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1 Introduction

Despite recent successes in improving the empirical performance of dynamic stochas-

tic general equilibrium (DSGE) models, e.g., Smets and Wouters (2003), even

large-scale DSGE models suffer to some extent from misspecification (see Del

Negro, Schorfheide, Smets, and Wouters 2004). In this paper misspecification

means that the DSGE model potentially imposes invalid cross-coefficient restric-

tions on the moving-average representation of the macroeconomic time series that

it aims to explain. As a consequence, one typically observes that the forecast-

ing performance of DSGE models is worse than that of vector autoregressions

(VARs) estimated with well-calibrated shrinkage methods. On the other hand,

DSGE models have the advantage that one can explicitly assess the effect of pol-

icy regime changes on expectation formation and decision rules of private agents.

Thus, policy analysis with DSGE models is robust to the Lucas critique and po-

tentially more reliable than conclusions drawn from VARs. This trade-off poses a

challenge to policymakers who want to use DSGE models in practice.

Del Negro and Schorfheide (2004a) proposed a framework that combines VARs

and DSGE models, extending earlier work by Ingram and Whiteman (1994). In

this framework DSGE model restrictions are neither completely ignored as in

the unrestricted estimation of VARs, nor are they dogmatically imposed as in

the direct estimation of DSGE models. Instead the VAR estimates are tilted

toward the restrictions implied by the DSGE model, where the degree of tilting is

determined by a Bayesian data-driven procedure that trades off model fit against

complexity. Del Negro and Schorfheide (2004a) show that priors arising from the

same model used in this paper improve both the in-sample and out-of-sample fit

of a VAR.

In ongoing research (Del Negro and Schorfheide, 2004b) we build upon our

earlier work and further develop procedures that are suitable to study the effects
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of rare regime shifts with potentially misspecified DSGE models. These proce-

dures can be viewed as a Bayesian alternative to the robust control and minimax

approaches that recently have been proposed to cope with model misspecification,

e.g., Hansen and Sargent (2000) and Onatsky and Stock (2002). One advantage

of Bayesian procedures is that the policymaker can learn from existing data about

the extent of the DSGE model’s misspecification, and consequently adjust her

policies. The present paper applies these procedures to a simple New Keynesian

DSGE model. We illustrate that conclusions about the effects of changing the

response to inflation are sensitive to assumptions about the policy invariance of

observed discrepancies between model and reality. Section 2 briefly describes the

DSGE model. In Section 3 we outline our framework, Section 4 discusses our

findings, and Section 5 concludes.

2 The DSGE Model

Starting point is a DSGE model in log-linearized form. The model used here is

a standard New Keynesian DSGE model, e.g., Woodford (2003), which we now

briefly describe (see Del Negro and Schorfheide (2004a) for details). The log-

linearized equilibrium conditions consist of three equations in nominal interest

rates R̃t, output x̃t, and inflation π̃t ( ˜ denotes percentage deviations from the

steady state and ∆ is the temporal difference operator):

Monetary Policy Rule:

R̃t = ρRR̃t−1 + (1− ρR) [ψ1π̃t + ψ2(∆x̃t + z̃t)] + ε1,t, (1)

Price-setting equation:

π̃t =
γ

r∗
IEt[π̃t+1] + κ[x̃t − g̃t], (2)

Euler equation:

x̃t = IEt[x̃t+1]− τ−1(R̃t − IEt[π̃t+1]) + (1− ρg)g̃t + ρz
1
τ

z̃t. (3)



3

The exogenous processes z̃t and g̃t capture technology growth and government

spending, or more broadly speaking, demand shifts. The autoregressive coeffi-

cients of the exogenous processes are denoted by ρz and ρg, while the innovation

standard deviations are σz and σg. A period t corresponds to one quarter.

The vector yt of observable data is composed of the annualized nominal inter-

est rate, the annualized inflation rate, and the quarterly output growth rate. The

relationships between the steady-state deviations and the observables are given

by the following measurement equations:

y1,t = ln r∗a + ln π∗a + 4R̃t, (4)

y2t =




ln π∗a + 4π̃t

ln γ + ∆x̃t + z̃t


 .

where y1,t denotes the policymaker’s instrument (the interest rate), and y2,t is a

vector that includes the remaining two endogenous variables. Call θ the vector of

DSGE model parameters included in equations (1) through (4).

3 Setup and Inference

3.1 A VAR Representation of the DSGE Model

Let us rewrite Eq. (1), which describes the policymaker’s behavior, in more general

form as:

y1,t = x′tM1β1(θ) + y′2,tM2β2(θ) + ε1,t, (5)

where the k×1 vector xt is composed of an intercept and lags of yt. The matrices

M1 and M2 select the appropriate elements of xt and y2,t to generate the policy

rule. Here, the vector M1 selects the intercept and the lagged nominal interest

rate and the matrix M2 extracts inflation, and output growth. The functions

β1(θ) and β2(θ) can be easily derived from (1) and (4). The remainder of the
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system is given by the reduced form equations

y′2,t = x′tΨ
∗(θ) + u′2,t, (6)

where Ψ∗(·) relates the DSGE model parameters to the autoregressive coefficients

of y2,t. The system (6) essentially consists of equations (2) and (3) expressed

in terms of observables with the expectational terms solved out. This VAR rep-

resentation, when it is not exact, can be made arbitrarily precise by including

additional lags.

If we substitute for y2,t in Eq. (5) and combine the resulting expression

with (6) we obtain the following (restricted) VAR for our endogenous variables:

y′t = x′tΦ
∗(θ) + u′t. (7)

where Φ∗(θ) = [M1β1(θ)+Ψ∗(θ)M2β2(θ), Ψ∗(θ)], and u′t = [u′2,tM2β2(θ)+ε1,t, u
′
2,t].

We assume that ut ∼ N (0,Σ∗tr(θ)Σ
∗
tr(θ)

′), where Σtr(θ) is a lower-triangular ma-

trix. The one-step ahead forecast errors ut are functions of the structural shocks

of the DSGE model.1

3.2 Misspecification and Bayesian Inference

We make the following assumptions about misspecification of the DSGE model.

There is a vector θ and matrices Ψ∆ and Σ∆
tr such that data are generated ac-

cording to

y1,t = x′tM1β1(θ) + x′t(Ψ
∗(θ) + Ψ∆)M2β2(θ) + u1,t (8)

y′2,t = x′t(Ψ
∗(θ) + Ψ∆) + u′2,t (9)

and

IE[utu
′
t] = (Σ∗tr(θ) + Σ∆

tr)(Σ
∗
tr(θ) + Σ∆

tr)
′. (10)

1To specify Ψ∗(θ) and Σ∗tr(θ) define the population moments ΓXX(θ) = IEθ[xtx′t] and

ΓXY (θ) = IEθ[xty′t], which can be calculated based on the DSGE model solution. Then let Ψ∗ be

columns 2 through n of Γ−1
XXΓXY and Σ∗tr the Cholesky decomposition of ΓY Y −Γ′XY Γ−1

XXΓXY .
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Our econometric analysis is casted in a Bayesian framework that can be interpreted

as follows. At the beginning of time “nature” draws the vector of structural

parameters θ and the degree of DSGE model misspecification λ. Given θ and

λ, nature draws the misspecification matrices Ψ∆ and Σ∆
tr. The misspecification

parameter λ scales the variance of the distribution that generates Ψ∆ and Σ∆
tr.

If λ is close to zero, the prior variance of the discrepancies Ψ∆ and Σ∆
tr is large.

Large values of λ, on the other hand, correspond to small model misspecification

and for λ = ∞ the misspecification disappears. The joint distribution used by

nature (the prior) can then be decomposed as follows:

p(Ψ∆, Σ∆
u , θ, λ) = p(Ψ∆|Σ∆

u , θ, λ)p(Σ∆
u |θ, λ)p(θ)p(λ). (11)

Based on the sample y1, . . . , yT the policymaker’s task is to learn about (form a

posterior distribution on) θ, Ψ∆, Σ∆
tr, and λ. Markov Chain Monte Carlo methods

can be used to implement posterior inference and policy analysis. Details on prior

and posterior distributions can be found in Del Negro and Schorfheide (2004b).

We refer to the resulting specification as DSGE-VAR.

3.3 Policy Analysis

At time t = T the policymaker seeks to replace the existing policy rule with one

that minimizes the following loss function2

L(θp, θs, Ψ∆, Σ∆
tr) = min

{
B, IE

[
(1− δ)

∞∑

t=T

δt−T (yt − ȳ)′W(yt − ȳ)

]}
, (12)

where δ is a discount factor, θ is partitioned into policy rule parameters θp and

taste-and-technology parameters θs, and B is a positive constant that ensures that
2We make the simplifying assumption that the public believes the new policy to be in place

indefinitely after being announced credibly. This assumption is a short-cut to a more realistic

scenario in which there are two types of policy shifts - normal policy making and rare regime

shifts (using the terminology of Sims, 1982). In addition we assume that the expectation in (12)

is unconditional. The policymaker does not exploit the fact that the public has formed its time

T − 1 expectations based on the T − 1 policy rule.
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the loss is bounded even if the VAR coefficients imply non-stationary or explosive

behavior of the endogenous variables. The loss function encompasses popular

ad-hoc loss functions that penalize inflation, output, and interest rate variability.

The policymaker minimizes the loss L(θp, θs, Ψ∆, Σ∆
tr) as a function of the

policy parameter θp. She has imperfect knowledge about: (i) the policy invariant

private sectors’ taste and technology parameters θs; and (ii) the degree of model

misspecification captured by λ, Ψ∆ and Σ∆
tr. The uncertainty is summarized in

the posterior distribution.

We consider four different scenarios for the policy invariance of the misspec-

ification matrices Φ∆ and Σ∆. Then we calculate the posterior expected loss

associated with different policies according to each scenario. If the DSGE model

does not suffer from serious misspecification all scenarios collapse to Scenario 1.

Scenario 1: The DSGE model is estimated directly and its potential misspec-

ification is ignored. The policymaker does, however, take the uncertainty with

respect to the non-policy parameters into account when calculating the expected

loss. This scenario dates back at least to Brainard (1967) and serves as a bench-

mark. More recent examples in the context of DSGE models include Laforte

(2003) and Onatski and Williams (2004).

Scenario 2: The policymaker believes that the sample (hence the posterior)

provides no information about potential misspecification after a regime shift has

been implemented. This scepticism about the relevance of sample information is

shared by the robust control approaches of Hansen and Sargent (2000) and Onatski

and Stock (2002). Here, instead of using a minimax argument, our Bayesian pol-

icymaker relies on her prior distribution p(Ψ∆,Σ∆
tr|θ, λ) to cope with uncertainty

about model misspecification. She still uses the sample to learn about θs and λ,

however.

Scenario 3: Ψ∆ and Σ∆
tr are invariant to changes in policy. The sample
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information is used to learn about the model misspecification via the posterior

distribution. Looking forward, the information is used to adjust the policy pre-

dictions derived from the DSGE model, Ψ∗(θ̃) and Σ∗tr(θ̃). Here θ̃ denotes the

vector of structural parameters that is obtained when θp is replaced by a new set

of policy parameters θ̃p.

Scenario 4: Nature generates a new set of draws from the posterior distribu-

tion of Ψ∆ and Σ∆
tr conditional on the post-intervention DSGE model parameters

θ̃ instead of the pre-intervention parameters as in Scenario 3. For small values of

λ the conditional posterior distribution of Ψ∗(θ)+Ψ∆ and Σ∗tr(θ)+Σ∆
tr given θ is

effectively insensitive to θ. In this case Scenario 4 corresponds to analyzing policy

effects with a VAR by simply changing the coefficients in the policy rule.

4 Empirical Results

Table 1 describes the posterior of the misspecification parameter λ. The Table

reports log marginal densities for the directly estimated DSGE model and DSGE-

VAR based on different values of λ. The results in Table 1 imply that over the

historical sample period the DSGE model is strongly dominated by DSGE-VARs

with a small value of λ and indicate that the DSGE model is to some extent

misspecified.3

Columns 2 and 3 of Table 2 contain prior means and 90% probability intervals.
3The data for real output growth come from the Bureau of Economic Analysis (Gross Do-

mestic Product-SAAR, Billions Chained 1996$). The data for inflation come from the Bureau

of Labor Statistics (CPI-U: All Items, seasonally adjusted, 1982-84=100). For each quarter the

interest rate is computed as the average federal funds rate (source: Haver Analytics) during

the first month of the quarter, including business days only. Our sample ranges from 1982:I to

2001:III. We reserve the first two observations to initialize VAR lags. The results are based on

a DSGE-VAR with 2 lags. We also estimate the DSGE model directly, using the techniques

described in Schorfheide (2000).
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The specification of the prior is taken from Del Negro and Schorfheide (2004a).

Columns 4 through 7 of Table 2 contain posterior means and probability intervals

for the DSGE model and the DSGE-VAR with λ = 0.5. The two specifications

lead to somewhat different parameter estimates. For λ = 0.5 the central bank’s

reaction to inflation and lagged interest rates is more aggressive, whereas the

response to output growth is weaker. The estimated slope of the Phillips curve

which determines the real effect of monetary policy is slightly larger than reported

elsewhere in the literature, in particular for λ = 0.5.

Based on the parameter estimates we calculate expected policy losses. The

loss is based on Eq. (12) where the weighting matrix W is diagonal with elements

1
4 (interest rates, annualized), 1 (inflation, annualized), and 1

4 (output growth,

quarter-to-quarter). Our weight on output growth is somewhat larger than in

Woodford (2003, Table 6.1) reflecting a larger estimate of κ. Moreover, we place

considerable weight on the nominal interest rate, which could be justified by a large

interest elasticity of money demand and an important role of real money balances

for transactions. The upper bound B of the loss is set to 20, which is about 5

times larger than the weighted sample variance of the three series. We evaluate

the expected loss as a function of ψ1, the central bank’s response to inflation. The

other two parameters of the policy rule are set approximately to their respective

posterior mean estimates for λ = 0.5: ψ2 = 0.2, ρR = 0.75. The results are

summarized in Figure 1, which depicts expected loss differentials relative to the

benchmark ψ1 = 1.9. Negative differentials indicate an improvement relative to

the benchmark.

In Scenario 1 the policymaker calculates the policy loss with the DSGE model,

ignoring misspecification. It is well known that as the response to inflation in-

creases, inflation variability drops and the loss decreases. The inference about the

misspecification parameter λ in Table 1 casts some doubts on the reliability of
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DSGE model predictions, however.

In Scenario 2 the policymaker still uses the DSGE model to compute the

mean response of the endogenous variables to the change in ψ1, but recognizes

that nature may be injecting noise around these mean responses using the prior

distribution. Not surprisingly for larger values of λ (low misspecification) the

shape of the loss does not change relative to Scenario 1. For smaller values of λ

(high misspecification) the loss profile becomes flatter for values of ψ1 larger than

2. A decomposition of the loss into its three components indicates that interest

rate and output growth variability actually rise as the central bank responds more

strongly to inflation. However, this rise is off-set by a substantial drop in inflation

variability.

In Scenario 3 the policymaker uses sample information to learn about the

size of the discrepancies, unlike in the previous scenarios. More specifically, she

believes that the historically observed discrepancies Ψ∆ and Σ∆
tr are policy invari-

ant. For λ = 5 the loss is still a decreasing function of ψ1, as in the Scenario 1,

but for λ = 1 and λ = 0.5 the slope switches sign around ψ2 = 1.5. The large

expected losses under policies that respond strongly to inflation are a reflection of

a predictive distribution that assigns substantial mass to parameter values that

imply non-stationary dynamics.

Finally, under Scenario 4 the policymaker again uses sample information to

learn about potential model misspecification. Unlike in Scenario 3, the policy-

maker now asks the question: what is the estimate of the discrepancy if the new

policy had been in place during the sample period. For small values of λ inflation

and output growth are essentially being forecasted using an unrestricted VAR as

changes of agents’ decision rules derived from the DSGE models are deemed un-

reliable. Only the policy equation reflects the change in ψ1, thereby generating a

higher interest rate volatility which leads to the slight positive slope of the loss
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functions depicted in the fourth panel of Figure 1. Even for λ = 5 the shape

of the loss function differs from Scenario 1. The overall magnitude of the loss

differentials is much smaller than in the previous scenarios.

In summary, we show that the implications of the policy experiment are

markedly different depending on: (i) whether the policymaker relies on the data to

assess the degree of misspecifications, i.e., learns about λ; and (ii) the assumption

she makes on the process driving the discrepancies between the DSGE model and

the data in the aftermath of the policy intervention.

5 Conclusion

Current DSGE models are to some extent misspecified, even large-scale models

such as the one in Smets and Wouters (2003). While they allow policymakers to

assess the effects of rare policy changes on the expectation formation and deci-

sion rules of private agents, their fit is typically worse than the fit of alternative

econometric models, such as VARs estimated with well-calibrated shrinkage meth-

ods. The DSGE-VARs studied in Del Negro and Schorfheide (2004a,b) provide

a framework that allows researchers to account for model misspecification. We

applied some of the techniques to a simple New Keynesian DSGE model and

studied the effect of changing the response to inflation under an ad-hoc loss func-

tion that penalizes inflation, output growth, and interest rate variability. We view

our framework as an attractive alternative to robust control approaches to model

misspecification that deserves to be explored in future research.
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Table 1: Log Marginal Data Densities and Posterior Odds

Specification ln p(Y |λ) Posterior Odds

DSGE Model -321.16 1.000

DSGE-VAR, λ = 5.0 -313.58 1967

DSGE-VAR, λ = 1.0 -297.59 1.7E9

DSGE-VAR, λ = 0.5 -289.75 4E13

Notes: The marginal data densities are obtained by integrating the likelihood

function with respect to the model parameters, weighted by the prior density

conditional on λ. The ratio of marginal data densities can be interpreted as

posterior odds under the assumption of that the two specifications have equal

prior probabilities.
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Table 2: Parameter Estimation Results

Prior DSGE Model DSGE-VAR λ = 0.5

Mean Prob Interval Mean Prob Interval Mean Prob Interval

ψ1 1.51 [ 1.10, 1.90] 1.44 [ 1.13, 1.72] 1.87 [ 1.54, 2.22]

ψ2 0.13 [ 0.00, 0.26] 0.37 [ 0.17, 0.55] 0.23 [ 0.01, 0.44]

ρR 0.50 [ 0.19, 0.84] 0.72 [ 0.66, 0.79] 0.74 [ 0.67, 0.82]

ln γa 2.00 [ 0.35, 3.62] 2.45 [ 1.26, 3.56] 2.57 [ 1.42, 3.75]

ln π∗a 4.01 [ 0.85, 7.32] 2.84 [ 2.22, 3.50] 2.60 [ 1.53, 3.69]

ln r∗a 1.99 [ 0.55, 3.52] 2.45 [ 1.73, 3.14] 2.16 [ 1.09, 3.15]

κ 0.30 [ 0.07, 0.52] 0.65 [ 0.42, 0.88] 0.90 [ 0.58, 1.25]

τ 2.00 [ 1.21, 2.82] 1.97 [ 1.09, 2.78] 1.56 [ 0.79, 2.29]

ρg 0.80 [ 0.65, 0.96] 0.96 [ 0.93, 0.99] 0.90 [ 0.82, 0.98]

ρz 0.30 [ 0.12, 0.45] 0.86 [ 0.81, 0.91] 0.66 [ 0.55, 0.76]

σR 0.25 [ 0.11, 0.40] 0.17 [ 0.13, 0.20] 0.17 [ 0.12, 0.21]

σg 0.63 [ 0.27, 1.00] 0.86 [ 0.70, 1.00] 0.54 [ 0.40, 0.68]

σz 0.88 [ 0.38, 1.40] 0.29 [ 0.23, 0.35] 0.36 [ 0.27, 0.44]

Notes: The table reports prior and posterior means and 90 percent probability

intervals in brackets. The model parameters ln γ, ln π∗, ln r∗, σR, σg, and σz are

scaled by 100 to convert their units into percentage points. The parameters ln γa,

ln π∗a, and ln r∗a are annualized.
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Figure 1: Expected Policy Loss Differentials

Notes: Mean policy loss differentials relative to baseline policy rule ψ1 = 1.9,

ψ2 = 0.2, ρR = 0.75. Negative differentials signify an improvement relative to

baseline rule.


