
 

WORKING PAPER SERIESFE
D

ER
AL

 R
ES

ER
VE

 B
AN

K
 o
f A

TL
AN

TA
 

Model Comparison Using the 
Hansen-Jagannathan Distance 
 
Raymond Kan and Cesare Robotti 
 
Working Paper 2007-4 
February 2007 



 

 
 
The authors thank Yaxuan Qi, Jay Shanken, Guofu Zhou, seminar participants at the National University of Ireland, and 
participants at the 2006 All Georgia Finance Conference for helpful discussions and comments. Kan acknowledges financial 
support from the National Bank Financial of Canada. The views expressed here are the authors’ and not necessarily those of the 
Federal Reserve Bank of Atlanta or the Federal Reserve System. Any remaining errors are the authors’ responsibility. 
 
Please address questions regarding content to Raymond Kan, Joseph L. Rotman School of Management, University of Toronto, 
105 St. George Street, Toronto, Ontario, Canada M5S 3E6, 416-978-4291, 416-978-5433 (fax), kan@chass.utoronto.ca, or Cesare 
Robotti, Research Department, Federal Reserve Bank of Atlanta, 1000 Peachtree Street, N.E., Atlanta, GA 30305, 404-498-8543, 
404-498-8810 (fax), cesare.robotti@atl.frb.org.  
 
Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s Web site at 
www.frbatlanta.org. Click “Publications” and then “Working Papers.” Use the WebScriber Service (at www.frbatlanta.org) to 
receive e-mail notifications about new papers. 

FEDERAL RESERVE BANK of ATLANTA       WORKING PAPER SERIES 

Model Comparison Using the Hansen-Jagannathan Distance 
 
Raymond Kan and Cesare Robotti 
 
Working Paper 2007-4 
February 2007 

 
 
Abstract: Although it is of interest to empirical researchers to test whether or not a particular asset-
pricing model is true, a more useful task is to determine how wrong a model is and to compare the 
performance of competing asset-pricing models. In this paper, we propose a new methodology to test 
whether two competing linear asset-pricing models have the same Hansen-Jagannathan distance. We show 
that the asymptotic distribution of the test statistic depends on whether the competing models are 
correctly specified or misspecified and are nested or nonnested. In addition, given the increasing interest 
in misspecified models, we propose a simple methodology for computing the standard errors of the 
estimated stochastic discount factor parameters that are robust to model misspecification. Using the same 
data as in Hodrick and Zhang (2001), we show that the commonly used returns and factors are, for the 
most part, too noisy to conclude that one model is superior to the other models in terms of Hansen-
Jagannathan distance. In addition, we show that many of the macroeconomic factors commonly used in 
the literature are no longer priced once potential model misspecification is taken into account. 
 
JEL classification: G12 
 
Key words: Hansen-Jagannathan distance, asset-pricing models, model misspecification, risk premia 



Model Comparison Using the Hansen-Jagannathan Distance

Asset pricing models are, at best, an approximation of reality. Although it is of interest to test

whether or not a particular asset pricing model is literally true, a more useful task for empirical

researchers is to determine how wrong a model is and to compare the performance of competing asset

pricing models. The latter task requires a scalar measure of model misspecification. While there

are many reasonable measures that can be used, the one introduced by Hansen and Jagannathan

(1997) has gained tremendous popularity in the empirical asset pricing literature. Their proposed

measure, called the Hansen-Jagannathan distance (HJ-distance), has been used both as a model

diagnostic and as a tool for model selection by many researchers. Examples include Jagannathan

and Wang (1996), Jagannathan, Kubota, and Takehara (1998), Campbell and Cochrane (2000),

Lettau and Ludvigson (2001), Hodrick and Zhang (2001), Farnsworth, Ferson, Jackson, and Todd

(2002), Dittmar (2002), and Chen and Ludvigson (2004), among others.

While the HJ-distance is an attractive tool for comparing competing asset pricing models, no

formal model comparison test using the HJ-distance has yet been proposed. The existing tests

proposed by Hansen, Heaton, and Luttmer (1995), Jagannathan and Wang (1996), and Hansen

and Jagannathan (1997) only allow us to test whether a given model has a particular HJ-distance

value, but do not allow us to test whether or not two competing models have the same HJ-distance.1

Because the p-values from this kind of tests are not a good way to compare models, researchers

typically focus on the values of the sample HJ-distances of competing models and conclude that

the model with the lowest sample HJ-distance is the best model. However, this practice is difficult

to justify because the difference between the sample HJ-distances of competing models might not

be statistically significant. The first methodological contribution of this paper consists in the

proposal of a new methodology to formally test whether or not two competing linear asset pricing

models have the same HJ-distance. We show that the asymptotic distribution of the test statistic

depends on whether the competing models are correctly specified or misspecified, and on whether

the competing models are nested or non-nested. We provide the asymptotic distribution of our test

statistic under general distributional assumptions as well as for the special case in which returns

1The asymptotic distribution of the squared sample HJ-distance presented in Hansen, Heaton, and Luttmer (1995)
and Hansen and Jagannathan (1997) is valid when the HJ-distance of the model is nonzero, whereas the one presented
in Jagannathan and Wang (1996) is valid when the model is correctly specified.
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and factors are multivariate elliptically distributed. The results for the multivariate elliptical case

enable us to gain further intuition on the important determinants of the asymptotic distribution of

the test statistic.

In addition to model comparisons, researchers are also interested in whether or not a particular

factor in an asset pricing model is “priced”. This is typically determined by testing if the stochastic

discount factor (SDF) parameter associated with that factor is significantly different from zero.

All existing studies perform this test using a standard error that assumes the model is correctly

specified. It is difficult to justify this assumption when estimating the SDF parameters for many

different models because some (if not all) of the models are bound to be misspecified. The second

methodological contribution of this paper is the proposal of robust standard errors for the estimates

of SDF parameters that are applicable to both correctly specified and misspecified models. When

factors and returns are multivariate elliptically distributed, we are able to show analytically that

the standard errors under potentially misspecified models are always bigger than the standard

errors that assume the model is correctly specified. We call the difference between the asymptotic

variances of the SDF parameter estimates under correctly specified and misspecified models the

misspecification adjustment term and show that the magnitude of this term depends on, among

other things, the correlations between the factors and the returns. We show that the misspecification

adjustment term can be very large when the underlying factor is poorly mimicked by asset returns,

a situation that typically arises when factors are macroeconomic variables.

After describing the econometric methodology, we provide an in-depth empirical analysis to

demonstrate the relevance of our new test. We focus on the empirical performance of several un-

conditional and conditional asset pricing models using the same dataset as in Hodrick and Zhang

(2001). First, we investigate whether model misspecification substantially affects the properties of

the SDF parameter estimates. Statistically significant SDF parameter estimates are often inter-

preted as evidence that the underlying factors are important sources of systematic risk. Consistent

with our theoretical results, we find that the t-ratios and the p-values under correctly specified and

potentially misspecified models are about the same for factors that are returns on well diversified

portfolios, while they differ greatly for factors that are not traded, such as macroeconomic factors.

For non-traded factors, the evidence that the t-ratios under potentially misspecified models are

substantially smaller than the t-ratios under correctly specified models is overwhelming. Therefore,
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by ignoring model misspecification and using the traditional way of computing standard errors (i.e.,

assuming that the model is correct), one might mistakenly conclude that a factor is priced. Sec-

ond, we empirically investigate whether different asset pricing models exhibit significantly different

HJ-distance measures. Overall, our econometric analysis suggests that the commonly used returns

and factors are too noisy for us to conclude that one model clearly outperforms the others. For

example, we find no evidence that conditional and intertemporal CAPM-type specifications such

as the Campbell (1996), Cochrane (1996), and Jagannathan and Wang (1996) models outperform

the Fama-French three and five factor models in terms of HJ-distance.

The rest of the paper is organized as follows. Section I presents an asymptotic analysis of the

sample HJ-distance under correctly specified and misspecified models. In addition, we provide an

asymptotic analysis of the estimates of the SDF parameters under potentially misspecified mod-

els. Section II introduces tests of equalities of squared HJ-distances for two competing models

and provides the asymptotic distributions of their sample counterparts for different scenarios. Sec-

tion III presents the empirical analysis. The final section summarizes our findings and the Appendix

contains proofs of all propositions.

I. Asymptotic Analysis Under Potentially Misspecified Models

A. Pricing Errors and HJ-distance

Let y be a proposed SDF with mean µy and let R be a vector of gross returns on N test portfolios.

If y correctly prices the N portfolios, the pricing errors, e, of the N portfolios are

e ≡ E[Ry]− 1N = 0N , (1)

where 1N is an N -vector of ones and 0N is an N -vector of zeros.2 However, if y is a misspecified

model, then the pricing errors of the model are nonzero. In most cases, the proposed discount factor

y involves some unknown parameters λ and it is customary to suggest that y(λ) is a misspecified

model if for all values of λ

e(λ) = E[Ry(λ)]− 1N 6= 0N . (2)
2We assume that the elements of R are all gross returns so that their costs are given by the vector 1N . If some of

the elements of R are returns on zero net investment portfolios, we replace 1N with q, where q 6= 0N is a vector of
initial costs of the N test assets. A separate appendix (available upon request) shows the necessary modifications of
our analysis when all the elements of R are excess returns (i.e., q = 0N ).
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When an asset pricing model is misspecified, researchers are often interested in obtaining a scalar

measure of the magnitude of the misspecification. The popular HJ-distance is defined as the square

root of a quadratic form of the pricing errors

δ =
[
min

λ
e(λ)′U−1e(λ)

]1
2

, (3)

where U = E[RR′] is the second moment matrix of R.

Hansen and Jagannathan (1997) provide two nice interpretations of the HJ-distance. The first

interpretation is that the HJ-distance measures the minimum distance between the proposed SDF

and the set of correct SDFs (M),

δ = min
m∈M

‖m − y‖, (4)

where ‖X‖ = E[X2]
1
2 is the standard L2 norm. The second interpretation is that it represents the

maximum pricing error of a portfolio of R that has a unit second moment. Define ξ as the random

payoff of a portfolio. Hansen and Jagannathan (1997) show that

δ = max
‖ξ‖=1

|π(ξ)− πy(ξ)|, (5)

where π(ξ) and πy(ξ) are the prices of ξ assigned by the true and the proposed SDFs, respectively.

In this paper, we focus on linear asset pricing models because they are the most popular models

in the empirical asset pricing literature. However, with some additional efforts, our analysis could

also be extended to the case of nonlinear models. A linear factor asset pricing model suggests that

y is a linear function of K systematic factors f

y(λ0, λ1) = λ0 + λ′
1f = λ′x, (6)

where x = [1, f ′]′ and λ = [λ0, λ′
1]
′.

To prepare for our analysis, we define Y = [f ′, R′]′ and its mean and covariance matrix as

µ = E[Y ] ≡

[
µ1

µ2

]
, (7)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
. (8)

Under the linear SDF, the pricing errors of the N assets are given by

e(λ) = E[Ry]− 1N = E[Rx′λ]− 1N = Dλ− 1N , (9)
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where D = E[Rx′] = [µ2, V21 + µ2µ
′
1]. Although the standard definition of the HJ-distance uses

U−1 as the weighting matrix, Kan and Zhou (2004) show that for linear factor models, using V −1
22 as

the weighting matrix would produce mathematically identical results for both the SDF parameters

and the HJ-distance. Using V −1
22 as the weighting matrix, the squared HJ-distance is given by

δ2 = min
λ

(Dλ− 1N)′V −1
22 (Dλ− 1N) = 1′NV −1

22 1N − 1′NV −1
22 D(D′V −1

22 D)−1D′V −1
22 1N . (10)

We assume that V21 is of full column rank (which implies that D is also of full column rank). Hence,

there exists a unique λ that minimizes e(λ)′V −1
22 e(λ), which we denote as

λHJ = (D′V −1
22 D)−1(D′V −1

22 1N ). (11)

In the subsequent analysis, we drop the subscript from λHJ for brevity reasons. In addition,

when it is clear from the context, we write the pricing errors e(λHJ) simply as e and the SDF

y(λHJ) = λ′
HJx simply as y.

B. Asymptotic Distribution of the Sample HJ-Distance Under Correctly Spec-
ified and Misspecified Models

In practice, the population HJ-distance of a model is unobservable and has to be estimated using

the sample HJ-distance. In this subsection, we summarize the asymptotic distribution of the sample

HJ-distance for the case of linear factor models. Let Yt = [f ′
t , R′

t]′, where ft is a vector of proposed

factors at time t and Rt is a vector of gross returns on N test assets at time t. Suppose that we

have T observations on Yt and denote the sample moments of Yt as

µ̂ =

[
µ̂1

µ̂2

]
=

1
T

T∑

t=1

Yt, (12)

V̂ =

[
V̂11 V̂12

V̂21 V̂22

]
=

1
T

T∑

t=1

(Yt − µ̂)(Yt − µ̂)′. (13)

The sample squared HJ-distance and the SDF parameter estimates are simply the sample counter-

parts of (10) and (11)

δ̂2 = 1′N V̂ −1
22 1N − 1′N V̂ −1

22 D̂(D̂′V̂ −1
22 D̂)−1D̂′V̂ −1

22 1N , (14)

λ̂ = (D̂′V̂ −1
22 D̂)−1(D̂′V̂ −1

22 1N), (15)
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where D̂ = [µ̂2, V̂21+ µ̂2µ̂
′
1]. Under a correctly specified model (δ = 0), the asymptotic distribution

of δ̂2 is well known. For linear factor models, Jagannathan and Wang (1996) show that when δ = 0

T δ̂2 A∼
N−K−1∑

i=1

ξixi, (16)

where xi’s are independent χ2
1 random variables and the weights ξ′is are equal to the nonzero

eigenvalues of

S
1
2 V −1

22 S
1
2 − S

1
2 V −1

22 D(D′V −1
22 D)−1D′V −1

22 S
1
2 , (17)

where S is the asymptotic covariance matrix of

ḡT (λ) =
1
T

T∑

t=1

(Rtx
′
tλ− 1N). (18)

The asymptotic distribution of δ̂ under a misspecified model is also well known. Hansen, Heaton,

and Luttmer (1995) and Hansen and Jagannathan (1997) show that when δ 6= 0

√
T (δ̂2 − δ2) A∼ N(0, v), (19)
√

T (δ̂ − δ) A∼ N
(
0,

v

4δ2

)
, (20)

where v is the asymptotic variance of 1
T

∑T
t=1 qt and

qt = y2
t − (yt − η′Rt)2 − 2η′1N − δ2 = 2η′Rtyt − (η′Rt)2 − 2η′1N − δ2, (21)

with η = U−1e. Under the linear factor model, the first order condition suggests that D′V −1
22 e =

0K+1. It follows that η = V −1
22 e and η′1N = e′V −1

22 (Dλ− e) = −δ2. Then, we can simplify qt to

qt = 2utyt − u2
t + δ2, (22)

where ut = e′V −1
22 Rt.

In conducting statistical tests, we need a consistent estimate of Avar[δ̂2]. This can be accom-

plished by replacing qt with

q̂t = 2ûtŷt − û2
t + δ̂2, (23)

where ût = ê′V̂ −1
22 Rt, ŷt = λ̂′xt, with λ̂ = (D̂′V̂ −1

22 D̂)−1D̂′V̂ −1
22 1N , and ê = D̂λ̂ − 1N . For example,

if qt is uncorrelated over time, then we have Avar[δ̂2] = E[q2
t ], and its consistent estimator is given

by

Âvar[δ̂2] =
1
T

T∑

t=1

q̂2
t , (24)
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which is convenient to compute. When qt is autocorrelated, one can use Newey and West’s (1987)

method to obtain a consistent estimator of Avar[δ̂2]. For example, if qt has an MA(m) structure,

then a consistent estimator of Avar[δ̂2] is given by

Âvar[δ̂2] =
1
T

T∑

t=1

q̂2
t +

2
T

m∑

k=1

(
1− k

m + 1

) T−k∑

t=1

q̂tq̂t+k . (25)

With additional assumptions, we can further simplify the asymptotic distribution of δ̂2. Lemma 1

presents the asymptotic distribution of δ̂2 under the correctly specified and misspecified models

when Yt is i.i.d. multivariate elliptically distributed. The expression for the correctly specified

model is available in Kan and Zhou (2004) but the expression for the misspecified model is new.

Lemma 1 Suppose Yt = [f ′
t , R′

t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ.3 Let µy = E[yt] = λ0 + λ′
1µ1 and σ2

y =

Var[yt] = λ′
1V11λ1. When δ = 0

T δ̂2 A∼ [µ2
y + (1 + κ)σ2

y ]χ
2
N−K−1. (27)

When δ 6= 0
√

T (δ̂2 − δ2) A∼ N(0, 4[µ2
y + (1 + κ)σ2

y ]δ
2 + (2 + 3κ)δ4). (28)

The results in Lemma 1 show that when δ 6= 0, the asymptotic variance of δ̂2 increases with δ2 and

with µ2
y and σ2

y . Therefore, it is not entirely clear that a specification test of H0 : δ = 0 has more

power to reject a model with large HJ-distance than to reject a model with small HJ-distance. In

addition, Lemma 1 shows that the asymptotic variance of the sample HJ-distance increases with

the kurtosis parameter κ. This is hardly surprising since the fatter the tails of the returns, the

more likely it is that there will be outliers in the sample covariance matrix which, in turn, make

the sample HJ-distance more volatile.

3The multivariate kurtosis parameter of Yt is defined as

κ =
E[((Yt − µ)′V −1(Yt − µ))2]

(N + K)(N + K + 2)
− 1, (26)

which is the same as the univariate kurtosis parameter for the case of multivariate elliptical distribution.
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C. Asymptotic Distribution of the SDF Parameter Estimates Under Potentially
Misspecified Models

In many empirical studies, interest lies in the point estimates of the SDF parameter λ. A statisti-

cally significant λ̂ associated with a given factor is often interpreted as evidence that the factor is

priced. However, in computing the standard error of λ̂, researchers typically rely on the asymptotic

distribution under the assumption that the model is correctly specified. This practice is difficult

to justify, especially when the model is rejected by the data. In this subsection, we present an

analysis of the asymptotic distribution of λ̂ under potentially misspecified models. Our analysis

closely follows those of Hall and Inoue (2003) and Kan and Robotti (2006).4

Proposition 1: Under a potentially misspecified model

√
T (λ̂− λ) A∼ N(0K+1, V (λ̂)), (29)

where

V (λ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (30)

with

ht = HD′V −1
22 Rtyt − H [D′V −1

22 (Rt − µ2) − xt]ut − λ, (31)

where H = (D′V −1
22 D)−1 and ut = e′V −1

22 Rt. When the model is correctly specified, e = 0N , ut = 0,

and ht can be simplified to

ht = HD′V −1
22 Rtyt − λ. (32)

It is easily verified that under the linear SDF, Proposition 1 coincides with Theorem 2 in Hall

and Inoue (2003). When estimating the standard errors of λ̂, it is advisable to use the sample

counterpart of (31) instead of the sample counterpart of (32). This is because the latter is only

valid when the model is correctly specified whereas the former is valid for both correctly specified

and misspecified models.

With additional assumptions, we can further simplify the expression of V (λ̂). In Lemma 2, we

present the asymptotic variances of λ̂ when Yt is i.i.d. multivariate elliptically distributed.
4It should be noted that Hansen, Heaton, and Luttmer (1995, Appendix C) also presents the asymptotic distri-

bution of the SDF parameters for a misspecified model. However, their results do not contain an explicit expression
of the asymptotic covariance matrix.
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Lemma 2 Suppose Yt = [f ′
t , R′

t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ. Let µy = λ0 + λ′
1µ1 and σ2

y = λ′
1V11λ1. The

asymptotic variance of λ̂ is given by

V (λ̂) = [µ2
y + (1 + κ)σ2

y ]H +

[
σ2

y − µ2
y + λ2

0 + 2κ(µ′
1λ1) (λ0 − 2κµ′

1λ1)λ′
1

(λ0 − 2κµ′
1λ1)λ1 (1 + 2κ)λ1λ

′
1

]

+ δ2H

(
[1 + (1 + κ)µ′

2V
−1
22 µ2]

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K (1 + κ)(V11 − V12V
−1
22 V21)

])
H,(33)

where H = (D′V −1
22 D)−1.

When the model is correctly specified, δ = 0 and

V (λ̂) = [µ2
y + (1 + κ)σ2

y ]H +

[
σ2

y − µ2
y + λ2

0 + 2κ(µ′
1λ1) (λ0 − 2κµ′

1λ1)λ′
1

(λ0 − 2κµ′
1λ1)λ1 (1 + 2κ)λ1λ

′
1

]
. (34)

Let P be an N × (N − 1) orthonormal matrix with its columns orthogonal to V
− 1

2
22 µ2. Applying

the partitioned matrix inverse formula to H , one can verify that its lower right K × K submatrix

is (B′B)−1, where B = P ′V
− 1

2
22 V21. With this, it is straightforward to show that the asymptotic

variance of λ̂1 is given by

V (λ̂1) = [µ2
y + (1 + κ)σ2

y ](B
′B)−1 + (1 + 2κ)λ1λ

′
1

+ δ2(B′B)−1[(1 + κ)(V11 − B′B) + νν ′](B′B)−1, (35)

where ν = V12V
−1
22 µ2/(µ′V −1

22 µ2).

Note that the last term in V (λ̂1) only exists when the model is misspecified. Then, it is natural

to define the matrix

δ2(B′B)−1[(1 + κ)(V11 − B′B) + νν ′](B′B)−1 (36)

as the misspecification adjustment term. The adjustment term is positive definite because

V11 − B′B = V11 − V12V
− 1

2
22 PP ′V

− 1
2

22 V21 = V11 − V12V
−1
22 V21 +

V12V
−1
22 µ2µ

′
2V

−1
22 V21

µ′
2V

−1
22 µ2

(37)

is a positive definite matrix. As expected, the adjustment is positively related to the squared

HJ-distance δ2, suggesting that the degree of model misspecification plays an important role in

determining the magnitude of the adjustment. The adjustment is also positively related to κ which

suggests that the fatter the tails of the returns, the larger the adjustment. The final determinants
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of the adjustment are related to (B′B)−1 and V11 − B′B. To understand what these two matrices

represent, consider the normalized returns R∗
t = P ′V

− 1
2

22 Rt. These normalized returns have the

properties of E[R∗
t ] = 0N−1 and and Var[R∗

t ] = IN−1. Projecting the factors on a constant term

and R∗
t in the following multivariate regression

ft = c0 + c1R
∗
t + εt, (38)

it is easy to verify that c1 = V12V
− 1

2
22 P . Letting f∗

t = c1R
∗
t = V12V

− 1
2

22 PP ′V
− 1

2
22 Rt be the mimicking

portfolios of ft, we can verify that E[f∗
t ] = 0K and Var[f∗

t ] = B′B. With this, it follows that

(B′B)−1 = Var[f∗
t ]−1 and V11 − B′B = Var[ft] − Var[f∗

t ].

The magnitudes of these terms heavily depend on how well the factors can be explained by the

returns. When the factors are portfolio returns, we expect Var[f∗
t ]−1 and Var[ft] − Var[f∗

t ] to be

small. However, when the factors are macroeconomic factors, they may have very low correlations

with the returns and Var[f∗
t ] can be very small. In those cases, the magnitude of the misspecification

adjustment term can be very large and model misspecification can have a serious impact on the

standard errors of λ̂1. Ignoring model misspecification and using the traditional way of computing

standard errors (i.e., assuming that the model is correctly specified), one can mistakenly conclude

that a factor is priced.

II. Tests of Equality of the Squared HJ-Distances of Two Models

When testing the equality of the squared HJ-distances of two competing linear SDFs, we need to

consider two separate cases: nested models and non-nested models. In addition, the two models

can either be both correctly specified or both misspecified.5

A. Nested Models

Let f = [f ′
1, f ′

2]
′, where f1 is K1 × 1 and f2 is K2 × 1, and K = K1 + K2. For the SDF of model 1,

we assume that it is linear in f1

y1 = η0 + η′
1f1 = η′A1x, (39)

5Under the null hypothesis that the HJ-distances of the two models are equal, we do not need to consider the case
that one model is correctly specified while the other model is misspecified. Our analysis is similar in spirit to the
Vuong’s (1989) and Rivers and Vuong’s (2002) model selection methodology using the likelihood ratio test statistic.
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where x = [1, f ′
1]
′, A1 = [IK1+1, O(K1+1)×K2

] and η = [η0, η′
1]
′ is the (K1 + 1)-vector of the SDF

parameters of model 1. For the SDF of model 2, we assume that it is linear in f

y2 = λ0 + λ′
1f = λ′x, (40)

where λ is the (K +1)-vector of the SDF parameters of model 2. Therefore, model 2 nests model 1

as a special case. The squared HJ-distances for the two models are

δ2
1 = 1′NV −1

22 1N − 1′NV −1
22 DA′

1(A1D
′V −1

22 DA′
1)

−1A1D
′V −1

22 1N , (41)

δ2
2 = 1′NV −1

22 1N − 1′NV −1
22 D(D′V −1

22 D)−1D′V −1
22 1N . (42)

As model 2 nests model 1 as a special case, we must have δ2
1 ≥ δ2

2 . Lemma 3 shows that, when

the two models have the same HJ-distance, there are some restrictions on the SDF parameters of

model 2.

Lemma 3 Partition λ = (D′V −1
22 D)−1(D′V −1

22 1N ) as [λ(1)′, λ(2)′]′, where λ(2) is a K2-vector of the

SDF parameters associated with f2. Then δ2
1 = δ2

2 if and only if λ(2) = 0K2.

Note that Lemma 3 does not require the models to be correctly specified. It is applicable even

when the models are misspecified. In order to test the equality of HJ-distances of the two models,

Lemma 3 suggests that one can simply perform a test of H0 : λ(2) = 0K2 in model 2. Suppose

V̂ (λ̂(2)) is a consistent estimate of the asymptotic variance of λ̂(2). Then, under the null hypothesis

of H0 : λ(2) = 0K2

Tλ̂(2)′V̂ (λ̂(2))−1λ̂(2) A∼ χ2
K2

, (43)

which can be used for testing H0 : δ2
1 = δ2

2. However, it is important to note that, in general, we

cannot conduct this test using the usual standard error of λ̂ which assumes that model 2 is correctly

specified. Instead, we need to rely on the misspecification robust standard errors of λ̂ based on

(31) to perform the test of H0 : λ(2) = 0K2 .

Alternatively, we can derive the asymptotic distribution of δ̂2
1 − δ̂2

2 and use it for the purpose of

testing H0 : δ2
1 = δ2

2 . Proposition 2 presents the asymptotic distribution of δ̂2
1 − δ̂2

2 .

Proposition 2: Let A2 = [OK2×(K1+1), IK2 ]. Under the null hypothesis of H0 : δ2
1 = δ2

2

T (δ̂2
1 − δ̂2

2) A∼
K2∑

i=1

ξixi, (44)
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where xi’s are independent χ2
1 random variables and ξi’s are the eigenvalues of (A2HA′

2)
−1V (λ̂(2)),

with V (λ̂(2)) being the asymptotic variance of λ̂(2).

Again, it should be emphasized that the misspecification robust version of V (λ̂(2)) should be used

to conduct the test of H0 : δ2
1 = δ2

2 . In actual testing, we replace ξi by its sample counterpart ξ̂i,

where the ξ̂i’s are the eigenvalues of

(A2ĤA′
2)

−1V̂ (λ̂(2)), (45)

and Ĥ and V̂ (λ̂(2)) are the sample counterparts of H and V (λ̂(2)), respectively.

When Yt is multivariate elliptically distributed, we can further simplify the test of H0 : δ2
1 = δ2

2 .

Lemma 4 summarizes our results.

Lemma 4 Suppose Yt = [f ′
t , R′

t]′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ. When δ2
1 = δ2

2 = δ2, then E[y1t] = E[y2t] =

λ0 + λ′
1µ1 ≡ µy and Var[y1t] = Var[y2t] = λ′

1V11λ1 ≡ σ2
y , and ξi’s are the eigenvalues of

[µ2
y + (1 + κ)σ2

y ]IK2 + δ2(A2HA′
2)

−1

× A2H

(
[1 + (1 + κ)µ′

2V
−1
22 µ2]

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K (1 + κ)(V11 − V12V
−1
22 V21)

])
HA′

2.(46)

For the special case that both models are correctly specified, then

T (δ̂2
1 − δ̂2

2) A∼ [µ2
y + (1 + κ)σ2

y ]χ
2
K2

. (47)

Since the eigenvalues ξi’s under misspecified models are all greater than µ2
y + (1 + κ)σ2

y (the value

of ξi’s when the models are correctly specified), model misspecification creates additional sampling

variation in δ̂2
1 − δ̂2

2. Without taking into account potential model misspecification, one might

mistakenly reject H0 : δ2
1 = δ2

2.

B. Non-nested Models

Let f = [f ′
1, f ′

2, f ′
3]
′, where fi is Ki × 1 and K = K1 + K2 + K3. Let x1 = [1, f ′

1, f ′
2]
′ and

x2 = [1, f ′
2, f ′

3]
′. We assume that the SDF of model 1 is linear in x1 and is given by

y1 = η0 + η′
1[f

′
1, f ′

2]
′ = η′x1, (48)
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whereas the SDF of model 2 is linear in x2 and is given by

y2 = λ0 + λ′
1[f

′
2, f ′

3]
′ = λ′x2. (49)

Note that K2 = 0 implies that the two models do not have common factors. Let D1 = E[Rx′
1] and

D2 = E[Rx′
2] and assume that both D1 and D2 have full column rank. The pricing errors of the

two models are

e1 = D1(D′
1V

−1
22 D1)−1D′

1V
−1
22 1N − 1N , (50)

e2 = D2(D′
2V

−1
22 D2)−1D′

2V
−1
22 1N − 1N , (51)

and the squared HJ-distances of the two models are given by

δ2
1 = 1′NV −1

22 1N − 1′NV −1
22 D1(D′

1V
−1
22 D1)−1D′

1V
−1
22 1N , (52)

δ2
2 = 1′NV −1

22 1N − 1′NV −1
22 D2(D′

2V
−1
22 D2)−1D′

2V
−1
22 1N . (53)

For non-nested models, there are two cases to consider: (i) both models are correctly specified, and

(ii) both models are misspecified. We take up these two cases in turn.

B.1. Both Models are Correctly Specified

In order to obtain the asymptotic distribution of δ̂2
1 − δ̂2

2 for correctly specified models, we employ

the Generalized Method of Moments (GMM) of Hansen (1982). When both models are correctly

specified, we have the following population moment conditions

E[gt(θ)] = E

[
g1t(η)

g2t(λ)

]
= E

[
Rtx

′
1tη − 1N

Rtx
′
2tλ− 1N

]
= 02N , (54)

where θ = [η′, λ′]′. The sample moment conditions are then given by

ḡT (θ) =

[
ḡ1T (η)

ḡ2T (λ)

]
=

[
1
T

∑T
t=1 Rtx

′
1tη − 1N

1
T

∑T
t=1 Rtx

′
2tλ − 1N

]
=

[
D̂1η − 1N

D̂2λ − 1N

]
. (55)

The sample estimator of θ can be written as the solution to the following conditions

AT ḡT (θ) = 02N , (56)

where

AT =

[
D̂′

1V̂
−1
22 O(K1+K2+1)×N

O(K2+K3+1)×N D̂′
2V̂

−1
22

]
a.s.−→

[
D′

1V
−1
22 O(K1+K2+1)×N

O(K2+K3+1)×N D′
2V

−1
22

]
≡ A. (57)
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We define the derivative of the sample moment conditions with respect to the parameters as

GT (θ) =

[
D̂1 ON×(K2+K3+1)

ON×(K1+K2+1) D̂2

]
a.s.−→

[
D1 ON×(K2+K3+1)

ON×(K1+K2+1) D2

]
≡ G. (58)

Under joint stationarity and ergodicity assumptions on factors and returns and assuming that their

fourth moments exist, the asymptotic distribution of θ̂ is then given by

√
T (θ̂ − θ) A∼ N(0K+K2+2, (AG)−1ASA′(G′A′)−1), (59)

where

S =
∞∑

j=−∞
E[gt(θ)gt+j(θ)′] =

[
S11 S12

S21 S22

]
, (60)

and Sij is an N × N submatrix of S. The asymptotic distribution of ḡT (θ̂) is given by

√
T ḡT (θ̂) ∼ N(02N , [I2N − G(AG)−1A]S[I2N − G(AG)−1A]′). (61)

After simplification, we can write

√
T

[
ḡ1T (η̂)

ḡ2T (λ̂)

]
∼ N

(
02N ,

[
G1S11G

′
1 G1S12G

′
2

G2S21G
′
1 G2S22G

′
2

])
, (62)

where G1 = IN − D1(D′
1V

−1
22 D1)−1D′

1V
−1
22 and G2 = IN − D2(D′

2V
−1
22 D2)−1D′

2V
−1
22 .

Proposition 3 presents the asymptotic distribution of δ̂2
1 − δ̂2

2 when both models are correctly

specified.

Proposition 3: Denote n1 = N − K1 − K2 − 1 and n2 = N − K2 − K3 − 1. Let P1 be an

N × n1 orthonormal matrix with its columns orthogonal to V
− 1

2
22 D1. Similarly, let P2 be an N × n2

orthonormal matrix with its columns orthogonal to V
− 1

2
22 D2. When δ2

1 = δ2
2 = 0, then

T (δ̂2
1 − δ̂2

2)
A∼

n1+n2∑

i=1

ξixi, (63)

where xi’s are independent χ2
1 random variables and ξi’s are the eigenvalues of


 P ′

1V
− 1

2
22 S11V

− 1
2

22 P1 P ′
1V

− 1
2

22 S12V
− 1

2
22 P2

−P ′
2V

− 1
2

22 S21V
− 1

2
22 P1 −P ′

2V
− 1

2
22 S22V

− 1
2

22 P2


 . (64)
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Note that the ξi’s are not all positive because δ̂2
1−δ̂2

2 can take positive or negative values. Therefore,

for the non-nested model case, we must perform a a two-tailed test of H0 : δ2
1 = δ2

2 instead of a

one-tailed test as in the nested models case.

When Yt is multivariate elliptically distributed, we can further simplify the ξi’s. The results are

given in the Lemma 5.

Lemma 5 Suppose Yt = [f ′
t , R′

t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ. Let A1 = [IK1+K2 O(K1+K2)×K3
] and A2 =

[O(K2+K3)×K1
, IK2+K3 ], the first two moments of the two SDFs can be obtained as

µy1 = E[y1t] = η0 + η′
1A1µ1, (65)

µy2 = E[y2t] = λ0 + λ′
1A2µ1, (66)

σ2
y1

= Var[y1t] = η′
1A1V11A

′
1η1, (67)

σ2
y2

= Var[y2t] = λ′
1A2V11A

′
2λ1, (68)

σy1,y2 = Cov[y1t, y2t] = η′
1A1V11A

′
2λ1, (69)

and ξi’s are the eigenvalues of
[

[µ2
y1

+ (1 + κ)σ2
y1

]In1 [µy1µy2 + (1 + κ)σy1 ,y2 ]P
′
1P2

−[µy1µy2 + (1 + κ)σy1 ,y2 ]P
′
2P1 −[µ2

y2
+ (1 + κ)σ2

y2
]In2

]
. (70)

As an example, we consider a case with f3t = f1t + εt, where εt is a zero-mean measurement error

uncorrelated with f1t, f2t and Rt. Under this setup, we have n1 = n2 and model 2 is effectively the

same as model 1 except that some of its factors are more noisy. Since Cov[Rt, f
′
1t] = Cov[Rt, f

′
3t],

it is straightforward to show that µy1 = µy2 , σ2
y1

= σy1 ,y2 < σ2
y2

and P2 = P1. It follows that ξi’s

are the eigenvalues of the matrix
[

µ2
y1

+ (1 + κ)σ2
y1

µ2
y1

+ (1 + κ)σ2
y1

−µ2
y1

− (1 + κ)σ2
y1

−µ2
y1

− (1 + κ)σ2
y2

]
⊗ In1 . (71)

It can be verified that this matrix has n1 pairs of eigenvalues of

ζ1, ζ2 =
−(1 + κ)(σ2

y2
− σ2

y1
) ±

√
(1 + κ)(σ2

y2
− σ2

y1
)[4µ2

y1
+ (1 + κ)(3σ2

y1
+ σ2

y2
)]

2
, (72)

so we have

T (δ̂2
1 − δ̂2

2) A∼ ζ1χ
2
n1

+ ζ2χ
2
n1

. (73)
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Since E[ζ1χ
2
n1

+ ζ2χ
2
n1

] = −n1(1 + κ)(σ2
y2

− σ2
y1

) < 0, we expect the model with noisier factors to

have a larger sample HJ-distance.

B.2. Both Models are Misspecified

When two non-nested models are both misspecified, the asymptotic distribution of δ̂2
1 − δ̂2

2 is given

in Proposition 4.

Proposition 4: Let dt = q1t − q2t, where

q1t = 2u1ty1t − u2
1t + δ2

1,

q2t = 2u2ty2t − u2
2t + δ2

2,

with u1t = e′1V
−1
22 Rt and u2t = e′2V

−1
22 Rt. When δ1 6= 0 and δ2 6= 0, then

√
T (δ̂2

1 − δ̂2
2 − (δ2

1 − δ2
2)) A∼ N(0, vd), (74)

where

vd =
∞∑

j=−∞
E[dtdt+j ]. (75)

Under the null hypothesis of H0 : δ2
1 = δ2

2 6= 0
√

T (δ̂2
1 − δ̂2

2) A∼ N(0, vd) (76)

and dt can be simplified to

dt = 2u1ty1t − u2
1t − 2u2ty2t + u2

2t. (77)

When Yt is multivariate elliptically distributed, we can further simplify the asymptotic distribution

of δ̂2
1 − δ̂2

2 . The results are given in Lemma 6.

Lemma 6 Suppose Yt = [f ′
t , R′

t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ. The asymptotic variance of δ̂2
1 − δ̂2

2 is given

by

vd = 4(µ2
y1

δ2
1 + µ2

y2
δ2
2 − 2µy1µy2δ12)

+ 4(1 + κ)(σ2
y1

δ2
1 + σ2

y2
δ2
2 − 2σy1 ,y2δ12 − δ2

1δ
2
2 + δ2

12) + (2 + 3κ)(δ2
1 − δ2

2)
2, (78)

where δ12 = e′1V
−1
22 e2. Under the null hypothesis of H0 : δ2

1 = δ2
2 = δ2 6= 0, vd can be simplified to

vd = 4(µ2
y1

δ2 + µ2
y2

δ2 − 2µy1µy2δ12) + 4(1 + κ)(σ2
y1

δ2 + σ2
y2

δ2 − 2σy1,y2δ12 − δ4 + δ2
12). (79)
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III. Empirical Analysis

We illustrate the relevance of our methodology with an empirical application. First, we briefly

describe the data used in the empirical analysis and outline the different specifications of the linear

SDFs considered. Second, we present our results.

A. Data and Asset Pricing Models

We use the same data as in Hodrick and Zhang (2001). For monthly models, the data cover the

period from 1952/1 to 1997/12 (552 monthly observations). The only exception is the consump-

tion CAPM, for which we have monthly data starting in 1959/2 (467 monthly observations). For

quarterly models, the data cover the period from 1953 Q1 to 1997 Q4 (180 quarterly observations).

The asset returns are the returns on the 25 Fama-French size and book-to-market portfolios in

excess of the T-bill rate plus the gross return on the T-bill. Monthly excess returns are obtained by

subtracting the one-month T-bill return from the returns on the 25 Fama-French portfolios. Quar-

terly excess returns are obtained by compounding the monthly Fama-French returns to a quarterly

frequency and subtracting the three-month T-bill return. Following Hodrick and Zhang (2001),

we consider unconditional as well as conditional models. For conditional monthly models, the

conditioning variables are the lagged values of the cyclical component of the industrial production

index (Lag IP) and a January dummy (JAN). For conditional quarterly models, the conditioning

variables are the lagged values of the cyclical component of real GNP (Lag GNP), the lagged val-

ues of the consumption-wealth ratio (Lag CAY) of Lettau and Ludvigson (2001), and a January

dummy (JAN) that takes on the value of one for the first quarter and the value of zero for all other

quarters.6

For monthly models, we consider six different empirical specifications. The first model is the

CAPM, which assumes that the SDF is

yt = λ0 + λvwrvw
t , (80)

where rvw
t is the excess return on the CRSP value-weighted index. The second model is a linearized

6We thank Robert Hodrick and Xiaoyan Zhang for sharing their data with us. We also thank Martin Lettau and
Kenneth French for making the rest of the data available through their web sites.
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consumption CAPM (C–CAPM), which assumes that the SDF is

yt = λ0 + λcgr
cg
t , (81)

where rcg
t is the growth rate in real nondurables consumption. The third model (JW) is the

conditional CAPM of Jagannathan and Wang (1996), which assumes that the SDF is

yt = λ0 + λvwrvw
t + λpremr

prem
t−1 + λlabr

lab
t , (82)

where rvw
t is the excess return on the CRSP value-weighted index,7 rprem

t−1 is the lagged yield spread

between low and high-grade corporate bonds, and rlab
t is the growth rate in per capita income.

The fourth model (CAMP) is a linearized version of Campbell’s (1996) intertemporal capital asset

pricing model, which assumes that the SDF is

yt = λ0 + λrvwrrvw
t + λclabr

clab
t + λdivr

div
t + λrtbr

rtb
t + λtrmrtrm

t , (83)

where rrvw
t is the real return on the CRSP value-weighted index, rclab

t is the monthly growth rate in

real labor income (constructed differently from the JW labor series), rdiv
t is the dividend yield on the

CRSP value-weighted market portfolio, rrtb
t is the difference between the one-month T-bill rate and

its one-year backward moving average, and rtrm
t is the yield spread between long and short-term

government bonds. The fifth model (FF3) is the Fama-French (1993) three-factor model, which

assumes that the SDF is

yt = λ0 + λvwrvw
t + λsmbr

smb
t + λhmlr

hml
t , (84)

where rsmb
t is the return difference between portfolios of small and large stocks, and rhml

t is the

return difference between portfolios of high and low book-to-market ratios. The sixth model (FF5)

is the Fama-French (1993) five-factor model, which assumes that the SDF is

yt = λ0 + λvwrvw
t + λsmbr

smb
t + λhmlr

hml
t + λtermrterm

t + λdefrdef
t , (85)

where rterm
t is the yield spread between a thirty-year bond and the one-month T-bill, and rdef

t is

the yield spread between low and high-grade corporate bonds (same series as in the JW model but

not lagged).

7Jagannathan and Wang (1996) actually use the gross return on the CRSP value-weighted index and not the
excess return. However, we use the excess return to be consistent with Hodrick and Zhang (2001).
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To form monthly conditional models, we assume that the λ’s are linear functions of a condition-

ing variable (either Lag IP or JAN). This is equivalent to scaling the factors of the unconditional

monthly models described above by a constant and the conditioning variable. Consequently, in the

conditional case, the smallest model will have four factors and the biggest model will have twelve

factors.8 Scaling factors by instruments is one popular way of allowing factor risk premia to vary

over time. Examples of this type of practice are found in Ferson and Harvey (1991), Campbell

(1996), and Ferson and Harvey (1999), among others.

For quarterly models, we consider seven empirical specifications: the six models described

above and, in addition, the production based asset pricing model (COCH) of Cochrane (1996).

The corresponding SDF is

yt = λ0 + λgnrr
gnr
t + λgrr

gr
t , (86)

where rgnr
t is the growth rate on real nonresidential investment and rgr

t is the growth rate on

real residential investment. Quarterly conditional models are formed by scaling the factors of the

quarterly unconditional models by a constant and either Lag GNP, Lag CAY or JAN.

B. Results

First, we provide a summary of the different asset pricing models considered. Second, we analyze

the impact of potential model misspecification on the statistical properties of the estimated SDF

parameters. Third, we present the results of our tests of equality of the squared HJ-distances of

two models.

B.1. Summary of the Models

Table I provides a summary of the different monthly and quarterly asset pricing models. The results

are largely identical to the ones reported in Table 3 of Hodrick and Zhang (2001). The estimates

of the HJ-distance are denoted with δ̂. The p-value of the test of H0 : δ = 0 from equation (16)

is p(δ = 0). The standard error of the sample HJ-distance from equation (20) computed under

8Although the JW model is already an unconditional version of a conditional model, we follow Hodrick and Zhang
(2001) and scale its factors by a constant and either Lag IP or JAN, which implies a total of eight factors in the
model SDF.
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the alternative hypothesis that δ 6= 0 is se(δ̂).9 The 95% confidence interval of δ based on se(δ̂) is

CI(δ). No. of par. denotes the number of parameters in each asset pricing model.

Table I about here

Starting from the monthly unconditional asset pricing models in Panel A, most of the models

are rejected by the data at the 5% level. This provides compelling evidence to incorporate model

misspecification into our statistical analysis. The CAMP and FF5 models have the lowest HJ-

distances and are the only ones that pass the test of H0 : δ = 0 at the 5% level. However, an

examination of the 95% confidence intervals of δ for the CAMP and FF5 models indicates that

the HJ-distances of these two models are far from zero. The reason behind the different outcomes

provided by the specification tests and confidence intervals analyses is that the p-value of H0 : δ = 0

is computed under the hypothesis that the model is correctly specified, while the confidence interval

of δ uses a standard error that is only valid when the model is misspecified. Since the asymptotic

distributions of δ̂ under correctly specified and misspecified models are different, the conclusions

that we obtain from the two types of analyses can also be different. In addition, the confidence

intervals of δ for different models significantly overlap each other, possibly suggesting that, after

accounting for sampling variability, it might be difficult to detect substantial differences in the

HJ-distances of competing models.

When scaling the factors by either Lag IP or JAN in Panels B and C, the estimates of the

HJ-distances of the conditional models are smaller than the corresponding estimates of the uncon-

ditional models. The smaller HJ-distances of the conditional models can be due to two reasons: (i)

the conditioning information reduces the pricing errors by allowing the prices of risk to vary with

the business cycle; and (ii) the use of conditioning information effectively doubles the number of

factors and parameters so the conditional models are better able to fit the data. In the scaled factor

case, more models pass the HJ-distance test. Specifically, when we scale the factors by Lag IP, the

JW, CAMP, and FF5 models are not rejected by the data at the 5% level, as shown in Panel B.

When scaling factors by JAN, the C-CAPM, JW, CAMP, FF3 and FF5 models are not rejected by

9The se(δ̂)’s are computed assuming no serial correlation. A separate set of results (available upon request)
considers a 12-lag and a 4-lag Newey-West (1987) adjustment for monthly and quarterly models, respectively. Overall,
accounting for serial correlation in the data makes the standard errors of δ̂ slightly bigger. In addition, the lag
adjustments generally deliver higher p-values for testing H0 : δ = 0, thus making the models harder to reject.
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the data at the 5% level, as shown in Panel C. Similar to the unconditional models, an inspection

of the confidence intervals of the HJ-distances suggests that the HJ-distances of all models are far

from zero. In addition, the confidence intervals of δ for the different models significantly overlap

each other.

When considering quarterly models, all the unconditional models are rejected by the data, as

shown in Panel D. Panel E shows that scaling factors by Lag GNP makes it more difficult to reject

the models. Specifically, the CAMP, COCH, FF3 and FF5 models pass the HJ-distance test at the

5% level. In contrast, when scaling the factors by Lag CAY in Panel F, only the CAMP model is

not rejected by the data. When scaling the factors by JAN in Panel G, we cannot reject the JW,

CAMP, COCH and FF5 models using the sample HJ-distance. Similar to the monthly case, scaling

the factors of quarterly models by different instruments results in consistently lower HJ-distances

than the ones that we observe in the unconditional models case. Nevertheless, the 95% confidence

intervals of δ indicate that the HJ-distances of the competing models are far from zero. In addition,

the confidence intervals of δ for the different models significantly overlap each other. Consistent

with the monthly case, the confidence intervals analysis for quarterly models suggests that, after

accounting for sampling variability, there might not be substantial differences in the HJ-distances

of competing asset pricing models.

As we mentioned above, going from unconditional to conditional models always delivers smaller

sample HJ-distances. Hence, one might be tempted to conclude that conditional models perform

better than their unconditional counterparts. However, there are two issues to be aware of when

considering conditional models. The first effect of scaling is that the standard errors of δ̂ become

larger, as shown in Panels A through G. The larger standard errors reflect the additional noise

brought into the model by the instruments. A direct implication is that competing models may

become even more difficult to distinguish once conditioning information is introduced into the

models. The formal model comparison tests discussed below will confirm this intuition. The

second effect of scaling is that the number of factors becomes large relative to the number of assets.

When K is large relative to N , Kan and Zhou (2004) argue that using asymptotic results might

not be entirely appropriate and derive the finite sample distribution of δ̂ under the null and the

alternative hypotheses for the case in which factors and returns are jointly normally distributed.
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From this preliminary analysis, one would be tempted to conclude that the CAMP model should

be viewed as the preferred SDF because: (i) the model overall passes the HJ-distance test; and (ii)

the model produces HJ-distance estimates that are consistently among the lowest. However, neither

the sample HJ-distance nor its p-value allow us to formally compare models. In the subsequent

empirical analysis, we will conduct our tests of equality to investigate whether a specific asset

pricing model outperforms the others.

B.2. Properties of the SDF Parameter Estimates Under Correctly Specified and Po-
tentially Misspecified Models

Before turning to model comparison, we empirically investigate whether model misspecification

substantially affects the properties of the SDF parameter estimates. Statistically significant SDF

parameter estimates are often interpreted as evidence that the underlying factors are priced sources

of risk. All existing studies test whether or not a factor is priced by using a standard error that

assumes that the model is correctly specified. As we argued in the introduction, it is difficult to

justify this practice when estimating the SDF parameters for many different models because some

(if not all) of the models are bound to be misspecified. In this section, we empirically investi-

gate whether using an asymptotic variance that is robust to model misspecification instead of an

asymptotic variance that assumes a correctly specified model could lead us to different conclusions

in terms of a factor being priced or not. In fact, this proves to be the case.

In Table II, we focus on the SDF parameter estimates, λ̂, of unconditional monthly and quarterly

models. We report λ̂ and associated t-ratios under correctly specified and potentially misspecified

models.10 In computing t-ratios under correctly specified models, we use the sample counterparts

of (32), while in computing t-ratios under potential model misspecification, we use the sample

counterparts of (31). Consistent with our theoretical results, we find that the t-ratios under correctly

specified and potentially misspecified models are about the same for factors that are traded, while

they largely differ for factors that are not traded such as macroeconomic factors. Consider, for

example, the monthly CAPM in Panel A of Table II. The t-ratios on λ̂vw for correctly specified and

potentially misspecified models are almost identical (−3.31 and −3.32, respectively). The same type

10The t-ratios are computed by assuming that the errors have no serial correlation. A separate set of results
(available upon request) considers a 12-lag and a 4-lag Newey-West (1987) adjustment for monthly and quarterly
models, respectively. Overall, accounting for serial correlation in the data makes the standard errors of λ̂ bigger.
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of conclusion emerges from an inspection of the FF3 model. However, when we consider models

with non-traded factors, the picture substantially changes. For example, for the C-CAPM, we go

from a t-ratio on λ̂cg of −1.90 to a t-ratio of −1.08 and, for the FF5 model, we go from a t-ratio

on λ̂term of 2.67 to a t-ratio of 1.70. For the quarterly unconditional models in Panel B, we see a

similar pattern. For example, for the COCH model, we go from a t-ratio on λ̂gr of −2.00 to a t-

ratio of −1.33. To summarize, we find that for non-traded factors, all the t-ratios under potentially

misspecified models are smaller than the t-ratios under correctly specified models. Hence, ignoring

model misspecification can lead to the erroneous conclusion that certain factors are priced.

Table II about here

For many of the conditional models, there are a lot of parameters. Instead of reporting all the

parameter estimates, we explore the impact of potential model misspecification on the Wald tests

of joint significance of the parameters. The Wald test we focus on is the test of the hypothesis

that the parameters associated with the scaled factors are jointly equal to zero. Given Lemma 3

above, this Wald test is also a test of H0 : δ2
1 = δ2

2 , where model 1 is the unconditional model,

which is nested by model 2, the conditional model. In Table III, we report the Wald test statistics

under correct specification (cs) and potential misspecification (m) for monthly conditional models

in Panels A and B, and for quarterly conditional models in Panels C through E. Once again, we

find that ignoring potential model misspecification makes a substantial difference in terms of the

p-values of the Wald tests. For monthly models, with the exception of the JW model with factors

scaled by JAN, we cannot reject the null hypothesis that the parameters of the scaled factors are

all equal to zero at the 5% level, when using misspecification robust Wald tests. Similarly, for

quarterly models, with the exception of the CAPM model with factors scaled by JAN, we cannot

reject the null hypothesis that the parameters of the scaled factors are all zero at the 5% level, when

using misspecification robust Wald tests.11 Therefore, although conditional models always deliver

lower sample HJ-distances than unconditional models, we do not find much statistical evidence

to conclude that conditional models are better than unconditional models in terms of HJ-distance

after we account for potential model misspecification.

11The p-values of the Wald tests are computed assuming no serial correlation. A separate set of results (available
upon request) considers a 12-lag and a 4-lag Newey-West (1987) adjustment for monthly and quarterly models,
respectively. Overall, accounting for serial correlation in the data makes the p-values even larger.
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Table III about here

Although not reported (results are available upon request), we also compute the t-ratios of

the estimates of the conditional models under both correctly specified and potentially misspecified

models. We find that most of the scaled factors have very low correlations with returns. As

a result, many of the scaled factors are no longer statistically significant once potential model

misspecification is taken into account. For example, when scaling monthly consumption growth by

JAN, we go from a t-ratio of −2.42 under correctly specified models to a t-ratio of −1.65 under

potentially misspecified models. In the Fama-French (1993) three-factor model, when scaling the

monthly smb factor with JAN, we go from a t-ratio of −2.18 to a t-ratio of −1.24. Finally, in the

COCH model, when scaling the gr factor with Lag GNP, we go from a t-ratio of −2.26 to a t-ratio

of −1.64.

To summarize, accounting for model misspecification can often make a qualitative difference in

terms of determining whether or not a factor is priced, especially when the factor has low correlation

with asset returns. This would typically be the case when the factor is a macroeconomic factor,

or when the factor is scaled by an instrument. Unless one is certain that a model is correct,

potential model misspecification should be accounted for when computing the standard errors of

the estimates of SDF parameters.

B.3. Tests of Equality of the HJ-distances of Two Models

In this subsection, we empirically investigate whether competing asset pricing models exhibit sig-

nificantly different sample HJ-distances. Failure to find significant differences across models would

imply that the commonly used returns and factors are too noisy for us to conclude that one model is

clearly superior to the others. In the theoretical section of the paper, we show that the asymptotic

distribution of our test statistic, the difference between the sample squared HJ-distances of two

models, depends on whether the competing models are correctly specified or misspecified and on

whether they are nested or non-nested. For nested models, we use Proposition 2 instead of Lemma 3

to conduct the tests of equality of HJ-distances.12 For nested models, we report our results using

the misspecification robust version of V̂ (λ̂(2)) because it is applicable to correctly specified as well

12Results obtained using Lemma 3 (not reported in the paper) are largely consistent with the ones shown in the
tables.
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as misspecified models. For non-nested models, the asymptotic distribution of our test statistic

depends on whether the competing models are correctly specified or misspecified. Therefore, in the

non-nested case, we need to take a stand in order to conduct the tests of equality of HJ-distances.

We decide to present our empirical results under the assumption that the competing models are

misspecified because we believe that this is the more realistic scenario. In Tables IV–VI, we report

pairwise tests of equality of squared HJ-distances for different models, some of them being nested

models and others being non-nested models. In Table IV, we report differences between the squared

sample HJ-distances of two models and the associated p-values (in parentheses).13

Table IV about here

In Panels A and D, we compare monthly and quarterly models with unscaled factors; in Panels

B, C, E, F and G, we compare monthly and quarterly models with factors scaled by the same

conditioning variable. For monthly models with unscaled factors, we observe that the CAPM and

the JW models are outperformed by the CAMP, FF3 and FF5 models, while the C-CAPM is

outperformed by the FF3 and FF5 models. However, when we consider models with scaled factors,

no model clearly outperforms the others since all the p-values are greater than 0.05. For quarterly

unconditional models, the CAPM and the COCH models are outperformed by the FF3 and FF5

models. When we scale factors by Lag GNP, the FF3 model outperforms the CAPM. When we

scale factors by Lag CAY, the FF3 model outperforms the COCH model. When we scale factors

by JAN, no model significantly outperforms the others. Out of 129 pairwise tests of equality, only

in 14 cases we find differences between models that are statistically significant at the 5% level.

The only models that seem to underperform in a few circumstances are the CAPM, the C-CAPM,

the JW, and the COCH models. In addition, we find no evidence that intertemporal CAPM-type

specifications such as the Campbell (1996) model outperform the Fama-French three and five factor

models.

Next, we investigate whether conditional models perform substantially better than uncondi-

tional models. The reason behind this type of exercise is that the HJ-distances of the conditional

models are always lower than the HJ-distances of their unconditional counterparts, as shown in

Table I. However, it is inappropriate to conclude that the instruments actually help to reduce the

13Note that in the case of non-nested models, the p-values are two-tailed p-values.
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pricing errors without performing a formal comparison of the unconditional models vs. the condi-

tional models. In Table V, we report the results from testing the equality of HJ-distances between

conditional and unconditional models.

Table V about here

Panels A and B are for monthly models, while Panels C through E are for quarterly models. The

first noticeable pattern is that the p-values along the main diagonal of each Panel are not significant

at the 5% level. This suggests that, for a given model, we cannot find statistically significant

differences in HJ-distances between the conditional version and the unconditional version of the

model. For comparisons across models, we see a pattern which is similar to the one that we observe

in Table IV. Namely, for monthly models, the unconditional C-CAPM model is outperformed by the

conditional CAMP, FF3, and FF5 models when scaling by Lag IP, and by the FF3, and FF5 when

scaling by JAN. The unconditional JW model is outperformed by the conditional CAMP, FF3,

and FF5 models. However, the unconditional CAPM is now only outperformed by the conditional

CAMP model, indicating that the instruments add noise to the data, thus making it harder to

detect significant differences between the HJ-distances of two competing models. For quarterly

models, similarly to Table IV, we find some evidence of underperformance of the unconditional

C-CAPM and COCH models. In synthesis, out of 219 model comparisons, we find that only in 19

cases the differences between models are statistically significant at the 5% level. Once again, the

data are generally too noisy for us to conclude that one model clearly outperforms the others.

Finally, in Table VI, we compare conditional models with factors scaled by one instrument with

conditional models that use a different instrument. The reason behind this type of exercise is that

different conditional models might capture different characteristics of the economy and that the

type of scaling might affect their absolute and relative performances.

Table VI about here

For monthly models, we find that the performances of all the competing models cannot be

distinguished. For quarterly models, we find some evidence of underperformance of the CAPM and

the COCH models. In synthesis, out of 183 model comparisons, we find that only in 5 cases the
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differences between models are statistically significant at the 5% level.14 Overall, our econometric

analysis suggests that, once instruments are used, there is too much noise in the data for us to

conclude that one conditional model clearly outperforms the others.

IV. Conclusion

In this paper, we propose a new methodology to test whether or not two competing linear asset

pricing models have the same HJ-distance. We show that the asymptotic distribution of the test

statistic depends on whether the competing models are correctly specified or misspecified, and on

whether the competing models are nested or non-nested. We provide the asymptotic distribution

of our test statistic under general assumptions as well as under the assumption that factors and

returns are jointly elliptically distributed. The multivariate elliptical case allows us to gain further

intuition on the important determinants of the asymptotic distribution of the test statistic.

In addition, we contribute to the existing literature by proposing a simple methodology for

computing the standard errors of the estimated SDF parameters that are robust to model misspec-

ification. For the multivariate elliptical case, we are able to show analytically that the standard

errors under potentially misspecified models are always bigger than the standard errors that assume

that the model is correctly specified. In addition, we show that the misspecification adjustment

depends on, among other things, the correlation between the factor and the returns of the test

assets. This adjustment can be very large when the underlying factor is poorly mimicked by asset

returns. A nice feature of our misspecification robust standard errors is that they can be used

whether the model is correctly specified or misspecified.

We conduct our empirical analysis using the same data as in Hodrick and Zhang (2001). We

find that many of the non-traded factors in several intertemporal CAPM-type specifications are no

longer priced when potential model misspecification is taken into account. On the contrary, the

statistical significance of the traded factors is not greatly affected when we use our misspecification

robust standard errors. In addition, we find that the commonly used returns and factors are,

for the most part, too noisy for us to conclude that one model outperforms the others in terms

14All the p-values in Tables IV–VI are computed assuming no serial correlation. A separate set of results (available
upon request) considers a 12-lag and a 4-lag Newey-West (1987) adjustment for monthly and quarterly models,
respectively. Overall, accounting for serial correlation in the data makes the p-values of the test statistics larger and
the differences between models even harder to detect.

27



of HJ-distance. Specifically, we find no evidence that conditional and intertemporal CAPM-type

specifications outperform the Fama-French (1993) three and five-factor models in terms of HJ-

distance. Our results appear to be robust to the horizon considered and to factor scaling.

While we do not find statistically significant differences between the HJ-distances of the scaled

factor models and the unscaled factor models, this does not necessarily mean that the conditional

models do not perform better than the unconditional models. The sample HJ-distances of com-

peting models may be very noisy and have little power in differentiating good models from bad

models. However, explicitly accounting for the uncertainty associated with the difference between

the sample HJ-distances of two competing models is still better than simply relying on the point

estimates of the HJ-distances. Moreover, it is not clear that other measures of model misspeci-

fication (like OLS and GLS R2 or sum of squares of pricing errors) would allow us to overcome

this problem. As aggregates of sample pricing errors, these other measures can be just as noisy as

the sample HJ-distance and more importantly, they may not be economically as meaningful as the

HJ-distance.

Our analysis could be extended in a number of ways. For instance, our methodology could be

modified to accommodate nonlinear stochastic discount factors. In addition, testing the equality of

HJ-distances of more than two models is, in principle, feasible. Future research should also address

the small sample properties of the test statistics proposed in this paper. Finally, our analysis can

also be used to develop tests of equality of other measures of model misspecification.
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Appendix

We first present some expressions for the mixed moments of multivariate elliptical distributions,

which will be used repeatedly in the Appendix.

Claim: Suppose (Xi, Xj , Xk, Xl) follow a multivariate elliptical distribution with multivariate kur-

tosis parameter κ. Denoting µi = E[Xi] and σij = Cov[Xi, Xj], we have

E[XiXj ] = σij + µiµj , (A1)

E[XiXjXk] = µiµjµk + µiσjk + µjσik + µkσij , (A2)

E[XiXjXkXl] = (1 + κ)(σijσkl + σikσjl + σilσjk) + µiµjµkµl

+ σijµkµl + σikµjµl + σilµjµk + σjkµiµl + σjlµiµk + σklµiµj . (A3)

Proof: (A1) follows from the definition of covariance. For (A2) and (A3), Lemma 2 of Maruyama

and Seo (2003) shows that

E[(Xi − µi)(Xj − µj)(Xk − µk)] = 0, (A4)

E[(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)] = (1 + κ)(σijσkl + σikσjl + σilσjk). (A5)

Using (A1) and (A4), we obtain (A2). For the product moment of XiXjXkXl, we use (A2) and

(A4) to write

E[(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)]

= E[Xi(Xj − µj)(Xk − µk)(Xl − µl)]

= E[XiXj(Xk − µk)(Xl − µl)]− µjE[Xi(Xk − µk)(Xl − µl)]

= E[XiXjXkXl] − µkE[XiXjXl] − µlE[XiXjXk] + µkµl(σij + µiµj)

− µjE[(Xi − µi)(Xk − µk)(Xl − µl)] − µiµjE[(Xk − µk)(Xl − µl)]

= E[XiXjXkXl] − µiµjµkµl − σijµkµl − σikµjµl − σilµjµk

− σjkµiµl − σjlµiµk − σklµiµj . (A6)

Using this equation and (A5), we obtain (A3). This completes the proof.

Proof of Lemma 1: The result for δ = 0 is in Kan and Zhou (2004). Therefore, we only provide the

proof for the δ 6= 0 case. Since Yt is multivariate elliptically distributed, ut = e′V −1
22 Rt and yt =
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µy + λ′
1(ft − µ1) are bivariate elliptically distributed because both of them are linear combinations

of the elements of Yt. Using the properties of multivariate elliptical distributions (see Muirhead,

1982, p.41) and the fact that e′V −1
22 µ2 = 0, we have E[ut] = 0, E[u2

t ] = e′V −1
22 e = δ2, E[u3

t ] = 0,

E[u4
t ] = 3(1+κ)E[u2

t ]
2 = 3(1+κ)δ4, E[yt] = µy , E[y2

t ] = µ2
y +σ2

y , where κ is the kurtosis parameter

of the elliptical distribution. In addition, using the identity D′V −1
22 e = 0K+1, we have

E[utyt] = E[e′V −1
22 Rtx

′
tλ] = e′V −1

22 Dλ = 0. (A7)

Therefore, ut and yt are uncorrelated. Applying (A3), we obtain E[u2
ty

2
t ] = (1+ κ)δ2σ2

y + δ2µ2
y and

E[u3
tyt] = 0. Using these moments of ut and yt, we have

E[q2
t ] = 4[µ2

y + (1 + κ)σ2
y ]δ2 + (2 + 3κ)δ4. (A8)

This completes the proof.

Proof of Proposition 1: Note that λ̂ is a smooth function of µ̂ and V̂ . Therefore, once we have

the asymptotic distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic

distribution of λ̂. Let

φ =

[
µ

vec(V )

]
, φ̂ =

[
µ̂

vec(V̂ )

]
. (A9)

Under some standard regularity conditions, we can assume15

√
T (φ̂ − φ) A∼ N(0(N+K)×(N+K+1), S0). (A10)

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[rt(φ)] = 0(N+K)(N+K+1), where

rt(φ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A11)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

the asymptotic variance of φ̂ is given by

S0 =
∞∑

j=−∞
E[rt(φ)rt+j(φ)′]. (A12)

15Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in φ̂. We could have written
φ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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Using the delta method, the asymptotic distributions of λ̂ under the misspecified model is given by

√
T (λ̂ − λ) A∼ N

(
0,

[
∂λ

∂φ′

]′
S0

[
∂λ

∂φ′

])
. (A13)

The expression of ∂λ/∂φ′ is presented next.

Claim: Let e = Dλ − 1N . We have

∂λ

∂µ′
1

= −
[
1, 0′K

]′
λ′

1, (A14)

∂λ

∂µ′
2

= −H
[
1, µ′

1

]′
e′V −1

22 − HD′V −1
22 µy , (A15)

∂λ

∂vec(V )′
=

[
H [0K, IK ]′, O(K+1)×N

]
⊗
[
0′K , −e′V −1

22

]

+
[
−λ′

1, e′V −1
22

]
⊗
[
O(K+1)×K , HD′V −1

22

]
. (A16)

Proof: Let d = vec(D). It is straightforward to show that

∂d

∂µ′
1

=

[
ON×K

IK ⊗ µ2

]
=

[
0′K
IK

]
⊗ µ2, (A17)

∂d

∂µ′
2

=

[
IN

µ1 ⊗ IN

]
=
[

1
µ1

]
⊗ IN , (A18)

∂d

∂vec(V )′
= [[0K, IK ]′, O(K+1)×N ] ⊗ [ON×K , IN ]. (A19)

Define Km,n as a commutation matrix (see, e.g., Magnus and Neudecker (1999)) such that Km,nvec(A) =

vec(A′) where A is an m × n matrix. In addition, we denote Kn,n as Kn. Note that

∂vec(D′)
∂d′

=
∂KN,K+1d

∂d′
= KN,K+1, (A20)

∂vec(D′V −1
22 D)

∂d′
= (D′V −1

22 ⊗ IK+1)
∂vec(D′)

∂d′
+ (IK+1 ⊗ D′V −1

22 )
∂d

∂d′

= (D′V −1
22 ⊗ IK+1)KN,K+1 + (IK+1 ⊗ D′V −1

22 )

= (I(K+1)2 + KK+1)(IK+1 ⊗ D′V −1
22 ), (A21)

∂vec((D′V −1
22 D)−1)

∂vec(D′V −1
22 D)′

= −(D′V −1
22 D)−1 ⊗ (D′V −1

22 D)−1, (A22)

∂vec((D′V −1
22 D)−1)

∂d′
= −(I(K+1)2 + KK+1)[(D′V −1

22 D)−1 ⊗ (D′V −1
22 D)−1D′V −1

22 ], (A23)

∂vec((D′V −1
22 D)−1D′)

∂d′
= [IN ⊗ (D′V −1

22 D)−1]
∂vec(D′)

∂d′
+ (D ⊗ IK+1)

∂vec((D′V −1
22 D)−1)

∂d′

= [IN ⊗ (D′V −1
22 D)−1]KN,K+1
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− (D ⊗ IK+1)(I(K+1)2 + KK+1)[(D′V −1
22 D)−1 ⊗ (D′V −1

22 D)−1D′V −1
22 ]

= KN,K+1[(D′V −1
22 D)−1 ⊗ IN ] − D(D′V −1

22 D)−1 ⊗ (D′V −1
22 D)−1D′V −1

22

− KN,K+1[(D′V −1
22 D)−1 ⊗ D(D′V −1

22 D)−1D′V −1
22 ]

= KN,K+1[(D′V −1
22 D)−1 ⊗ [IN − D(D′V −1

22 D)−1D′V −1
22 ]]

− D(D′V −1
22 D)−1 ⊗ (D′V −1

22 D)−1D′V −1
22 . (A24)

Therefore,
∂λ

∂d′
= (1′NV −1

22 ⊗ IK+1)
∂vec(HD′)

∂d′
= −H ⊗ e′V −1

22 − λ′ ⊗ HD′V −1
22 . (A25)

It follows that

∂λ

∂µ′
1

=
∂λ

∂d′
∂d

∂µ′
1

= −λ′
1 ⊗ HD′V −1

22 µ2 = −[1, 0′K ]′λ′
1, (A26)

∂λ

∂µ′
2

=
∂λ

∂d′
∂d

∂µ′
2

= −H [1, µ′
1]

′e′V −1
22 − HD′V −1

22 µy . (A27)

For the derivative of λ with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (1′NV −1

22 D⊗IK+1)
∂vec(H)
∂vec(V )′

+(1′NV −1
22 ⊗H)

∂vec(D′)
∂vec(V )′

+(1′N ⊗HD′)
∂vec(V −1

22 )
∂vec(V )′

. (A28)

The last two terms are given by

(1′NV −1
22 ⊗ H)

∂vec(D′)
∂vec(V )′

= [H [0K , IK ]′ , O(K+1)×N ] ⊗ [0′K, 1′NV −1
22 ], (A29)

(1′N ⊗ HD′)
∂vec(V −1

22 )
∂vec(V )′

= −[0′K , 1′NV −1
22 ] ⊗ [O(K+1)×K , HD′V −1

22 ]. (A30)

For the first term, we use the chain rule to obtain

(1′NV −1
22 D ⊗ IK+1)

∂vec(H)
∂vec(V )′

= (1′NV −1
22 D ⊗ IK+1)

∂vec((D′V −1
22 D)−1)

∂vec(D′V −1
22 D)′

∂vec(D′V −1
22 D)

∂vec(V )′

= −(1′NV −1
22 D ⊗ IK+1)(H ⊗ H)

[
(D′V −1

22 ⊗ IK+1)
∂vec(D′)
∂vec(V )′

+ (D′ ⊗ D′)
∂vec(V −1

22 )
∂vec(V )′

+ (IK+1 ⊗ D′V −1
22 )

∂vec(D)
∂vec(V )′

]

= −(λ′ ⊗ H)
{[

[O(K+1)×K , D′V −1
22 ] ⊗ [[0K , IK ]′, O(K+1)×N ]

]
KN+K

− [O(K+1)×K , D′V −1
22 ]⊗ [O(K+1)×K , D′V −1

22 ]
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+ [[0K , IK ]′ , O(K+1)×N ] ⊗ [O(K+1)×K , D′V −1
22 ]
}

= [H [0K , IK ]′ , O(K+1)×N ] ⊗ [0′K, −λ′D′V −1
22 ] + [0′K , λ′D′V −1

22 ] ⊗ [O(K+1)×K , HD′V −1
22 ]

−[λ′
1, 0′N ] ⊗ [O(K+1)×K , HD′V −1

22 ]. (A31)

Combining the three terms and using the identity e = Dλ − 1N , we have

∂λ

∂vec(V )′
=

[
H [0K, IK ]′, O(K+1)×N

]
⊗
[
0′K , −e′V −1

22

]

+
[
−λ′

1, e′V −1
22

]
⊗
[
O(K+1)×K , HD′V −1

22

]
. (A32)

This completes the proof of the claim.

Using the expression of ∂λ/∂φ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =
∞∑

j=−∞
E[ht(φ)ht+j(φ)′], (A33)

where

ht(φ) =
∂λ

∂φ′rt(φ)

= −
[
1, 0′K

]′
λ′

1(ft − µ1) − (H
[
1, µ′

1

]′
e′V −1

22 + µyHD′V −1
22 )(Rt − µ2)

+ vec

(
[0′K, −e′V −1

22 ][(Yt − µ)(Yt − µ)′ − V ]

[
[0K, IK ]H

ON×(K+1)

])

+ vec

(
[O(K+1)×K , HD′V −1

22 ][(Yt − µ)(Yt − µ)′ − V ]

[
−λ1

V −1
22 e

])

=

[
−λ′

1(ft − µ1)

0K

]
− H

[
1

µ1

]
ut − HD′V −1

22 (Rt − µ2)µy

− H [0K, IK ]′(ft − µ1)ut − HD′V −1
22 (Rt − µ2)(ft − µ1)′λ1 + HD′V −1

22 (Rt − µ2)ut

+ HD′V −1
22 V21λ1 + H [0K, IK ]′V12V

−1
22 e − HD′V −1

22 e

= −HD′V −1
22 (Rt − µ2)(yt − ut) − Hxtut −

[
yt

0K

]
+ λ

= −HD′V −1
22 Rtyt + H [D′V −1

22 (Rt − µ2) − xt]ut + λ. (A34)

Equation (A34) follows from the fact that HD′V −1
22 V21λ1 = [−µ′

1λ1, λ′
1]
′ and HD′V −1

22 µ2 = [1, 0′K ]′.

In addition, the first order condition of D′V −1
22 e = 0K+1 implies that µ′

2V
−1
22 e = 0 and V12V

−1
22 e =

0K . Note that when the model is correctly specified, we have e = 0N and ut = 0. In this case, we

have

ht(φ) = −HD′V −1
22 Rtyt + λ. (A35)
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This completes the proof.

Proof of Lemma 2: Let qt = HD′V −1
22 (Rt − µ2), wt = D′V −1

22 (Rt − µ2) − xt and zt = [λ′
1ft, −λ′

1]
′.

Since qt, wt and zt are linear functions of Rt and ft, they are also jointly elliptically distributed.

Using the identity

HD′V −1
22 µ2yt = HD′V −1

22 D

[
1

0K

]
yt =

[
yt

0K

]
, (A36)

we can write

ht = qtyt − Hwtut + zt. (A37)

It is straightforward to obtain E[qt] = 0K+1, E[wt] = −[1, µ′
1]
′, E[zt] = [λ′

1µ1, −λ′
1]
′, Var[qt] = H ,

Var[wt] = (µ′
2V

−1
22 µ2)

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K V11 − V12V
−1
22 V21

]
, (A38)

Var[zt] =

[
σ2

y 0′K
0K OK×K

]
. (A39)

In addition, using the identity D′V −1
22 e = 0K+1, we can obtain the following joint moments E[qtut] =

0K+1, E[qtyt] = [−µ′
1λ1, λ′

1]
′, E[wtut] = 0K+1, E[ztut] = 0K+1, E[utyt] = 0. Using these moments

and applying (A2) and (A3), we obtain

E[qtw
′
tytut] = O(K+1)×(K+1), (A40)

E[wtz
′
tut] = O(K+1)×(K+1), (A41)

E[wtw
′
tu

2
t ] = δ2(E[wt]E[wt]′ + (1 + κ)Var[wt]), (A42)

E[qtq
′
ty

2
t ] = [µ2

y + (1 + κ)σ2
y ]H + 2(1 + κ)

[
−µ′

1λ1

λ1

][
−µ′

1λ1

λ1

]′
, (A43)

E[qtz
′
tyt] =

[
−µ′

1λ1

λ1

][
µy + µ′

1λ1

−λ1

]′
. (A44)

Using (A40) and (A41), we can write

V (λ̂) = E[hth
′
t] = E[qtq

′
ty

2
t ] + E[qtz

′
tyt] + E[ztq

′
tyt] + E[ztz

′
t] + HE[wtw

′
tu

2
t ]H. (A45)

Substituting (A42)–(A44) in (A45) and after simplification, we obtain our expression of V (λ̂). This

completes the proof.

Proof of Lemma 3: Partition B = D′V −1
22 D as

B =

[
B11 B12

B21 B22

]
, (A46)
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where B11 is (K1 + 1) × (K1 + 1) and B22 is K2 × K2. We can write the difference of the squared

HJ-distances of the two models as

δ2
1 − δ2

2 = 1′NV −1
22 DHD′V −1

22 1N − 1′NV −1
22 D

[
B−1

11 O(K1+1)×K2

OK2×(K1+1) OK2×K2

]
D′V −1

22 1N

= λ′Bλ − λ′B

[
B−1

11 O(K1+1)×K2

OK2×(K1+1) OK2×K2

]
Bλ

= λ′Bλ − λ′

[
B11 B12

B21 B21B
−1
11 B12

]
λ

= λ(2)′(B22 − B21B
−1
11 B12)λ(2). (A47)

As D is assumed to be of full column rank, B22−B21B
−1
11 B12 is a positive definite matrix. Therefore,

δ2
1 = δ2

2 if and only if λ(2) = 0K2 . This completes the proof.

Proof of Proposition 2: Let z =
√

TV (λ̂(2))−
1
2 λ̂(2) A∼ N(0K2, IK2). From the proof of Lemma 3 and

the fact that A2HA′
2 = A2B

−1A′
2 = (B22 − B21B

−1
11 B12)−1, we can write

T (δ̂2
1 − δ̂2

2) = z′V (λ̂(2))
1
2 (B22 − B21B

−1
11 B12)V (λ̂(2))

1
2 z = z′V (λ̂(2))

1
2 (A2HA′

2)
−1V (λ̂(2))

1
2 z. (A48)

Let QΞQ′ be the eigenvalue decomposition of V (λ̂(2))
1
2 (A2HA′

2)
−1V (λ̂(2))

1
2 , where Ξ = Diag(ξ1, . . . ,

ξK2) is a diagonal matrix of the eigenvalues of V (λ̂(2))
1
2 (A2HA′

2)
−1V (λ̂(2))

1
2 , or equivalently the

eigenvalues of (A2HA′
2)

−1V (λ̂(2)), and Q is a matrix of the corresponding eigenvectors. Writing

z̃ = Q′z
A∼ N(0K2, IK2), we have

T (δ̂2
1 − δ̂2

2) = z̃′Ξz̃ =
K2∑

i=1

ξiz̃
2
i , (A49)

where z̃2
i

A∼ χ2
1, i = 1, . . . , K2, and they are asymptotically independent of each other. This

completes the proof.

Proof of Lemma 4: When Yt is i.i.d. multivariate elliptically distributed, we use (33) to obtain the

asymptotic variance of λ̂(2) as

A2V (λ̂)A′
2

= [µ2
y + (1 + κ)σ2

y ]A2HA′
2 + (1 + 2κ)λ(2)λ(2)′ + δ2A2H

×

(
[1 + (1 + κ)µ′

2V
−1
22 µ2]

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K (1 + κ)(V11 − V12V
−1
22 V21)

])
HA′

2.(A50)
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Premultiplying (A50) by (A2HA′
2)

−1 and using the fact that A2λ = λ(2) = 0K2 under the null

hypothesis, we obtain (46). This completes the proof.

Proof of Proposition 3: Let

z =
√

T


 V

− 1
2

22 ḡ1T (η̂)

V
− 1

2
22 ḡ2T (λ̂)


 A∼ N(02N , Vz), (A51)

where

Vz =


 V

− 1
2

22 G1S11G
′
1V

− 1
2

22 V
− 1

2
22 G1S12G

′
2V

− 1
2

22

V
− 1

2
22 G2S21G

′
1V

− 1
2

22 V
− 1

2
22 G2S22G

′
2V

− 1
2

22


 . (A52)

Note that V
− 1

2
22 G1 and V

− 1
2

22 G1 can be written as

V
− 1

2
22 G1 = V

− 1
2

22 [IN − D1(D′
1V

−1
22 D1)−1D′

1V
−1
22 ]

= [IN − V
− 1

2
22 D1(D′

1V
−1
22 D1)−1D′

1V
− 1

2
22 ]V

− 1
2

22

= P1P
′
1V

− 1
2

22 , (A53)

V
− 1

2
22 G2 = P2P

′
2V

− 1
2

22 . (A54)

With these identities, we can write Vz as

[
P1 ON×n2

ON×n1 P2

]
 P ′

1V
− 1

2
22 S11V

− 1
2

22 P1 P ′
1V

− 1
2

22 S12V
− 1

2
22 P2

P ′
2V

− 1
2

22 S21V
− 1

2
22 P1 P ′

2V
− 1

2
22 S22V

− 1
2

22 P2



[

P ′
1 On1×N

On2×N P ′
2

]
. (A55)

By defining z̃ = V
− 1

2
z z

A∼ N(02N , I2N), we can write

T (δ̂2
1 − δ̂2

2) = z′

[
IN ON×N

ON×N −IN

]
z = z̃′V

1
2

z

[
IN ON×N

ON×N −IN

]
V

1
2

z z̃ =
n1+n2∑

i=1

ξiz̃
2
i , (A56)

where z̃2
i

A∼ χ2
1, i = 1, . . . , K2, are asymptotically independent of each other and the ξi’s are the

nonzero eigenvalues of
[

IN ON×N

ON×N −IN

]
Vz

=

[
P1 ON×n2

ON×n1 P2

]
 P ′

1V
− 1

2
22 S11V

− 1
2

22 P1 P ′
1V

− 1
2

22 S12V
− 1

2
22 P2

−P ′
2V

− 1
2

22 S21V
− 1

2
22 P1 −P ′

2V
− 1

2
22 S22V

− 1
2

22 P2



[

P ′
1 On1×N

On2×N P ′
2

]
,(A57)

or equivalently the eigenvalues of (64). This completes the proof.

36



Proof of Lemma 5: Let r1t = P ′
1V

− 1
2

22 Rt and r2t = P ′
2V

− 1
2

22 Rt. We can write

P ′
1V

− 1
2

22 g1t = P ′
1V

− 1
2

22 (Rty1t − 1N ) = r1ty1t − P ′
1V

− 1
2

22 D1η = r1ty1t, (A58)

P ′
2V

− 1
2

22 g2t = P ′
2V

− 1
2

22 (Rty2t − 1N ) = r2ty2t − P ′
2V

− 1
2

22 D2λ = r2ty2t. (A59)

It is straightforward to show that E[r1t] = 0n1 , E[r2t] = 0n2 , Var[r1t] = In1 , Var[r2t] = In2 ,

E[r1tr
′
2t] = P ′

1P2, E[r1ty1t] = E[r1ty2t] = 0n1 , E[r2ty1t] = E[r2ty2t] = 0n2 . With these moments, we

can apply (A3) to obtain

P ′
1V

− 1
2

22 S11V
− 1

2
22 P1 = E[P ′

1V
− 1

2
22 g1tg

′
1tV

− 1
2

22 P1] = E[r1tr
′
1ty

2
1t] = [µ2

y1
+ (1 + κ)σ2

y1
]In1 , (A60)

P ′
1V

− 1
2

22 S12V
− 1

2
22 P2 = E[r1tr

′
2ty1ty2t] = [µy1µy2 + (1 + κ)σy1 ,y2 ]P

′
1P2, (A61)

P ′
2V

− 1
2

22 S22V
− 1

2
22 P2 = E[r2tr

′
2ty

2
2t] = [µ2

y2
+ (1 + κ)σ2

y2
]In2 . (A62)

This completes the proof.

Proof of Proposition 4: We first present an expression of ∂δ2/∂φ for a general linear SDF model.

Claim: Let λ = (D′V −1
22 D)−1D′V −1

22 1N and e = Dλ − 1N . We have

∂δ2

∂φ
=




2µy

2λ1

−V −1
22 e


⊗

[
0K

V −1
22 e

]
. (A63)

Proof: Note that D′V −1
22 e = 0K+1 implies µ′

2V
−1
22 e = 0. Then, it is easy to show that

∂δ2

∂µ1
= 2λ1µ

′
2V

−1
22 e = 0K , (A64)

∂δ2

∂µ2
= 2µyV

−1
22 e. (A65)

For the derivative of δ2 with respect to vec(V ), we write δ2 = e′V −1
22 e and use the product rule to

obtain
∂δ2

∂vec(V )′
=

∂e′V −1
22 e

∂vec(V )′
= 2e′V −1

22

∂e

∂vec(V )′
+ (e′ ⊗ e′)

∂vec(V −1
22 )

∂vec(V )′
. (A66)

For the first term, we use the product rule and the fact that D′V −1
22 e = 0K+1 to obtain

2e′V −1
22

∂e

∂vec(V )′
= 2e′V −1

22

∂Dλ

∂vec(V )′

= 2e′V −1
22

[
(λ′ ⊗ IN)

∂vec(D)
∂vec(V )′

+ D
∂λ

∂vec(V )′

]

= 2e′V −1
22

[
(λ′ ⊗ IN)

∂vec(D)
∂vec(V )′

]
. (A67)
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Writing D = [µ2, [ON×K , IN ]V [IK , OK×N ]′ + µ2µ
′
1], we can simplify the first term to

2e′V −1
22

∂e

∂vec(V )′
= 2e′V −1

22 (λ′ ⊗ IN )

([
0′K 0′N
IK OK×N

]
⊗ [ON×K , IN ]

)

= [2λ′
1, 0′N ] ⊗ [0′K , e′V −1

22 ]. (A68)

For the second term, we use the fact that for a nonsingular matrix A, we have ∂vec(A−1)/∂vec(A)′ =

−(A−1 ⊗ A−1′). Using this identity and the chain rule, we have

(e′ ⊗ e′)
∂vec(V −1

22 )
∂vec(V )′

= (e′ ⊗ e′)
∂vec(V −1

22 )
∂vec(V22)′

∂vec(V22)
∂vec(V )′

= −(e′ ⊗ e′)(V −1
22 ⊗ V −1

22 )([ON×K, IN ] ⊗ [ON×K , IN ])

= −[0′K , e′V −1
22 ]⊗ [0′K, e′V −1

22 ]. (A69)

Combining these two terms, we have

∂δ2

∂vec(V )
=

[
2λ1

−V −1
22 e

]
⊗
[

0K

V −1
22 e

]
. (A70)

This completes the proof of the claim.

With the analytical expression of ∂δ2/∂φ available, we can show that

qt(φ) =
[
∂δ2

∂φ

]′
rt(φ)

= 2µye
′V −1

22 (Rt − µ2) +
([

2λ1

−V −1
22 e

]′
⊗
[

0K

V −1
22 e

]′)
vec((Yt − µ)(Yt − µ)′ − V )

= 2µye
′V −1

22 (Rt − µ2) + vec

([
0K

V −1
22 e

]′
((Yt − µ)(Yt − µ)′ − V )

[
2λ1

−V −1
22 e

])

= 2µye
′V −1

22 (Rt − µ2) +

e′V −1
22 (Rt − µ2)

[
2λ′

1(ft − µ1) − e′V −1
22 (Rt − µ2)

]
+ e′V −1

22 e − 2e′V −1
22 V21λ1

= 2utyt − u2
t + δ2 − 2e′V −1

22 V21λ1, (A71)

by denoting ut = e′V −1
22 Rt and yt = λ0 + λ′

1ft. Using the identity e′V −1
22 D = 0′K+1, which implies

that e′V −1
22 V21 = −e′V −1

22 µ2µ
′
1 = 0′K , we can further simplify qt(φ) to

qt(φ) = 2utyt − u2
t + δ2. (A72)
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Applying a similar derivation for models 1 and 2, we get

q1t(φ) =
[
∂δ2

1

∂φ

]′
rt(φ) = 2u1ty1t − u2

1t + δ2
1, (A73)

q2t(φ) =
[
∂δ2

2

∂φ

]′
rt(φ) = 2u2ty2t − u2

2t + δ2
2. (A74)

Now, using the delta method and equations (A9)–(A12), the asymptotic distribution of δ̂2
1 − δ̂2

2

when both models are misspecified is given by

√
T (δ̂2

1 − δ̂2
2 − (δ2

1 − δ2
2)) A∼ N

(
0,

[
∂(δ2

1 − δ2
2)

∂φ

]′
S0

[
∂(δ2

1 − δ2
2)

∂φ

])
. (A75)

With the analytical expressions of q1t(φ) and q2t(φ), the asymptotic variance of δ̂2
1 − δ̂2

2 can be

written as

vd = Avar[δ̂2
1 − δ̂2

2 ] =
∞∑

j=−∞
E[dt(φ)dt+j(φ)], (A76)

where

dt(φ) =
(

∂δ2
1

∂φ
− ∂δ2

2

∂φ

)′
rt(φ) = q1t(φ)− q2t(φ). (A77)

This completes the proof.

Proof of Lemma 6: When dt is uncorrelated over time, we have

vd = E[d2
t ] = E[q2

1t] + E[q2
2t]− 2E[q1tq2t]. (A78)

When Yt is i.i.d. multivariate elliptically distributed, E[q2
1t] and E[q2

2t] can be obtained using the

proof in Lemma 1 and they are given by

E[q2
1t] = 4[µ2

y1
+ (1 + κ)σ2

y1
]δ2

1 + (2 + 3κ)δ4
1, (A79)

E[q2
2t] = 4[µ2

y2
+ (1 + κ)σ2

y2
]δ2

2 + (2 + 3κ)δ4
2. (A80)

Following the proof in Lemma 1, we can show that E[u1t] = E[u2t] = 0, E[u2
1t] = δ2

1 , E[u2
2t] = δ2

2 ,

E[u1tu2t] = e′1V
−1
22 e2 = δ12, E[u1ty1t] = E[u2ty2t] = 0. Using the fact that e1 = D1η − 1N ,

e2 = D2λ − 1N , D′
1V

−1
22 e1 = 0n1 and D′

2V
−1
22 e2 = 0n2 , we can show that

E[u1ty2t] = e′1V
−1
22 D2λ = e′1V

−1
22 (e2 − e1 + D1η) = δ12 − δ2

1 , (A81)

E[u2ty1t] = e′2V
−1
22 D1η = e′2V

−1
22 (e1 − e2 + D2λ) = δ12 − δ2

2 . (A82)
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With these moments available, we can apply (A3) to show that

E[u1tu2ty1ty2t] = [µy1µy2 + (1 + κ)σy1 ,y2 ]δ12 + (1 + κ)(δ12 − δ2
1)(δ12 − δ2

2), (A83)

E[u2
1tu2ty2t] = 2(1 + κ)(δ12 − δ2

1)δ12, (A84)

E[u2
2tu1ty1t] = 2(1 + κ)(δ12 − δ2

2)δ12, (A85)

E[u2
1tu

2
2t] = (1 + κ)(δ2

1δ2
2 + 2δ2

12). (A86)

It follows that

E[q1tq2t] = 4E[u1tu2ty1ty2t] − 2E[u2
1tu2ty2t] − 2E[u2

2tu1ty1t] + E[u2
1tu

2
2t]− δ2

1δ2
2

= 4[µy1µy2 + (1 + κ)σy1 ,y2 ]δ12 + (2 + 3κ)δ2
1δ

2
2 + 2(1 + κ)(δ2

1δ
2
2 − δ2

12), (A87)

E[d2
t ] = E[q2

1t] + E[q2
2t] − 2E[q1tq2t]

= 4[µ2
y1

+ (1 + κ)σ2
y1

]δ2
1 + 4[µ2

y2
+ (1 + κ)σ2

y2
]δ2

2 − 8[µy1µy2 + (1 + κ)σy1 ,y2 ]δ12

+ (2 + 3κ)(δ2
1 − δ2

2)2 − 4(1 + κ)(δ2
1δ

2
2 − δ2

12)

= 4(µ2
y1

δ2
1 + µ2

y2
δ2
2 − 2µy1µy2δ12)

+ 4(1 + κ)(σ2
y1

δ2
1 + σ2

y2
δ2
2 − 2σy1,y2δ12 − δ2

1δ2
2 + δ2

12) + (2 + 3κ)(δ2
1 − δ2

2)2. (A88)

This completes the proof.
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Table I
Summary of the Models

The table presents a summary of six monthly and seven quarterly asset pricing models. The monthly
models include the market CAPM (CAPM), the consumption CAPM (C-CAPM), the conditional
CAPM of Jagannathan and Wang (1996, JW), the Campbell (1996) five-factor model (CAMP), the
Fama-French (1993) three-factor model (FF3) and the Fama-French (1993) five-factor model (FF5).
The quarterly models include the Cochrane (1996, COCH) investment model in addition to the previ-
ous models. The asset returns are the returns on the 25 Fama-French portfolios in excess of the T-bill
rate and the gross T-bill return. Monthly data are from 1952/1 to 1997/12. Quarterly data are from
1953 Q1 to 1997 Q4. IP is the cyclical element in the industrial production index. GNP is the cyclical
element in real GNP. CAY is the consumption to wealth ratio from Lettau and Ludvigson (2001). JAN
is a dummy variable with a value of one for January (monthly models) or first quarter (quarterly mod-
els) and zero otherwise. δ̂ is the sample HJ-distance. p(δ = 0) is the p-value for the test of H0 : δ = 0.
se(δ̂) is the standard error of the sample HJ-distance under the alternative. CI(δ) is the 95% confidence
interval of δ based on se(δ̂).

Panel A: Monthly Models (Unscaled Factors)

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.390 0.429 0.387 0.298 0.322 0.287
p(δ = 0) 0.000 0.000 0.000 0.318 0.000 0.073
se(δ̂) 0.043 0.051 0.044 0.062 0.045 0.052
2.5% CI(δ) 0.305 0.329 0.300 0.176 0.234 0.185
97.5% CI(δ) 0.474 0.530 0.474 0.419 0.411 0.388
No. of par. 2 2 4 6 4 6

Panel B: Monthly Models (Factors Scaled by Lag IP)

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.353 0.389 0.314 0.256 0.296 0.270
p(δ = 0) 0.017 0.038 0.062 0.566 0.009 0.074
se(δ̂) 0.061 0.062 0.059 0.075 0.054 0.058
2.5% CI(δ) 0.234 0.268 0.198 0.109 0.191 0.157
97.5% CI(δ) 0.472 0.510 0.430 0.404 0.401 0.384
No. of par. 4 4 8 12 8 12

Panel C: Monthly Models (Factors Scaled by JAN)

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.366 0.366 0.272 0.286 0.285 0.229
p(δ = 0) 0.000 0.055 0.672 0.103 0.093 0.638
se(δ̂) 0.051 0.072 0.081 0.060 0.051 0.070
2.5% CI(δ) 0.267 0.226 0.113 0.167 0.185 0.092
97.5% CI(δ) 0.465 0.507 0.432 0.404 0.385 0.366
No. of par. 4 4 8 12 8 12
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Panel D: Quarterly Models (Unscaled Factors)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

δ̂ 0.620 0.618 0.604 0.550 0.625 0.537 0.516
p(δ = 0) 0.000 0.001 0.001 0.015 0.000 0.001 0.019
se(δ̂) 0.079 0.089 0.090 0.090 0.082 0.084 0.093
2.5% CI(δ) 0.465 0.443 0.428 0.374 0.465 0.372 0.333
97.5% CI(δ) 0.775 0.792 0.781 0.726 0.784 0.701 0.699
No. of par. 2 2 4 6 3 4 6

Panel E: Quarterly Models (Factors Scaled by Lag GNP)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

δ̂ 0.599 0.612 0.561 0.503 0.558 0.449 0.427
p(δ = 0) 0.001 0.000 0.002 0.141 0.107 0.547 0.373
se(δ̂) 0.090 0.082 0.086 0.114 0.115 0.102 0.105
2.5% CI(δ) 0.423 0.451 0.393 0.279 0.333 0.249 0.222
97.5% CI(δ) 0.775 0.772 0.730 0.727 0.783 0.650 0.633
No. of par. 4 4 8 12 6 8 12

Panel F: Quarterly Models (Factors Scaled by Lag CAY)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

δ̂ 0.613 0.607 0.591 0.515 0.623 0.531 0.500
p(δ = 0) 0.000 0.000 0.002 0.096 0.000 0.001 0.011
se(δ̂) 0.082 0.088 0.097 0.103 0.083 0.085 0.099
2.5% CI(δ) 0.453 0.434 0.401 0.312 0.459 0.366 0.307
97.5% CI(δ) 0.773 0.780 0.781 0.717 0.786 0.697 0.694
No. of par. 4 4 8 12 6 8 12

Panel G: Quarterly Models (Factors Scaled by JAN)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

δ̂ 0.563 0.581 0.486 0.375 0.509 0.508 0.402
p(δ = 0) 0.001 0.000 0.774 0.980 0.434 0.005 0.759
se(δ̂) 0.085 0.086 0.136 0.165 0.113 0.082 0.121
2.5% CI(δ) 0.396 0.412 0.219 0.051 0.288 0.348 0.165
97.5% CI(δ) 0.730 0.750 0.753 0.699 0.731 0.668 0.639
No. of par. 4 4 8 12 6 8 12
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Table II
Estimates and t-ratios of Parameters in Various Stochastic Discount Factor

Models under Correctly Specified and Misspecified Models: Unscaled Factors

The table presents the estimation results of monthly and quarterly asset pricing models with unscaled
factors. The asset returns are the returns on the 25 Fama-French portfolios in excess of the T-bill rate
and the gross T-bill return. Monthly data are from 1952/1 to 1997/12. Quarterly data are from 1953
Q1 to 1997 Q4. We report parameter estimates λ̂, t-ratios under correctly specified models (t-ratiocs)
and model misspecification robust t-ratios (t-ratiom).

Panel A: Monthly Models

CAPM C-CAPM

λ̂0 λ̂vw λ̂0 λ̂cg

Estimate 1.02 −3.77 1.09 −46.02
t-ratiocs 75.14 −3.31 20.15 −1.90
t-ratiom 47.56 −3.32 12.08 −1.08

JW CAMP

λ̂0 λ̂vw λ̂prem λ̂lab λ̂0 λ̂rvw λ̂clab λ̂div λ̂rtb λ̂trm

Estimate 0.78 −3.12 −2.91 52.54 −1.06 1.26 13.44 65.79 93.61 −70.14
t-ratiocs 1.74 −2.26 −0.07 1.06 −0.82 0.45 0.33 1.94 0.22 −2.51
t-ratiom 0.81 −1.73 −0.03 0.54 −0.64 0.45 0.25 1.50 0.17 −2.03

FF3 FF5

λ̂0 λ̂vw λ̂smb λ̂hml λ̂0 λ̂vw λ̂smb λ̂hml λ̂term λ̂def

Estimate 1.07 −5.36 −1.04 −9.97 −0.33 −2.98 −4.58 −10.01 33.62 −65.79
t-ratiocs 48.37 −4.42 −0.61 −5.29 −0.57 −1.59 −1.73 −3.91 2.67 −0.96
t-ratiom 40.83 −4.43 −0.61 −5.26 −0.37 −1.36 −1.49 −3.86 1.70 −0.68
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Panel B: Quarterly Models

CAPM C-CAPM JW

λ̂0 λ̂vw λ̂0 λ̂cg λ̂0 λ̂vw λ̂prem λ̂lab

Estimate 1.02 −2.43 1.38 −67.00 0.61 −0.44 −59.99 63.71
t-ratiocs 34.69 −2.21 7.63 −2.39 0.79 −0.24 −1.14 1.38
t-ratiom 18.55 −2.22 4.84 −1.46 0.33 −0.13 −0.65 0.58

CAMP COCH

λ̂0 λ̂rvw λ̂clab λ̂div λ̂rtb λ̂trm λ̂0 λ̂gnr λ̂gr

Estimate 0.23 −0.02 10.44 27.77 −21.81 −55.52 0.93 8.99 −7.02
t-ratiocs 0.22 −0.01 0.64 1.05 −0.08 −2.54 10.30 1.19 −2.00
t-ratiom 0.15 −0.01 0.42 0.70 −0.06 −1.88 5.40 0.67 −1.33

FF3 FF5

λ̂0 λ̂vw λ̂smb λ̂hml λ̂0 λ̂vw λ̂smb λ̂hml λ̂term λ̂def

Estimate 1.11 −3.53 −0.60 −6.79 1.21 −4.89 −0.60 −6.13 −20.38 122.01
t-ratiocs 21.75 −2.86 −0.41 −4.03 2.35 −2.94 −0.37 −3.41 −1.78 1.56
t-ratiom 16.94 −2.89 −0.41 −4.04 1.54 −2.56 −0.36 −3.31 −1.16 0.97
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Table III
Wald Tests of SDF Parameters of Conditional Models under Correct

Specification and Potential Misspecification

The table presents Wald tests that the SDF parameters of the scaled factors are jointly equal to zero. The
asset returns are the returns on the 25 Fama-French portfolios in excess of the T-bill rate and the gross T-bill
return. Monthly data are from 1952/1 to 1997/12. Quarterly data are from 1953 Q1 to 1997 Q4. We report
the Wald-test statistic under correctly specified (cs) and potentially misspecified (m) models. The p-values
of the Wald tests are shown in parentheses.

Panel A: Monthly Models (Factors Scaled by Lag IP)

Model CAPM C-CAPM JW CAMP FF3 FF5

Wald(cs) 8.64 7.52 12.35 4.58 5.84 2.80
p-value (0.013) (0.023) (0.015) (0.599) (0.212) (0.834)
Wald(m) 2.84 4.71 7.54 2.12 2.66 1.05
p-value (0.241) (0.095) (0.110) (0.908) (0.616) (0.984)

Panel B: Monthly Models (Factors Scaled by JAN)

Model CAPM C-CAPM JW CAMP FF3 FF5

Wald(cs) 6.22 6.08 11.05 1.57 6.67 4.23
p-value (0.045) (0.048) (0.026) (0.954) (0.154) (0.645)
Wald(m) 5.80 3.19 9.64 0.94 3.76 3.67
p-value (0.055) (0.203) (0.047) (0.988) (0.439) (0.721)

Panel C: Quarterly Models (Factors Scaled by Lag GNP)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

Wald(cs) 3.23 1.33 6.22 3.16 5.41 5.37 6.47
p-value (0.199) (0.514) (0.183) (0.788) (0.144) (0.252) (0.373)
Wald(m) 0.80 0.28 3.22 1.86 2.88 3.85 4.90
p-value (0.670) (0.867) (0.522) (0.932) (0.410) (0.427) (0.556)

Panel D: Quarterly Models (Factors Scaled by Lag CAY)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

Wald(cs) 1.72 2.19 1.80 3.25 0.34 0.94 2.23
p-value (0.422) (0.335) (0.773) (0.777) (0.952) (0.918) (0.897)
Wald(m) 0.83 0.64 0.95 1.82 0.10 0.30 0.94
p-value (0.661) (0.725) (0.918) (0.936) (0.992) (0.990) (0.988)

Panel E: Quarterly Models (Factors Scaled by JAN)

Model CAPM C-CAPM JW CAMP COCH FF3 FF5

Wald(cs) 17.77 9.12 8.00 5.64 10.06 4.45 6.46
p-value (0.000) (0.010) (0.092) (0.464) (0.018) (0.348) (0.374)
Wald(m) 11.23 4.12 5.88 4.15 5.06 2.45 4.41
p-value (0.004) (0.128) (0.209) (0.656) (0.167) (0.654) (0.622)
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Table IV
Tests of Equality of Squared HJ-Distances

The table presents pairwise tests of equality of the squared HJ-distances of the monthly and quarterly asset
pricing models with unscaled and scaled factors. The asset returns are the returns on the 25 Fama-French
portfolios in excess of the T-bill rate and the gross T-bill return. Monthly data are from 1952/1 to 1997/12.
Quarterly data are from 1953 Q1 to 1997 Q4. The scaling variables are Lag IP and JAN for monthly models
and Lag GNP, Lag CAY and JAN for quarterly models. We report the difference between the sample squared
HJ-distances of the models in row i and column j, δ̂2

i − δ̂2
j , and the associated p-value (in parentheses) for

the test of H0 : δ2
i = δ2

j . The p-values are computed under the assumption that the models are potentially
misspecified.

Panel A: Monthly Models (Unscaled Factors)

Unscaled
Unscaled C-CAPM JW CAMP FF3 FF5

CAPM −0.007 0.002 0.063 0.048 0.070
(0.707) (0.870) (0.035) (0.000) (0.007)

C-CAPM 0.015 0.057 0.057 0.095
(0.546) (0.124) (0.025) (0.015)

JW 0.061 0.046 0.068
(0.048) (0.033) (0.018)

CAMP −0.015 0.006
(0.605) (0.842)

FF3 0.022
(0.167)

Panel B: Monthly Models (Factors Scaled by Lag IP)

Lag IP
Lag IP C-CAPM JW CAMP FF3 FF5

CAPM 0.010 0.026 0.059 0.037 0.052
(0.783) (0.560) (0.103) (0.170) (0.732)

C-CAPM 0.032 0.095 0.029 0.073
(0.476) (0.074) (0.387) (0.154)

JW 0.033 0.011 0.026
(0.415) (0.732) (0.396)

CAMP −0.022 −0.007
(0.488) (0.855)

FF3 0.015
(0.891)
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Panel C: Monthly Models (Factors Scaled by JAN)

JAN
JAN C-CAPM JW CAMP FF3 FF5

CAPM 0.021 0.060 0.052 0.053 0.081
(0.621) (0.221) (0.091) (0.132) (0.358)

C-CAPM 0.038 0.020 0.029 0.071
(0.558) (0.708) (0.535) (0.200)

JW −0.008 −0.007 0.022
(0.862) (0.884) (0.617)

CAMP 0.000 0.029
(0.989) (0.453)

FF3 0.029
(0.600)

Panel D: Quarterly Models (Unscaled Factors)

Unscaled
Unscaled C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.003 0.019 0.082 −0.006 0.096 0.117
(0.961) (0.737) (0.156) (0.854) (0.000) (0.044)

C-CAPM 0.016 0.079 −0.009 0.093 0.115
(0.839) (0.331) (0.875) (0.142) (0.095)

JW 0.063 −0.025 0.077 0.099
(0.370) (0.627) (0.270) (0.231)

CAMP −0.088 0.014 0.036
(0.182) (0.817) (0.603)

COCH 0.102 0.124
(0.032) (0.049)

FF3 0.021
(0.517)
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Panel E: Quarterly Models (Factors Scaled by Lag GNP)

Lag GNP
Lag GNP C-CAPM JW CAMP COCH FF3 FF5

CAPM −0.015 0.044 0.106 0.048 0.157 0.176
(0.854) (0.822) (0.304) (0.649) (0.038) (0.367)

C-CAPM 0.059 0.121 0.063 0.172 0.191
(0.427) (0.256) (0.552) (0.086) (0.053)

JW 0.062 0.004 0.113 0.133
(0.496) (0.971) (0.241) (0.124)

CAMP −0.058 0.051 0.071
(0.576) (0.631) (0.489)

COCH 0.109 0.129
(0.389) (0.303)

FF3 0.019
(0.945)

Panel F: Quarterly Models (Factors Scaled by Lag CAY)

Lag CAY
Lag CAY C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.007 0.026 0.110 −0.012 0.093 0.125
(0.895) (0.919) (0.148) (0.761) (0.127) (0.622)

C-CAPM 0.019 0.103 −0.019 0.086 0.118
(0.793) (0.248) (0.734) (0.176) (0.133)

JW 0.084 −0.038 0.067 0.099
(0.307) (0.490) (0.364) (0.303)

CAMP −0.122 −0.017 0.015
(0.129) (0.832) (0.875)

COCH 0.105 0.137
(0.043) (0.069)

FF3 0.032
(0.885)
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Panel G: Quarterly Models (Factors Scaled by JAN)

JAN
JAN C-CAPM JW CAMP COCH FF3 FF5

CAPM −0.021 0.081 0.176 0.057 0.059 0.155
(0.551) (0.737) (0.157) (0.494) (0.371) (0.546)

C-CAPM 0.101 0.197 0.078 0.079 0.176
(0.372) (0.151) (0.328) (0.172) (0.096)

JW 0.096 −0.023 −0.022 0.074
(0.508) (0.867) (0.848) (0.618)

CAMP −0.119 −0.118 −0.021
(0.459) (0.335) (0.883)

COCH 0.001 0.098
(0.987) (0.417)

FF3 0.096
(0.428)
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Table V
Tests of Equality of Squared HJ-Distances:

Unconditional vs. Conditional Models

The table compares the performance of monthly and quarterly asset pricing models with unscaled factors
with the performance of the corresponding models with scaled factors. The asset returns are the returns
on the 25 Fama-French portfolios in excess of the T-bill rate and the gross T-bill return. Monthly data are
from 1952/1 to 1997/12. Quarterly data are from 1953 Q1 to 1997 Q4. The scaling variables are Lag IP and
JAN for monthly models and Lag GNP, Lag CAY and JAN for quarterly models. We report the difference
between the sample squared HJ-distances of the models in row i and column j, δ̂2

i − δ̂2
j , and the associated

p-value (in parentheses) for the test of H0 : δ2
i = δ2

j . The p-values are computed under the assumption that
the models are potentially misspecified.

Panel A: Monthly Models (Unscaled vs. Scaled by Lag IP)

Lag IP
Unscaled CAPM C-CAPM JW CAMP FF3 FF5

CAPM 0.027 0.026 0.053 0.086 0.064 0.079
(0.347) (0.469) (0.451) (0.017) (0.133) (0.615)

C-CAPM 0.023 0.033 0.065 0.128 0.062 0.106
(0.509) (0.199) (0.083) (0.009) (0.031) (0.021)

JW 0.025 0.018 0.051 0.084 0.062 0.077
(0.448) (0.650) (0.306) (0.026) (0.030) (0.018)

CAMP −0.036 −0.024 −0.010 0.023 0.001 0.016
(0.316) (0.598) (0.784) (0.905) (0.981) (0.646)

FF3 −0.021 −0.024 0.005 0.038 0.016 0.031
(0.525) (0.517) (0.873) (0.253) (0.736) (0.937)

FF5 −0.042 −0.062 −0.017 0.016 −0.006 0.009
(0.285) (0.168) (0.652) (0.691) (0.836) (0.994)

Panel B: Monthly Models (Unscaled vs. Scaled by JAN)

JAN
Unscaled CAPM C-CAPM JW CAMP FF3 FF5

CAPM 0.018 0.043 0.078 0.070 0.071 0.099
(0.325) (0.343) (0.286) (0.019) (0.172) (0.375)

C-CAPM 0.028 0.050 0.088 0.070 0.079 0.121
(0.322) (0.152) (0.092) (0.063) (0.035) (0.010)

JW 0.016 0.035 0.076 0.068 0.069 0.097
(0.492) (0.467) (0.167) (0.029) (0.020) (0.009)

CAMP −0.045 −0.007 0.014 0.007 0.007 0.036
(0.186) (0.897) (0.741) (0.994) (0.836) (0.361)

FF3 −0.030 −0.007 0.030 0.022 0.023 0.051
(0.173) (0.880) (0.484) (0.422) (0.614) (0.705)

FF5 −0.052 −0.045 0.008 0.000 0.001 0.030
(0.112) (0.395) (0.854) (0.987) (0.973) (0.813)
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Panel C: Quarterly Models (Unscaled vs. Scaled by Lag GNP)

Lag GNP
Unscaled CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.025 0.010 0.069 0.131 0.073 0.182 0.201
(0.677) (0.850) (0.865) (0.158) (0.441) (0.147) (0.471)

C-CAPM 0.022 0.007 0.066 0.128 0.070 0.179 0.199
(0.781) (0.871) (0.392) (0.229) (0.491) (0.079) (0.048)

JW 0.006 −0.009 0.050 0.112 0.054 0.163 0.183
(0.930) (0.905) (0.758) (0.270) (0.607) (0.112) (0.066)

CAMP −0.057 −0.072 −0.013 0.049 −0.009 0.100 0.120
(0.486) (0.353) (0.852) (0.951) (0.937) (0.267) (0.154)

COCH 0.031 0.016 0.075 0.137 0.079 0.188 0.208
(0.634) (0.748) (0.219) (0.145) (0.398) (0.048) (0.028)

FF3 −0.071 −0.086 −0.027 0.035 −0.023 0.086 0.105
(0.313) (0.129) (0.683) (0.706) (0.811) (0.399) (0.786)

FF5 −0.092 −0.108 −0.049 0.013 −0.045 0.065 0.084
(0.244) (0.108) (0.491) (0.886) (0.660) (0.410) (0.712)

Panel D: Quarterly Models (Unscaled vs. Scaled by Lag CAY)

Lag CAY
Unscaled CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.009 0.016 0.035 0.119 −0.004 0.102 0.134
(0.782) (0.766) (0.963) (0.116) (0.919) (0.336) (0.726)

C-CAPM 0.006 0.013 0.032 0.116 −0.006 0.099 0.131
(0.922) (0.740) (0.678) (0.232) (0.911) (0.131) (0.109)

JW −0.010 −0.003 0.016 0.100 −0.022 0.083 0.115
(0.838) (0.966) (0.948) (0.206) (0.668) (0.253) (0.207)

CAMP −0.073 −0.066 −0.047 0.037 −0.085 0.020 0.052
(0.243) (0.387) (0.548) (0.971) (0.200) (0.758) (0.503)

COCH 0.015 0.022 0.041 0.125 0.003 0.108 0.140
(0.699) (0.686) (0.453) (0.114) (0.993) (0.033) (0.060)

FF3 −0.087 −0.080 −0.061 0.023 −0.100 0.006 0.038
(0.050) (0.179) (0.382) (0.769) (0.052) (0.989) (0.986)

FF5 −0.109 −0.102 −0.083 0.001 −0.121 −0.016 0.016
(0.068) (0.125) (0.323) (0.987) (0.064) (0.701) (0.994)
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Panel E: Quarterly Models (Unscaled vs. Scaled by JAN)

JAN
Unscaled CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.067 0.047 0.148 0.244 0.124 0.126 0.222
(0.142) (0.383) (0.637) (0.076) (0.158) (0.204) (0.429)

C-CAPM 0.065 0.044 0.145 0.241 0.122 0.123 0.220
(0.322) (0.218) (0.251) (0.101) (0.206) (0.115) (0.072)

JW 0.048 0.028 0.129 0.225 0.106 0.107 0.203
(0.502) (0.726) (0.429) (0.120) (0.334) (0.186) (0.099)

CAMP −0.014 −0.035 0.066 0.162 0.043 0.044 0.141
(0.842) (0.659) (0.580) (0.658) (0.694) (0.530) (0.204)

COCH 0.074 0.053 0.154 0.250 0.131 0.132 0.228
(0.156) (0.328) (0.156) (0.078) (0.124) (0.037) (0.039)

FF3 −0.029 −0.049 0.052 0.148 0.028 0.030 0.126
(0.563) (0.372) (0.649) (0.258) (0.748) (0.799) (0.720)

FF5 −0.050 −0.071 0.030 0.126 0.007 0.008 0.105
(0.426) (0.280) (0.807) (0.368) (0.941) (0.886) (0.647)
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Table VI
Tests of Equality of Squared HJ-Distances: Factors Scaled by Different

Conditioning Variables
The table compares the performance of monthly and quarterly conditional asset pricing models with factors
scaled by different conditioning variables. The asset returns are the returns on the 25 Fama-French portfolios
in excess of the T-bill rate and the gross T-bill return. Monthly data are from 1952/1 to 1997/12. Quarterly
data are from 1953 Q1 to 1997 Q4. The scaling variables are Lag IP and JAN for monthly models and
Lag GNP, Lag CAY and JAN for quarterly models. We report the difference between the sample squared
HJ-distances of the models in row i and column j, δ̂2

i − δ̂2
j , and the associated p-value (in parentheses) for the

test of H0 : δ2
i = δ2

j . The p-values are computed under the assumption of potential model misspecification.

Panel A: Monthly Models (Scaled by Lag IP vs. Scaled by JAN)

JAN
Lag IP CAPM C-CAPM JW CAMP FF3 FF5

CAPM −0.009 0.027 0.050 0.043 0.043 0.072
(0.805) (0.612) (0.323) (0.253) (0.263) (0.102)

C-CAPM −0.004 0.017 0.055 0.037 0.046 0.088
(0.917) (0.719) (0.356) (0.429) (0.309) (0.093)

JW −0.035 −0.015 0.025 0.017 0.018 0.046
(0.353) (0.770) (0.598) (0.655) (0.627) (0.226)

CAMP −0.068 −0.078 −0.008 −0.016 −0.015 0.013
(0.076) (0.196) (0.863) (0.638) (0.695) (0.772)

FF3 −0.046 −0.012 0.014 0.006 0.007 0.035
(0.102) (0.788) (0.761) (0.837) (0.811) (0.308)

FF5 −0.061 −0.056 −0.001 −0.009 −0.008 0.021
(0.086) (0.334) (0.981) (0.796) (0.792) (0.449)

Panel B: Quarterly Models (Scaled by Lag GNP vs. Scaled by Lag CAY)

Lag CAY
Lag GNP CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM −0.017 −0.009 0.009 0.094 −0.029 0.077 0.109
(0.788) (0.913) (0.891) (0.319) (0.664) (0.265) (0.211)

C-CAPM −0.001 0.006 0.025 0.109 −0.013 0.092 0.124
(0.980) (0.858) (0.741) (0.229) (0.799) (0.126) (0.120)

JW −0.060 −0.053 −0.034 0.050 −0.072 0.033 0.065
(0.286) (0.463) (0.596) (0.536) (0.257) (0.622) (0.388)

CAMP −0.122 −0.115 −0.096 −0.012 −0.134 −0.029 0.003
(0.199) (0.282) (0.377) (0.903) (0.154) (0.758) (0.974)

COCH −0.064 −0.057 −0.038 0.046 −0.076 0.029 0.061
(0.509) (0.588) (0.719) (0.709) (0.368) (0.765) (0.574)

FF3 −0.173 −0.166 −0.148 −0.063 −0.186 −0.080 −0.048
(0.056) (0.108) (0.148) (0.547) (0.055) (0.292) (0.578)

FF5 −0.193 −0.186 −0.167 −0.083 −0.205 −0.100 −0.067
(0.034) (0.063) (0.099) (0.406) (0.032) (0.198) (0.404)
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Panel C: Quarterly Models (Scaled by Lag GNP vs. Scaled by JAN)

JAN
Lag GNP CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.042 0.021 0.123 0.219 0.099 0.101 0.197
(0.572) (0.787) (0.340) (0.139) (0.297) (0.207) (0.088)

C-CAPM 0.057 0.037 0.138 0.234 0.115 0.116 0.212
(0.358) (0.489) (0.259) (0.098) (0.244) (0.096) (0.069)

JW −0.002 −0.022 0.079 0.175 0.056 0.057 0.153
(0.983) (0.774) (0.496) (0.219) (0.580) (0.469) (0.179)

CAMP −0.063 −0.084 0.017 0.113 −0.006 −0.005 0.092
(0.509) (0.401) (0.895) (0.423) (0.961) (0.962) (0.439)

COCH −0.005 −0.026 0.075 0.171 0.052 0.053 0.150
(0.954) (0.773) (0.569) (0.270) (0.689) (0.609) (0.243)

FF3 −0.115 −0.136 −0.034 0.062 −0.058 −0.056 0.040
(0.223) (0.174) (0.802) (0.665) (0.593) (0.482) (0.702)

FF5 −0.134 −0.155 −0.053 0.042 −0.077 −0.075 0.021
(0.142) (0.114) (0.691) (0.764) (0.491) (0.358) (0.839)

Panel D: Quarterly Models (Scaled by Lag CAY vs. Scaled by JAN)

JAN
Lag CAY CAPM C-CAPM JW CAMP COCH FF3 FF5

CAPM 0.059 0.038 0.139 0.235 0.116 0.117 0.214
(0.200) (0.493) (0.203) (0.089) (0.202) (0.036) (0.046)

C-CAPM 0.052 0.031 0.132 0.228 0.109 0.110 0.207
(0.439) (0.583) (0.291) (0.123) (0.263) (0.132) (0.077)

JW 0.033 0.012 0.113 0.209 0.090 0.091 0.188
(0.651) (0.881) (0.251) (0.159) (0.402) (0.265) (0.143)

CAMP −0.052 −0.072 0.029 0.125 0.006 0.007 0.103
(0.558) (0.460) (0.813) (0.342) (0.963) (0.933) (0.397)

COCH 0.071 0.050 0.152 0.247 0.128 0.130 0.226
(0.193) (0.378) (0.165) (0.084) (0.201) (0.051) (0.047)

FF3 −0.034 −0.055 0.046 0.142 0.023 0.024 0.121
(0.550) (0.369) (0.697) (0.292) (0.801) (0.601) (0.224)

FF5 −0.067 −0.087 0.014 0.110 −0.009 −0.008 0.088
(0.394) (0.274) (0.915) (0.463) (0.925) (0.914) (0.369)
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