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Estimating Dynamic Equilibrium Economies: Linear
versus Nonlinear Likelihood

1. Introduction

Recently, a growing literature has focused on the formulation and estimation of dynamic

equilibrium models using a likelihood-based approach. Examples include the seminal paper

of Sargent (1989), and more recently, Bouakez, Cardia and Ruge-Murcia (2002), DeJong,

Ingram and Whiteman (2000), Dib (2001), Fernández-Villaverde and Rubio-Ramírez (2003),

Hall (1996), Ireland (2002), Kim (2000), Landon-Lane (1999), Lubik and Schorfheide (2003),

McGrattan, Rogerson and Wright (1997), Moran and Dolar (2002), Otrok (2001), Rabanal

and Rubio-Ramírez (2003), Schorfheide (2000), and Smets and Wouters (2003a and 2003b),

to name just a few. Most of these papers have used the Kalman filter to estimate a linear

approximation to the original model.

This paper studies the effects of estimating the nonlinear representation of a dynamic

equilibrium model instead of working with its linearized version. We document how the

estimation of the nonlinear solution of the economy substantially improves the empirical

fitting of the model: The marginal likelihood of the economy, i.e., the probability that the

model assigns to the data, increases by two orders of magnitude. This is true even for our

application, the stochastic neoclassical growth model, which is nearly linear. We also report

that, although the effects of linearization on point estimates are small, the impact on the

moments of the model is of first order importance. This finding is key for applied economist

because quantitative models are widely judged by their ability to match the moments of the

data.

Dynamic equilibrium models have become a standard tool in quantitative economics (see

Cooley, 1995, or Ljungqvist and Sargent, 2000, for summaries of applications). An implication

of these models is that they can be described as a likelihood function for observables, given

the model’s structural parameters- those characterizing preferences and technology.

The advantage of thinking about models as a likelihood function is that, once we can

evaluate this likelihood, inference is a direct exercise. In a classical environment we only need
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to maximize this likelihood function to get point estimates and standard errors. A Bayesian

researcher can use the likelihood and her priors about the parameters to find the posterior.

The advent of Markov chain Monte Carlo algorithms has facilitated this task. In addition,

we can compare models by likelihood ratios (Vuong, 1989) or Bayes factors (Geweke, 1998)

even if the models are misspecified and nonnested.

The previous discussion points out the need to evaluate the likelihood function. The task

is conceptually simple, but its implementation is more cumbersome. Dynamic equilibrium

economies do not have a “paper and pencil” solution. This means that we can only study an

approximation to them, usually generated by a computer. The lack of a closed form for the

solution of the model complicates the task of finding the likelihood.

The literature shows how to write this likelihood analytically only in a few cases (see Rust,

1994, for a survey). Outside those, Sargent (1989) proposed an approach that has become

popular. Sargent noticed that a standard procedure for solving dynamic models is to linearize

them. This can be done either directly in the conditions that describe the equilibrium (first

order conditions, resource constraints, laws of motion for exogenous variables and similar),

or by generating a quadratic approximation to the utility function of the agents. Both

approaches imply that the optimal decision rules are linear in the states of the economy.

The resulting linear system of difference equations can be solved with standard methods (see

Anderson et al., 1996, and Uhlig, 1999, for a detailed explanation).

For estimation purposes, Sargent emphasized that the resulting system has a linear repre-

sentation in a state-space form. If in addition we assume that the shocks exogenously hitting

the economy are normal, we can use the Kalman filter to evaluate the likelihood. It has been

argued (for example Kim et al., 2003) that this linear solution is likely to be accurate enough

for fitting the model to the data.

However, exploiting the linear approximation to the economy can be misleading. For

instance, linearization may be an inaccurate approximation if the nonlinearities of the model

are important or if we are traveling far away from the steady state of the model. Also,

accuracy in terms of the policy function of the model does not necessarily imply accuracy

in terms of the likelihood function. Finally, the assumption of normal innovations may be a

poor representation of the dynamics of the shocks in the data.

A recently proposed alternative to linearization is to work instead with the nonlinear repre-

sentation of the model and to apply a nonlinear filter to evaluate the likelihood. Fernández-
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Villaverde and Rubio-Ramírez (2004) show how a Sequential Monte Carlo filter delivers a

consistent evaluation of the likelihood function of a nonlinear and/or non-normal dynamic

equilibrium model.

The presence of the two alternatives begets the following question: how different are

the answers provided by each filter? We study this question with the canonical stochastic

neoclassical growth model with leisure choice. We estimate the model using both simulated

and real data and compare the results obtained with the Sequential Monte Carlo filter and

the Kalman filter.

Why do we choose the stochastic neoclassical growth model for our comparison? First,

this model is the workhorse of modern macroeconomics. Since any lesson learned in this paper

is conditional on our particular model, we want to select an economy that is the foundation of

numerous applications. Second, even if the model is nearly linear for the standard calibration,

the answers provided by each of the filters are nevertheless quite different. In this way, we

make our point that linearization has a nontrivial impact on estimation in the simplest

possible environment.

Our main finding is that, while linearization may have a second order effect on the accuracy

of the policy function given some parameter values, it has a first order impact on the model’s

likelihood function. Both for simulated and for real data, the Sequential Monte Carlo filter

generates an overwhelmingly better fit of the model as measured by the marginal likelihood,

ie., the probability that the model assigns to the data. This is true even if the differences in

the point estimates of the parameters generated by the Sequential Monte Carlo filter and the

Kalman filter are small.

Why is the marginal likelihood so much higher for the Sequential Monte Carlo? First,

from a pure statistical perspective, the standard deviations of the posterior distributions

are smaller. Given that we use flat priors in our estimation, the differences in the size

of the standard deviations mean that the likelihood concentrates more mass around the

pseudo-true value of the parameters in the nonlinear case. Second, and more importantly

for macroeconomist, the Sequential Monte Carlo delivers points estimates for the parameters

that imply model’s moments closer to the moments of the data. This second result is crucial

in applied work because these models are widely judged by their ability to match empirical

moments.

Our finding is not the first in the literature that suggest that accounting for nonlinearities
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substantially improves the measures of fit of a model. For example, Sims and Zha (2002)

report that the ability of a structural VAR to account for the dynamics of the output and

monetary policy increases by several orders of magnitude when they allow the structural

equation variances to change over time. A similar finding is often emphasized by the literature

on regime switching (Kim and Nelson, 1999) and by the literature on the asymmetries of the

business cycle (Kim and Piger, 2002).

The rest of the paper is organized as follows. In section 2 we discuss the two alternatives to

evaluate the likelihood of a dynamic equilibrium economy. Section 3 presents the stochastic

neoclassical growth model and the linear and nonlinear solution methods that we choose.

Section 4 discusses the estimation algorithm and section 5 reports our main findings with

real and simulated data. Section 6 concludes. An appendix offers computational details.

2. Two Frameworks to Evaluate the Likelihood

In this section we describe the nonlinear and the linear filters used to evaluate the likelihood

function of a dynamic equilibrium economy. The rest of the section is organized as follows.

First, we present the state-space representation of a dynamic equilibrium model solved by

nonlinear and linear methods. Second, we present how to use a Sequential Monte Carlo filter

to evaluate the likelihood of the nonlinear state-space representation of the economy. Finally,

we do the same with the Kalman filter.

2.1. The State-Space Representation

Assume that we observe yT = {yt}Tt=1, a realization of the random variable Y T = {Yt}Tt=1 ∈
RnT . The researcher is interested in evaluating the likelihood function of the observable yT

implied by a dynamic equilibrium economy M at any γ:

L
¡
yT ; γ

¢
= p

¡
yT ; γ

¢
, (1)

where γ ∈ Υ is the vector collecting the structural parameters, those characterizing prefer-

ences, information and technology in model M .

Unfortunately, in general it is not possible to compute this function. Part of the reason

is that most dynamic equilibrium models do not have a closed-form solution. Consequently,
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just to solve the model before any estimation, we need to approximate the equilibrium path

using numerical techniques. This approximation is going to affect the characterization of the

likelihood function (1).

There are two main routes to attack this problem. If we opt for a nonlinear solution

method, we need to use the Sequential Monte Carlo algorithm as described in Fernández-

Villaverde and Rubio-Ramírez (2004) to evaluate the likelihood. If we linearize the model, we

can approximate (1) with the Kalman filter. We now describe both methodologies in more

detail.

2.1.1. The Nonlinear Solution of the Model

Dynamic equilibrium economies solved using nonlinear methods have the following state-

space representation. The vector of state variables, St, evolves over time according to the

transition equation:

St = f (St−1,Wt; γ) (2)

where {Wt} is a sequence of exogenous random variables.

The observable yt is governed by the measurement equation:

Yt = g (St, Vt; γ) (3)

where {Vt} is a sequence of exogenous independent random variables. The sequences {Wt}
and {Vt} are independent of each other.1 Along some dimension, the function g can be the

identity mapping if a state is directly observed without noise.

The functions f and g depend on the equations that describe the equilibrium of the model

- policy functions, laws of evolutions for variables, resource constraints and on the nonlinear

solution method used to approximate the policy functions.

To ensure that the model is not stochastically singular, we need to assume that dim (Wt)+

dim (Vt) ≥ dim (Yt). We do not impose any restrictions on how those degrees of stochasticity
are achieved.2

1Assuming independence of {Wt} and {Vt} is only for notational convenience. Generalization to more
involved structures is achieved by increasing the dimension of the state space.

2See Fernández-Villaverde and Rubio-Ramírez (2004) for a more detailed discussion of stochastic singu-
larity and how to fix it.
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2.1.2. The Linear Solution of the Model

On the other hand, if we opt for a linear method to solve the same model, the state-space

representation has the following linear form:

St = E (γ) +A (γ)St−1 +B (γ)Wt (4)

Yt = F (γ) + C (γ)St +D (γ)Vt (5)

where A (γ), B (γ), C (γ), D (γ), E (γ), and F (γ) are matrices with the required dimension

which depend on the structural parameters of the model. Notice how this representation is

nothing more than a particular case of (2) and (3). Also, we make the same assumptions

regarding stochastic singularity as above.

We have presented two state-space representations of the same economy. Section 2.2

introduces a Sequential Monte Carlo filter to evaluate the likelihood function implied by (2)

and (3). Section 2.3 exploits the Kalman filter to calculate the likelihood entailed by (4) and

(5).

2.2. The Nonlinear Approach: A Sequential Monte Carlo Filter

Fernández-Villaverde and Rubio-Ramírez (2004) propose the following Sequential Monte

Carlo method to evaluate the likelihood function of yT induced by (2) and (3).

First, we assume that we can partition {Wt} into two separate sequences {W1,t} and
{W2,t}, such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt). If dim (Vt) =

dim (Yt) , we set W1,t = Wt ∀t, i.e. {W2,t} to be a zero-dimensional sequence. Second, we set
W2,t = Wt ∀t, i.e., {W1,t} to be a zero-dimensional sequence, only if dim (Wt) + dim (Vt) =

dim (Yt).3

Let W t
i = {Wi,m}tm=1, for i = 1, 2, V t = {Vm}tm=1, and St = {Sm}tm=0 for ∀t. We also

define W 0
i = {∅} and y0 = {∅}.

3We could make weaker assumptions, paying the cost of heavier notation.
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We factor the likelihood function (1) as follows:

p
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z Ã
TY
t=1

Z
p
¡
yt|W t

1, y
t−1, S0; γ

¢
p
¡
W t
1|yt−1, S0; γ

¢
dW t

1

!
p (S0; γ) dS0. (6)

Therefore, conditional on having N draws of {si0}Ni=1 from the density p (S0; γ) and N draws½n
w
t|t−1,i
1

oN
i=1

¾T

t=1

from the sequence of densities {p (W t
1|yt−1, S1; γ)}Tt=1, the likelihood func-

tion (1) can be approximated by:

p
¡
yT ; γ

¢ ' pSMC

¡
yT ; γ

¢
=
1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i

1 , yt−1, si0; γ
´!

using a law of large numbers.

Thus, the problem of evaluating pSMC

¡
yT ; γ

¢
is equivalent to the problem of drawing

from {p (W t
1|yt−1, S0; γ)}Tt=1. The Sequential Monte Carlo filter accomplishes this objective.

Let us fix some additional notation. Let
©
wt−1,i
1

ªN
i=1
be a sequence of N i.i.d. draws from

p
¡
W t−1
1 |yt−1, S0; γ

¢
and

n
w
t|t−1,i
1

oN
i=1
be a sequence of N i.i.d. draws from p (W t

1|yt−1, S0; γ).
We call each draw wt,i

1 a particle and the sequence
©
wt,i
1

ªN
i=1

a swarm of particles.

Fernández-Villaverde and Rubio-Ramírez (2004) prove the following result that shows

how to use p (W t
1|yt−1, S0; γ) as an important sampling density to draw from p (W t

1|yt, S0; γ).

Proposition 1. Let {si0}Ni=1 be a draw from p (S0; γ) and
n
w
t|t−1,i
1

oN
i=1

be a draw from

p (W t
1|yt−1, si0; γ). Let the sequence { ewi}Ni=1 be a draw with replacement from

n
w
t|t−1,i
1

oN
i=1

where qit, defined as

qit =
p
³
yt|wt|t−1,i

1 , yt−1, si0; γ
´

PN
i=1 p

³
yt|wt|t−1,i

1 , yt−1, si0; γ
´ ,

is the probability of wt|t−1,i
1 being drawn ∀i . Then { ewi}Ni=1 is a draw from p (W t

1|yt, S0; γ).
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The proposition 1 shows how a draw
n
w
t|t−1,i
1

oN
i=1

from p (W t
1|yt−1, S0; γ) can be used

to get a draw
©
wt,i
1

ªN
i=1

from p (W t
1|yt, S0; γ). This result is key in the following Sequential

Monte Carlo filter that generates a sequence of draws
½n

w
t|t−1,i
1

oN
i=1

¾T

t=1

from the sequence

of densities {p (W t
1 |yt−1, S1; γ)}Tt=1:

Step 0, Initialization: Set tÃ 1 and generate N i.i.d. initial states {si0}Ni=1
from p (S0; γ). Initialize p

¡
W t−1
1 |yt−1, S0; γ

¢
= 1.

Step 1, Prediction: Sample N values
n
w
t|t−1,i
1

oN
i=1

from the conditional density

p (W t
1|yt−1, S0; γ) = p (W1,t; γ) p

¡
W t−1
1 |yt−1, S0; γ

¢
.

Step 2, Filtering: Assign to each draw w
t|t−1,i
1 the weight qit as defined above

in proposition 1.

Step 3, Sampling: Sample N times with replacement from the set
n
w
t|t−1,i
1

oN
i=1

with probabilities {qit}Ni=1. Call each draw wt,i
1 . If t < T set t Ã t + 1 and go

to step 1. Otherwise stop.

The intuition of the algorithm is as follows. Given particles at t−1, ©wt−1,i
1

ªN
i=1
distributed

according to p
¡
W t−1
1 |yt−1, S0; γ

¢
, step 1 generates draws

n
w
t|t−1,i
1

oN
i=1
from p (W t

1|yt−1, S0; γ).
Step 3 takes advantage of proposition 1 and resamples from

n
w
t|t−1,i
1

oN
i=1

a new swarm of

particles,
©
wt,i
1

ªN
i=1
distributed according to p (W t

1|yt, S0; γ). The output of the algorithm

{si0}Ni=1 and
½n

w
t|t−1,i
1

oN
i=1

¾T

t=2

is used to compute the likelihood:

p
¡
yT ; γ

¢ ' pSMC

¡
yT ; γ

¢
=
1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i

1 , yt−1, si0; γ
´!

. (7)

Step 3 is the key of the algorithm. A naive extension of Monte Carlo techniques diverges

as T grows because only one particle will eventually accumulate all the information. To avoid

8



this problem, we do not carry over all the simulations to the next period. We keep those with

higher probability of explaining the data.

The interested reader can find further details in Fernández-Villaverde and Rubio-Ramírez

(2004). In particular they present all the technical details and discuss convergence, at both

the theoretical and the practical level.

2.3. The Linear Approach: The Kalman filter

Now we describe how to evaluate the likelihood function implied by (4) and (5) using the

Kalman filter.

To apply this filter, we need to assume that {Wt} and {Vt} are both normally distributed.
Therefore, we can define fWt = B (γ)Wt and eVt = D (γ)Vt to be normal with distributionsfWt ∼ N (0, Q (γ)) and eVt ∼ N (0, R (γ)).

Let us introduce some notation. First, we denote by St+1|t = E (St+1|yt) to be the
linear projection of St+1 on yt and a constant, and call yt+1|t = E (Yt+1|yt) = F (γ) +

C (γ)St+1|t to be the linear projection of Yt+1 on yt and a constant. Also let Pt+1|t =
E
¡
St+1 − St+1|t

¢ ¡
St+1 − St+1|t

¢0
, be the mean squared forecasting error when projecting St+1.

Then the mean squared forecasting error when projecting Yt+1 is

Σt+1|t = E
¡
Yt+1 − yt+1|t

¢ ¡
Yt+1 − yt+1|t

¢0
= C (γ)Pt+1|tC (γ)

0 +R (γ) ,

and E
¡
Yt+1 − yt+1|t

¢ ¡
St+1 − St+1|t

¢0
= C (γ)Pt+1|t.

Given that the model is linear and all random variables are normally distributed we only

need to keep track of their mean and variance-covariance matrix. Given St|t−1, Pt|t−1 and
observation yt, this is done by the Ricatti equations:

yt|t−1 = F (γ) + C (γ)St|t−1,

Σt|t−1 = C (γ)Pt|t−1C (γ)
0 +R (γ)

St+1|t = E (γ) +A (γ)
³
St|t−1 + C (γ)Pt|t−1Σ−1t|t−1

¡
yt − yt|t−1

¢´
and

Pt+1|t = A (γ)
³
Pt|t−1 − Pt|t−1C (γ)

0Σ−1t|t−1C (γ)Pt|t−1
´
A (γ)0 +Q (γ) .
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Since Wt and Vt are assumed to be normally distributed, the output of the previous

equations can be used to calculate the likelihood function as follows:

p
¡
yT ; γ

¢ ' pKF

¡
yT ; γ

¢
=

TY
t=1

1q
(2π)n

¯̄
Σt|t−1

¯̄ exp
Ã
−
¡
yt − yt|t−1

¢0
Σ−1t|t−1

¡
yt − yt|t−1

¢
2

!
(8)

where n = dim (Yt).4

3. An Application

Section 2 described two ways to approximate the likelihood function. If we take the nonlinear

approach to solve the model, the Sequential Monte Carlo filter provides pSMC

¡
yT ; γ

¢
. If we

opt for a linear method, the Kalman filter delivers pKF

¡
yT ; γ

¢
. This section presents a

comparison between the two alternatives. We select the stochastic neoclassical growth model

for that purpose. The reasons are twofold. First, this environment is the workhorse of

quantitative macroeconomics. In this way, we perform our comparison in an application that

is “representative” of a large number of papers. Since any lesson learned is conditional on

our particular model, we want to deal with a case that can be partially extrapolated to other

setups. Second, the application of the two procedures delivers answers that are substantially

different even if the model is nearly linear. The stochastic neoclassical growth model is a

simple environment where we can make our main point. For a more nonlinear model the

disparities are more striking.

The rest of the section is organized as follows. First, we introduce the stochastic neo-

classical growth model. Second, we discuss our linear and nonlinear approaches to solution

methods. Third, we compute pSMC(y
T ; γ) and pKF (y

T ; γ).

3.1. The Stochastic Neoclassical Growth Model

We work with the stochastic neoclassical growth model with leisure. Since this model is

widely used (see Cooley and Prescott, 1995) we go through only the minimum exposition

4Notice that S1|0 and P1|0 have to be initialized. In general, they are set to the steady state values of the
model.
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required to fix notation.

There is a representative agent in the economy, whose preferences over consumption ct

and leisure lt are represented by the utility function

U = E0

∞X
t=1

βt−1

³
cθt (1− lt)

1−θ
´1−τ

1− τ

where β ∈ (0, 1) is the discount factor, τ controls the elasticity of intertemporal substitution,
θ pins down labor supply, and E0 is the conditional expectation operator.

The only good of this economy is produced according to the production function eztkαt l
1−α
t

where kt is the aggregate capital stock, lt is the aggregate labor input, and zt is a stochastic

process affecting the technological progress. zt follows an AR(1) zt = ρzt−1 + t with t ∼
N (0, σ ). We consider the stationary case (i.e., |ρ| < 1). The law of motion for capital

is kt+1 = it + (1 − δ)kt where it is investment. Finally, the economy satisfies the resource

constraint ct + it = eztkαt l
1−α
t .

A competitive equilibrium can be defined in a standard way. Since both welfare theorems

hold, we can solve the equivalent and simpler social planner’s problem.

The solution is fully characterized by the following two stochastic partial differential equa-

tions, an Euler intertemporal condition:³
cθt (1− lt)

1−θ
´1−τ

ct
= βEt


³
cθt+1 (1− lt+1)

1−θ
´1−τ

ct+1

¡
1 + αezt+1kα−1t+1 l

α
t − δ

¢ , (9)

and a static optimality condition:

1− θ

θ

ct
1− lt

= (1− α) eztkαt l
−α
t (10)

plus the stochastic process for productivity, the law of motion for capital, the economy re-

source constraint, and the boundary condition c(0, zt; θ) = 0.

We can think about this problem as finding policy functions for consumption c (·, ·), labor
l (·, ·) , and next period’s capital k0 (·, ·) that deliver the optimal choices as functions of the
two state variables, capital and the technology level. The problem is simplified noting that we
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only need to search for the solution l (·, ·) and find c (·, ·) using the static first order condition
and k0 (·, ·) using the resource constraint of the economy.

3.2. The Solution Methods

The Sequential Monte Carlo filter is independent of the particular nonlinear solution method

employed. Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003) document that the finite

element method delivers an accurate, fast, and stable solution for a wide range of parameter

values in a model exactly like the one consider here. Therefore, we choose this method for

our nonlinear approach. Details of how to implement the finite element method are provided

in the appendix. For the linearized approach, the situation is easier, since all the methods

existing in the literature (conditional on applicability) deliver exactly the same solution.

Out of pure convenience, we use the undetermined coefficients procedure discussed in the

appendix.

3.3. Evaluating pSMC

¡
yT ; γ

¢
This section describes the implementation of the Sequential Monte Carlo filter for the neo-

classical growth model. Let γ1 ≡ (θ, ρ, τ , α, δ, β, σ ) ∈ Υ1 ⊂ R7 be the structural parameters.

Since the finite element method requires the shocks be bounded between −1 and 1, we trans-
form the productivity shock as λt = tanh(zt). Let St = (kt, λt) be the states of the model

and set Wt = t. Let also Sss = (kss, tanh(0)), the value of the states’ variables at the

deterministic steady state of the economy.

Define Vt ∼ N (0,Σ) as the vector of measurement errors. To economize on parameters
we assume that Σ is diagonal with entries σ21, σ

2
2 and σ

2
3. Define γ

2 = (σ21, σ
2
2, σ

2
3) ∈ Υ2 ⊂ R3+

and γ = (γ1, γ2) ∈ Υ. Finally call the approximated labor policy function lfem (·, ·; γ) where
we make the dependence on the structural parameter values explicit.

The transition equation for this model is:

kt = f1(St−1,Wt; γ) = etanh
−1(λt−1)kαt−1lfem

¡
kt−1, tanh−1(λt−1); γ

¢1−α ∗
∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt−1, tanh−1(λt−1); γ

¢¢
lfem

¡
kt−1, tanh−1(λt−1); γ

¢ !
+ (1− δ) kt−1

λt = f2(St−1,Wt; γ) = tanh(ρ tanh
−1(λt−1) + t).
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If we assume that the observed time series, yt, has three components: output, gdpt, hours

worked, hourst, and gross investment, invt, the measurement equation is:

gdpt = g1(St, Vt; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

+ V1,t

hourst = g2(St, Vt; γ) = lfem
¡
kt, tanh

−1(λt); γ
¢
+ V2,t

invt = g3(St, Vt; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α ∗

∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt, tanh

−1(λt); γ
¢¢

lfem
¡
kt, tanh

−1(λt); γ
¢ !

+ V3,t

It would be useful below to define the vector x(St; γ) of predictions of the model regarding

observables. Those are given by the measurement equation without the measurement errors,

and they are equal to:

x1(St; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

x3(St; γ) = lfem
¡
kt, tanh

−1(λt); γ
¢

x3(St; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt, tanh

−1(λt); γ
¢¢

lfem
¡
kt, tanh

−1(λt); γ
¢ !

We comment on two assumptions made for convenience: the observables and the presence

of measurement error. First, the selection of observables keeps the dimensionality of the

problem low while capturing some of the most important dynamics of the data. Three

dimensions will be enough to document the differences between the two filters. Second, we

add measurement errors to avoid stochastic singularity. Nothing in our procedure critically

depends on the presence of measurement errors. For example, we could instead work with a

version of the model with shocks to technology, preferences, and depreciation. This alternative

environment might be more empirically interesting but it would make the solution of the

model much more complicated. Since our goal here is to evaluate the impact of linearization

on estimation we follow the simple route.

Given the fact that we have four sources of uncertainty, we set dim(W2,t) = 0 and W1,t =
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Wt = t. The likelihood function is given by:

p
¡
yT ; γ

¢
=

Z Ã
TY
t=1

Z
p
¡
yt|W t

1, y
t−1, S0; γ

¢
p
¡
W t
1|yt−1, S0; γ

¢
dW t

1

!
p (S0; γ) dS0. (11)

Since dim(W2,t) = 0, W1,t =Wt and St = g (St−1,Wt; γ) observe, first, that:

p
¡
yt|W t

1, y
t−1, S0; γ

¢
= p

¡
yt|W t, yt−1, S0; γ

¢
= p (yt|St; γ) ,

and second, that drawing from p (W t
1|yt−1, S0; γ) is equivalent to draw from p (St|yt−1, S0; γ).

This allow us to write the likelihood function (11) as:

p
¡
yT ; γ

¢
=

Z Ã
TY
t=1

Z
p (yt|St; γ) p

¡
St|yt−1, S0; γ

¢
dSt

!
p (S0; γ) dS0. (12)

But since our measurement equation implies that p (yt|St; γ) = (2π)−
3
2 |Σ|− 1

2 e−
ω(St;γ)

2 where

we define the prediction errors to be ω(St; γ) = (yt − x(St; γ)))
0Σ−1 (yt − x(St; γ)) ∀t, we can

rewrite (12) as

p
¡
yT ; γ

¢
= (2π)−

3T
2 |Σ|−T2

Z Ã
TY
t=1

Z
e−

ω(St;γ)
2 p

¡
St|yt−1, S0; γ

¢
dSt

!
p (S0; γ) dS1.

The last expression is simple to handle. With the particles
½n

w
t|t−1,i
1

oN
i=1

¾T

t=1

and

{si0}Ni=1 coming from our filter, we can build the states
n
{sit}Ni=1

oT
t=1
and the prediction errorn

{ω(sit; γ)}Ni=1
oT
t=1
. We set si0 = Sss ∀i. Therefore, the likelihood function is approximated

by:

p
¡
yT ; γ

¢ ' pSMC

¡
yT ; γ

¢
= (2π)−

3T
2 |Σ|−T2

TY
t=1

1

N

NX
i=1

e−
ω(sit;γ)

2 (13)
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3.4. Evaluating pKF

¡
yT ; γ

¢
Let γ, Wt and Vt be defined as in section 3.3. The linearization does not need to bound the

perturbation space. Therefore St = (kt, zt). Also, let yss (γ) , css (γ) , lss (γ) and kss (γ) be

deterministic steady state values for output, consumption, labor, and capital. Then Sss (γ) =

(kss (γ) , 0), the value of the deterministic states variables at the deterministic steady state

of the model. After implementing the undetermined coefficients method we get:

kt = kss (γ) + a11 (γ) (kt−1 − kss (γ)) + a12 (γ) (ρzt−1 +Wt) ,

lt = lss (γ) + a21 (γ) (kt − kss (γ)) + a22 (γ) zt,

ct = css (γ) + a31 (γ) (kt − kss (γ)) + a32 (γ) zt,

yt = yss (γ) + a41 (γ) (kt − kss (γ)) + a42 (γ) zt,

the equilibrium policy functions for capital, hours, consumption, and output.5

Then the transition equation for this model is:

kt = kss (γ) + a11 (γ) (kt−1 − kss (γ)) + a12 (γ) (ρzt−1 +Wt)

zt = ρzt−1 +Wt

and with the same three observables as in the previous case, the measurement equation is:

gdpt = yt + V1,t

hourst = lt + V2,t

invt = yt − ct + V3,t

5All the a’s are functions of the structural parameters of the model. See the appendix for details.
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In the notation of equations (4) and (5) we have:

E (γ) =

"
(1− a11 (γ)) kss (γ)

0

#

A (γ) =

"
a11 (γ) kt−1 a12 (γ) ρzt−1

0 ρ

#

B (γ) =

"
a12 (γ)

0

#

F (γ) =

 yss (γ)− a41 (γ) kss (γ)

lss (γ)− a21 (γ) kss (γ)

yss (γ)− css (γ)− (a41 (γ)− a31 (γ)) kss (γ)


C (γ) =

 a41 (γ) a42 (γ)

a21 (γ) a22 (γ)

a41 (γ)− a31 (γ) a42 (γ)− a32 (γ)


and D (γ) = I3×3. Then we evaluate pKF

¡
yT ; γ

¢
as described in section 2.3.

4. The Estimation Algorithm

Now we explain how to incorporate the likelihood functions (7) and (8) in an estimation

algorithm. In the Bayesian approach, the main inference tool is the parameters’ posterior

distribution given the data, π
¡
γ|yT¢. The posterior density is proportional to the likelihood

times the prior. Therefore, we need to specify priors on the parameters, π (γ), and to evaluate

the likelihood function.

We specify our priors in section 5.1 and the likelihood function is evaluated either by (7)

or by (8), depending on how we solve the model. Since none of these posteriors have a closed-

form, we use a Metropolis-Hasting algorithm to draw from them. We call πSMC

¡
γ|yT¢ to the

posterior implied by the Sequential Monte Carlo filter and πKF

¡
γ|yT¢ to the posterior derived

from the Kalman filter. To simplify the notation, we let fSMC (·, ·; γi) and gSMC (·, ·; γi) be
defined by (2) and (3), and fKF (·, ·; γi) and gKS (·, ·; γi) by (4) and (5).
The algorithm to draw a chain {γi}Mi=1 from πj

¡
γ|yT¢, ∀j ∈ {SMC,FK} is as follows:
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Step 0, Initialization: Set i Ã 0 and initial γi. Compute functions fj (·, ·; γi)
and gj (·, ·; γi) . Evaluate π (γi) and pj

¡
yT ; γi

¢
using (7) or (8). Set iÃ i+ 1.

Step 1, Proposal draw: Get a proposal draw γpi = γi−1+εi, where εi ∼ N (0,Σε).

Step 2, Solving the model: Solve the model for γpi and compute fj (·, ·; γpi ) and
gj (·, ·; γpi ).
Step 3, Evaluating the proposal: Evaluate π (γpi ) and pj

¡
yT |γpi

¢
using either

(7) or (8).

Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤
π(γpi )pj(yT |γpi )

π(γi−1)pj(yT |γi−1)
set γi = γpi,

otherwise γi = γi−1. If i < M, set iÃ i+ 1 and go to step 1. Otherwise stop.

Once we obtain {γi}Mi=1, any moments of interest can be computed from πj
¡
γ|yT¢, ∀j ∈

{SMC,FK}.
The convergence of the algorithm depends on the fulfillment of a number of technical

conditions. In practice, it is extremely important to adjust the variance of the innovation of

the proposal density to get an appropriate acceptance rate.6 If the rate is small, the chain

does not visit the tails of the posterior. If the acceptance rate is high, the chain does not

stay enough time at the high probability regions. Gelman, Roberts and Gilks (1996) suggest

that a 20 percent acceptance rate tends to give the best performance. We found that a rate

of around 30 percent outperformed different alternatives. A complete guide to convergence

can be found in Mengersen, Robert and Guihenneuc-Jouyaux (1999).

In this paper, we concentrate on Bayesian inference because of space considerations. How-

ever, we could also perform classical inference. For that, once we obtain the likelihood, we

can introduce it into a maximization routine. The output of the algorithm, bγMLE, is the

maximum likelihood point estimate. We can compute the asymptotic variance-covariance

matrix of the parameters as:

var(bγMLE) = −
Ã
∂2L

¡
yT ; bγMLE

¢
∂γ∂γ0

!−1

6The acceptance rate is equal to the number of times the chain changes position divided by the number
of iterations.
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Since in general we cannot evaluate this second derivative directly, a numerical approximation

needs to be used. Finally, the value of the likelihood function at its maximum is also useful

building likelihood ratios for model comparison purposes.

5. Findings

We undertake two main exercises. Our first exercise as follows. First, we simulate “artificial”

data using the nonlinear solution of the model for a particular choice of values of γ∗. Then,
we define some priors over γ, and we draw from its posterior distribution implied by both

pSMC

¡
yT ; γ

¢
and pKF

¡
yT ; γ

¢
. Finally, we compute the marginal likelihood of the “artificial”

data implied by each likelihood approximation. This exercise answers the following two

questions: (1) How accurate is the estimation of the “true” parameter values, γ∗, implied by
each filter? and (2) How big is the improvement delivered by the Sequential Monte Carlo

filter over the Kalman filter? From the posterior mean of each filter, we answer the first of

these two questions. From the marginal likelihoods, we respond to the second.

Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003) report that the difference be-

tween the policy functions implied by the finite element and the linear methods depends

greatly on γ∗. If we consider high risk aversion and high variance of the productivity shock
innovations, the policy function looks more different than in the case with low risk aversion

and low variance. For these reason, we perform the described exercise for two different values

of γ∗, one with low risk aversion and low variance, γ∗l , and another with high risk aversion
and high variance, γ∗h.
Our second exercise uses real U.S. data to estimate the model with the Sequential Monte

Carlo and the Kalman filters. This exercise answers the following question: Is the Sequential

Monte Carlo providing a better explanation of the data?

We divide our exposition in three parts. First, we specify the priors for the parameters.

Second, we present results from the “artificial” data experiment. Finally, we present the

results with real data.

5.1. The Priors

We postulate flat priors for all 10 parameters subject to some boundary constraints to make

the priors proper. This choice is motivated by two considerations. First, since we are going
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to estimate our model using “artificial” data generated at some value γ∗, we do not want to
bias the results in favor of any alternative by our choice of priors. Second, with a flat prior,

the posterior is proportional to the likelihood function.7 As a consequence our experiment

can be interpreted as a classical exercise in which the mode of the likelihood function is the

maximum likelihood estimate. A Bayesian researcher that prefers more informative priors

can always reweight the likelihood to accommodate her priors (see Geweke, 1998).

Table 5.1: Priors for the Parameters of the Model

Parameters Distribution Hyperparameters

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

0,1

0.5,1

0,100

0,1

0,0.1

0.75,1

0,0.1

0,0.1

0,0.1

0,0.1

The parameter governing labor supply, θ, follows a uniform distribution between 0 and

1. That constraint imposes only a positive marginal utility of leisure. The persistence of the

technology shock, ρ, also follows a uniform distribution between 0 and 1. This region implies

a stationary distribution of the variables of the model8 with a lower bound on no persistence.

The parameter governing the elasticity of substitution, τ , follows a uniform between 0 and 100.

That choice only rules out risk loving behavior and risk aversions that will predict differences

in interest rates several orders of magnitude higher than the observed ones. The prior for

the technology parameter, α, is uniform between 0 and 1. The prior on the depreciation rate

ranges between 0 and 0.05, covering all national accounts estimates of quarterly depreciation.

The discount factor, β, ranges between 0.75 and 1, implying steady state annual interest

7Except for the very small issue of the bounded support of the priors.
8See Fernández-Villaverde and Rubio-Ramírez (2004) for a discussion on nonstationarity.
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rates between 0 and 316 percent. The standard deviation of the innovation of productivity,

σ , follows a uniform between 0 and 0.1, a bound 15 times higher than the usual estimates.

We also pick this prior for the three standard deviations of the measurement errors. Table

5.1 summarizes the discussion.

5.2. Results with “Artificial” Data

We simulate observations from the model and use them as data for the estimation. We

simulate data from two different calibrations.

First, to make our experiment as realistic as possible, we calibrate the model following

standard practices (Cooley and Prescott, 1995). We will call this the benchmark calibration.

The discount factor β = 0.9896 matches an annual interest rate of 4.27 percent (McGrattan

and Prescott, 2000). The risk aversion τ = 2 is a common choice in the literature. θ = 0.357

matches the microeconomic evidence of labor supply. We reproduce the labor share of national

income with α = 0.4. The depreciation rate δ = 0.02 fixes the investment/output ratio and

ρ = 0.95 and σ = 0.007 match the historical properties of the Solow residual of the U.S.

economy. With respect to the standard deviations of the measurement errors we set them

equal to a 0.01 percent of the steady state value of output, 0.35 percent of the steady state

value of hours and 0.2 percent of the steady state of value of investment based on our priors

regarding the relative importance of measurement errors in the National Income and Product

Accounts. We summarize the chosen values in table 5.2.

Table 5.2: Calibrated Parameters

Parameter θ ρ τ α δ β σ σ1 σ2 σ3

Value 0.357 0.95 2.0 0.4 0.02 0.99 0.007 1.58*10−4 0.0011 8.66*10−4

The second calibration, that we will call extreme from now on, maintains the same para-

meters except that it increases τ to 50 (implying a relative risk aversion of 24.5) and σ to

0.035. This high risk aversion and variance introduce a strong nonlinearity to the economy.

This particular choice of parameters allows us to check the differences between the Sequen-

tial Monte Carlo filter and the Kalman filter in a highly nonlinear world while maintaining

a familiar framework. We justify our choice then, not basing it on empirical considerations,
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but on its usefulness as a “test” case.

After generating a sample of size 100 for each of the two calibrations,9 we apply our priors

and our likelihood evaluation algorithms. For the Sequential Monte Carlo filter we use 40,000

particles to get 50,000 draws from the posterior distribution. For the Kalman filter, we also

get 50,000 draws. In both cases, we have a long burn-in period.

In figure 5.1 we plot the likelihood function in logs of the model, given our simulated data

for the Sequential Monte Carlo filter (continuous line) and the Kalman filter (discontinuous

line). Since we cannot draw a 10 dimensional figure, we plot in each panel the likelihood

function for an interval of ±20 percent of the calibrated value of the structural parameter,
keeping all the other parameters fixed at their calibrated values.10 We can think of each

panel then as a transversal cut of the likelihood function. To facilitate the comparison, we

show the “true” value for the parameter corresponding to the direction being plotted with a

vertical line.

Figure 5.1 reveals two points. First, for nearly all parameters (except θ), both likelihoods

have the same shape, and they are roughly centered on the “true” value of the parameter.

Note that since we are assuming flat priors, none of this curvature is coming from the prior.

Second, there is a difference in level between the likelihood generated by the Sequential Monte

Carlo filter and the one delivered by Kalman filter. This is a first proof that the nonlinear

model fits the data better even for this nearly linear economy.

9The results were robust when we used different simulated data from the same model. We omit details
because of space considerations.
10We do not draw the loglikelihood function when it takes values less than -2,000 to enhance the readability

of the figure.
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Table 5.3: Nonlinear versus Linear Posterior Distributions Benchmark Case

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.357

0.950

2.000

0.400

0.020

0.990

0.007

1.58×10−4
1.12×10−3
5.64×10−4

0.07×10−3
0.34×10−3
0.68×10−3
0.09×10−3
0.01×10−3
0.02×10−3
0.09×10−4
5.75×10−8
6.43×10−7
6.49×10−7

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.360

0.950

2.007

0.399

0.020

0.990

0.007

1.58×10−4
1.12×10−3
8.69×10−4

0.30×10−3
0.86×10−3
3.38×10−3
0.11×10−3
0.01×10−3
0.02×10−3
0.12×10−4
2.84×10−7
1.06×10−6
1.31×10−6

Table 5.3 conveys similar information: the point estimates are approximately equal re-

gardless of the filter. On the other hand, the standard deviations are bigger in the Kalman

filter case. Since we use flat priors, the posterior is proportional to the likelihood. Conse-

quently the Sequential Monte Carlo delivers a likelihood function more concentrated around

the “true” value of the parameter. This result will have a dramatic impact on the marginal

likelihood of the model.11

Table 5.4 reports the logmarginal likelihood differences between the nonlinear and the

linear case. We compute the marginal likelihood with Geweke’s (1998) harmonic mean pro-

posal. Consequently, we need to specify a bound on the support of the weight density. To

show the robustness of our finding to different values of this bound and following Geweke’s

(1998) advice, we report the distances for a range of values of the truncation value p from

0.1 to 0.9. All the values convey the same message: The nonlinear solution method fits the

data two orders of magnitude better than the linear approximation. This is just another way

to summarize the differences observed in the levels of the likelihood plotted in figure 5.1.

To put this number in perspective we may want to note that this difference is substantially

11The whole posteriors are available upon request from the authors. We also checked that the numerical
errors of the estimates were neglible.
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bigger than 7, a bound for DNA testing in forensic science, often accepted by courts of law

as evidence beyond reasonable doubt (Evett, 1991).

Table 5.4: Logmarginal Likelihood Difference Benchmark Case

p Nonlinear vs. Linear

0.1

0.3

0.5

0.7

0.9

163.045

164.082

164.465

164.615

164.661

We now move to study the results for the extreme calibration. Figure 5.2 is equivalent

to figure 5.1 for the extreme case. First note how the likelihood generated by the Sequential

Monte Carlo filter is again centered on the “true” value of the parameter. In comparison, the

likelihood generated by the Kalman filter is not. For example, in the case of ρ, the maximum

of the nonlinear approach is nearly the “true” value of the parameter while the Kalman filter

delivers a maximum more than 20 percent below this “true” value. The case of θ is even more

striking. The supports of the likelihoods are numerically disjointed and while the nonlinear

likelihood is centered on the “true” value, the linear likelihood is numerically equivalent to

zero at this point. Other parameters tell similar histories.

Table 5.5 recasts the same information in terms of means and standard deviations of the

posteriors. As in the benchmark case, the standard deviations are bigger when we use the

Kalman filter. This finding means that the linear filter provides the researcher with a more

disperse likelihood function with the consequent impact on the marginal likelihood.
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Table 5.5: Nonlinear versus Linear Posterior Distributions Extreme Case

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.357

0.950

50.000

0.400

1.96×10−2
0.990

3.50×10−2
1.58×10−4
1.12×10−3
8.66×10−4

7.19×10−5
1.88×10−4
7.12×10−3
4.80×10−4
3.53×10−6
8.69×10−6
4.47×10−6
1.87×10−8
2.14×10−7
2.33×10−7

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.370

0.863

51.13

0.400

1.98×10−2
0.990

3.47×10−2
1.61×10−4
1.11×10−3
8.69×10−4

1.90×10−4
2.22×10−3
1.95×10−1
1.33×10−4
2.45×10−5
3.51×10−4
6.52×10−4
3.50×10−7
1.08×10−6
2.06×10−6

Table 5.6 reports the logmarginal likelihood differences between the nonlinear and the

linear case for the extreme calibration for different p’s. Again, we can see how the evidence

in favor of the nonlinear filter is overwhelming.

Table 5.6: Logmarginal Likelihood Difference Extreme Case

p Nonlinear vs. Linear

0.1

0.3

0.5

0.7

0.9

80.731

80.734

80.713

80.661

80.613

As a conclusion, our exercise shows how even for a nearly linear case such as the stochastic

neoclassical growth model, an estimation that respects the nonlinear structure of the economy

improves substantially the ability of the model to fit the data. This may indicate that we

greatly handicap dynamic equilibrium economies when we linearize them before taking them

to the data and that some empirical rejections of these models may be due to the biases

introduced by linearization.
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5.3. Results with Real Data

Now we apply our procedure to estimate the stochastic neoclassical growth model with U.S.

quarterly data. We use real output per capita, average hours worked and real gross fixed

investment per capita from 1964:Q1 to 2003:Q1. We first remove a trend from the data using

an H-P filter. In this way, we do not need to model explicitly the presence of a trend and its

possible changes.

Table 5.7 presents the results from the posterior distributions from 50,000 draws for each

filter, again after a long burn-in period.

We briefly discuss some of our results. The discount factor, β, is estimated to be 0.997

with the nonlinear filter and 0.98 with the Kalman filter. This is an important difference

(remember that we are using quarterly data). The parameter controlling the elasticity of

substitution, τ , is estimated by the nonlinear filter to be 1.825 and by the Kalman filter to

be 9.71. The linear model compensates for the lack of curvature induced by its certainty

equivalence with higher risk aversion. The parameter α is close to the canonical value of one

third in the case of the Sequential Monte Carlo, while it is a bit higher (0.4) in the case of

the Kalman filter. Finally, we note how the standard deviation of the measurement error

is estimated to be much higher when we use the nonlinear filter than when we employ the

Kalman filter.
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Table 5.7: Nonlinear versus Linear Posterior Distributions Real Data

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.388

0.969

1.825

0.323

0.61×10−2
0.997

2.35×10−2
3.98×10−2
1.81×10−2
3.40×10−2

7.19×10−5
1.88×10−4
7.12×10−3
4.80×10−4
3.53×10−6
8.69×10−6
4.47×10−6
1.87×10−8
2.14×10−7
2.33×10−7

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ

σ1

σ2

σ3

0.367

0.952

9.710

0.406

1.87×10−2
0.980

1.65×10−2
1.51×10−4
8.00×10−3
4.26×10−2

4.07×10−3
8.54×10−3
3.53×10−1
2.18×10−3
4.27×10−4
6.53×10−4
1.02×10−3
5.54×10−6
9.14×10−4
3.21×10−3

It is difficult to assess whether the differences in point estimates documented in table 5.7

are big or small. A possible answer is based on the impact of the different estimates on the

moments generated by the model. Macroeconomists often use these moments to evaluate the

model’s ability to account for the data. Table 5.8 presents the moments of the real data and

reports the moments that the stochastic neoclassical growth model generates by simulation

when we calibrated it at the mean of the posterior distribution of the parameters given by

each of the two filters.12

We highlight two observations from table 5.8. First, the nonlinear model performs much

better matching the data than the linearized model. The nonlinear estimation nails down the

mean of each of the three observables and does a fairly good job with the standard deviations.

Second, the estimation by the nonlinear filter implies a higher output (23 percent), higher

investment (43 percent) and higher hours worked (20 percent) than the estimation by the

linear filter.

The main reason for these two differences is the higher β estimated by the Sequential

Monte Carlo. The lower discount factor induces a higher accumulation of capital and, con-

sequently, a higher output, investment, and hours worked. The differences for the standard

12The moments associated with each set of parameter values are nearly identical if we simulate the model
using the linear or the nonlinear solution method. See Aruoba, Fernández-Villaverde and Rubio-Ramírez
(2003) for details.
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deviation of the economy are also important. The nonlinear economy is less volatile than the

linearized model in terms of the standard deviation of output (0.087 versus 0.121) although

the hours worked respond more to productivity shocks (standard deviation of 0.02 versus

0.007).

Table 5.8: Nonlinear versus Linear Moments Real Data

Real Data Nonlinear (SMC filter) Linear (Kalman filter)

output

hours

inv

Mean s.d

1.95

0.36

0.42

0.073

0.015

0.066

Mean s.d

1.91

0.36

0.44

0.087

0.020

0.066

Mean s.d

1.55

0.30

0.31

0.121

0.007

0.076

Finally table 5.9 reports the logmarginal likelihood differences between the nonlinear and

the linear case. As in the previous cases, the real data strongly support the nonlinear version

of the economy with differences in log terms of around 59. The differences in moments

discussed above are one of the main driving force behind the finding. A second force is that,

as in the case of artificial data, the likelihood function generated by the Sequential Monte

Carlo is more concentrated than the one coming from the Kalman filter.

Table 5.9: Logmarginal Likelihood Difference Real Data

p Nonlinear vs. Linear

0.1

0.3

0.5

0.7

0.9

58.78

58.86

58.98

59.03

59.05

6. Conclusions

We have compared the effects of estimating dynamic equilibrium models using a Sequential

Monte Carlo filter proposed by Fernández-Villaverde Rubio-Ramírez (2004) and a Kalman

filter. The Sequential Monte Carlo filter exploits the nonlinear structure of the economy

and evaluates the likelihood function of the model by simulation methods. The Kalman
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filter estimates a linearization of the economy around the deterministic steady state. The

advantage of the Kalman filter is its simplicity and speed. We compare both methodologies

using the stochastic neoclassical growth model. We report two main results. First, both for

simulated and for real data, the Sequential Monte Carlo filter delivers a substantially better

fit of the model to the data. This difference exists even for a nearly linear case. Second, the

differences in terms of point estimates, even if relatively small in absolute terms, have quite

important effects on the moments of the model. From these two results we conclude that the

nonlinear filter is superior as a procedure for taking models to the data.

An additional advantage of the Sequential Monte Carlo filter is that it allows the esti-

mation of nonnormal economies. Some papers have documented that nonnormalities may

be important to account for the dynamics of macro data (see Geweke, 1994 among others).

Future research will address how much accuracy is gained with the use of a Sequential Monte

Carlo filter when estimating models with nonnormal innovations.
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7. Appendix

This appendix presents further details about the computations in the paper. First it explains

the finite element method. Second, it does the same for the undetermined coefficients method.

Third, it describes the computation of the marginal likelihood. Finally, it comments on the

programming language, hardware, and software used.

7.1. The Finite Element Method

We provide a brief exposition of the finite element method as applied in the paper. For a

more detailed explanation the interested reader should consult the expositions in McGrattan

(1999) and Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003).

The first step in the finite element method is to note that we can rewrite the Euler equation

for consumption as

Uc(kt, zt) =
β√
2πσ

Z ∞

−∞

£
Uc(kt+1, zt+1)(1 + αezt+1kα−1t+1 l(kt+1, zt+1)

1−α − δ)
¤
exp(−

2
t+1

2σ2
)d t+1

(14)

where Uc(t) = Uc(kt, zt), kt+1 = ezt+1kαt l
1−α
t + (1− δ)kt − c(kt, zt) and zt+1 = ρzt + t+1.

The problem is to find two policy functions c(k, z) : R+ × [0,∞] → R+ and l(k, z) :

R+× [0,∞]→ [0, 1] that satisfy the model equilibrium conditions. Since the static first order

condition gives a relation between the two policy functions, we only need to solve for one of

them. For the rest of the exposition we will assume that we actually solve for l(k, z) and then

we find c (l(k, z)).

First we bound the domain of the state variables to partition it in nonintersecting elements.

To bound the productivity level of the economy we define λt = tanh(zt). Since λt ∈ [−1, 1]
we can write the stochastic process as λt = tanh(ρ tanh−1(zt−1) +

√
2σvt) where vt = t√

2σ
.

Now, since exp(tanh−1(zt−1)) =
√
1+λt+1√
1−λt+1

= bλt+1, we rewrite (14) as
Uc(t) =

β√
π

Z 1

−1

h
Uc(kt+1, zt+1)

³
1 + αbλt+1kα−1t+1 l(kt+1, zt+1)

1−α + δ
´i
exp(−v2t+1)dvt+1 (15)

where kt+1 = bλt+1kαt l (kt, zt)1−α + (1 − δ)kt − c (l(kt, zt)) and zt+1 = tanh(ρ tanh−1(zt) +
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√
2σvt+1). For convenience we follow the same notation for l (·) in both (14) and (15),

although they are not the same function since their domain is different. To bound the

capital, we fix an upper bound k, picked sufficiently high as a function of the steady state of

the model that it will bind only with an extremely low probability.

Then define Ω =
£
0, k
¤ × [−1, 1] as the domain of lfe(k, z; θ) and divide Ω into nonover-

lapping rectangles [ki, ki+1]× [zj , zj+1], where ki is the ith grid point for capital and zj is jth

grid point for the technology shock. Clearly Ω = ∪i,j [ki, ki+1] × [zj , zj+1]. These elements
may be of unequal size. In our computations we define 14 unequal elements in the capital

dimension and 10 on the λ axis. We have small elements in the areas of Ω where the economy

spends most of the time while just a few large elements cover wide areas of the state space

infrequently visited (see figure A.1 for our partition). Note that we define the elements in

relation to the level of capital in the steady state of the model for each particular value of

the parameters being used in that precise moment of the estimation. Consequently our mesh

is endogenous to the estimation procedure, increasing efficiency and accuracy.

Next, we set lfe
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) =
P

i,j θij
bΨi (k) eΨj (z) , where

bΨi (k) =


k−ki

ki+1−ki if k ∈ [ki−1, ki]
ki+1−k
ki+1−ki if k ∈ [ki, ki+1]

0 elsewhere

eΨj (z) =


z−zj

zj+1−zj if z ∈ [zj−1, zj]
zj+1−z
zj+1−zj if z ∈ [zj , zj+1]

0 elsewhere

.

Note that Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj ]∪ [ki, ki+1]× [zj , zj+1] ∀i, j, i.e., the
function is 0 everywhere except inside two elements. Also lfe(ki, zj; θ) = θij ∀i, j, i.e., the
values of θ specify the values of cfe at the corners of each subinterval [ki, ki+1]× [zj, zj+1].
Let us define Uc(kt+1, zt+1)fe as the marginal utility of consumption evaluated at the

finite element approximation values of consumption and leisure. In this case, from the Euler

equation we have a residual equation:

R(kt, zt; θ) =
β√
π

Z 1

−1

·
Uc(kt+1, zt+1)fe
Uc(kt+1, zt+1)fe

³
1 + αbλt+1kα−1t+1 l

1−α
fe − δ

´¸
exp(−v2t+1)dvt+1 − 1 (16)

A Galerkin scheme implies that we weight the residual function by the basis functions and

solve the system of θ equationsZ
[0,k]×[−1,1]

Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j (17)
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on the θ unknowns.

Since Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj]∪ [ki, ki+1]× [zj , zj+1] ∀i, j we can rewrite
(17) as: Z

[ki−1,ki]×[zj−1,zj ]∪[ki,ki+1]×[zj ,zj+1]
Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j. (18)

We evaluate the integral in the residual equation with a Gauss-Hermite method and the

integrals in (18) with a Gauss-Legendre procedure. Finally, we solve the associated system

of nonlinear equations with a quasi-Newton algorithm with a conservative update to avoid

numerical instabilities.

7.2. Undetermined Coefficients Method

We provide a brief exposition of the method as applied in the paper. First we find the deter-

ministic steady state of the model: kss (γ) =
Ψ

Ω+ϕΨ
, lss (γ) = ϕkss (γ), css (γ) = Ωkss (γ)

and yss (γ) = kss (γ)
α lss (γ)

1−α where ϕ =
³
1
α

³
1
β
− 1 + δ

´´ 1
1−α
, Ω = ϕ

1
α − δ and Ψ =

θ
1−θ (1− α)ϕ−α. From this point on, we will not make explicit the dependence of the steady-
state value on γ, but it should be understood that kss = kss (γ), lss = lss (γ), css = css (γ)

and yss = yss (γ).

If we linearize the set of equilibrium conditions around the deterministic steady state:

α1 (ct − css) + α2 (lt − lss) = Et {α1 (ct+1 − css) + α3 (lt+1 − lss) + α4zt+1 + α5 (kt+1 − kss)}
(ct − css) = csszt +

α

kss
css (kt − kss) + α6 (lt − lss)

(ct − css) + (kt+1 − kss) = ysszt + yss
α

kss
(kt − kss) + α7 (lt − lss) + (1− δ) (kt − kss)

zt = ρzt−1 + εt

where

α1 =
θ(1−τ)−1

css
α2 = − (1−τ)(1−θ)1−lss

α3 = β α(1−α)
lss

kα−1ss l1−αss − (1−τ)(1−θ)
1−lss α4 = αβkα−1ss l1−αss

α5 = β α(α−1)
kss

kα−1ss l1−αss α6 = −
³

α
lss
+ 1

(1−lss)
´
css

α7 = yss
1−α
lss

yss = kαssl
1−α
ss
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We group terms to eliminate one of the equations of the system and obtain the simpler

system:

Abkt+1 +Bbkt + Cblt +Dzt = 0

Et

³
Gbkt+1 +Hbkt + Jblt+1 +Kblt + Lzt+1 +Mzt

´
= 0

Etzt+1 = Nzt

where A = 1, B = α
kss

css − yss
α
kss
− (1− δ), C = α6 − α7, D = css − yss, G = α1

α
kss

css + α5,

H = −α1 α
kss

css, J = α1α6 + α3, K = − (α1α6 + α2), L = (α1css + α4), M = −α1css, N = ρ

and bxt = xt − xss.

Now we can guess policy functions of the form bkt+1 = Pbkt+Qzt and blt = Rbkt+ Szt, plug

them into the linearized equilibrium conditions and solve for P , Q, R and S:13

R = − 1
C
(AP +B) = − 1

C
AP − 1

C
B

P = −1
2

−µB
A
+

K

J
− GC

JA

¶
±
sµ

B

A
+

K

J
− GC

JA

¶2
− 4

µ
KB −HC

JA

¶
Q =

−D (JN +K) + CLN + CM

AJN +AK − CG− CJR

S =
−ALN −AM +DG+DJR

AJN +AK − CG− CJR
.

In the notation used in section 3.4, we have:

a11 (γ) = P a12 (γ) = Q

a21 (γ) = R a22 (γ) = S

a31 (γ) =
α
kss

css + α6a21 (γ) a32 (γ) = css + α6a22 (γ)

a41 (γ) =
α
kss

yss + α7a21 (γ) a42 (γ) = yss + α7a22 (γ)

13Since the equation defining P is quadratic we will have two possible solutions. Of course we pick the
stable root of P .
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7.3. The Posterior and the Marginal Likelihood

In genera,l we do not have a closed-form solution for the posterior distribution. Instead, we

draw a sample of sizeM , {γ1, γ2, .., γM}, using a random walk Metropolis-Hastings algorithm.
We use the draw to estimate the marginal likelihood. This marginal likelihood determines

the probability the model assigns to the observations and serves to compare models.

Following Gelfand and Dey (1994) note that for any density h (·) with support contained
in Υ:

p
¡
yT
¢−1

= EL(yT ;γ)π(γ)

·
h (γ)

L (yT ; γ)π (γ)

¯̄̄̄
yT
¸

This expression is an unbiased and consistent estimator of the marginal likelihood and satisfies

a central limit theorem if Υ h2(γ)dγ

Υ L(yT ;γ)π(γ)dγ
<∞.

Then, we can use {γ1, γ2, .., γM} to approximate the marginal likelihood as:

p
¡
yT
¢−1 ' 1

M

MX
i=1

h (γi)

L (yT ; γi) π (γi)

As a choice of h, we use Geweke’s (1998) proposal. First, we compute bγ = 1
M

PM
i=1 γi and

dΣM =
1

M

MX
i=1

(γi − bγ) (γi − bγ)0
Then, for a given p ∈ (0, 1) define the set ΥM =

n
γ : (γ − bγ) cΣm

−1
(γ − bγ)0 ≤ χ21−p (10)

o
where χ21−p (·) is a chi-squared distribution with degrees of freedom equal to the number of

parameters. Letting IΥM∩Υ (·)be the indicator function of a vector of parameters belonging
to the intersection ΥM ∩Υ, we define:

h (γ) =
1bp (2π)k2

¯̄̄ cΣm

¯̄̄ 1
2
e−0.5∗(γ−γ)Σm

−1
(γ−γ)0IΥM∩Υ (γ)

where bp is an appropriate normalizing constant. With this choice, if the posterior density is
uniformly bounded away from zero on every compact subset of Υ, our computation approxi-

mates the marginal likelihood.
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7.4. Computational Details

All programs needed for the computation of the model were coded in Fortran 95 and compiled

in Compaq Visual Fortran 6.6 to run on Windows based machines. On a Pentium 4 at 3.00

GHz, each draw from the posterior using the Sequential Monte Carlo with 40,000 particles

takes around 6.1 seconds. That implies a total of about 88 hours for each simulation of 50,000

draws. To put this number in perspective, note that the whole simulation from the linearized

version of the model runs in one minute. All the code is available upon request from the

corresponding author.
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Figure 5.1: Likelihood Function Benchmark Calibration



6.5 7 7.5

x 10-3

-2000

-1500

-1000

-500

0

500

1000

1500
σ

Nonlinear
Linear
Pseudotrue

0.92 0.94 0.96 0.98 1 1.02
-2000

-1500

-1000

-500

0

500

1000

1500
β

Nonlinear
Linear
Pseudotrue

0.33 0.34 0.35 0.36 0.37 0.38
-2000

-1500

-1000

-500

0

500

1000

1500
θ

Nonlinear
Linear
Pseudotrue



0.88 0.9 0.92 0.94 0.96 0.98
-2000

-1500

-1000

-500

0

500

1000

ρ

Nonlinear
Linear
Pseudotrue

46 47 48 49 50 51 52 53
-2000

-1500

-1000

-500

0

500

1000

τ

Nonlinear
Linear
Pseudotrue

0.37 0.38 0.39 0.4 0.41 0.42 0.43
-2000

-1500

-1000

-500

0

500

1000

α

Nonlinear
Linear
Pseudotrue

0.0185 0.019 0.0195 0.02 0.0205 0.021
-2000

-1500

-1000

-500

0

500

1000

δ

Nonlinear
Linear
Pseudotrue

jesusfv
Figure 5.2: Likelihood Function Extreme Calibration
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