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1 Introduction

Econometricians often face a situation where several nsantenethods are available for a particular em-
pirical problem. A relevant question i8Vhich is the bestThis question is onerous for most data to answer,
especially when the set of competing alternatives is lakdgny applications will not yield a single model
that significantly dominates all competitors because tha wanot sufficiently informative to give an un-
equivocal answer to this question. Nonetheless, it is ptessd reduce the set of models to a smaller set of
models — a model confidence set — that contains the best mdttied @iven level of confidence.

The objective of the model confidence set (MCS) procedure determine the set of models{*, that
consists of the best model(s) from a collection of modst€, wherebestis defined in terms of a criterion
that is user-specified. The MCS procedure yields a modelademiie setM*, that is a collection of models
built to contain the best models with a given level of confitienThe process of winnowing models out
of MP relies on sample information about the relative perforneanaf the models io\°. This sample
information drives the MCS to create a random data-depérsirof models M*. The setM* includes
the best model(s) with a certain probability in the same eémat a confidence interval covers a population
parameter.

An attractive feature of the MCS approach is that it ackndgéss the limitations of the data. Informa-
tive data will result in a MCS that contains only the best modess informative data makes it difficult to
distinguish between models and may result in a MCS that own&everal (or possibly all) models. Thus,
the MCS differs from extant model selection criteria thaba@te a single model without regard to the in-
formation content of the data. Another advantage is thatMis procedure makes it possible to make
statements about significance that are valid in the trawitisense. A property that is not satisfied by the
commonly used approach of reportipgvalues from multiple pairwise comparisons. Another ative
feature of the MCS procedure is that it allows for the pofigittihat more than one model can be the best,
in which caseM™* contains more than a single model.

The contributions of this paper can be summarized as foll&ivst, we introduce the model confidence
set and establish its theoretical properties. Second, oope a practical bootstrap implementation of the
MCS procedure for a set of problems that includes compasisdriorecasting models evaluated out-of-
sample and regression models evaluated in-sample. Thisnmeptation is particularly useful when the
number of objects to be compared is large. Third, the finitepda properties of the bootstrap MCS proce-
dure are analyzed in simulation studies. Fourth, we ap@yES procedure to two empirical applications.
We revisit the out-of-sample prediction problem of Stock &viatson (1999) and construct MCSs for their
inflation forecasts. We also build a MCS for Taylor rule resgiens using three likelihood criteria that
include the AIC and BIC.
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1.1 Theory of Model Confidence Sets

We do not treamodelsas sacred objects, nor do we assume that a particular mquiekents the true data
generating process. Models are evaluated in terms of aspeeified criterion function. Consequently, the
‘best’ model is unlikely to be replicated for all criterialsh, we use the term ‘models’ loosely. It can refer to
econometric models, competing forecasts, or alternathatsneed not involve any modelling of data, such
as trading rules. So the MCS procedure is not specific to cdegpes of models. For example, one could
construct a MCS for a set of different ‘treatments’ by compgarsample estimates of the corresponding
treatment effects, or a MCS for trading rules with the besirSé ratio.

A MCS is constructed from a collection of competing objegt4?, and a criterion for evaluating these
objects empirically. The MCS procedure is based orequivalence test »,; and anelimination rule
er. The equivalence test is applied to the set = M. If §,, is rejected, there is evidence that the
objects inM are not equally ‘good’ ané, is used to eliminate an object with poor sample performance
from M. This procedure is repeated uniil, is ‘accepted’, and the MCS is now defined by the set of
‘surviving’ objects. By using the same significance lewel,in all tests, the procedure guarantees that
lIMp_ o P(M* C /\7’{7“) > 1 — «, and in the case wher&1* consists of one object we have the stronger
result that lim,_, .o P(M* = A’{_a) = 1. The MCS procedure also yielgsvalues for each of the objects.
For a given object, ¢ M°, the MCSp-value, i, is the threshold at whiche /\7’{_“, ifand only if fj > «.
Thus, an object with a small MCB-value makes it unlikely that it is one of the ‘best’ altefnas in M°.

The idea behind the sequential testing procedure that weusmnstruct the MCS may be recognized
by readers who are familiar with the trace-test proceduradtecting the rank of a matrix. This procedure
involves a sequence of trace-tests, see Anderson (198d)isasommonly used to select the number of
cointegration relations within a vector autoregressivadehosee Johansen (1988). The MCS procedure
determines the number of superior models in the same waydhe-test is used to select the number of
cointegration relations. A key difference is that the tréest procedure has a natural ordering in which
the hypotheses are to be tested, whereas the MCS procedureesea carefully chosen elimination rule to
define the sequence of tests. We discuss this issue andiridatimg procedures in Section 4.

1.2 Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of the MCS procetiates convenient when the number of models
is large. The bootstrap implementation is simple to use atfwe and avoids the need to estimate a high-
dimensional covariance matrix. White (2000b) is the soofarany of the ideas that underlies our bootstrap
implementation.

We study the properties of our bootstrap implementationhef MCS procedure through simulation
experiments. The results are very encouraging as the beiloes end up in the MCS at the appropriate
frequency, and the MCS procedure does have power to weed thé poor models when the data contains
sufficient information.
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1.3 Empirical Analysis of Inflation Forecasts and Taylor Rules

We apply the MCS to two empirical problems. First, the MCSdedito study the inflation forecasting
problem. The choice of an inflation forecasting model is greemlly important issue for central banks,
treasuries, and private sector agents. The fifty plus yedition of the Phillips curve suggests it remains
an effective vehicle for the task of inflation forecastingrock and Watson (1999) make the case that “a
reasonably specified Phillips curve is the best tool fordasting inflation”; also see Gordon (1997), Staiger,
Stock, and Watson (1997b), and Stock and Watson (2003).sAtkand Ohanian (2001) conclude that this
is not the case because they find it is difficult for any of thdlis curves they study to beat a simple
no-change forecast in out-of-sample point prediction.

Our first empirical application is based on the Stock and ¥a{d4999) data set. Several interesting
results come out of our analysis. We partition the evaluagieriod in the same two subsamples as did
Stock and Watson (1999). The earlier subsample covers adoeith persistent and volatile inflation, this
sample is expected to be relatively informative about wintddels might be the best forecasting models.
Indeed, the MCS consists of relatively few models, so the Nd@Ses to be effective at purging the inferior
forecasts. The later subsample is a period in which inflag@alatively smooth and exhibits little volatility.
This yields a sample that contains relatively little infation about which of the models deliver the best
forecasts. However Stock and Watson (1999) report that ehaoge forecast, which uses last month’s
inflation rate as the point forecast, is inferior in eithebsamples. In spite of the relatively low degree of
information in the more recent subsample, we are able toledadhat this no-change forecast is indeed
inferior to other forecasts. We come to this conclusion bseahe Stock and Watson no-change forecast
never ends up in the MCS. Next, we add the no-change forecasbged by Atkeson and Ohanian (2001)
to the comparison. Their forecast uses the past year'siorlaate as the point prediction rather than
month over month inflation. This turns out to matter for theasel subsample, because the no-change
(year) forecast has the smallest mean square prediction @SPE) of all forecasts. This enables us to
reconcile Stock and Watson (1999) with Atkeson and Ohar#80X) by showing their different definitions
of the benchmark forecast, no-change (month) and no-chéyeg), respectively, explain the different
conclusions they reach about these forecasts.

Our second empirical example shows that the MCS approactsefal tool for in-sample evaluation of
regression models. This example applies the MCS to chod=ing a set of competing (nominal) interest
rate rule regressions on a quarterly U.S. sample that rons #979 through 2006. These regressions fall
into the class of interest rate rules promoted by Taylor 819%is Taylor rule forms the basis of a class
of monetary policy rules that gauge the success of monewligypat keeping inflation low and the real
economy close to trend. The MCS does not reveal which Tayler negressions best describe the actual
U.S. monetary policy, nor does it identify the best policjeruRather the MCS selects the Taylor rule
regressions that have the best empirical fit of the U.S. &dands rate in this sample period, where the
‘best fit’ is defined by different likelihood criteria.
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The MCS procedure begins with 25 regression models. Wedectupure first-order autoregression,
AR(1), of the federal funds rate in the initial MCS. The remiafy 24 models are Taylor rule regressions
that contain different combinations of lagged inflatiomgdaf various definitions of real economic activity
(i.e., the output gap, the unemployment rate gap, or reajimercost), and in some cases the lagged federal
funds rate.

It seems that there is limited information in our U.S. sanfplethe MCS procedure to narrow the set
of Taylor rule regressions. The one exception is that the MAIg holds regressions that admit the lagged
interest rate. This includes the pure AR(1). The reasoraisttte time-series properties of the federal funds
rate is well explained by its own lag. Thus, the lagged feldarals rate appears to dominate lags of inflation
and the real activity variables for explaining the curramds rate. There is some solace for advocates of
interest rate rules because under one likelihood critethienMCS often tosses out Taylor rule regression
lacking in lags of inflation. Nonetheless, the MCS indicdles the data is consistent with either lags of the
output gap, the unemployment rate gap, or real marginalptaging the role of the real activity variables in
the Taylor rule regression. This is not a surprising reddiasurement of ‘gap’ and marginal cost variables
remain an unresolved issue for macroeconometrics; for pkasee Orphanides and Van Norden (2002)
and Staiger, Stock, and Watson (1997a). It is also true tlatetary policymakers rely on sophisticated
information sets that cannot be spanned by a few aggregadbles, see Bernanke and Boivin (2003). The
upshot is that the sample used to calculate the MCS has tiffieextracting useful information to separate
the pure AR(1) from Taylor rule regressions that includel#gged federal funds rate.

1.4 Outline of Paper

The paper is organized as follows. We present the theordtamaework of the MCS in Section 2. Section
3 outlines practical bootstrap methods to implement the M@$tiple model comparison methods related
to the MCS are discussed in Section 4. Section 5 reports sdtsef simulation experiments. The MCS is
applied to two empirical examples in Section 6. Section thales.

2 General Theory for Model Confidence Set

In this section, we discuss the theory of model confidencefeet general set of alternatives. Our leading
example concerns the comparison of empirical models, ssiibracasting models. Nevertheless, we do not
make specific references to ‘models’ in the first part of tkisti®n, in which we lay out the general theory.

We consider a set\°, that contains a finite number of objects that are indexed$yi, ..., mg. The
objects are evaluated in terms of a loss function and we deahetloss that is associated with objedh
periodt asL;¢,t =1, ..., n. For example, in the situation where a point forecﬁ(gt, of Y; is evaluated in
terms of a loss functiorl,, we defineL;; = L(Y;, Yi1).
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Define the relative performance variables
dji=Liy—Lj,, forall i, jeM

This paper assumes that; = E(dj; 1) is finite and does not depend onfor all i, j € MO, We rank
alternatives in terms of expected loss, so that alternatiz@referred to alternative if 1;; < 0.

Definition 1 The set of superior objects is defined by
M ={ieM®:ip; <0 foral je M.

The objective of the MCS procedure is to determivié. This is done through a sequence of significance
tests, where objects that are found to be significantly ioféo other elements aM° are eliminated. The
hypotheses that are being tested take the form:

Hom tpij =0 foralli, j € M, Q)

where M c M°P. We denote the alternative hypothesis, # O for somei, j € M, by Ha 4. Note that
Ho 1+ Is true given our definition aM*, whereadH o, is false if M contains elements from botkt* and
its complementAM*. Naturally, the MCS is specific to set of candidate modait?, and therefore silent
about the relative merits of objects that are not included/4f

2.1 The MCS Algorithm and Its Properties

As stated in the introduction, the MCS procedure is basedha@taivalence test ,, and anelimination
rule, ers. The equivalence test,, is used to test the hypothesis 1, for any M c MO, andey, identifies
the object ofM that is to be removed from\1 in the event thaHy . is rejected. As a convention we let
sm = 0ands g = 1 correspond to the cases whetg . are ‘accepted’ and ‘rejected’ respectively.

Definition 2 (MCS Algorithm) Step 0: Initially setM = M°. Step 1: Test by usings, at levela.
Step 2: If K Aq Is ‘accepted’ we define th@l\’{_a = M, otherwise we useg to eliminate an object from
M and repeat the procedure from Step 1.

The set,/\//T’{_a, which consists of the set of ‘surviving’ objects (thosettharvived all tests without
being eliminated) is referred to as thedel confidence seTheorem 1 that is stated below shows that the
term ‘confidence set’ is appropriate in this context, predidhat the equivalence test and the elimination
rule satisfy the following assumption.

Assumption 1 For any M c M° we assume the following abo,,, erq): (@) limsup, .. P =
1Hom) < a; (b) limp o PG = 1{Ha M) = 1; and (€) limy o P(er € M*[Ha M) = 0.
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The conditions that Assumption 1 states 8oy are standard requirements for hypothesis tes#s.
requires the asymptotic level not to exceed(b) requires the asymptotic power to be one; wher@as
requires that a superior objei¢t € M* is not eliminated (ag — oo) as long as there are inferior models
in M.

Theorem 1 (Properties of MCS) Given Assumption 1, it holds thét) liminf,_ ., P(M* C /\7’{7&) >
1—a, and(ii) lim,_. P(i € M}_) =0foralli ¢ M*.

Proof. Leti* € M*. To prove(i) we consider the event that is eliminated fromM. From Assumption
l.citfollows thatP(6arr = 1, ep = i*|Ham) < P(ear = 1*|Ha ) — 0 asn — oo. So the probability
that a good model is eliminated whewl contains poor models vanishesras—> oco. Next, Assumption
l.a shows that limsup, P(6m = 1, epm = 1*|Hom) = limsup,_, . P = 1|Ho M) < «, such that
the probability that* is eliminated when all models in are good models, is asymptotically bounded by
«. To prove(ii), we first note that lim. ., P(exs = i*|Ha a¢) = 0 such that only poor models will be
eliminated (asymptotically) as long ds! ¢ M*. On the other hand, Assumptionblensures that models
will be eliminated as long as the null hypothesis is falle.

Consider first the situation where the data contains litifermation, such that the equivalence test
lacks power and the elimination rule may question a supeniadel prior to the elimination of all inferior
models. The lack of power causes the procedure to terminatedrly (on average), and the MCS will
contain a large number of models, including several infeniodels. We view this as a strength of the MCS
procedure. Since lack of power is tied to the lack of infoliorain the data, the MCS should be large when
there is insufficient information to distinguish good and lnaodels.

In the situation where the data is informative, the equivedetest is powerful and will reject all false
hypotheses. Moreover, the elimination rule will not quastany superior model until all inferior models
have been eliminated. (This situation is guaranteed asytioglly). The result is that the first time a
superior model is questioned by the elimination rule is wtienequivalence test is applied Ad*. Thus,
the probability that one (or more) superior model is elintlis bounded (asymptotically) by the size of the
test! Note that additional superior models may be elimish@tesubsequent tests, but these tests will only be
performed ifHq A4+ IS rejected. Thus, the asymptotic familywise error (FWE@ ravhich is the probability
of making one or more false rejections, is bounded by thd tbe¢ is used in all tests.

Sequential testing is key for building a MCS. However, ecoatiicians often worry about the proper-
ties of sequential testing procedures, because such camatate’ Type | errors with unfortunate conse-
quences, see e.g. Leeb and Potscher (2003). The MCS preatmis not suffer from this problem because
the sequential testing is halted when the first hypothesa&tepted'.

When there is only a single model imt* (one best model) we obtain a stronger result.

Corollary 2 Suppose that Assumption 1 holds and thdt is a singleton. Thenim,_ . P(M* =
Aifot) = 1
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Proof. WhenM* is a singleton M* = {i*}, then it follows from Theorem 1 that will be the last surviving
element with probability approaching oneras-> oo. The result now follows, because the last surviving

element is never eliminatel

2.2 Coherency between Test and Elimination Rule

The previous asymptotic results do not rely on any direcineation between the hypothesis te$t,,
and the elimination rulegy,. Nonetheless when the MCS is implemented in finite samplesetis an
advantage to the hypothesis test and elimination rule bmahgrent. The next theorem establishes a finite
sample version of the result in Theorem 1.i when there is @icecoherency between the hypothesis test
and elimination rule.

Theorem 3 Suppose that By = 1, ey € M*) < « then we have
PIM* C Myio) >1—a.

Proof. We only need to consider the first instance thgt € M* because all preceding tests will not
eliminate elements that are i*. Regardless of the null hypothesis being true or false, we Ra¥ , =

1l ey € M*) < «. So it follows thate bounds the probability that an element froit* is eliminated.
Additional elements froma\* may be eliminated in subsequent tests, but these test vyllbenundertaken
if all preceding tests are rejected. So we conclude ERait* ﬂl_a) >1—o.0

The property thatP (5, = 1,en € M*) < « holds under both the null hypothesis and the alter-
native hypothesis is key for the result in Theorem 3. For awéth the correct size, we have (6 y =
1|Hom) < o, which impliesP(Sa = 1, enpr € M*|Hp ) < «. The additional conditionP (5, =
1, ey € M*|Ha M) < «, ensures that a rejectiofi, = 1, can be taken as significant evidence #atis
not in M*.

In practice, hypothesis tests often rely on asymptoticltesbat cannot guarantde(, = 1, ey €
M*) < « holds in finite samples. We provide a definition of cohereneyMeen a test and an elimination
rule that is useful in situations where testing is groundedsymptotic distributions. In what follows, we
use P, to denote the probability measure that arises by imposiagtii hypothesis by the transformation

hij.t > dij.t — ;-
Definition 3 There is said to be coherency between test and eliminatienwhen
Pobm=1enm e M*) < Py(6pm = 1).

The coherency in conjunction with an asymptotic control e Type | error, limsup, ., Po(ba =
1) < a, translate into an asymptotic version of the assumption weenita Theorem 3. Coherency places
restrictions on the combinations of tests and eliminatidas we can employ. These restrictions go beyond

those imposed by the asymptotic conditions we formulatefissumption 1. In fact, coherency serves to

8
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curb the reliance on asymptotic properties, in order tocpeirverse outcomes in finite samples that could
result from absurd combinations of test and eliminatiore.ruCoherency prevents us from adopting the
most powerful test of the hypothesi$ 1( in some situations. The reason is that tests do not nedgssari
identify a single element as the cause for the rejection. @dganalogy is found in the standard regression
model, where & -test may reject the joint hypothesis that all regressiceffments are zero, even though
all t-statistics are insignificarit.

In our bootstrap implementations of the MCS procedure, vaphathe required coherency between the
test and the elimination rule.

2.3 MCS p-Values

In this section we introduce the notion of MQ&values. The elimination rule,, defines a sequence of
(random) setsM® = M; D My D -+ D Mm,, WhereM; = {en;, .. ., M, } andmg is the number of
elements inM°. Soey 0 = ey, is the first element to be eliminated in the event tHatvy,, is rejected,
e, is the second element to be eliminated, etc.

Definition 4 (MCS p-values) Let By, M denote the p-value associated with the null hypothesis/H
with the convention that g ,,, = 1. The MCS p-value for modelg e MO is defined byf)eMj =

maxfj PHO.Mi :

The advantage of this definition of MC&values will be evident from Theorem 4 that is stated below.
Since M, consists of a single model, the null hypothesi, A+, . simply states that the last surviving
model is as good as itself, making the conventiBg, Mg = 1, logical.

Table 1 illustrates how MC®-values are computed and how they relatgtealues of the individual
tests,PHovMi, i =1,...,myg. The MCSp-values are convenient because they make it easy to determin
whether a particular object is 'uﬂ’{w or not, for anywx. Thus, the MCSp-values are an effective way of
conveying the information in the data.

Theorem 4 Let the elements oM be indexed by i= 1,...,mg. The MCS p-valuefy;, is such that
i e M;_, ifand only iffy > a, foranyie M.

Proof. Suppose thaf < o and determine thk for whichi = ey, . Sincep, = f’emk = max; <k PHO,MJ, it
follows thatHo 4., - - ., Ho.A, are all rejected at significance level Hence, the first accepted hypothesis
(if any) occurs after = eny, has been eliminated. §9 < « impliesi ¢ /\7’{7&. Suppose now thah > «.
Then for somg < k we havePHo’Mj > a, in which caseH u; is accepted at significance levelwhich
terminates the MCS procedure before the elimination rute e, = i. So i > « impliesi € M;_.
This completes the prodil

1Another analogy is that it is easier to conclude that a mundertaken place, than it is to determine who committed thelerur
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Table 1: Computation of MC$-values

Elimination Rule p-value forHo a4, MCS p-value
e, Pho.ni, = 0.01 Pe,,, = 0.01

em, Phon, = 0.04 Pe,, = 0.04

e, Phori, = 0.02 Pen, = 0.04

em, Pho.r, = 0.03 Pe,,, = 0.04

eMs Phorie = 0.07 Pe,, = 0.07

M, Pho.ng = 0.04 Pe, = 0.07

em, Proa, = 0.11 Pe,, = 0.11

Mg Phorig = 0-25 Pery, = 0.25
My Pr, Mg = 1.00 f’emmo =100

The table illustrates the computation of M@fvalues. Note that MC$-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For exantipeMCS p-value forey, (the third model to
be eliminated) exceeds thevalue forHg A, because th@-value associated withlg o, — a null hypothesis tested
prior to Hg aq, — is larger.

The interpretation of a MC®-value is analogous to that of a classigalalue. The analogy is to a
(1— ) confidence interval that contains the ‘true’ parameter wigimobability no less thand«. The MCS
p-value also cannot be interpreted as the probability thatrqoular model is the best model, exactly as a
classical p-value is not the probability that the null hyyasis is true. Rather, the probability interpretation
of a MCS p-value is tied to the random nature of the MCS because the M@&ndomsubset of models
that containsM* with a certain probability.

3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimimatile that satisfy Assumption 1. The following
assumption is sufficiently strong to enable us to implemeatMCS procedure with bootstrap methods.

Assumption 2 For some r > 2 andy > 0 it holds thatE|dj """ < oo for all i, j € MP° and that
{dij.t}i,jero Is strictly stationary andv-mixing of order—r/(r — 2).

Assumption 2 places restrictions on the relative perfomearariables{d;; 1}, not directly on the loss
variables{L;}. For example, a loss function need not be stationary as lotigedsss differentials{d;; .},
i,j € MO satisfy Assumption 2. The assumption allows for some tygestractural breaks and other
features that can create non-stationgry; }, as long as all objects iM° are affected in a ‘similar’ way that
preserves the stationarity odij ¢}.
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3.1.1 Quadratic-Form Test

Let M be some subset g§1° and letm be the number of models i = {i1, ..., in}. We define the vector
of loss-variables|. = (L, ¢, ..., Li,0), t =1,...,n, and its sample average,= n! Zt”:l L:, and we
let: = (1, ..., 1) be the column vector where afi entries equal one. The orthogonal complement ts
anm x (m — 1) matrix, ¢, that has full column rank and satisfiés = 0 (a vector of zeros). Then — 1
dimensional vectoiX; = ¢/, Ly can be viewed am — 1 contrasts because each elemenkKpfis a linear
combination ofd;j 1, i, j € M, which has mean zero under the null hypothesis.

Lemma5 Given Assumption 2, letX= /| L; and define9 = E(X;). The null hypothesis ¢l is
equivalent to = 0 and it holds that #2(X — 0) 4 N(0, ©), where X = n71Y 1 X, and =
limp_ o Var(n/2x).

Proof. Note thatX; = ¢/, Ly can be written as a linear combinationdyfy, i, j MO, because’ | = 0.
Thus Ho v is given byd = 0, and the asymptotic normality follows by the central limietnem foro-
mixing processes, see e.g. White (200@R).

Lemma 5 shows thaH o can be tested using traditional quadratic-form statistidés example is
To = nX'£#X, where: is some consistent estimator Bfand 3* denotes the Moore-Penrose inverse of
3.2 The rankq = rank() represents the effective numberaoitrasts(the number of linearly independent
comparisons) undefly . SinceS 5 ¥ (by assumption) it follows thafg 4 qu) Wherequ) denotes
the x 2-distribution withq degrees of freedom. Under the alternative hypoth@gjgjiverge to infinity with
probability one. So the testy, will meet the requirements of Assumption 1 when construétech To.
Although the matrix.; is not fully identified by the requirements;: = 0 and det/, ¢;) # O (but the
sub-space spanned by the columns,ois), there is no problem because the stati$ticis invariant to the
choice fort .

A rejection of the null hypothesis based on the quadratioiftest need not identify a model that is not
in M*. The reason is that a large valueTef can stem from severa]lj being slightly different from zero.
In order to achieve the required coherence between testlemithaion rule additional testing is needed.
Specifically, one needs to test all sub-hypotheses of aegteg] hypothesis unless the sub-hypothesis is
nested in an accepted hypothesis, before further elinoimagi justified. The underlying principle is known
as theclosed testing procedursee Lehmann and Romano (2005, 366-367).

Whenm is large relative to the sample size,reliable estimates af are difficult to obtain. The reason
is that the number of elements Bfto be estimated are of order. It is convenient to use a test statistic
that does not require an explicit estimate3bfn this case. We consider test statistics that resolve $kigei
in the next section.

2Under the additional assumption thalfj ¢ }; j< 4 is uncorrelated (across, we can us&l = n=1 Y1 (X¢ — X)(X¢ — X)'.
Otherwise, we need a robust estimator along the lines of Mewd West (1987). In the context of comparing forecasts t\Afes
Cho (1995) were first to use the test statisTig, They based their test on (asymptotic) critical values frp?mil).
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3.1.2 Tests Constructed front-Statistics

This section develops two tests that are based on muttiptatistics. This approach has two advantages.
First, it bypasses the need for an explicit estimat&ofecond, the multiplé-statistic approach simplifies
the construction of an elimination rule that satisfies thgomoof coherency formulated in Definition 3.

Define the relative sample loss statistidg,= n' Y "{_, d;; andd;. = m~*Y";_,,d;;. Hered; mea-
sures the relative sample loss betweerni ttteand j -th models, whiled;. is the sample loss of thieth model
relative to the average across models\ih The latter can be seen from the identity= (L; — L.), where
Li=n1>  LitandL. =m™3Y",_,, Li. From these statistics we construct thetatistics

tij :L and ti,:L fOfi,j e M,

Jvand;) Vvand.)
wherevar(d;;) andvar(d,.) denote estimates of v@f;) and vard,.) respectively. The first statisti¢, , is
used in the well known test for comparing two forecasts, seb@d and Mariano (1995) and West (1996).
Thet-statisticst;j andt;., are associated with the null hypothesis thigt: n;; = 0 andH;. : ;. = 0 where
wi. = E(d..). These statistics form the basis of tests of the hypothidsis,;. We take advantages of the
equivalence betweeHg v, {Hjj, for alli, j € M}, and{H;. foralli e M}. With M = {iy, ..., in} the
equivalence follows from

i, =+ = i, < wj =0foralli,j e M & ;. =0foralli e M.

Moreover, the equivalence extends{tq. < 0 for alli € M} as well as{|w;;| < O for alli, j € M}, and
these two formulations of the null hypothesis map naturially the test statistics
Thmaxm = ine]/%(Xti' and Trm = iTE% Itij |,

which are available to test the hypothesig .2 The asymptotic distributions of these test statistics are n
standard because they depend on nuisance parametersifotiddre null and the alternative). However, the
nuisance parameters pose few obstacles as the relevaittidishs can be estimated with bootstrap methods
that implicitly deal with the nuisance parameter problernisTeature of the bootstrap has previously been
used in this context by Kilian (1999), White (2000b), Han$2803b, 2005), and Clark and McCracken
(2005).

Characterization of the MCS procedure needs an eliminatita) ey, that meets the requirements of
Assumption 1.c and the coherency of Definition 3. For thedesistic Tyax A4 the natural elimination rule
IS €max. M = arg maxe ti. because a rejection of the null hypothesis identifies thetngsisi;. = 0 as
false, forj = emaxa- In this case the elimination rule removes the model thatrimrtes most to the test
statistic. This model has the largest standardized exosss¢lative to the average across all modelsin
With the other test statisticlr 1¢, the natural elimination rule isg A1 = arg maxeam SUp cpq tij because

3An earlier version of this paper has results for the tesissied, Tp = T:ltiz_ andTq.
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this model is such thdt ,,; = Tr m, for somej € M. These combinations of test and elimination rule
will satisfy the required coherency.

Proposition 6 Letdmax A1 @ndSr ¢ denote the tests based on the statistigs, X+ and Tr 4, respectively.
Then(§maxm» €maxm) and (r a1, €r A1) Satisfy the coherency of Definition 3.

Proof. Let T; denote eithet;. or max <4 tij, and note that the test statisti@ax 14 andTgr 4, are both of
the formT = maxca( Ti. Let Py be as defined in Section 2.2. From the definitions$.adndt;; we have
fori € M* the first order stochastic dominance resBifimaxc ¢ Ti > X) > P(maxcar Ti > X) for any
M’ ¢ M*and allx € R. The coherency now follows from

P(T > c,epy =i forsomel € M*) = P(T > ¢, T =T, for somei € M¥)

=P( max Ti>c T >T,forallje M) <P( max T, >0
ieMnNM* ieMnNM*

< Po( max T > c) < Pp(maxT; > c) = Py(T > ¢).
ie MNM* ieM

This completes the proofll
Next, we establish two intermediate results that undetpérbbotstrap implementation of the MCS.

Lemma 7 Suppose that Assumption 2 holds and define (dy., ..., dy.)". Then
NY2(Z — ) S Np(0,Q),  asn— oo, )
wherey = E(Z) andQ = lim,_, var(n*?Z), and the null hypothesis, $J1, is equivalent toxy = 0.

Proof. From the identityd;, = L; — L. = L; — MY icum L= m‘lzjeM([i -Lj)= m‘lzjeMaij,
we see that the elements gfare linear transformations of from Lemma 5. Thus for somen(— 1) x m
matrix G we haveZ = G’X, and the result now follows, wherng = G'60 andQ = G’'SG. (Them x m
covariance matrix2, has reduced rank, as raidk) <m— 1.)H

In the following, we leto denote thenxm correlation matrix that is implied by the covariance matfix
of Lemma 7. Further, given the vector of random varialgles Ny (0, 0), we letF, denote the distribution
of max &;.

Theorem 8 Let Assumption 2 hold and suppose thgt = var(n'/2d,.) = nvard;.) LY w?, where w?,

i =1,..., mare the diagonal elements@f Under H 1 we have Fax a1 4 F, and under the alternative
hypothesis, H (¢, we have that J.x »« — oo in probability. Moreover, under the alternative hypottgesi
we have faxm = tj. where = enaxm ¢ M*, for n sufficiently large.

Proof. Let D = diag@?, ..., %) andD = diag@?, ..., ®5). From Lemma 7 it follows that, =
Eipr.e o Emn) = DY202Z & Ny (0, 0), sinceg = D-Y2QD-Y2 Fromt,. = d./v/Vand,)

13



Model Confidence Set

nY2d;. /& = Eingr it now follows thatTmax v = max t2 = max (D~Y/2n%/22), 4 F,. Under the alterna-
tive hypothesis we havéj. L wj. > Oforanyj ¢ M*, so that both;. and Trax A diverge to infinity at
raten®/2 in probability. Moreover, it follows thagmax v ¢ M*, for n sufficiently large B

Theorem 8 shows that the asymptotic distributionTgfx ¢ depends on the correlation matrix,
Nonetheless, as discussed earlier, bootstrap methodsecamployed to deal with this nuisance param-
eter problem. Thus, we construct a testHf o, by comparing the test statistiG,ax » t0 an estimate of the
95%-quantile, say, of its limit distribution under the niajipothesis. Although the quantile may depend on
o, our bootstrap implementation leads to an asymptoticaligl tast because the bootstrap consistently esti-
mates the desired quantile. A detailed description of ootdicap implementation is available in a separate
appendix, Hansen, Lunde, and Nason (2009).

Theorem 8 formulates results for the situation where the ME&8nstructed wWitimax a1 @aNdemnax v =
arg maxt;.. Similar results hold for the MCS that is constructed frdg andeg r¢. The arguments are
almost identical to those used for Theorem 8.

3.2 MCS for Regression Models

This section shows how to construct the MCS for regressiodatsausing likelihood-based criteria. Infor-
mation criteria, such as the AIC and BIC, are special caseluitding a MCS of regression models. The
MCS approach departs from standard practice where the AdB#A select a single model, but are silent
about the uncertainty associated with this selection. TimesMCS procedure yields valuable additional in-
formation about the uncertainty surrounding model sedactin Section 6.2, we apply the MCS procedure
in-sample to Taylor rule regressions that indicates theettinty can be substantial.

Although we focus on regression models for simplicity, itlWe evident that the MCS procedure laid
out in this setting can be adapted to more complex models, asithe type of models analyzed in Sin and
White (1996).

3.2.1 Framework and Assumptions

Consider the family of regression mode¥s,= /8]— Xjt+ejut=1...,n whereX; is a subset of the
variables inX;, for j = 1, ..., my. The set of regression model$/°, may consist of nested, nonnested,
and overlapping specifications.

Throughout we assume that the p@dy, X{) is strictly stationary and satisfies Assumption 1 in Goneslv
and White (2005). This justifies our use of the moving-blooktstrap to implement our resampling proce-
dure. The framework of Goncalves and White (2005) permitskngerial dependence (iY;, X{), which is
important for many applications.

The population parameters for each of the models are defiyngld;b= [E(Xj,tX],t)]_lE(X,—,th) and
agj = E(ej1)% wheresj; = Y; — Boj Xjt, t = 1,...,n. Furthermore, the Gaussian quasi-log-likelihood
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function is, apart from a constant, given by
n 1
0. 0% = = logo? — 0;25 D =B X%
t=1

3.2.2 MCS by Kullback-Leibler Divergence

One way to define the best regression model is in terms of tHivadk-Leibler information criterion
(KLIC), see e.g. Sin and White (1996). This is equivalentanking the models in terms of the expected
value of the quasi-log-likelihood function, when evaluhtg their respective population parameters, i.e.
E[¢(Bo; agj )]. Itis convenient to define

" (Y, — B Xj0)2

2 b
t=1 o]

Q(Z.0)) = —2(Bj.0%) =nlogo? +

whered; can be viewed as a high dimensional vector that is restrinyetie parameter spac®,; C O, that
defines thg -th regression model. The population parameters are hega gy, = argmirba_)j E[Q(Z, )],
j =1,..., mg, and the best model is defined by mE[Q(Z, 6¢;)]. In the notation of the MCS framework
the KLIC leads to,

Miuc = {J : E[Q(Z, 90])] = miin E[Q(Z, 90i)]} s

which (as always) permits the existence of more than onerbedel? The extension to other criteria, such
as the AIC and the BIC, is straight forward. For instance séteof best models in terms of the AIC is given
by M. = {j : E[Q(Z, 0¢)) + 2Kk;] = min; E[Q(Z, 0i) + 2ki]}, wherek; is the degrees of freedom in
the j-th model.

The likelihood framework enables us to construct eitﬁtuc or /\//TZ,C by drawing on the theory of
quasi-maximum likelihood estimation, see e.g. White (39%lince the family of regression models are
linear, the quasi-maximum likelihood estimators are qu@j = (Zt”:l Xj,tX],t)il > XjtYe, and
62 =n"1y 0 &7, whered;; =Y, — B/J X; . We have

Q(Z.6)) — Q(Z.6¢)) =n {(logogj — |Ogc}J2) + (n—lzgit/agj — 1)} :
t=1

which is the quasi-likelihood ratio (QLR) statistic for thall hypothesisHo : 6 = 6;.

In the event that thg-th model is correctly specified, it is well known that the ilirdistribution of
Q(Z,éj) — Q(Z,00)) is kaj), where the degrees of freedorky, is given by the dimension ofy; =
<,35j,agj)/. In the present multi-model setup, it is unlikely that all netedare correctly specified. More
generally, the limit distribution of the QLR statistic hattetform,z:(j:l Aij 2?2

N Where)\,l’j,...,)\,kj’j are

4In the present situation, we have@(Zj, 0p;)] o a(z)j. The implication is that the error varianoe(z)j, induces the same
ranking as KLIC, so thaM(, ¢ = {j : o; = minj/ cr(z)j,}.
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the eigenvalues on‘ljj andZy j, ..., Zy.j ~ iidN(0O, 1). The information matriceg; andJ; are those
associated with thg-th model,Z; = diag(o5?E(X; (X] ). 305;*) and

—4. 15N e e X 15,=6p-1§y Y
J =E O N Zs,t:l XJ,SSJ,sthXj,t 500; N Zs,t:l XJ,SSJ,SSJ,t
= o 1,-8-1 Zn (82 &2 _gh ) ’
29 0j st=1\%j,s%jt 0]

The effective degrees of freedok],, is defined by the mean of the QLR’s limit distribution,

k}‘ = A1j +“'+)“kj,j =U‘{Ij_l‘7j}

n n
—tr {[E(Xj,tX}’t)]_laojzn_l > E(xj,se,-,sx],te,-,t)} it Y gl g,
st=1 st=1
The previous expression points to estimatiigvith HAC-type estimators that account for the autocorre-
lation in {Xj &} ¢} and{sJ?,t}, e.g. Newey and West (1987) and Andrews (1991). Below we usmples
bootstrap estimate &, which is also employed in our simulations and our empiriegldr rule regression
application.

The effective degrees of freedom in the context of misspatifhodels was first derived by Takeuchi
(1976). He proposed a modified AIC, sometimes referred thea$iC, which computes the penalty with the
effective degrees of freedom, rather than the number ohpetexs as is used by the AIC, see also Sin and
White (1996) and Hong and Preston (2008). We use the notAlidn and BIC to denote the information
criteria that are defined by substituting the effective degrof freedomk?, for k;, in the AIC and BIC,
respectively. In this case, our At@s identical to the TIC by Takeuchi (1976).

3.2.3 The MCS Procedure

The MCS procedure can be implemented by the moving-blocksbap applied to the paity;, X;), see
Goncalves and White (2005). We compute resamgfes= (Y,, Xi )i, forb=1,..., B, which equates
the original point estimat@,j , to the population parameter in tiegh model under the bootstrap scheme.

The literature has proposed several bootstrap estimafatiseceffective degrees of freedork; =
E[Q(Z, 6oj) — Q(Z,0))], see e.g. Efron (1983, 1986) and Cavanaugh and Shumway (198&ye and
additional estimators are analyzed and compared in Sh{t@8v). We adopt the estimator f&J that is
labelledBs in Shibata (1997). In the regression context this estimatas the form

B B ~2

P _ A A% _ O . ZI’]: (6‘*» )2

ki=B 1} :Q(ZS,QJ)—Q(ZS,%,-)= B 1}: nlog&*JZ n tl&sz.J,t —nt.
b=1 b=1 b. |

wheree} = Y — B Xt i 800 = Yo — Bo X5 i @nd6, = n 1Y 0 (45 % This is an estimate
of the expected overfit that results from maximization ofltkelihood function. For a correctly specified
model we havek]* = Kj, so we would expedi]* ~ Kj when thej-th model is correctly specified. This is
indeed what we find in our simulations, see Section 5.2.
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Given an estimate of the effective degrees of freedlﬁijmpompute the AIC statistic Q(Z, 6 i)+ k?,
which is centered abol{Q(Z, 6oj)}. The null hypothesi$iy 4 states that ED(Z, 0¢i) — Q(Z, 0oj)] =0
foralli, j € M. This motivates the range statistic:

T = max [Q(Z,6) + K1 - [QZ.0)) + K|

and the elimination ruley, = argmax ([ Q(Z, éj) + Rf]. This elimination rule removes the model with
the largest bias adjusted residual variance. Our tesststaliz ¢, iS @ range-statistic over recentered QLR
statistics computed for all pairs of model.M. In the special case with iid data and just two modeldin
we could simply adopt the QLR test of Vuong (1989) as our exjaiwce test.

Next, we estimate the distribution @k _n¢ under the null hypothesis. The estimate is calculated with
methods similar to those used in White (2000b) and Hansedbj2 he joint distribution of

(Q(Z.61) + ki —E[Q(Z.00D]. ... Q(Z. Omy) + Kipy — EIQ(Z. Oom,)]).

is estimated by the empirical distribution of

(QE, 850 + K — Q(Z,60), ..., QUEL, by ) + Koy — QZ, B} (3)

forb=1,..., B, becauseQ(Z, é,—) play the role of EQ(Z, 0¢;)] under the resampling scheme. These
bootstrap statistics are relatively easy to compute bectngsstructure of the likelihood function is
A %2

A%k ~ A A o N
Q(Z. 6y ) — Q(Z.6;) =n(log6;2 + 1) — n(logé? + 1) = nlog 5>,

O-.

j

Where&’g?j =nt Z{‘:l(Ygft—Bij g,j,t)z. For each of the bootstrap resamples, we compute the tastistat
Tnu = max [{Q(E. 05 + K - Qz.00| - [z 0 ) +K - z.dp]|.

The empirical distribution OWJR,M yields an estimate of the distribution &k n¢, asn, B — oo. The
p-value for the hypothesis test with which we are concernedisputed by

B
pM = B*l Z 1lTb*jR’MZTR,M ] .
b=1

It is also straightforward to construct the MCS using eittier AIC, the BIC, the AIC, or the BIC.
The relevant test statistic has the form

Tew = max|[Q(Z.6) +6] - [QZ.0) + ]|

wherec; = 2k; for the AIC, ¢; = log(n)k; for the BIC,c; = ZR]* for the AIC*, andc; = Iog(n)Rj* for the
BIC*. The computation of the resampled test statisfigs, ,,. is identical for the three criteria. The reason
is that the location shift¢;, has no effect on the bootstrap statistics, once the null thgses is imposed.
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Under the null hypothesis we recenter the bootstrap statiabout zero and this offsets the location shift
C —Gj.

When two models are nested, the null hypothesis used WItt€KE[Q(Z, 0))] = E[Q(Z, 6¢;)], has
the strong implication thaQ(Z, 0q) = Q(Z,6;) a.e. (almost everywhere), and this causes the limit
distribution of the quasi likelihood ratio statistiQ(Z, ;) — Q(Z, éj), to differ for nested or non-nested
comparisons, see Vuong (1989). This property of nested adsgms can be imposed on the bootstrap
resamples, by replacin@(Z, éj) with Q(Z*, éj), because the latter is the bootstrap varianQo£, 6o;).
The MCS procedure can be adapted, so that different boptstf®emes are used for nested and non-nested
comparisons. Imposing the stronger null hypotheRi6Z, 6o) = Q(Z, 0o;) a.e. may improve the power of
the procedure. However, such a bootstrap implementatiomysapplicable to KLIC because the underlying
null hypotheses of other criteria, such as Alhd BIC, do not imply Q(Z, 6¢i) = Q(Z, 6o;) for nested
models. Therefore, this paper does not pursue an adaptistiap implementation in this paper.

4 Relation to Existing Multiple Comparisons Methods

The introduction discusses the relation between the MC $henlace-test used to select the number of coin-
tegration relations, see Johansen (1988). The MCS andabe-test share an underlying testing principle
known agntersection-union testinUT). Berger (1982) is responsible for formalizing the IWhile Pan-
tula (1989) applies the IUT to the problem of selecting tlgelEngth and order of integration in univariate
autoregressive processes.

Another way to cast the MCS problem is as a multiple compasigwoblem. The multiple comparisons
problem has a long history in the statistics literature, Gepta and Panchapakesan (1979), Hsu (1996),
Dudoit, Shaffer, and Boldrick (2003) and Lehmann and Rom@005, chapter 9) and references therein.
Results from this literature have recently been adoptetieretonometrics literature. One problem is that
of multiple comparisons with besivhere objects are compared to that with the ‘best’ sampf@peance.
Statistical procedures fanultiple comparisons with besre discussed and applied to economic problems
in Horrace and Schmidt (2000). Shimodaira (1998) uses amnaaf Gupta’s subset selection, see Gupta
and Panchapakesan (1979), to construct a set of modelsthertrhs a model confidence set. His procedure
is specific to a ranking of models in terms offC;), and his framework is different from ours in a number
of ways. For instance, his preferred set of models does matadhe FWE. He also invokes a Gaussian
approximation that rules out comparisons of nested models.

Our MCS employs a sequential testing procedure that mintegsdown procedures for multiple hy-
pothesis testing, see e.g. Dudoit, Shaffer, and Boldridl082, Lehmann and Romano (2005, chapter
9) or Romano, Shaikh, and Wolf (2008). Our definition of M@Ssalues implies the monotonicity,
f’eml < IﬁeMz < ... < f)eMmO, that is key for the result of Theorem 4. This monotonicity lisoaa
feature of the so-callestep-down Holm adjusted p-values
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4.1 Relation to Tests for Superior Predictive Ability

Another related problem is the case where the benchmarkhichvall objects are compared, is selected
independent of the data used for the comparison. This proldeknown asmultiple comparisons with
control. In the context of forecast comparisons, this is the prolbileat arises when testing fauperior
predictive ability(SPA), see White (2000b), Hansen (2005), and Romano and(Q06).

The MCS has several advantages over tests for superiorcpvedability. Thereality check for data
snoopingof White (2000b) and the SPA test of Hansen (2005) are dedigmaddress whether a particular
benchmark is significantly outperformed by any of the aléues used in the comparison. Unlike these
tests the MCS procedure does not require a benchmark to bigisgewhich is very useful in applications
without an obvious benchmark. In the situation where theeenatural benchmark, the MCS procedure can
still address the same objective as that of the SPA tests. iSldione by observing whether the designated
benchmark is in the MCS or not, where the latter correspoadsrejection of the null hypothesis that is
relevant for a SPA test.

The MCS procedure has the advantage that it can be employetbftel selection, whereas a SPA-test
is ill-suited for this problem. A rejection of the SPA-testlpidentifies one or more models as significantly
better than the benchma?KkThus, the SPA-test offers little guidance about which medeside inM*. We
are also faced with a similar problem in the event that thehygdothesis is not rejected by the SPA-test. In
this case the benchmark may be the best model, but this layeftso be applied to other models. This issue
can be resolved if all models serve as the benchmark in essefricomparisons. The result is a sequence
of SPA-tests that define the MCS to be the set of ‘benchmarkdeisathat are found not to be significantly
inferior to the alternatives. However, the level of indivad SPA-tests need to be adjusted for the number of
tests that are computed to control the FWE. For examplegifdtel in each of the SPA-testsagm, the
Bonferroni bound states that the resulting set of ‘sungvimenchmarks is a MCS with coverageé — «).
Nonetheless, there is a substantial loss of power assdamtk the small level applied to the individual
tests. The loss of power highlights a major pitfall of sediaisPA-tests.

Another drawback of constructing a MCS from SPA-tests i tha null of a SPA-test is a composite
hypothesis. The null is defined by several inequality camsts which affects the asymptotic distribution
of the SPA-test statistic because it depends on the numbgnadihg inequalities. The binding inequality
constraints create a nuisance parameter problem. Thissmlédficult to control the Type | error rate
inducing an additional loss of power, see Hansen (2003aoimparison, the MCS procedure is based on a
sequence of hypotheses tests that 