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Testing the Significance of Calendar Effects

1. Introduction

Calendar effects are anomalies in stock returns that relate to the calendar,such as the day-of-the-week,

the month-of-the-year, or holidays. Two leading examples are the Mondayeffect and the January effect.

Economically small calendar specific anomalies need not violate no-arbitrageconditions, but the reason

for their existence, if they are indeed real, is intriguing.

Much effort continues to be devoted to research on calendar effects.Yet, the literature remains open

about the significance of these effects for asset markets. One reasonis that the discovery of specific

calendar effects could be a result of data mining. Even if there are no calendar anomalies, an extensive

search – or data mining – exercise across a large number of possible calendar effects can yield significant

results of an “anomaly” by pure chance.1 Another reason data mining is a plausible explanation is

that theoretical explanations have been suggested only subsequent to the empirical “discovery” of the

anomalies.

The universe of possible calendar effects is not givenex antefrom economic theory. Rather, the

number of different calendar effects that potentially could be analyzed isonly bounded by the creativity

of interested researchers. Since an extensive empirical analysis of calendar effects is likely to suffer from

data mining problems, it is therefore surprising that there is little work that aims to limitthe problem.

The reason might be that an explicit control for data mining is costly becauseit is less likely that a

true anomaly will be found to be significant. The best remedy for preserving the ability to detect true

anomalies, is to employ a test for calendar effects that is as powerful as possible. A robust test for

a specific calendar effect needs to condition on the nuisance of all conceivable effects, unless one is

willing to violate basic principles for inference.

We construct a powerful test to evaluate the significance of calendar effects in this paper. This test

combines and incorporates the information from all calendar anomalies to achieve good power properties

without compromising test size by exploiting the correlation structure that is specific to this testing

problem. The new test is asymptoticallyF-distributed. However, we implement a bootstrap version of

the test that diminishes possible small sample problems.

Our new test of calendar effects can be interpreted as a generalized-F test. It is related to some recent

methods for comparing forecasting models that have been proposed by White (2000) and Hansen (2001),

who builds on results of Diebold & Mariano (1995) and West (1996). These tests exploit indirectly the

sample information about the dependence across forecasting models, which are being compared. This is

analogous to our generalized-F test because it depends on the covariance of returns given the calendar

effects being studied.

Our test is also closely related to a test West & Cho (1995) develop to compare the predictive ability

1Evidence for calendar effects tests is subject to the criticism that “the data has been tortured until it confessed”. Merton

(1987), Lo & MacKinlay (1990), and Fama (1991) contain useful discussions about data mining. Schwert (2003) gives a recent

survey on the subject in relation to anomalies in returns, including the calendar specific anomalies.
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Testing the Significance of Calendar Effects

of volatility models. Their test applies to series with the same length (same number ofobservations),

so it is not directly applicable to our problem, where we have an unequal number of observations for

the different calendar effects. A major difference between our generalized-F test and West & Cho’s

is that we employ bootstrap methods to evaluate the significance of the statistics, whereas they invoke

asymptotic distributional results.

An alternative method to control for the universe of possible effects is a Bonferroni bound type test.

The Bonferroni bound ignores the correlation structure among the objects, which results in a more con-

servative, and therefore less powerful test. Our test dominates Bonferroni bound methods in terms of

power because it accounts for dependence across calendar effects. This avoids conservative approxima-

tions.

Alternatively, one can control for data mining by confronting anomalies found in one data set, with

a different data sets. This approach has been suggested by severalauthors, for example Schwert (2003).

However, there are two reasons this approach cannot entirely remove data mining bias: (1) if the two

data sets were totally independent, then it remains possible tominethe two data sets simultaneously to

find calendar effects that appear to be significant in both samples; and (2) if the data sets overlap in time,

the data sets are likely to be dependent. The returns on the Dow-Jones index and the S&P 500 index

are clearly correlated, as are indices across countries. Therefore,evaluating results found in one equity

index on a different equity index cannot be viewed as an independent experiment.

Extensive references to the vast calendar effects literature can be found in Dimson (1988), Keim &

Ziemba (2000), and Sullivan, Timmermann & White (2001) (STW).2 Most papers that address the issue

of data mining apply Bonferroni bound methods or cross country studies toevaluate the significance of

calendar effects. An exception is STW because they apply thereality checkof White (2000) in their

analysis. Although the paper by STW is closely related to our paper, our analysis differs from STW in

three important ways.

First, we define the null hypothesis that returns are identical across all calendar dating schemes (e.g.,

no calendar anomalies of any kind) and test it using either expected returns or standardized returns. In

contrast, STW analyze the ability of a collection of calendar-based trading rules to yield higher returns

than a buy-and-hold strategy. Since their set of trading rules consist ofshort, neutral, or long trading

strategies based on calendar-based rules, our approach is better suited to test jointly the significance of

calendar effects. For example, theJanuary effectimplies expected returns are higher in January than

the rest of the year. The January effect does not imply that excess returns are possible by taking a long

position in January and a short or neutral position the rest of the year. Rather, a January effect test

needs to compare the daily average return to the daily average return of thespecific calendar effect under

consideration.

Another feature that distinguishes our calendar effects test from STW isthe dimension of the “ob-

2The interested reader should see these papers for additional references. Section 2 of this paper also contains further

references.
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Testing the Significance of Calendar Effects

jects” that are being compared. Compared to the 9,452 calendar effects-based trading rules STW ex-

amine, most studies of calendar effects in stock returns analyze far fewer and fail to condition on the

universe of calendar effects. Our empirical exercise includes 181 calendar effects that is most, if not

all, of the relevant ones. Our full universe of calendar effects covers almost all the anomalies STW use

to define their 9,452 calendar-based equity trading rules. Thus, our generalized-F test enjoys a power

advantage relative to STW because an increase in the dimension of the nuisance anomalies reduces the

power of calendar effects tests which makes it harder to detect actual anomalies.

The third difference between our approach and STW is the choice of statistical test. The hypothesis

that there are no calendar specific anomalies is a two-sided hypothesis of multiple equalities. Our test

is designed for this hypothesis. STW apply the reality check of White (2000), a test that is designed

to test one-sided hypotheses of multiple inequalities, to select the most profitable calendar effects-based

trading strategy. Testing multiple inequalities involves complications discussed in Hansen (2001). Most

importantly, Hansen (2003) points out that if there are non-binding inequalities, the reality check is

known to be conservative and lack power. Thus, a poor trading rule can distort the reality check and

erode its power. Interestingly, Sullivan et al. (2001, Figure 2) show that the reality check’sp-value

jumps from about 0.33 to about 0.52 at a point where the worse performingmodels are included in the

analysis (around model 8,300). Since the large jump in thep-value is most likely caused by the distortion

that poor models have on this test, the correctp-value is likely to be smaller than the 0.554 STW obtain

from the full sample. See Hansen & Lunde (2004) for an empirical application that accentuate the reality

check’s power problems.

We apply our generalized-F test to evaluate the significance of calendar effects to returns on stock

indices from ten countries. These countries are: Denmark, France, Germany, Hong Kong, Italy, Japan,

Norway, Sweden, Japan, the UK, and the US. Our study covers three indices of each country, except for

Denmark, Hong Kong, and Sweden, where one, one, and two indices are examined, respectively. An

analysis of the significance of calendar effects involves a subjective choice of the universe of calendar

effects to be reviewed. Different choices can lead to different results, e.g., the January effect may be

significant in a small universe, but insignificant in a larger universe. We study a total of 181 possible

calendar effects, where our choices are guided by the calendar effects analyzed in the extant literature.

Although it is possible there are other effects, we believe the universe considered is rich enough to include

all relevant calendar effects.

Application of our generalized-F test to stock returns from ten countries provides evidence that

calendar effects are statistically significant. The largest anomalies are typically produced by end-of-year

effects. The evidence in favor of calendar effects is in most cases onlymarginally different when the

analysis is based on standardized returns. The robustness of these finding is assessed in a subsample

analysis. This analysis reveal that for large-cap and market indices thesignificance of calendar effects is

not an economically important phenomenon because in most cases significant effects only occurred in a
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short interval of time. In contrast, the significance of calendar effects insmall-cap stock indices appears

to be more robust across subsamples. We also examine the robustness of our test of calendar effects by

shrinking the universes to include 17 and 5 calendar effects, respectively.

The rest of the paper is organized as follows. Section 2 describes calendar effects. We analyze the

statistical properties of the problem and derive the generalized-F test in section 3. Section 4 describes the

data. Empirical results are presented in Section 5. Section 6 concludes. The appendix contains technical

background and a few proofs.

2. Calendar Effects

This section presents the universe of possible calendar effects that weconsider in our analysis. We often

write “calendar effect” as short for “possible calendar effect”. Hence, “calendar effect” need not imply

that there is an anomaly associated with the “possible calendar effect”, onlythe alternative hypothesis

that it may exist.

Day-of-the-week: This effect states that expected return, or standardized return, are not the same for

all weekdays. This effect was first documented by Osborne (1962),and subsequently analyzed

by Cross (1973), French (1980), Gibbons & Hess (1981), Lakonishok & Levi (1980), Smirlock

& Starks (1983), Keim & Stambaugh (1983), Rogalski (1984) and Jaffe & Westerfield (1985). In

our universe, we include the five day-of-the-week calendar effects: Monday, Tuesday, Wednesday,

Thursday, and Friday. The Friday effect considers the return fromthe preceding trading day’s

closing price (typically a Thursday) to Friday’s closing price, and similarly for the other days. The

returns on Mondays are found to be negative in many studies, which is commonly referred to as

the weekend-effect.

Month-of-the-year: This includes the January effect that was first reported in Wachtel (1942). The

January effect is perhaps the most famous calendar effects. Haugen& Lakonishok (1988) devote

their book to the study of the January effect. We study all 12 month-of-the-year effects.

Weekday-of-the-month: We interact day-of-the-week with month-of-the-year, (Mondays in December,

Wednesdays in June, etc.) to add 60(= 5 × 12) calendar effects to our universe.

Week-of-the-month: We use the STW definition of the week-of-the-month effect.Weeksare con-

structed such that the first trading day of the month defines the first day ofthe first week. If

the first trading day is a Thursday, the first week consists of two days (aThursday and a Friday).

The last week-of-the-month is defined similarly, which means there will often be fewer than five

days in a week. Week-of-the-month effects are discussed in Ariel (1987), Lakonishok & Smidt

(1988), and Wang, Li & Erickson (1997). This adds 65(= 5 + 5 × 12) effects to our universe.
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Semi-month: Our definition of semi-months follows that of Lakonishok & Smidt (1988).3 The trading

days are partitioned into two sets. The first set consists of trading days for which the date is 15 or

less, and the other set contains dates that are 16 or higher. By interactingthese two semi-month-

of-the-year effects with month-of-the-year effects we obtain another 24 semi-months that adds

another 26(= 2 + 2 × 12) effects to our universe.

Turn-of-the-month: We add eight effects that relate to turn-of-the-month to our universe: one for each

of the last four trading days of the month and one for each of the first four trading days of the

month. This type of calendar effects is discussed in Ariel (1987), Lakonishok & Smidt (1988), and

Hensel & Ziemba (1996).

End-of-Year: We group the days at the end of December into three calendar effect, which follows

Lakonishok & Smidt (1988):

1. Pre-Christmas from mid-December: the trading days from mid December upto, but no in-

cluding, the last trading day before Christmas, (e.g.,December 15th – 23rd).

2. Between Christmas and New Year: from the first trading day after Christmas up to, but not

including, the last trading day before New Year’s Day.

3. Pre-Christmas and New Year: the last trading day before Christmas, and the last trading day

before New Year’s Day.

Holiday-effects: We classify the pre- and post-holiday effect as in STW. Pre-holidays are those trading

days which directly precede a day where the market is closed, but would normally be open for

trading. Post-holidays are those trading days that follow pre-holidays. This adds two calendar

effects to our universe.

Table 1 gives a summary of these calendar effects and their mnemonics.

TABLE 1 ABOUT HERE

3. Statistical Analysis of Calendar Effects

This section describes the notation and constructs the test for calendar specific anomalies. Letr t ≡
log Pt − log Pt−1 be the continuously compounded returns on a stock index, wherePt denote the closing

price of the index on dayt, (dividends are assumed to be accumulated inPt). The expected return and the

variance ofr t are denoted byµt ≡ E(r t) andσ 2
t ≡ var(r t), respectively,t = 1, . . . , n, and throughout

we assume that the sequence of returns are uncorrelated between datest ands, s 6= t , i.e., cov(rs, r t) = 0.

3The definition of semi-months of Lakonishok & Smidt (1988, p.407-8) differs slightly from that of Ariel (1987).
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Testing the Significance of Calendar Effects

3.1. Calendar Sets

It is convenient to attach each calender effect with a set,S(k), where the subscripts in parentheses refer

to different calendar effects,k = 0, 1, . . . , m, and subscripts without parentheses refer to time,t =
1, . . . , n. The number of calendar effects that are being considered ism and the number of elements in

S(k) is denoted byn(k). For example,k = 1 corresponds to the Monday effect in our analysis, soS(1)

contains all thets that are Mondays, andn(1) is the number of Mondays in the sample. The full sample

is associated with the setS(0) ≡ {1, . . . , n}.
The average return of calendar effectk, is given byr̄(k) ≡ n−1

(k)

∑

t∈S(k)
r t , and its expected value is

denoted byξ (k) ≡ E(r̄(k)) = n−1
(k)

∑

t∈S(k)
µt . Similarly, the average variance of calendar effect,k, is given

by ω̄2
(k),n ≡ n−1

(k)

∑

t∈S(k)
σ 2

t , and the expected standardized return is defined byρ(k) ≡ ξ (k)/ω̄(k),n, k =
1, . . . , m.

3.2. Hypotheses of Interest

We consider two hypotheses. The first hypothesis is that there areno calendar specific anomalies in

returns, which can be formulated parametrically as,

H0 : ξ (0) = · · · = ξ (m).

The hypothesis,H0, may not be supported by the data if, for example, there is a risk-premium from

holding assets from Friday to Monday. Therefore, we also consider thehypothesis that there areno

calendar specific anomalies in standardized returns, which can be expressed as

H ′
0 : ρ(0) = · · · = ρ(m).

3.3. Covariance Structure and Asymptotic Results

Define the covariance matrix of the vectorr̄ = (r̄(0), r̄(1), . . . , r̄(m))
′ of average returns for them calendar

effects to be6n, such that the(k + 1, l + 1) element of6n is given by cov(r̄(k), r̄(l )), k, l = 0, . . . , m.

Utilizing that {r t} is assumed to be uncorrelated, and cov(r t , rs) = σ 2
t if t = s, and zero otherwise, it

is straight forward to provide an expression for the elements of6n. We formulate this in the following

lemma:

Lemma 1 The elements of6n are given by

cov(r̄(k), r̄(l )) = n−1
(k)n

−1
(l )

∑

t∈S(k)∩S(l )

σ 2
t , for k, l = 0, . . . , m.

Note that6n needs to be multiplied byn in order to converge to a nontrivial limit, and that the diagonal

elements of6n (those for whichk = l ) are simply given by

var(r̄(k)) = n−2
(k)

∑

t∈S(k)

σ 2
t , for k = 0, . . . , m.
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Primitive assumptions (Assumption A.1 in appendix) ensure that a law of large numbers and a central

limit theorem apply (Theorem A.1 in appendix), such that we have

r̄
p→ ξ

√
n (r̄ − ξ)

d→ Nm+1(0, n6n),

whereξ = (ξ (0), ξ (1), . . . , ξ (m))
′.

Our new test for calendar anomalies is a simpleχ2-test. The only complication that arises is that6n

may be singular. The solution to the potential singularity is given in the following well-known result.

Lemma 2 Let X be a normally distributed vector with meanλ and covariance matrix�. If λ = Bθ ,

whereB is a known matrix with full column rank andθ a vector with proper dimension, then

T = X′B⊥(B′
⊥�B⊥)+B′

⊥X, (1)

is χ2-distributed with f = rank(B′
⊥�B⊥) degrees of freedom, whereB⊥ is the orthogonal matrix toB

and where(B′
⊥�B⊥)+ is the Moore-Penrose inverse ofB′

⊥�B⊥.4

The joint hypotheses of no calendar effects isH0 : ξ = ιθ ξ and H ′
0 : ρ = ιθρ, whereι is a vector

with m + 1 ones, and whereθ ξ andθρ are unknown scalar parameters. Equation (1) can be used to

construct test statistics for the hypothesesH0 and H ′
0, where the relevant covariance matrix (to use in

place of� in (1)) is 6n under the hypothesisH0, and�n = 3−1
n 6n3

−1
n under the hypothesis,H ′

0,

where3n = diag(ω̄(0),n, . . . , ω̄(m),n). Note that3n is the matrix with standard deviations that define the

expected standardized returns (ρ = 3−1
n ξ ).

3.4. Estimation and F-Tests for Calendar Specific Anomalies

The parameters can be estimated by

ξ̂ (k) = r̄(k), ω̂
2
(k),n = n−1

(k)

∑

t=S(k)

(r t − r̄(k))
2, and ρ̂(k) = ξ̂ (k)/ω̂(k),n

for k = 0, . . . , m.

The common value for expected returns is estimated byθ̂ ξ = (ι′6+
n ι)−1ι′6+

n r̄ , (this number actually

equals the sample average of returnsr̄(0)), and the common value for standardized expected returns is

estimated bŷθρ = (ι′�+
n ι)−1ι′�+

n ρ̂, whereρ̂(k) = r̄(k)/ω(k), k = 0, . . . , m.

The estimation of the covariance matrices,6n and�n, is also relatively simple. First we define the

n × (m + 1) matrixA, with elements

At,(k) =
{

n−1
(k) if t ∈ S(k)

0 otherwise,
t = 1, . . . , n, k = 0, . . . , m,

4The orthogonal matrix,B⊥, to a matrix,B, with full column rank, satisfiesB′
⊥B = 0 and (B, B⊥) is a squared full

rank matrix. The Moore-Penrose inverse,A+, of a symmetric matrix,A, is defined by the identities:AA+A = A and

A+A = (A+A)′.
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Note that each column ofA = (a(0), . . . , a(m)) sum to one, and thata′
(k)(r1, . . . , rn)

′ = r̄(k), where

a(k) is the(k + 1)th column ofA. From Lemma 1 we have6n = A′diag(σ 2
1, . . . , σ

2
n)A, which shows

that it is simple to estimate6n given an estimate of(σ 2
1, . . . , σ

2
n). In the special case, whereσ 2

t is

assumed to be constant, the expression simplifies to6n = σ 2A′A, and one can use the estimatorσ̂
2 =

1
n−1

∑n
t=1

(

r t − r̄(0)

)2
.

In the general case, whereµt andσ 2
t may depend on weekday, month, etc., the estimation of6n is

slightly more complicated. Let the sample be divided intoq distinct groups, and assume that within each

of these groups bothµt andσ 2
t are constant. Define then × q matrix, J, of zeros and ones where each

column is associated with a group, such thatJt,i = 1 if day t is in groupi (and zero otherwise). Note

that each row ofJ has precisely one non-zero entry. Within each group, we estimate the mean by

r̄ (i ) =
∑n

t=1 Jt,i r t

n(i )
, i = 1, . . . , q,

wheren(i ) ≡
∑n

t=1 Jt,i is the number ofts in groupi, and the variance is estimated by

σ̂
2
(i ) =

∑n
t=1 Jt,i (r t − r̄ (i ))2

n(i ) − 1
, i = 1, . . . , q.

These estimates can be mapped into the estimatesσ̂
2
t =

∑q
i=1 Jt,i σ̂

2
(i ), t = 1, . . . , n, which trans-

lates into the estimate of6n, 6̂n = A′diag(σ̂ 2
1, . . . , σ̂

2
n)A. The estimate of�n is then given by�̂n =

3̂
−1

n 6̂n3̂
−1

n , where3̂n = diag(ω̂(0),n, . . . , ω̂(m),n).

This leads to the following test statistics,

Fξ = ξ̂
′
ι⊥(ι′⊥6̂nι⊥)+ι′⊥ξ̂/qξ , (2)

which is asymptoticallyF(qξ ,∞)-distributed underH0, and

Fρ = ρ̂
′
ι⊥(ι′⊥�̂nι⊥)+ι′⊥ρ̂/qρ, (3)

which is asymptoticallyF(qρ,∞)-distributed underH ′
0. The degrees-of-freedom,qξ andqρ , equals the

rank of ι′⊥6̂nι⊥ and ι′⊥�̂nι⊥, respectively. Here,ι⊥ is an(m + 1) × m matrix that is orthogonal toι,

(the vector of ones). This matrix is not unique, however, any choice ofι⊥ will produce the same value

of the test statistic. A particular choice ofι⊥ is given by the matrix that has ones in, and right below, the

diagonal and zeroes, elsewhere, i.e.,ι⊥hh = 1, andι⊥h+1,h = −1 for h = 1, . . . , m, otherwiseι⊥h,g = 0.

In practice, one must make a choice for the grouping of dates, where the unconditional mean and

variance is constantwithin each group. The assumption of homoskedastic returns is accommodated by

selection of a single group that contains all dates. In our analysis, we useq = 60 groups that are the

combinations of weekdays and months, e.g., one group contains allt s that are Mondays in January.5

5The Dow-Jones data contains Saturdays in the first part of the sample. So in our full sample analysis of the DJIA returns,

we add an additional group that contains all thets that are Saturdays.
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Whenσ 2
t is assumed to be constant, the test statistic,Fξ , is identical to a standardF-statistics that

can be obtained from the regression ofr t on the dummy-variables, 1{t∈S(k)}, k = 1, . . . , m. The relevant

F-statistic is the one that tests that all regression parameters, excluding the constant, are zero. When

σ 2
t is non-constant, the test statisticFξ can be calculated using a GLS estimator.6. Under theH ′

0, the test

statisticFρ does not have a simple relation to standard regression statistics.

TheFξ test statistic is closely related to one used by West & Cho (1995) to compare ofthe predictive

ability of volatility models. The key difference between our generalized-F test and the West & Cho

test is that they employ a robust estimator of6 and invoke asymptotic theory, whereas we rely on the

covariance structure that specific to Lemma 1. Moreover, we employ bootstrap methods to evaluate the

significance of the calendar effect test statisticsFξ andFρ . Another important difference is that West &

Cho only compare series of equal length, whereas we have greater flexibility to consider series (calendar

effects) that have an unequal number of observations.

3.5. Bootstrap Implementation

The bootstrap implementation of our test is relatively simple to carry out in this setting. Nonetheless,

we must make a sufficiently strong assumption, such that our tests can be implemented by bootstrap

methods. The assumptions depends on the relaxed (moments) conditions developed by Goncalves & de

Jong (2003), stating that forr > 2 andδ > 0 it holds thatE|r t |r +δ < ∞, and thatr t is α-mixing of order

−r/(r − 2).

To generate resamples, recall that in general we have thatr t ∼ (µt , σ
2
t ), and the hypothesis of

interest areH0 : µt = µ for all t, or H ′
0 : µt

σ t
= ρ for all t . We allow for variation inσ 2

t according to

weekday/month and obtain̂σ 2
t , t = 1, . . . , n from the ‘groups’σ̂ 2

(i ), i = 1, . . . , q. We would like to

construct bootstrap variables,r ∗
t that (approximately) satisfy

r ∗
t ∼ (µ, σ 2

t ) underH0 and r̃ ∗
t ∼ (ρσ t , σ

2
t ) underH ′

0.

These can be obtained as

r ∗
t = σ̂ t

rτ −r̄
σ̂ τ

+ r̄ and r̃ ∗
t = σ̂ t

rτ

σ̂ τ
,

sincer ∗
t |Data ∼ (r̄ , σ̂

2
t ) underH0 andr̃ ∗

t |Data ∼ (σ̂ tρ, σ̂
2
t ) underH ′

0.

The implementation goes through the following steps.

1. (Bootstrap indexes for resampling)

(a) Choose the block-length bootstrap parameter,l . The optimal choice forl is tied to the persis-

tence inr t . One can use different choices forl , and verify that the result is not sensitive to

the choice.

(b) GenerateB bootstrap resamples of{1, . . . , n}. I.e., forb = 1, . . . , B :
6Collinearity of the regressors can be a potential problem with the regression-approach to theF-test.
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i. Chooseξb1
∼ U {1, . . . , n} and set(τ b,1, . . . , τ b,l ) = (ξb1

, ξb1
+ 1, . . . , ξb1

+ l − 1),

with the conventionn + i = i for i ≥ 1.

ii. Chooseξb2
∼ U {1, . . . , n} and set(τ b,l+1, . . . , τ b,2l ) = (ξb2

, ξb2
+ 1, . . . , ξb2

+ l − 1).

iii. Continue until a sample size ofn, is constructed.

iv. This is repeated for all resamplesb = 1, . . . , B, using independent draws of theξ ’s.

2. (Sample and Bootstrap Statistics)

(a) Calculate the sample test statistics (2) or (3) using the original sampler t , t = 1, . . . , n. The

r t series should also be used to compute and saver̄ and

σ̂ t =

√

√

√

√

q
∑

i=1

Jt,i

n(i ) − 1

(

n
∑

t=1

Jt,i (r t − r̄ (i ))2

)

, t = 1, . . . , n,

(b) Calculate the resampled test statistics

F∗
ξ ,b = ξ̂

∗′
b ι⊥(ι′⊥6̂

∗
n,bι⊥)+ι′⊥ξ̂

∗
b/qξ or F∗

ρ,b = ρ̂
∗′
b ι⊥(ι′⊥�̂

∗
n,bι⊥)+ι′⊥ρ̂

∗
b/qρ,

using the bootstrap samples

r ∗
τ(t),b = σ̂ t

rτ (t),b−r̄
σ̂ τ(t),b

+ r̄ to testH0, or r̃ ∗
τ(t),b = σ̂ t

rτ (t),b

σ̂ τ(t),b
to testH ′

0,

respectively, fort = 1, . . . , n, andb = 1, . . . , B.

(c) The p-value ofH0 andH ′
0 are given by

p̂H0 ≡ 1

B

B
∑

b=1

1{
Fξ >F∗

ξ ,b

} and p̂H ′
0
≡ 1

B

B
∑

b=1

1{
Fρ>F∗

ρ,b

} (4)

where 1{·} is the indicator function.

3.6. Comparison to Bonferroni Bound Tests

An alternative and simpler way to adjust inference for the universe of calendar effect is to evaluate the

calendar effects individually while adjusting the critical values as prescribed by the Bonferroni bound.

This can be done by a simple regression,

r t = β0 + β11{t∈S(1)} + · · · + βm1{t∈S(m)} + ut ,

where 1{·} is the indicator function. The hypothesisH0 implies thatβ1 = · · · = βm = 0, which

suggestst-statistics for each of these parameters. To ensure that the overall size of the test is more than

α, say 5%, one can useαm-critical values from the appropriatet-distribution. However, this leads to a

conservative test as it ignores the correlation across them differentt-statistics. The new test incorporates

the correlation structure, whereby it avoids the conservative nature that Bonferroni bound methods have.

In the special case wherer t is assumed to be homoskedastic, ourFξ test is the usualF-test of H0 :
β1 = · · · = βm = 0. Thus, the new test can be viewed as a generalized-F test.
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4. Data Description

We have analyzed data from Denmark, France, Germany, Hong Kong, Italy, Japan, Norway, Sweden,

United Kingdom, and United States. Most data were extracted from Datastream, the two exceptions are

the Danish data, which were extracted from “Børsdatabasen”,7 and the French net return series that are

from the Paris Stock Exchange.

The data are daily closing prices with observations ranging back to the basedate of the indices or

alternatively as far back as the data were available to us. Observations are, if available, included up until

06.05.2002 (May 6, 2002). Summary statistics and the sample period are reported in Table 2.

Holidays, which are used to define some of the calendar effects, were determined using the holiday

function in Datastream. In the following, we give a short description of individual series.

Denmark: The KFX is the main index for stocks in Denmark. It comprises the 20-25 most important

stock. We use a version of the index that has been adjusted for dividends, this index has been

constructed by Tangaard & Belter (2001).

France: We include three indices from France. The CAC 40 is the main index that is based on 40 of the

largest companies in terms of market capitalization. The SBF 120 index includes an additional 80

stocks, and this index is typically used as a benchmark for index funds. The MIDCAC index tracks

the performance of mid-cap stocks. This index consists of 100 stocks. The indices are available in

terms of “net return” and “total return”, where the latter incorporates a special “avoid fiscal” tax

credit. For comparability with the series from other countries, our analysis isbased on the “net

return” indices.

Germany: Our analysis includes three German indices. The DAX 30 is the main indicator ofthe blue-

chip segment and contains the 30 largest companies in terms of capitalization and turnover. The

MDAX represents the mid-cap segment of the German stock market and includes the next 70 com-

panies after those in DAX 30. DAX 100 combines the DAX 30 and the MDAX andis comparable

to the French SF 120. The Deutsche Böres publishes both price indices and performance indices,

where the latter are adjusted for dividends and are the indices that we usein our analysis.

Hong Kong: The Hang Seng Main (HS MAIN) includes 33 stocks and accounts for about 70 percent of

total market capitalization of stocks listed on the Hong Kong Stock Exchange.

Italy: The MIBTEL is a general national index that contains almost all shares listed on the Italian stock

exchange. Italian stocks are ordered according to a measure based oncapitalization and transaction

volume. The MIB 30 index consists of the first 30 stocks and the MIDEX index consists of the

next 25 companies. The adjustment for dividends are somewhat complicated as ordinary and

extraordinary dividends are treated differently.

7Børsdata is accessible from The Aarhus School of Business’s website: www.asb.dk.
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Japan: The Nikkei All Stock Index includes all stocks listed on the Tokyo, Osaka,Angola, Sappers,

and Judoka exchanges, as well as Nasdaq Japan, and Mother’s. The Nikkei 225 Stock Average

contains 225 of the most actively traded stocks on the first section of the Tokyo Stock Exchange.

The Tokyo Stock Exchange Small Cap (Tokyo SC) index contains a selection of liquid and small

capitalization stocks that are traded on the Tokyo stock exchange.

Norway: The All Share (OSLO ALL) index includes all stocks listed on the Oslo Stock Exchange, and

the OBX index is based on a smaller number of shares that are thought to be representative for the

market. This index is comparable to the Danish KFX index. We also include a smallcap index

that contains companies with smaller market capitalization.

Sweden: The SAX-General (SAX-GEN) comprises a large number of companies that are traded on

the Stockholm Stock Exchange.8 OMX comprises the 30 stocks with the largest turnover on the

exchange (during a certain control period). The Swedish indices do not account for dividends, and

we were unable to find a small cap index with a sample that was sufficiently long for our analysis.

United Kingdom: The FTSE includes a large number of stocks that must satisfy certain criteria, see

www.londonstockexchange.com for details. The FTSE 100 index is comparable to main indices

for other countries, the FTSE 350 is a broader index, and the FTSE 250 midcap index represents

smaller companies.

United States: The Dow Jones Industrial Average (DJIA) comprises 30 of the largestUS stocks. The

stocks are selected at the discretion of the editors of The Wall Street Journal and add up to about

29% of the US market capitalization. Unlike most indices the DJIA does not weight the individual

stocks by their market capitalization. The S&P 500 Index consists of 500 stocks and the S&P

Midcap 400 (S&P 400) Index consists of 400 domestic stocks, where the stocks in both indices are

selected according to criteria for market size, liquidity, and industry representation.

5. Empirical Results

Our core results appear in tables 3-5 and figure 1. Table 1 lists the calendar effects we examine and

provides mnemonics. Summary statistics of the 25 return series are found in table 2. The columns on the

far right of table 2 give the number of observations and sample period of the return series. The Norwegian

OBX series has the fewest data points, 1586, given a January 3, 1995to May 6, 2002 sample. More

typical are returns on the German DAX 100 that run from December 30, 1987 to April 30, 2002 for a total

of 3599 observations. The longest series is the Dow Jones Industrial Average (DJIA) that includes 29,380

observations starting with May 26, 1896 and ending on May 6, 2002. Our DJIA series contains about

8SAX-General comprise all companies on the A-, OCT-, and O-listen of the Stockholm Stock Exchange. Prior to 1998 in

comprised companies on the A-list only.
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six more years of observations (or nearly 2000 more) than available to STW. Using their shorter sample,

STW report little evidence that their calendar effects-trading rules provide superior returns compared

simply to a strategy that holds the DJIA market index.

5.1. The full universe of calendar effects

We assess the significance of calendar effects with the full universe ofcalendar effects presented in

section 2 and listed in Table 1. Table 3 provides thep-values of the generalized-F test applied to the

25 return and standardized return series. Our bootstrap procedure generatesp-values that contradict

STW’s analysis that calendar effects have few asset pricing implications,once account is made of data

mining biases. Thep-values of table 3 show that significant calendar effects arise in all the national

stock markets we study, for at least one index using either returns or standardized returns, conditional

on the full universe of 181 calendar effects. There is no evidence against the null of no calendar effects

in about a quarter of the return indices, conditional on the full universe. These indices are the German-

DAX 100 and -DAX 30, Italian-MIB 30, Japanese-NIKKEI 225, Norwegian-OSLO All and -OBX, and

USA-S&P500.9 Nevertheless, thep-values we report in table 3 supports the view that calendar effects

matter for stock returns. We obtain this evidence using returns on ten national stock markets, examining

181 calendar effects, and accounting for the data mining biases created by studying this full universe

anomalies.

5.2. Negative returns, and day-of-the-week and month-of-the-year anomalies

Our choice of anomalies for the 17-calendar effects universe is motivated by STW. They find the most

important anomaly in 90 to 100 years of daily DJIA returns to be the Monday effect. Beside abnormal

returns on Monday, our 17-calendar effects universe includes other day-of-the-week and month-of-the-

year anomalies. Thus, our test for the significance of the Monday effect conditions on the entire set of

day-of-the-week and month-of-the-year effects. This is also true of the other 16 day-of-the-week and

month-of-the-year anomalies included in the 17-calendar effects universe.

Table 3 reveals the 17-calendar effects universe gives little evidence against the null which is at odds

with results obtained from the full universe of calendar effects. Only eight p-values on returns and

five p-values on standardized returns are less than 0.05, conditional on the 17-calendar effects universe.

These markets are France-MIDCAC, Japan-Tokyo SC, Norway-OSLO SC, UK-FTSE 250, and DJIA

for returns and standardized returns and only for returns: Germany-MDAX, Hong Kong-HS MAIN, and

Italy-MIDEX. It also appears that small- and mid-cap indices are most affected by day-of-the-week and

month-of-the-year return anomalies.

Our tests of the 17-calendar effects universe are at odds with the importance attributed to the Monday

9The tests for the full universe of calendar effects on standardized returns yield no rejection for the same indices plus the

French-SBF120 and -CAC 40, Swedish-SAX-GEN and -OMX, and USA-S&P400.
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anomaly by STW. We present tables 5 and 6 to understand this quandary. Table 5 lists the five calendar

effects that had the smallest sample return for the 25 return series. Of the 125 calendar effects that

generate the smallest returns, 124 are either week-of-the-month-of-the-year or week-day-of-the-month

anomalies.10 The lone exception is the third-worst performing calendar effect of the Tokyo small cap

(SC) index which is associated with an end-of-the-year anomaly. Table 7 of the five worst calendar

effects for standard returns reinforces this view.

STW report that the negative returns on the DJIA associated with Mondayeffect are important for

their calendar effects-based trading rules. This is consistent with table 7 because the Monday effect is

the anomaly responsible for the most negative DJIA standardized return.Otherwise, only three (end-of-

the-year effects) of the 125 worst performing anomalies on standardized returns do not involve either a

day, week, month, or combination anomaly. Thus, the significance of the Monday effect found by STW

in the DJIA is not observed in other national stock markets (for returns orstandard returns). Tables 5 and

7 also show that the anomalies that generate the five poorest returns are more complicated than those in

the 17-calendar effects universe. Our analysis shows that the week-of-the-month-of-the-year and week-

day-of-the-month anomalies help to produce the rejections of the null conditional on the full universe

of calendar effects. These results rest on the abnormally small (e.g., negative) returns produced by the

week-of-the-month-of-the-year and week-day-of-the-month anomalies.

5.3. Positive returns and end-of-the-year effects

Rejections of the null of no calendar effect appear robust to using either returns or standardized returns

and across national stock markets, given we condition on the full universe of calendar effect. The previ-

ous subsection indicates the calendar anomalies that contribute to these rejectionsandyield abnormally

large negative returns. Tables 4 and 6 help to identify the calendar effects that also are responsible for

the rejections and generate abnormally large returns.

Table 4 and table 6 present the five calendar effects that had the largestreturns and standardized

returns, respectively. Unlike tables 5 and 7, there is no systematic pattern of calendar effects that produce

the five largest returns or standardized returns on the ten national stockmarkets. For example, only 25

of the 50 best and second best returns are end-of-the-year effects. The other half are either week-of-the-

month-of-the-year or week-day-of-the-month anomalies. However, wedo find end-of-the-year effects

generate about two-thirds of the ‘Best’ returns and standardized returns.11

The abnormally large returns end-of-the-year effects generate for many national stock markets sug-

gests we conduct tests conditioning only on these anomalies. This is our 5-calendar effects universe,

which consists of two pre- and post-holiday effects and three end-of-the-year effects. Table 3 reports that

only 6 (5) of the 25p-values of the (standardized) return series are greater than 0.05, when we condition

10These anomalies are not part of the 17-calendar effects universe.
11This requires counting the December semi-month-of-the-year anomalyas an end-of-the-year effect for standardized re-

turns.
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on the 5-calendar effects universe.12 Given the abnormally large returns end-of-the-year effect generate,

it is not surprising the null of no calendar effects is rejected in this case.

It is well-known that larger stock returns are most often associated with a higher variance in returns.

This is as true for negative returns as it is for positive returns. Since calendar effects are abnormally large

returns (in absolute value) associated with a specific seasonal event, it raises the question that some of the

extant evidence about calendar effects may reflect conditional time-variation in the second moment of

returns, e.g., Garch-in-mean relationships in the first two (conditional) moments of returns. The results

we present in the next subsection make us suspicious of the notion that calendar effects are only generated

by systematic movements in the first moment of returns.

5.4. DJIA subsample analysis

Calendar effects studies often use different market indices and sample periods to test for the significance

of return anomalies. For example, Lakonishok & Smidt (1988) divide 90 years of daily DJIA returns

into seven (non-overlapping) ten to 14 year subsamples. They note substantial time-variation in the

mean, median, and standard deviation of DJIA returns in 90 years of daily DJIA returns divided into

seven (non-overlapping) ten to 14 year subsamples.13 This induces Lakonishok & Smidt to conduct a

robustness check of calendar anomalies across these subsamples. Thecalendar effects that arise in 90

years of daily DJIA return also persist in the subsamples, according to Lakonishok & Smidt.

We report on the robustness of our tests for calendar effects in returns on the DJIA in figure 1. It

plots dynamicp-values of the hypothesesH0 and H ′
0 using the entire DJIA sample: May 26, 1896

and to May 6, 2002. Thep-values are calculated using rolling subsamples with 2000 observations

(approximately eight years of overlapping data in each subsample). The upper, middle, and lower panels

contain dynamicp-values forH0 and H ′
0, conditional on the full universe, the 17-effects universe and

the 5-effects universe, respectively.

The plots of thep-values reveal long periods during which no calendar effects is significant, based

on 2000 observations. Yet, there are long periods, such as the 1920s and from about 1950 to 1970,

where the calendar effects in the full and the 17-calendar effects universes are significant. On the other

hand, the interval from early 1970s to the late 1980 indicate there is little evidence in favor of calendar

effects. However, there is a brief period around the first Gulf War andrecession of the early 1990s during

which there are significant calendar effects. Note that periods of significance for calendar effects in the

5-calendar effects universe is of much shorter duration than for the full and 17-calendar effects universes.

Further, there is little evidence of calendar effects of any type subsequent to the second oil price shock

of the late 1970s.

12The relevant indices for returns and standardized returns are the Hong Kong-HS Main, Japan-NIKKEI All and NIKKEI-

225, and Sweden-SAX-GEN and-OMX, but the USA-S&P500 only for returns.
13The sample moments of DJIA returns are computed by subtracting the average return over the second-half of the month

from the first.
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Our study of the time-variation in the calendar effect testp-values suggests that significant calendar

effects are not an economically important phenomenon in DJIA returns. This is especially true for the for

recent history of DJIA return because the last instance of smallp-values is short-lived. The DJIA returns

show that the power of calendar effects in DJIA returns appear to be tiedto specific episodes during the

mid-20th century (e.g., post-World War I and II expansions), but these effects have had a smaller impact

in recent years. Thus, evidence for calendar effects in DJIA returns is fragile.

The time-variation in the significance of calendar effects found in DJIA returns holds for DJIA stan-

dardized returns. Our subsample analysis also reveals that calendar effects fail to appear in the last 25

years of DJIA standardized returns across the three universes we consider. This bolsters the notion that

support for anomalous seasonal behavior in the DJIA is weak.

In summary, claims for calendar effects in DJIA returns are fragile. We inspect the time-path of

p-values that account for data-mining biases and find significant calendar effects arise only in specific

sub-samples of DJIA returns and standardized returns during the 20th.The appearance of time-varying

calendar effects suggests systematic movements tied to seasonal events arethe not a key source of fluc-

tuations in DJIA returns.

5.5. Calendar effects in small- and mid-cap indices

Table 3 shows that all but one of the small- and mid-cap return indices rejectthe null for one of the

calendar effects universes. The exception is the Japanese-NIKKEI225. This suggests the underlying

returns generating process differs for stocks with smaller capitalized value compared to stocks with

greater valuations. However, the five best and worst small- and mid-cap returns and standardized returns

often exhibit the same pattern (or and lack of one) as do the broader market indices, according to tables

4-7. It seems that the behavior of returns on small- and mid-cap indices with respect to calendar effects is

not that different from returns on stock indices with larger capitalizations. This result carries over to plots

of the p-values of the other (than DJIA) return series.14 These plots show that the remaining 24 indices

produce time-variation in calendar effects qualitatively similar to the DJIA plot inFigure 1 (conditional

on significant calendar effects).

6. Concluding Remarks

We argue that to evaluate the significance of calendar effects it is necessary to control for the full universe

of these anomalies to avoid data mining biases and therefore, spurious results. A simple generalize-F

test is derived for this purpose. We show our test dominates a Bonferroni bound tests because of its

superior power properties. The power gain exploits the correlation structure of returns conditional on the

universe of calendar effects, which a Bonferroni bound type test ignores. Thus, our test is specifically

designed to evaluate significance of calendar effects that are robust todata mining.

14Which are available by request from the corresponding author.
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This paper finds calendar effects to be statistically significant in almost all ofthe 25 stock indices

from the ten countries we study. Some of the strongest evidence we have isfor calendar effects small- and

mid-cap indices. End-of-the-year, week-of-the-month-of-the-year, and week-day-of-the-month effects

stand out as being responsible for the largest (in absolute value) anomalies. The Monday effect drives

abnormally negative returns on the Dow-Jones Industrial Average on 106 years of daily returns, but not

on the standardized returns of this index or on any other index we consider.

A subsample analysis shows that the significance of calendar effects is not an economically important

phenomenon because in many cases the last instance of significant calendar effects occurred in the late

1980s and early 1990s. Subsequent to this period, we find no evidenceof significant calendar effects

in any of 25 stock return (or standardized return) indices. This suggests there is an element of time-

variation in calendar effects that is not consistent with systematic seasonalvariation in stock returns.

An interesting task for future research is to examine the connection betweenmeasured calendar effects

and conditional time-variation in the second moment of returns associated with Garch-in-mean return

generating functions.

APPENDIX: TECHNICAL ASSUMPTIONS ANDPROOFS

In this appendix we present some assumptions and the proofs of the Lemmas and the Theorem applied

in the paper.

Proof of Lemma 1. The results follow from first principles, as{r t} is assumed to be uncorrelated, and

cov(r t , rs) = σ 2
t if t = s, and zero otherwise.

Proof of Lemma 2. We haveX ∼ N(Bθ ,�) such thatB′
⊥X ∼ N(0, B′

⊥�B⊥). SinceB′
⊥�B⊥ is

symmetric and positive semi-definite, we can writeB′
⊥�B⊥ = Q3Q′ where3 is a diagonal matrix with

non-negative elements,3 = diag(λ1, . . . , λq), andQ orthonormal, i.e.,Q′Q = I . Let the elements of

3 be ordered, such thatλ1 ≥ λ2 ≥ · · · ≥ λr > λr +1 = · · · 0, then clearlyr = rank(B′
⊥�B⊥). Next,

define theq × q diagonal matrixD = diag(d1, . . . , dr , 0, . . . , 0), wheredi = 1/
√

λi for i = 1, . . . , r.

It then follows that(B′
⊥�B⊥)+ = QDDQ′ and thatDQ′B′

⊥X is a vector of independent and normally

distributed variables, with mean zero and where the firstr elements,u1, . . . , ur say, have unit variance

and the lastq − r elements have zero variance (equals zero with probability one). Finally, it follows that

T = X′B⊥(B′
⊥�B⊥)+B′

⊥X = X′B⊥QDDQ′B′
⊥X =

r
∑

i=1

u2
i ,

which isχ2(r ) distributed.

The assumption below, (Assumption A.1), provides conditions that are similar tothose needed for

a central limit theorem for martingale difference sequences, (see, e.g., Davidson, 2000, p. 124 ). The

difference is that we have formulated it in terms of the sets,S(k), k = 1, . . . , m, and the formulations is

for all sets simultaneously.
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Define theσ -algebraFt = σ(r t , r t−1, . . .), and recall thatn(k) is the number of elements inS(k), and

recall the definitions̄r(k) ≡ n−1
(k)

∑

t∈S(k)
r t , ξ (k) ≡ E(r̄(k)), andω̄2

(k),n ≡ n−1
(k)

∑

t∈S(k)
σ 2

t , k = 0, 1, . . . , m,

and the definition ofA(k),t (equal ton−1
(k) if t ∈ S(k), zero otherwise).

Assumption A.1 The process,
{

r t − µt ,Ft

}

is a martingale difference sequence, and

(i ) ω̄2
(k),n − n−1

(k)

∑

t∈S(k)
(r t − µt)

2 p→ 0, whereω̄2
(k),n ≡ n−1

(k)

∑

t∈S(k)
σ 2

t , and

(i i ) For someδ > 0 and some C> 0, it holds thatmaxt∈S(k)
[E
∣

∣r t − µt

∣

∣

2+δ
/ω̄2

(k),n] ≤ C < ∞ for all

n ≥ 1.

From Davidson (2000) it follows directly that

n1/2
(k)

r̄(k) − ξ (k)

ω̄(k),n

d→ N(0, 1).

The multivariate theorem, which is needed for the analysis of calendar effects, is the following.

Theorem A.1 Under Assumption A.1 it holds that

√
n









r̄(0) − ξ (0)

...

r̄(m) − ξ (m)









d→ Nm+1(0, n6n), where 6n =



n−1
(k)n

−1
(k′)

∑

t∈S(k)∩S(k′)

σ 2
t





k,k′=0,...,m

.

Proof. The theorem is proven by employing a Cramer-Wold device. Letλ ∈ R
l+1, whereλ′λ = 1 and

consider the linear combination
m
∑

k=0

λ(k)r̄(k) =
m
∑

k=0

λ(k)

n
∑

t=1

A(k),tr t =
n
∑

t=1

bn,tr t ,

wherebn,t =
∑m

k=0 λ(k) A(k),t . The sequence
{

bn,t

}

satisfies limn sup1≤t≤n bn,t = 0, such that
∑n

t=1 bn,t(r t − µλ)

ωn

d→ N(0, 1),

whereω2
n = λ′6nλ, and whereµλ =

∑m
k=0 λ(k)µ(k) = E(

∑m
k=0 λ(k)r̄(k)).

Since
(

m
∑

k=0

λ(k) A(k),t

)2

=
(

m
∑

k=0

m
∑

k′=0

λ(k)λ(k′) A(k),t A(k′),t

)

,

it holds that

var(
m
∑

k=0

λkr̄(k)) =
n
∑

t=1

b2
n,tvar(r t) =

n
∑

t=1

(

m
∑

k=0

m
∑

k′=0

λ(k)λ(k′) A(k),t A(k′),t

)

σ 2
t

which equals

λ′6nλ =
m
∑

k=0

m
∑

k′=0

λ(k)λ(k′)n
−1
(k)n

−1
(k′)

∑

t∈S(k)∩S(k′)

σ 2
t .

This completes the proof.

19



Testing the Significance of Calendar Effects

REFERENCES

Ariel, R. A. (1987), ‘A monthly effect in stock returns’,Journal of Financial Economics17, 161–174.

Cross, F. (1973), ‘The behavior of stock prices on Fridays and Mondays’, Financial Analysts Journal

29, 67–69.

Davidson, J. (2000),Econometric Theory, Blackwell, Oxford.

Diebold, F. X. & Mariano, R. S. (1995), ‘Comparing predictive accuracy’, Journal of Business and

Economic Statistics13, 253–263.

Dimson, E., ed. (1988),Stock Market Anomalies, Cambridge University Press.

Fama, E. F. (1991), ‘Efficient capital markets II’,Journal of Finance46, 1575–1618.

French, K. (1980), ‘Stock returns and the weekend effect’,Journal of Financial Economics8, 55–70.

Gibbons, M. R. & Hess, P. (1981), ‘Day of the week effect and assets return’, Journal of Business

54, 579–596.

Goncalves, S. & de Jong, R. (2003), ‘Consistency of the stationary bootstrap under weak moment con-

ditions’, Economics Letters81, 273–278.

Hansen, P. R. (2001), ‘A test for superior predictive ability’. BrownUniversity, Economics Working

Paper. 2001-06

http://www.econ.brown.edu/fac/Peter Hansen.

Hansen, P. R. (2003), ‘Asymptotic tests of composite hypotheses’. Brown University, Department of

Economics Working Paper, 2003-09.

http://www.econ.brown.edu/fac/Peter Hansen.

Hansen, P. R. & Lunde, A. (2004), ‘A forecast comparison of volatilitymodels: Does anything beat a

GARCH(1,1)?’,Journal of Applied Econometrics. Forthcoming.

Haugen, R. A. & Lakonishok, J. (1988),The Incredible January Effect, Dow Jones-Irwin, Homewood,

Illinois.

Hensel, C. & Ziemba, W. (1996), ‘Investments results form exploiting turn-of-the-month effects’,Jour-

nal of Portfolio Management22, 17–23.

Jaffe, J. & Westerfield, R. (1985), ‘The weekend in common stock returns: The international evidence’,

Journal of Finance40, 433–454.

Keim, D. B. & Stambaugh, R. F. (1983), ‘A further investigation of the weekend effect in stock returns’,

Journal of Finance39, 819–835.

20



Testing the Significance of Calendar Effects

Keim, D. B. & Ziemba, W. T., eds (2000),Security Market Imperfections in World Wide Equity Markets,

Cambridge University Press.

Lakonishok, J. & Levi, M. (1980), ‘Weekend effects on stock returns: A note’,Journal of Finance37.

Lakonishok, J. & Smidt, S. (1988), ‘Are seasonal anomalies real? a ninety-year perspective’,Review of

Financial Studies1, 403–425.

Lo, A. W. & MacKinlay, A. C. (1990), ‘Data-snooping biases in test of financial asset pricing models’,

Review of Financial Studies3(3), 431–467.

Merton, R. C. (1987), On the current state of the stock market rationality hypothesis,in R. Dornbusch

& S. Fischer, eds, ‘Macroeconomics and Finance: Essays in Honor ofFranco Modigliani’, MIT

Press, Cambridge, Mass.

Osborne, M. F. M. (1962), ‘Periodic structure in the Brownian motion of stock returns’,Operations

Research10, 345–379.

Rogalski, R. J. (1984), ‘New findings regarding day-of-the-week returns over trading and nontrading

periods: a note’,Journal of Finance39, 1603–1614.

Schwert, G. W. (2003), Anomalies and market efficiency,in G. Constantinides, M. Harris & R. Stulz,

eds, ‘Handbook of the Economics of Finance’, North-Holland, chapter15, pp. 937–972.

Smirlock, M. & Starks, L. (1983), ‘Day of the week and intraday effectsin stock returns’,Journal of

Financial Economics17, 197–210.

Sullivan, R., Timmermann, A. & White, H. (2001), ‘Dangers of data-driven inference: The case of

calendar effects in stock returns’,Journal of Econometrics105, 249–286.

Tangaard, C. & Belter, K. (2001), ‘Et dansk udbyttejusteret aktieindeks: 1985-2000 (in danish)’,FI-

NANS/INVEST5, 5–14.

Wachtel, S. B. (1942), ‘Certain observations in seasonal movements in stock prices’,Journal of Business

15, 184–193.

Wang, K., Li, Y. & Erickson, J. (1997), ‘A new look a the Monday effect’, Journal of Finance52, 2171–

2187.

West, K. D. (1996), ‘Asymptotic inference about predictive ability’,Econometrica64, 1067–1084.

West, K. D. & Cho, D. (1995), ‘The predictive ability of several models of exchange rate volatility’,

Journal of Econometrics69, 367–391.

White, H. (2000), ‘A reality check for data snooping’,Econometrica68, 1097–1126.

21



Testing the Significance of Calendar Effects

APPENDIX: TABLES AND FIGURES

Table 1: Summary of calendar effects.

Name of Effect # Effect Individual Effect Names/Apprehensions

Day-of-the-week 5 monday, · · ·, friday

Month-of-the-year 12 january, · · ·, december

End-of-December 3 pre.xmas, pre.xm.ny, inter.xm.ny

Turn-of-the-month 8 mo.first.4, · · ·, mo.first.1, mo.last.1,

· · ·, mo.last.4

Holiday-effects 2 preholiday, postholiday

Semi-month 2 mo.1.half, mo.2.half

Semi-month-of-the-year 24 mo.1.jan, · · ·, mo.1.dec, mo.2.jan,

· · ·, mo.2.dec

Week-of-the-month 5 week1, · · ·, week5

Week-of-the-month-of-the-year 60 week1.jan, · · ·, week1.dec, week2.jan,

· · ·, week4.dec, · · ·, week5.dec

Week-day-of-the-month 60 mon.jan, · · ·, mon.dec, tue.jan, · · ·, thu.dec,

fri.jan, · · ·, fri.dec

This table summarizes the calendar effects investigated in the paper. The first column gives the effect
name, the second gives number of individual effects, and the last gives the individual effect mnemonics
employed in the text and tables.
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Table 2: Summary Statistics for Index Returns

Series Mean Med. Min Max Std. Skew. Kurt. #Obs. Sample Period

DENMARK
KFX 0.05 0.06 -10.91 7.21 1.01 -0.69 12.04 3861 03.06.1985-30.10.2000

FRANCE
SBF 120 0.05 0.05 -7.69 6.20 1.16 -0.26 5.98 2839 28.12.1990-30.04.2002
CAC 40 0.05 0.06 -7.68 6.81 1.25 -0.21 5.36 3586 31.12.1987-30.04.2002
MIDCAC* 0.03 0.05 -7.71 5.90 0.84 -0.98 15.09 2839 28.12.1990-30.04.2002

GERMANY
DAX 100 0.04 0.09 -14.05 6.65 1.24 -0.81 12.17 3599 30.12.1987-06.05.2002
DAX 30 0.03 0.08 -13.71 7.29 1.37 -0.68 10.07 4095 02.01.1986-06.05.2002
MDAX* 0.04 0.07 -15.16 8.12 0.89 -2.14 36.86 3599 30.12.1987-06.05.2002

HONG KONG
HS MAIN 0.05 0.08 -40.54 17.25 1.85 -3.36 74.56 4036 01.01.1986-06.05.2002

ITALY
MIBTEL 0.04 0.05 -7.71 6.83 1.38 -0.20 5.24 2222 16.07.1993-06.05.2002
MIB 30 0.04 0.02 -8.11 7.77 1.52 -0.12 5.15 1903 17.10.1994-06.05.2002
MIDEX* 0.06 0.05 -7.71 4.99 1.18 -0.45 7.33 1851 02.01.1995-06.05.2002

JAPAN
NIKKEI ALL -0.01 -0.05 -6.51 7.13 1.23 0.17 6.24 2793 01.01.1990-06.05.2002
NIKKEI 225 -3*10−3 0.02 -16.14 12.43 1.45 -0.10 10.65 4024 01.01.1986-06.05.2002
TOKYO SC* -0.01 0.02 -11.95 5.49 1.01 -0.82 12.63 4024 01.01.1986-06.05.2002

NORWAY
ALL SHARE 0.03 0.07 -6.34 5.64 1.14 -0.60 6.83 1588 29.12.1995-06.05.2002
OBX 0.03 0.04 -7.24 6.34 1.31 -0.44 6.59 1586 03.01.1995-06.05.2002
OSLO SC* 0.05 0.08 -7.28 5.54 0.89 -0.81 10.69 1588 29.12.1995-06.05.2002

SWEDEN
SAX-GEN 0.05 0.08 -8.07 9.88 1.40 0.06 6.88 1839 02.01.1995-06.05.2002
OMX 0.05 0.07 -8.53 11.02 1.58 0.04 5.83 1839 02.01.1995-06.05.2002

UK
FTSE 350 0.03 0.07 -11.98 5.81 0.95 -1.09 16.01 4129 01.01.1986-06.05.2002
FTSE 100 0.03 0.06 -13.03 7.60 1.02 -0.97 15.77 4129 01.01.1986-06.05.2002
FTSE 250* 0.04 0.09 -11.28 7.25 0.79 -2.03 32.17 4129 01.01.1986-06.05.2002

USA
DJIA 0.02 0.04 -27.96 14.27 1.09 -1.17 39.31 29380 26.05.1896-06.05.2002
S&P 500 0.03 0.03 -22.83 8.71 1.01 -1.69 42.05 7409 01.01.1973-06.05.2002
S&P 400* 0.05 0.08 -7.33 5.97 1.03 -0.30 7.24 2748 12.06.1991-06.05.2002

This table reports summary statistics for the 25 stock indexes investigated in the paper. Mid- and small-cap indices
are marked with an asterix.
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Table 3: p-values from tests for calendar effects.

Series #Obs. p-value return p-value std. return

Full 17 5 Full 17 5

DENMARK
KFX 3861 0.0312 0.1016 0.0078 0.0492 0.2394 0.0084

FRANCE
SBF 120 2839 0.0376 0.5374 0.0088 0.0572 0.5874 0.0050
CAC 40 3586 0.0436 0.4242 0.0122 0.0606 0.4424 0.0078
MIDCAC* 2839 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

GERMANY
DAX 100 3599 0.0510 0.1814 0.0014 0.0686 0.2574 0.0010
DAX 30 4095 0.0816 0.3250 0.0068 0.1072 0.3574 0.0064
MDAX* 3599 0.0004 0.0470 0.0118 0.0026 0.0990 0.0106

HONG KONG
HS MAIN 4036 0.0354 0.0308 0.1696 0.0358 0.1144 0.1386

ITALY
MIBTEL 2222 0.0078 0.0980 <.0001 0.0114 0.1686 0.0006
MIB 30 1903 0.3158 0.4714 0.0038 0.3622 0.5522 0.0030
MIDEX* 1851 0.0046 0.0392 0.0004 0.0086 0.1144 0.0002

JAPAN
NIKKEI ALL 2793 0.0394 0.7298 0.1034 0.0496 0.7828 0.1200
NIKKEI 225 4024 0.1224 0.3400 0.3078 0.1182 0.4046 0.3108
TOKYO SC* 4024 <.0001 0.0002 0.0364 <.0001 <.0001 0.0426

NORWAY
OSLO ALL 1588 0.1528 0.3580 0.0002 0.2082 0.4732 <.0001
OBX 1586 0.2070 0.6204 0.0004 0.2658 0.6618 0.0002
OSLO SC* 1588 <.0001 <.0001 <.0001 0.0010 0.0018 <.0001

SWEDEN
SAX-GEN 1839 0.0402 0.2300 0.1346 0.0530 0.3050 0.1280
OMX 1839 0.0430 0.3230 0.2068 0.0578 0.4250 0.2046

UK
FTSE 350 4129 0.0094 0.3230 0.0162 0.0144 0.4590 0.0166
FTSE 100 4129 0.0134 0.4266 0.0308 0.0198 0.5302 0.0250
FTSE 250* 4129 <.0001 <.0001 0.0056 <.0001 0.0076 0.0032

USA
DJIA 28899 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
S&P 500 7409 0.3104 0.3966 0.0518 0.3584 0.41860.0344
S&P 400* 2748 0.0262 0.6242 <.0001 0.0528 0.6744 0.0004

This table reports bootstrapp-values for the F test. In columns 3-5 test are performed on returns, and it is
performed on standardized returns in columns 6-8. “Full” denotes the complete universe of effects, “17” denotes
the universe with day-of-the-week and month-of-the-year effects, and “5” is the xmas, new year and holiday effects.
Mid- and small-cap indices are marked with an asterix.
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Table 4: Performance of Calendar Effects: The Best five in terms of Returns.

Series Bench. Best 2th Best 3th Best 4th Best 5th Best

DENMARK
KFX 0.046 0.497[p.xm.ny] 0.496[i.xm.ny] 0.419[w5.dec] 0.377[w4.dec] 0.371[w3.jan]

FRANCE
SBF 120 0.047 0.625[p.xm.ny] 0.561[w4.dec] 0.493[tue.oct] 0.472[w5.apr] 0.456[w5.feb]
CAC 40 0.049 0.662[p.xm.ny] 0.628[w1.feb] 0.543[w4.dec] 0.503[w5.apr] 0.476[w5.feb]
MIDCAC* 0.033 0.674[p.xm.ny] 0.572[w5.dec] 0.488[i.xm.ny] 0.482[w5.feb] 0.410[w4.feb]

GERMANY
DAX 100 0.044 0.965[p.xm.ny] 0.560[w4.dec] 0.550[w5.dec] 0.464[w1.feb] 0.454[i.xm.ny]
DAX 30 0.031 0.935[p.xm.ny] 0.580[w4.dec] 0.465[thu.nov] 0.397[w3.nov] 0.389[tue.oct]
MDAX * 0.035 0.458[p.xm.ny] 0.446[w1.feb] 0.318[tue.oct] 0.299[w4.dec] 0.294[w5.dec]

HONG KONG
HS MAIN 0.047 0.700[fri.oct] 0.610[p.xm.ny] 0.602[w1.oct] 0.533[w1.jul] 0.524[w4.dec]

ITALY
MIBTEL 0.041 0.626[fri.jan] 0.617[mon.dec] 0.578[w4.dec] 0.577[p.xm.ny] 0.555[p.xmas]
MIB 30 0.040 0.700[fri.jan] 0.700[p.xm.ny] 0.637[preholi] 0.610[mon.sep] 0.606[i.xm.ny]
MIDEX * 0.058 0.864[i.xm.ny] 0.815[w5.dec] 0.733[w1.feb] 0.633[mon.dec] 0.628[w3.jan]

JAPAN
NIKKEI ALL -0.014 0.715[w5.jan] 0.644[w1.may] 0.355[w5.dec] 0.351[i.xm.ny] 0.344[mo.l.1]
NIKKEI 225 -0.003 0.504[w1.may] 0.471[w5.jan] 0.407[wed.apr] 0.405[wed.dec] 0.373[thu.jul]
TOKYO SC* -0.008 0.656[w1.may] 0.550[w5.jan] 0.411[w5.mar] 0.336[fri.apr] 0.302[mo.1.may]

NORWAY
OSLO ALL 0.033 1.241[p.xm.ny] 1.070[i.xm.ny] 0.975[w5.dec] 0.749[postholi] 0.704[w1.jan]
OBX 0.028 1.220[p.xm.ny] 1.096[i.xm.ny] 0.964[w5.dec] 0.829[postholi] 0.663[mo.2.dec]
OSLO SC* 0.046 1.375[p.xm.ny] 1.028[w5.dec] 0.896[i.xm.ny] 0.785[w1.jan] 0.617[preholi]

SWEDEN
GENERAL 0.048 0.848[i.xm.ny] 0.839[p.xm.ny] 0.780[w5.dec] 0.777[w3.nov] 0.647[thu.jan]
OMX 0.048 0.882[w3.nov] 0.877[i.xm.ny] 0.794[w5.dec] 0.778[p.xm.ny] 0.717[mon.sep]

UK
FTSE 350 0.032 0.444[i.xm.ny] 0.357[w5.jan] 0.309[w4.dec] 0.296[w1.jul] 0.294[w1.mar]
FTSE 100 0.031 0.463[i.xm.ny] 0.371[w5.jan] 0.313[w1.jul] 0.300[w4.dec] 0.298[w1.mar]
FTSE 250* 0.036 0.418[w1.jan] 0.345[i.xm.ny] 0.321[w4.dec] 0.319[w1.mar] 0.283[mo.2.dec]

USA
DJIA 0.019 0.250[p.xm.ny] 0.239[preholi] 0.233[w5.dec] 0.222[w1.jul] 0.215[i.xm.ny]
SP 500 0.029 0.278[w5.jan] 0.230[fri.dec] 0.223[w1.jun] 0.220[i.xm.ny] 0.207[w3.apr]
SP 400* 0.053 0.627[p.xm.ny] 0.598[w5.dec] 0.587[i.xm.ny] 0.469[w4.dec] 0.457[mo.2.dec]

This table reports the returns (effects names are given in brackets) of the five best performing calendar effects
in terms of returns. Mid- and small-cap indices are marked with an asterix. See Table 1 and Section 2 for an
explanation of the effect mnemonics.
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Table 5: Performance of Calendar Effects: The Worst five in terms of Returns.

Series Bench. Worst 2th Worst 3th Worst 4th Worst 5th Worst

DENMARK
KFX 0.046 -0.236[mon.apr] -0.209[w5.aug] -0.199[w4.feb] -0.198[w2.aug] -0.192[fri.aug]

FRANCE
SBF 120 0.047 -0.450[w5.nov] -0.395[thu.sep] -0.384[thu.aug] -0.360[w2.sep] -0.321[mon.aug]
CAC 40 0.049 -0.421[mon.aug] -0.377[thu.aug] -0.328[thu.sep] -0.327[mon.nov] -0.311[w5.nov]
MIDCAC* 0.033 -0.369[fri.sep] -0.364[w5.nov] -0.354[w2.sep] -0.325[thu.sep] -0.282[w3.sep]

GERMANY
DAX 100 0.044 -0.507[thu.sep] -0.318[mon.aug] -0.314[tue.sep] -0.272[w3.sep] -0.255[fri.sep]
DAX 30 0.031 -0.520[thu.sep] -0.293[thu.oct] -0.284[fri.sep] -0.251[w3.sep] -0.249[tue.sep]
MDAX * 0.035 -0.420[w3.sep] -0.354[mon.aug] -0.301[thu.sep] -0.264[w4.aug] -0.238[fri.sep]

HONG KONG
HS MAIN 0.047 -0.992[w5.oct] -0.931[mon.oct] -0.531[mon.jun] -0.475[mon.aug] -0.409[mon.apr]

ITALY
MIBTEL 0.041 -0.625[thu.sep] -0.625[w2.sep] -0.591[wed.may] -0.565[w1.oct] -0.522[mon.jun]
MIB 30 0.040 -0.874[thu.sep] -0.576[wed.may] -0.529[w2.sep] -0.458[w5.aug] -0.454[w1.oct]
MIDEX * 0.058 -0.557[thu.sep] -0.405[mon.jun] -0.390[mon.oct]-0.389[w3.sep] -0.384[w2.sep]

JAPAN
NIKKEI ALL -0.014 -0.453[w1.jan] -0.397[w4.jul] -0.345[w3.jun] -0.302[tue.jan] -0.295[mon.aug]
NIKKEI 225 -0.003 -0.422[mon.apr] -0.371[mon.jun] -0.341[wed.sep]-0.322[w4.jul] -0.319[fri.aug]
TOKYO SC* -0.008 -0.433[w4.jul] -0.345[wed.sep] -0.328[p.xmas] -0.314[w4.sep] -0.310[mon.aug]

NORWAY
OSLO ALL 0.033 -0.603[w3.sep] -0.571[thu.sep] -0.444[w3.mar] -0.359[w2.oct] -0.343[mo.2.sep]
OBX 0.028 -0.774[w3.sep] -0.656[thu.sep] -0.532[w2.oct] -0.492[w3.mar] -0.430[fri.sep]
OSLO SC* 0.046 -0.528[p.xmas] -0.412[thu.sep] -0.394[w3.dec] -0.392[w3.sep] -0.320[tue.sep]

SWEDEN
GENERAL 0.048 -0.511[wed.mar] -0.493[thu.sep] -0.453[thu.aug] -0.450[w3.mar] -0.444[wed.may]
OMX 0.048 -0.559[thu.sep] -0.559[wed.mar] -0.529[thu.aug] -0.521[wed.may] -0.515[w5.aug]

UK
FTSE 350 0.032 -0.355[mon.oct] -0.338[w4.oct] -0.272[w2.sep] -0.261[tue.sep] -0.229[w4.jul]
FTSE 100 0.031 -0.345[mon.oct] -0.340[w4.oct] -0.290[w2.sep] -0.258[tue.sep] -0.232[w4.jul]
FTSE 250* 0.036 -0.390[mon.oct] -0.352[w4.oct] -0.285[w3.sep] -0.263[tue.sep] -0.255[mon.aug]

USA
DJIA 0.019 -0.244[mon.sep] -0.188[mon.oct] -0.162[mon.may] -0.152[mon.jun] -0.136[thu.sep]
SP 500 0.029 -0.171[w4.oct] -0.150[mon.oct] -0.147[thu.dec] -0.122[thu.aug] -0.116[thu.sep]
SP 400* 0.053 -0.352[fri.feb] -0.250[w1.oct] -0.238[mon.apr] -0.226[w4.jul] -0.221[w1.jan]

This table reports the returns (effect names are given in brackets) of the five worst performing calendar effects
in terms of returns. Mid- and small-cap indices are marked with an asterix. See Table 1 and Section 2 for an
explanation of the effect mnemonics.
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Table 6: Performance of Calendar Effects: The Best five in terms of Standardized Returns.

Series Bench. Best 2th Best 3th Best 4th Best 5th Best

DENMARK
KFX 0.045 4.873[mo.f.2] 4.455[mo.1.jul] 4.317[i.xm.ny] 3.795[w1.jul] 3.383[w5.dec]

FRANCE
SBF 120 0.041 3.815[mo.2.dec] 3.606[w4.dec] 3.517[p.xm.ny] 3.392[mo.l.1] 3.008[preholi]
CAC 40 0.039 3.730[w1.feb] 3.649[w4.dec] 3.552[mo.2.dec] 3.504[p.xm.ny] 3.220[preholi]
MIDCAC* 0.039 5.852[w5.dec] 5.669[feb.] 4.790[i.xm.ny] 4.757[mo.l.1] 4.725[jan.]

GERMANY
DAX 100 0.035 4.370[mo.1.jul] 4.287[preholi] 3.971[mo.2.dec] 3.654[w1.jun] 3.570[p.xm.ny]
DAX 30 0.023 3.923[preholi] 3.907[mo.1.jul] 3.696[p.xm.ny] 3.611[w4.dec] 3.267[mo.2.dec]
MDAX * 0.040 5.056[w1.feb] 5.038[mo.l.1] 4.792[preholi] 4.764[p.xm.ny] 4.704[week1]

HONG KONG
HS MAIN 0.025 3.466[p.xm.ny] 3.410[mo.f.2] 3.370[w4.dec] 3.174[friday] 3.144[mo.l.1]

ITALY
MIBTEL 0.030 3.814[mo.2.dec] 3.627[preholi] 3.079[p.xm.ny] 3.019[thu.nov] 2.932[p.xmas]
MIB 30 0.026 4.078[preholi] 3.063[mo.2.dec] 3.052[p.xm.ny] 2.882[thu.nov] 2.643[w3.nov]
MIDEX * 0.049 5.958[p.xm.ny] 4.836[preholi] 4.369[mo.l.1] 3.905[w1.feb] 3.705[w5.dec]

JAPAN
NIKKEI ALL -0.011 3.419[mo.l.1] 2.526[w1.may] 2.143[mo.l.4] 1.968[i.xm.ny] 1.962[thu.feb]
NIKKEI 225 -0.002 2.634[thu.jul] 2.479[wed.dec] 2.432[thu.feb] 2.421[wed.apr] 2.249[w1.may]
TOKYO SC* -0.008 5.056[w1.may] 4.532[mo.1.may] 3.712[may] 3.676[mo.l.1] 3.662[fri.apr]

NORWAY
OSLO ALL 0.029 5.029[p.xm.ny] 3.679[postholi] 3.670[preholi] 3.045[w2.mar] 2.989[fri.mar]
OBX 0.021 4.147[p.xm.ny] 3.609[postholi] 3.163[w1.jul] 3.141[mo.2.dec] 2.969[w2.mar]
OSLO SC* 0.051 4.984[p.xm.ny] 4.768[preholi] 4.573[mo.l.1] 4.539[w4.jan] 4.365[i.xm.ny]

SWEDEN
GENERAL 0.034 3.839[i.xm.ny] 3.794[w3.nov] 3.660[w5.dec] 3.075[w1.feb] 2.942[mo.l.1]
OMX 0.030 3.811[w3.nov] 2.826[mon.sep] 2.742[i.xm.ny] 2.674[w1.feb] 2.556[w5.dec]

UK
FTSE 350 0.033 3.929[mo.2.dec] 3.563[w4.dec] 3.283[mo.1.jul] 3.239[w5.jan] 2.962[december]
FTSE 100 0.031 3.613[mo.2.dec] 3.167[w4.dec] 3.145[mo.1.jul] 3.049[w5.jan] 2.794[december]
FTSE 250* 0.045 5.664[w4.dec] 5.428[mo.2.dec] 4.381[w1.jan] 4.177[week1] 4.163[w1.mar]

USA
DJIA 0.017 7.601[preholi] 6.551[week1] 5.044[p.xm.ny] 4.906[mo.f.2] 4.797[w5.dec]
SP 500 0.029 3.697[mo.2.dec] 3.015[fri.dec] 2.889[w5.jan] 2.799[w1.jun] 2.732[wedn.day]
SP 400* 0.051 4.876[mo.2.dec] 4.222[i.xm.ny] 3.822[w5.dec] 3.508[mo.l.2] 3.475[p.xm.ny]

This table reports the returns (effect names are given in brackets) of the five best performing calendar effects in
terms of standardized returns. Mid- and small-cap indices are marked with an asterix. See Table 1 and Section 2
for an explanation of the effect mnemonics.

27



Testing the Significance of Calendar Effects

Table 7: Performance of Calendar Effects: The Worst five in terms of Standardized Returns.

Series Bench. Worst 2th Worst 3th Worst 4th Worst 5th Worst

DENMARK
KFX 0.045 -2.303[w5.aug] -1.960[august] -1.933[w4.feb] -1.768[w4.jul] -1.727[mo.1.aug]

FRANCE
SBF 120 0.041 -2.442[thu.aug] -2.192[w5.nov] -1.933[w5.aug] -1.832[w3.jun] -1.814[mo.2.sep]
CAC 40 0.039 -2.471[thu.aug] -1.881[w3.jun] -1.823[w5.nov] -1.800[mo.2.sep] -1.775[mon.aug]
MIDCAC* 0.039 -3.358[w5.nov] -2.977[w3.jun] -2.672[wed.jul] -2.590[sept.] -2.500[w3.dec]

GERMANY
DAX 100 0.035 -2.744[thu.sep] -2.197[sept.] -1.954[mo.2.sep] -1.717[w4.jul] -1.712[w3.aug]
DAX 30 0.023 -2.930[thu.sep] -2.417[sept.] -2.105[mo.2.sep] -1.672[fri.sep] -1.578[w3.aug]
MDAX * 0.040 -3.017[w3.sep] -2.311[sept.] -2.230[thu.sep] -2.094[mo.2.sep] -1.977[w3.jun]

HONG KONG
HS MAIN 0.025 -2.184[mo.l.2] -2.182[w3.sep] -2.066[w4.jul] -1.940[thu.mar] -1.797[w5.nov]

ITALY
MIBTEL 0.030 -3.015[wed.may] -2.554[mon.jun] -2.372[w5.aug] -2.125[thu.sep] -2.055[w2.sep]
MIB 30 0.026 -2.499[w5.aug] -2.472[wed.may] -2.187[thu.sep] -2.053[w2.dec] -1.785[mo.2.aug]
MIDEX * 0.049 -2.486[w2.dec] -2.302[mon.jun] -2.202[thu.sep] -2.036[w5.aug] -1.771[mo.1.jun]

JAPAN
NIKKEI ALL -0.011 -2.607[w4.jul] -2.562[mo.f.4] -2.403[monday] -2.382[w3.jun] -2.155[mo.2.jul]
NIKKEI 225 -0.002 -2.481[mon.jun] -2.224[monday] -2.070[w3.jun] -1.947[mo.f.4] -1.930[week4]
TOKYO SC* -0.008 -4.768[w4.jul] -4.245[mo.2.jul] -3.316[sept.] -3.086[p.xmas] -2.898[week4]

NORWAY
OSLO ALL 0.029 -2.338[w3.mar] -1.924[w3.sep] -1.828[w3.jun] -1.770[w5.aug] -1.720[mo.2.sep]
OBX 0.021 -2.500[w3.mar] -1.869[w3.sep] -1.767[wed.may] -1.740[w2.oct] -1.555[thu.jun]
OSLO SC* 0.051 -2.945[w3.jun] -2.937[p.xmas] -2.630[sept.] -2.555[w3.dec] -2.318[w4.jun]

SWEDEN
GENERAL 0.034 -2.369[w5.aug] -2.143[wed.mar] -2.135[wed.may] -1.892[w3.jun] -1.891[thu.aug]
OMX 0.030 -3.053[w5.aug] -2.155[wed.may] -2.094[wed.mar] -2.028[thu.aug] -1.868[thu.sep]

UK
FTSE 350 0.033 -2.633[w4.jul] -2.145[w2.sep] -2.123[tue.sep] -2.030[mo.2.jun] -1.795[thu.aug]
FTSE 100 0.031 -2.506[w4.jul] -2.136[w2.sep] -1.986[thu.aug] -1.961[tue.sep] -1.868[mo.2.jun]
FTSE 250* 0.045 -2.679[tue.sep] -2.470[w4.jul] -2.365[sept.] -2.342[mon.aug] -2.227[w4.jun]

USA
DJIA 0.017 -6.021[monday] -3.571[mon.sep] -3.148[mon.may] -2.673[mon.jun] -2.566[sept.]
SP 500 0.029 -1.948[thu.dec] -1.498[thu.aug] -1.442[w4.jul] -1.331[w4.sep] -1.331[tue.jul]
SP 400* 0.051 -2.610[fri.feb] -1.835[w4.jul] -1.570[w2.jun] -1.566[postholi] -1.373[w1.oct]

This table reports the returns (effect names are given in brackets) of the five worst performing calendar effects in
terms of standardized returns. Mid- and small-cap indices are marked with an asterix. See Table 1 and Section 2
for an explanation of the effect mnemonics.
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Figure 1 This figure present rolling-samplep-values for DJIA. Eachp-value is based on 2000 daily
returns, and calculated in step of 50 observations. The top window contains the full universe of effects,
the middle window is for the 17-effects universe (day-of-the-week andmonth-of-the-year), and the 5-
effects universe (xmas, new year, and holiday) appears in the bottom window.
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