnesota prior.17 The data density, reported in Table 3 of the VAR is

orders of magnitude larger than the ‘learning’ model, which documents the stylized

nature of the structural model. Nevertheless, we believe that some interesting lessons

have been learned from the empirical analysis presented in this section.

5 Conclusion

We have estimated a simple New Keynesian monetary DSGE model that has be-

come a popular benchmark model for the analysis of monetary policy. Unlike in

earlier econometric work, monetary policy follows a rule that is subject to regime

shifts. While our model provides no explanation why these regime shifts occur, we

assume that the public has potentially incomplete information about the state of

monetary policy and has to learn about the current regime. Our regime estimates

are consistent with the popular story that monetary policy is characterized by a

high-inflation regime in the 1970’s which ended with Volcker’s stabilization policy

in the early 1980’s.

The evidence on the importance of learning and uncertainty about the policy

regime is mixed. Posterior probabilities of the ‘full information’ versus ‘learning’

specification of the DSGE model favor the former. On the other hand, a closer

look at the disinflation episode in the early 1980’s indicates that the fall of infla-

tion and interest rates is better explained by the delayed response of the ‘learning’

specification.

The presence of a learning mechanism has potentially important consequences

for the prediction of the effects of policy interventions. A prolonged intervention

17The precise implementation is described in Del Negro and Schorfheide (2002).
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might be interpreted by the agents as a shift to a new policy regime and lead to

changes in the agents’ expectation formation. We document these expectation for-

mation effects with our estimated DSGE models. Ignoring the effect of the expecta-

tion formation can result in misleading predictions even if the intervention appears

to be small, in particular if the predictions are generated from over-identified DSGE

models. The prediction errors can potentially be reduced if the response to the mon-

etary policy shock in the initial period is corrected to capture the contemporaneous

effect of the monetary policy shock more accurately. Our analysis also raises the

question whether agents associate large interventions with a shift back to a high

inflation regime. If they do, then this can substantially alter the responses of out-

put growth and inflation. Since many of the popular VAR identification schemes

impose fairly weak restrictions among the contemporaneous variables they may well

be consistent with the presence of a learning effect and deliver accurate predictions

as argued by Leeper and Zha (2002).
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Table 1: Prior Distribution

Name Range Density Mean 90% Interval

γ IR Normal 0.50 [-0.32, 1.33]

lnπ∗ IR+ Gamma 4.50 [ 2.43, 6.27]

lnπ∗L IR+ Gamma 3.00 [ 1.35, 4.55]

lnπ∗H/π
∗
L IR+ Gamma 3.00 [ 1.35, 4.55]

ln r IR+ Gamma 2.00 [ 0.47, 3.50]

τ [0, 1] Beta 0.50 [ 0.41, 0.58]

κ IR+ Gamma 0.30 [ 0.13, 0.45]

ψ IR+ Gamma 1.62 [ 1.00, 2.22]

ρg [0, 1) Beta 0.80 [ 0.65, 0.96]

ρz [0, 1) Beta 0.30 [ 0.13, 0.46]

ρR [0, 1) Beta 0.50 [ 0.18, 0.83]

σg IR+ InvGamma 1.25 [ 0.53, 1.99]

σz IR+ InvGamma 1.25 [ 0.53, 1.99]

σR,L IR+ InvGamma 0.63 [ 0.26, 1.00]

σR,H IR+ InvGamma 0.63 [ 0.26, 1.00]

φ1 [0, 1) Beta 0.90 [ 0.83, 0.98]

φ2 [0, 1) Beta 0.90 [ 0.83, 0.98]

Notes: The Inverse Gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

, where

ν = 4 and s equals 1, 1, 0.5, and 0.5, respectively. The prior is truncated at the

boundary of the determinacy region. Real interest rate r, target inflation rates π∗L,

π∗H , π
∗ and the standard deviations of the policy shock σR,L and σR,H are annualized.



34

Table 2: Parameter Estimation Results

No Switching Full Information Learning

Mean Conf. Interval Mean Conf Interval Mean Conf Interval

γ 0.40 [ 0.26, 0.55] 0.39 [ 0.20, 0.59] 0.43 [ 0.23, 0.63]

lnπ∗L 4.36 [ 3.62, 5.07] 2.83 [ 2.19, 3.49] 2.63 [ 1.87, 3.38]

lnπ∗H/π
∗
L 5.21 [ 3.94, 6.53] 4.78 [ 3.21, 6.28]

ln r 2.10 [ 1.41, 2.82] 2.21 [ 1.68, 2.73] 2.20 [ 1.59, 2.82]

τ 0.01 [ 0.00, 0.01] 0.40 [ 0.31, 0.48] 0.39 [ 0.30, 0.47]

κ 0.37 [ 0.27, 0.47] 0.36 [ 0.26, 0.47] 0.37 [ 0.26, 0.47]

ψ 1.14 [ 1.00, 1.30] 1.68 [ 1.41, 1.96] 1.77 [ 1.32, 2.18]

ρg 0.98 [ 0.97, 1.00] 0.99 [ 0.98, 1.00] 0.98 [ 0.97, 1.00]

ρz 0.66 [ 0.62, 0.70] 0.78 [ 0.75, 0.82] 0.80 [ 0.76, 0.84]

ρR 0.82 [ 0.78, 0.87] 0.75 [ 0.70, 0.79] 0.76 [ 0.71, 0.81]

σg 1.20 [ 1.07, 1.32] 1.26 [ 1.13, 1.40] 1.25 [ 1.11, 1.39]

σz 0.28 [ 0.24, 0.32] 0.29 [ 0.25, 0.33] 0.29 [ 0.25, 0.33]

σR,L 0.99 [ 0.89, 1.08] 0.68 [ 0.59, 0.77] 0.62 [ 0.48, 0.74]

σR,H 1.71 [ 1.39, 2.02] 1.57 [ 1.31, 1.82]

φ1 0.97 [ 0.96, 0.99] 0.96 [ 0.93, 0.99]

φ2 0.95 [ 0.93, 0.98] 0.95 [ 0.92, 0.99]

Notes: The table reports posterior means and 90 percent confidence intervals (in

brackets). The posterior summary statistics are calculated from the output of the

posterior simulator. Real interest rate r, target inflation rates π∗L, π
∗
H , π

∗ and the

standard deviations of the policy shock σR,L and σR,H are annualized.
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Table 3: Data Densities and Bayes Factors

Specification Log Data Density Bayes Factor

Learning (Benchmark) -806.80 1.00

Full Information -801.05 314

No Regime Switching -825.62 6E-9

Learning, σR,L = σR,H - 833.21 3E-12

Full Information, σR,L = σR,H -824.68 2E-08

Learning, hybrid Phillips Curve - 807.91 0.33

Full Information, hybrid Phillips Curve - 802.34 86.4

Learning, output growth and inflation rule -807.05 0.78

Full Information, output growth and inflation rule -782.06 5E10

VAR, Minnesota Prior -717.10 9E38

Notes: The table reports log data densities ln p(Y T |M) and Bayes factors relative

to the benchmark Bayesian learning specification. The Bayes factor of Mi versus

Mj can be obtained from exp[ln p(Y T |Mi)− ln p(Y T |Mj)].
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Figure 1: Regime Probabilities

Notes: Figure depicts posterior expected value of the monetary policy regimes for

the ‘full-information’ and the ‘learning’ specification. As reference we also plot the

inflation (solid line) and Federal Funds (doted line) rates.
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Figure 2: Disinflation Scenarios

Notes: Figure depicts posterior expected disinflation trajectories for the full informa-

tion (solid line), learning (long dashes), no learning (dotted), specifications together

with the actual values (short dashes) of output growth, inflation, and interest rates.
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Figure 3: Effect of Policy Interventions

Notes: Figure depicts posterior mean responses: full information (solid line), learn-

ing (long dashes), no learning (dotted). Experiment 1: one-period intervention that

raises the interest rate by 25 basis points. Experiment 2: five-period intervention

that raises the interest rate by 100 basis points.
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Figure 4: Approximating the ‘Learning’ Responses

Notes: Figure depicts posterior mean responses: learning (solid line), approximation

(long dashes), no learning (dotted). Experiment 1: one-period intervention that

raises the interest rate by 25 basis points. Experiment 2: five-period intervention

that raises the interest rate by 100 basis points.
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Figure 5: Effect of Regime-dependent Policy Shock Variances

Notes: Figure depicts posterior mean responses: learning under heteroskedastic

policy shocks (solid line), learning under homoskedastic policy shocks approximation

(long dashes). Experiment 1: one-period intervention that lowers the interest rate

by 25 basis points. Experiment 2: five-period intervention that lowers the interest

rate by 100 basis points.




