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The Exact Distribution of the Hansen-Jagannathan Bound

Under the law of one price, Hansen and Jagannathan (1991) derive a lower volatility bound

(unconstrained HJ-bound hereafter) that every valid stochastic discount factor (SDF) must sat-

isfy. In addition, Hansen and Jagannathan (1991) propose a tighter volatility bound (constrained

HJ-bound hereafter) that is applicable to nonnegative SDFs. The unconstrained HJ-bound has

received wide attention in the literature. Examples include Snow (1991), Bekaert and Hodrick

(1992), Ferson and Harvey (1992), Backus, Gregory, and Telmer (1993), Cecchetti, Lam, and Mark

(1994), Burnside (1994), Heaton (1995), and Epstein and Zin (2001), among many others. In

addition, Ferson and Siegel (2003) and Bekaert and Liu (2004) show how conditioning informa-

tion can be used to optimally tighten the unconstrained HJ-bound; while Kan and Zhou (2006)

tighten the unconstrained HJ-bound by making the SDF explicitly a function of a set of state

variables. Although the constrained HJ-bound is sharper than the unconstrained HJ-bound and

is theoretically appealing, the constrained HJ-bound has not received nearly as much attention as

the unconstrained HJ-bound in empirical work. The few empirical papers that use the constrained

bound besides Hansen and Jagannathan (1991) are Cecchetti, Lam, and Mark (1994), Burnside

(1994), He and Modest (1995), Balduzzi and Kallal (1997), and Hagiwara and Herce (1997).

In this paper, we provide a geometrical interpretation and the finite-sample distributions of both

the unconstrained and constrained HJ-bounds.1 While there is a well-known mapping between the

unconstrained HJ-bound and the mean-variance frontier of portfolio returns, the mapping between

the constrained HJ-bound and the mean-variance frontier that we provide in this paper is new.

We show that the linkage between the unconstrained HJ-bound and the mean-variance frontier

also exists for the case of the constrained HJ-bound, except that we need to replace the mean and

variance of the portfolio returns by the truncated mean and truncated variance of portfolio returns.

As we mentioned above, the constrained HJ-bound has not been very popular in the literature.

We suspect that the lack of popularity of the constrained HJ-bound is due to its computational

difficulty. This is because when there are N assets, one has to solve N nonlinear equations in

order to obtain the constrained HJ-bound. In this paper, we show that under the assumption that

1Hansen, Heaton, and Luttmer (1995) provide the asymptotic distributions of the unconstrained and constrained
sample HJ-bounds.
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returns are multivariate normally distributed, the constrained HJ-bound has a very simple analyt-

ical expression. This analytical expression allows us to obtain a maximum likelihood estimator of

the constrained HJ-bound which is simpler and more precise than the traditional nonparametric

estimator of the constrained HJ-bound. In addition, we provide an approximate unbiased estimator

of the constrained HJ-bound with improved finite sample properties.

As documented by Burnside (1994), Cecchetti, Lam, and Mark (1994), and Ferson and Siegel

(2003), the sample HJ-bounds can have a large finite sample upward bias. Although Ferson and

Siegel (2003) provide a bias adjustment for the sample unconstrained HJ-bound, the adjusted

estimator can still be very volatile. In this paper, we present the exact distributions of the un-

constrained and constrained sample HJ-bounds under the multivariate normality assumption. In

addition, we show that under general distributional assumptions, the traditional nonparametric

estimator of the constrained HJ-bound does not have any finite moment. Finally, we propose a

simple method to construct confidence intervals for the unconstrained and constrained HJ-bounds.

An example may help to illustrate the importance of reporting confidence intervals for the HJ-

bounds instead of only presenting their point estimates. In Figure 1, we provide a characterization

of the equity premium puzzle using Shiller’s (1989) data.

Figure 1 about here

The sample unconstrained HJ-bound of stocks and bonds is represented by the solid line. In

addition, we plot the mean and standard deviation of the SDF implied by a representative consumer

model with time-separable power utility function of the form

U(ct) =
c1−γ
t − 1
1 − γ

, (1)

for values of γ ranging between zero and 20 (in increments of one), where γ ≥ 0 is the parameter of

relative risk aversion and ct is consumption at time t.2 The SDF implied by this type of preferences

is given by

mt = β

(
ct

ct−1

)−γ

, (2)

2The data are annual (from 1891 to 1985) and are obtained from Tables 26.1 and 26.2 of Shiller (1989). The asset
returns are the real returns on the S&P composite stock price index and commercial paper. Consumption growth is
the growth rate of seasonally adjusted U.S. real per capita expenditures for consumer nondurable goods.
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where β, the subjective discount factor, is set equal to 0.99.3

The point estimate of the unconstrained HJ-bound leads us to conclude that the SDF is rejected

by the data for values of γ of 18 or less. Only for large values of γ, the SDF lies above the sample HJ-

bound and qualifies as a valid SDF. In Figure 1, we also plot the bias-adjusted sample unconstrained

HJ-bound (dashed line) of Ferson and Siegel (2003). Since the bias adjustment is very small when

there are only two assets, we arrive at the same conclusion even when we use the bias-adjusted

version of the sample HJ-bound. As pointed out by Gregory and Smith (1992) and Burnside

(1994), such a comparison ignores the sampling error in the sample HJ-bound and can lead to a

false rejection of the model. To get an idea of where the population HJ-bound may actually lie,

we construct 95% confidence intervals for the unconstrained HJ-bound (dotted lines) using the

methodology described later in the paper. The confidence intervals in Figure 1 are quite wide,

indicating that there is substantial uncertainty about the exact location of the HJ-bound. Taking

sampling error into account, the SDF in (2) might not be entirely at odds with the data even for

small values of γ. In fact, the SDF lies inside the 95% confidence intervals for the unconstrained

HJ-bound for values of γ of one and two.4 This stands in sharp contrast to the strong rejection of

the model that we obtain when merely relying on the sample HJ-bound.

Since the SDF in (2) is positive, it seems reasonable to compare it with the more demanding HJ-

bound that imposes the nonnegativity constraint. In Figure 2, we provide a comparison of this SDF

with the constrained HJ-bounds. We present three different estimators of the sample constrained

HJ-bounds. The dashed-dotted line represents the nonparametric estimator of the constrained

HJ-bound that is used in the existing literature whereas the solid and dashed lines represent, in

the order, the new maximum likelihood and approximate unbiased estimators of the constrained

HJ-bound that we develop in this paper. For this particular example, all three estimators of the
3Since we consider Figure 1 to be primarily diagnostic, we do not present confidence regions for the mean-standard

deviation pairs of the SDF or formally test whether the point estimates of the SDF lie outside the HJ-bound. Burnside
(1994) and Cecchetti, Lam, and Mark (1994) develop classical hypothesis tests based on the distance between a
given SDF and the HJ-bounds. These studies find that the point estimates of the SDF plot outside the sample
unconstrained and constrained HJ-bounds too often when the model is true. Otrok, Ravikumar, and Whiteman
(2002) use Monte Carlo simulations to derive finite-sample critical values of the test statistics developed by Burnside
(1994) and Cecchetti, Lam, and Mark (1994).

4Instead of constructing confidence intervals for the HJ-bounds, Burnside (1994) constructs confidence regions for
β and γ. He finds that the 95% confidence regions for the (β, γ) pairs contain part of the parameter space described
by Mehra and Prescott (1985) as “reasonable.” Burnside’s approach takes into account the sampling variability of
the SDF, whereas our approach is only concerned with the variability of the sample HJ-bound. The advantage of our
approach is that the confidence intervals for the HJ-bound are computed based on the exact distribution. In addition,
once the confidence intervals for the HJ-bound are computed, they can be used for evaluating multiple SDFs.
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constrained HJ-bounds are quite close to each other and lead us to conclude that the SDF is rejected

by the data for values of γ of 18 or less. However, since the point estimates of the sample constrained

HJ-bounds are very volatile, we also present the 95% confidence intervals for the constrained HJ-

bound using the dotted lines. Just like in the case of the unconstrained HJ-bound, the SDF lies

inside the 95% confidence intervals for the constrained HJ-bound for reasonable values of γ of one

and two.

Figure 2 about here

The rest of the paper is organized as follows. The next section presents the unconstrained and

constrained HJ-bounds and our main results on the constrained HJ-bound under the assumption

that returns are multivariate normally distributed. In Section 2, we summarize the asymptotic

distributions of the sample unconstrained and constrained HJ-bounds and present a new maximum

likelihood estimator of the constrained HJ-bound. In section 3, under the multivariate normality

assumption, we present the finite-sample distributions of the sample unconstrained and constrained

HJ-bounds and derive an approximate unbiased estimator of the constrained HJ-bound. In addi-

tion, we present a method for constructing exact confidence intervals for the unconstrained and

constrained HJ-bounds. Finally, we investigate the robustness of our finite sample results to depar-

tures from normality. The last section summarizes our findings and the Appendix contains proofs

of all propositions.

1. Hansen-Jagannathan Bounds

In this section, we summarize existing results and present some new ones on the HJ-bounds. This

section is divided into three subsections. In subsection 1, we present the unconstrained HJ-bound for

the case in which we only require the SDFs to satisfy the law of one price. In subsection 2, we present

the constrained HJ-bound for the case in which we also impose the nonnegativity constraint on the

SDFs. Most of the results in these two subsections are well known from the work of Hansen and

Jagannathan (1991). In subsection 3, we present the constrained HJ-bound under the assumption

that returns are multivariate normally distributed. While the normality assumption is restrictive,

it allows us to (1) understand the determinants of the difference between the unconstrained and
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constrained HJ-bounds, (2) establish a connection between the minimum-variance frontier and the

constrained HJ-bound; and (3) conduct finite sample inference on the sample HJ-bounds.

The basic setup is as follows. Denote the vector of gross returns on the N risky assets by R and

the mean and the covariance matrix of R by µ = E[R] and V = Var[R], respectively.5 In addition,

we assume that the gross risk-free rate is R0, so that there are altogether N + 1 assets. In some

applications, there is no risk-free asset and R0 will be treated as a free variable. The HJ-bound

will then be expressed as a function of R0.

The analyses for both the constrained and the unconstrained cases are very similar. We first

start off with an optimal portfolio problem and then write the SDF as a function of the gross return

on the optimal portfolio. The variance of this SDF gives us the HJ-bound.

1.1 Unconstrained Hansen-Jagannathan Bound

When the law of one price holds, there exists an SDF m that prices all the risky assets correctly

E[mR] = 1N , (3)

where 1N is an N -vector of ones. In addition, the risk-free rate R0 restricts the mean of m because

E[mR0] = 1 ⇒ µm ≡ E[m] = 1/R0. There can be many m’s that price the N + 1 assets correctly,

but we are interested in finding the one that has the lowest variance. Instead of directly solving

this problem, Hansen and Jagannathan (1991) propose to solve a dual problem. The dual problem

consists in finding a portfolio that minimizes the second moment of its gross return. Denote by w

the portfolio weights in the N risky assets and by 1 − w′1N the portfolio weight in the risk-free

asset. The gross return on the portfolio is given by

Rp = (1− w′1N)R0 + w′R = R0 + w′(R− R01N). (4)

The portfolio that minimizes the second moment is the solution to the following problem

min
w

E[(R0 + w′(R − R01N ))2]. (5)

5Although we assume R to be gross returns, we can easily change the setup to allow for some or all of R to be
excess returns (i.e., returns on zero investment portfolios). All we need to do is to replace 1N with q in our subsequent
analysis, where q is the vector of the costs of the N risky assets (with elements of zero or one to indicate whether the
returns are excess returns or gross returns).
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Denoting the minimum second moment portfolio by p∗, it is straightforward to show that its weights

in the N risky assets are given by

w∗ = − R0

1 + θ2
0

V −1(µ − R01N), (6)

where

θ2
0 = (µ − R01N )′V −1(µ − R01N) = a − 2bR0 + cR2

0, (7)

and a = µ′V −1µ, b = 1′NV −1µ, and c = 1′NV −11N are the three efficiency set constants that

characterize the minimum-variance frontier of the N risky assets. Note that w∗ is proportional to

the weights of the tangency portfolio (i.e., the portfolio that maximizes the Sharpe ratio) which has

weights V −1(µ−R01N)/(b− cR0) in the risky assets. This suggests that p∗ is a linear combination

of the risk-free asset and the tangency portfolio and its gross return is given by

Rp∗ = R0 + w∗′(R− R01N). (8)

It is easy to verify that µp∗ ≡ E[Rp∗] = R0/(1 + θ2
0), σ2

p∗ ≡ Var[Rp∗] = R2
0θ

2
0/(1 + θ2

0)
2, E[R2

p∗] =

R2
0/(1 + θ2

0), and the squared Sharpe ratio of p∗ is θ2
0. Define an SDF as

m0 =
Rp∗

‖Rp∗‖2
=

1 − (µ − R01N )′V −1(R− µ)
R0

, (9)

where ‖X‖ = E[X2]
1
2 . Lemma 1 summarizes the properties of m0 that are given in Hansen and

Jagannathan (1991).

Lemma 1. For m0 defined in (9), we have (1) E[m0] = 1/R0, (2) E[m0R] = 1N , (3) ‖m0‖ =

1/‖Rp∗‖, (4) Rp∗ = m0/‖m0‖2, (5) for any admissible SDF m with E[m] = 1/R0, we have

Cov[m, m0] = Var[m0] and Var[m] ≥ Var[m0].

The first two properties tell us that m0 is indeed a valid SDF that correctly prices the risk-free

asset and the N risky assets. The third and the fourth properties show the duality between m0

and Rp∗. The last property suggests that Var[m0] provides a lower bound for the variance of all

admissible SDFs with E[m] = 1/R0. It is straightforward to show that Var[m0] is given by

Var[m0] =
(µ − R01N)′V −1(µ − R01N)

R2
0

= aµ2
m − 2bµm + c ≡ σ2

0, (10)

where µm = 1/R0 and σ2
0 is called the unconstrained HJ-bound. Since every admissible SDF must

be at least as volatile as m0, σ2
0 can be used as a model diagnostic for a proposed SDF. Note that
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σ2
0 is a quadratic function of µm and it only depends on µ and V through the three efficiency set

constants a, b, and c.

Hansen and Jagannathan (1991) provide a linkage between the minimum-variance frontier and

the unconstrained HJ-bound. The basic relation is the following

θ0 =
σp∗

µp∗
=

σ0

µm
. (11)

In Figure 3, we provide a graphical illustration of this relation in the space of (σp, µp). When the

risk-free rate is R0, the two straight lines emanating from the point (0, R0) represent the minimum-

variance frontier of the risk-free asset and the N risky assets. These two straight lines have a slope

of θ0 which is equal to the absolute value of the Sharpe ratio of the tangency portfolio. Since

E[R2
p] = µ2

p + σ2
p , the portfolio with minimum second moment has the shortest distance from the

origin. In order to locate the portfolio with minimum second moment, we draw a circle with its

center at the origin, and the location of the minimum second moment portfolio p∗ can be obtained

from the point where the circle is tangent to the minimum-variance frontier of the risk-free and

risky assets. Suppose that we draw a solid line joining the origin and p∗ and a horizontal dotted

line at the level of 1/R0 = µm. Since σp∗/µp∗ is also equal to θ0, the intersection point of these two

lines has a horizontal distance of µmθ0 = σ0 from the y-axis. Therefore, this distance gives us the

HJ-bound on the standard deviation of admissible SDFs.

Figure 3 about here

1.2 Constrained Hansen-Jagannathan Bound

Hansen and Jagannathan (1991) suggest that for evaluating SDFs that are nonnegative, we can

tighten the HJ-bound by imposing a nonnegativity constraint on the admissible SDFs. In order to

find a nonnegative minimum-variance SDF, Hansen and Jagannathan (1991) propose to first solve

the following dual portfolio problem

min
w

E[max[0, R0 + w′(R − R01N )]2]. (12)

The problem amounts to finding a portfolio that has minimum truncated second moment, i.e.,

minw E[R+
p

2], where R+
p = max[0, Rp]. This portfolio problem is nontrivial to solve because the

truncated second moment of a portfolio depends on the joint distribution of the returns on the
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risky assets. Therefore, unless the joint distribution of R is completely characterized by its first two

moments (e.g., multivariate elliptical distribution), knowing the mean and the covariance matrix

of R is in general not sufficient for us to solve this problem.

Denote the portfolio with minimum truncated second moment by q∗. Hansen and Jagannathan

(1991) show that we can use the gross return on this portfolio to construct a nonnegative SDF

mc =
R+

q∗

‖R+
q∗‖2

. (13)

Lemma 2 summarizes the properties of mc.

Lemma 2. For mc defined in (13), we have (1) E[mc] = 1/R0, (2) E[mcR] = 1N , (3) ‖mc‖ =

1/‖R+
q∗‖, (4) R+

q∗ = mc/‖mc‖2, (5) for any admissible SDF m with E[m] = 1/R0 and m ≥ 0, we

have Cov[m, mc] ≥ Var[mc] and Var[m] ≥ Var[mc].

The first two properties tell us that mc is indeed a valid SDF that correctly prices the risk-free asset

and the N risky assets. The third and the fourth properties show the duality between mc and R+
q∗ .

The last property suggests that Var[mc] provides a lower bound for the variance of all admissible

SDFs that are nonnegative. In many ways, Lemma 2 is almost identical to Lemma 1 after we

replace m0 by mc and Rp∗ by R+
q∗ . The only difference is in the last property. In Lemma 1, we have

Cov[m, m0] = Var[m0] but in Lemma 2 we only have an inequality of Cov[m, mc] ≥ Var[mc]. The

reason is that R+
q∗ is not a portfolio return. As a result, we do not have the exact pricing result of

E[mR+
q∗] = 1, but just the inequality of E[mR+

q∗] ≥ 1.

There is a well known mapping between the unconstrained HJ-bound and the mean-variance

frontier of portfolio returns as given in (11). As it turns out, we can develop a similar mapping

between the constrained HJ-bound and the truncated mean-variance frontier. Let µ+
p ≡ E[R+

p ] and

σ+
p ≡ (Var[R+

p ])
1
2 be the truncated mean and standard deviation of the gross return on portfolio

p, respectively. The following lemma presents the linkage between the truncated mean-variance

frontier and the constrained HJ-bound.

Lemma 3. Define the squared truncated Sharpe ratio of portfolio q∗ as

θ2
c =

(E[R+
q∗] − R0)2

Var[R+
q∗]

. (14)

8



We have

θc =
σ+

q∗

µ+
q∗

=
σc

µm
. (15)

Comparing (15) with (11), we see that the linkage between the unconstrained HJ-bound and the

mean-variance frontier also exists for the case of the constrained HJ-bound, except that we need

to replace the mean and variance by the truncated mean and truncated variance.

Although the results on the constrained and unconstrained HJ-bounds are quite similar, the

constrained HJ-bound is seldom used in the empirical literature. We believe part of the reason

is that it is difficult to solve the minimum truncated second moment portfolio problem in (12).

Besides depending on the joint distribution of R, this problem is also highly nonlinear and there is

generally no closed-form solution. Without an analytical solution, it is difficult for researchers to

understand what is the portfolio q∗ that minimizes the truncated second moment. As a result, we

cannot plot the truncated mean-variance frontier and it is hard to visualize the relation between the

truncated minimum-variance frontier and the constrained HJ-bound as described in Lemma 3. In

order to overcome these problems, we need to make stronger assumptions on the joint distribution

of R. In the next subsection, we make the additional assumption that the returns are multivariate

normally distributed. With this assumption, we can obtain an analytical solution to the minimum

truncated second moment portfolio problem.6 While returns are certainly not normal, we view this

as a good working approximation for monthly and annual returns. More importantly, the normality

assumption allows us to obtain a better understanding of the constrained HJ-bound that is hard

to come by under more general distributional assumptions.

1.3 Constrained Hansen-Jagannathan Bound under Normality

We assume that R ∼ N(µ, V ). With the multivariate normality assumption on R, the portfolio

return Rp = R0 + w′(R − R01N) is also normally distributed with mean and variance given by

µp = R0 + w′(µ − R01N) and σ2
p = w′V w, respectively. Lemma 4 presents the formulae for the

truncated first and second moments of Rp which is the first step towards solving the minimum

6Cecchetti, Lam, and Mark (1992) also study the constrained HJ-bound under the normality assumption. However,
their analysis does not lead to a closed-form solution of the constrained HJ-bound. In addition to the multivariate nor-
mality case, we also obtain an analytical solution for the constrained HJ-bound under the multivariate t-distribution
assumption, and the results are available upon request. It is also possible to generalize our analysis to the larger class
of multivariate elliptical distributions.
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truncated second moment portfolio problem.

Lemma 4. Suppose that the gross return on a portfolio, Rp, is normally distributed with mean µp

and variance σ2
p. The truncated first and second moments of Rp are given by

E[R+
p ] = µpΦ(η) + σpφ(η), (16)

E[R+
p

2] = (µ2
p + σ2

p)Φ(η) + µpσpφ(η), (17)

where η = µp/σp, φ(·) is the density function of the standard normal distribution and Φ(·) is the

cumulative standard normal distribution function.

In addition to Lemma 4, we also need the following lemma to solve the minimum truncated second

moment portfolio problem.

Lemma 5. Let g(u) = u + φ(u)/Φ(u). We have (1) g(u) is a positive and strictly increasing

function of u, and (2) limu→−∞ g(u) = 0 and limu→∞ g(u) = ∞. It follows that g(u) = c has a

unique solution for c > 0.

With the results in Lemma 4 and Lemma 5, we present the explicit solution to the constrained

HJ-bound under the normality assumption in Proposition 1.

Proposition 1. Suppose that R ∼ N(µ, V ). Let η∗ be the unique solution of

g(η) =
1
θ0

, (18)

where θ0 is defined in (7). Then, the portfolio with minimum truncated second moment has the

following weights in the N risky assets

w∗ = − R0

θ0(η∗ + θ0)
V −1 (µ − R01N ) . (19)

In addition, the constrained HJ-bound is given by

Var[mc] =
θ0(η∗ + θ0)
R2

0Φ(η∗)
− 1

R2
0

=
σ0(η∗µm + σ0)

Φ(η∗)
− µ2

m ≡ σ2
c , (20)

where µm = 1/R0 and σ2
0 is the unconstrained HJ-bound defined in (10).

10



By examining (19), we can see that under the normality assumption, the minimum truncated second

moment portfolio, just like the minimum second moment portfolio in (6), is a linear combination

of the tangency portfolio and the risk-free asset. From (18), we know

1
θ0

= η∗ +
φ(η∗)
Φ(η∗)

> η∗, (21)

and we have

0 < θ0(η∗ + θ0) < 1 + θ2
0 . (22)

Consequently, the minimum truncated second moment portfolio in (19) involves short-selling more

of the tangency portfolio than the minimum second moment portfolio in (6). With the nonnegativity

constraint, σ2
c is naturally greater than σ2

0. From (18), we can see that η∗ is a monotonically

decreasing function of θ0. Therefore, for a given R0, the constrained HJ-bound σ2
c is uniquely

determined by θ0, the Sharpe ratio of the tangency portfolio. The following lemma further shows

that σ2
c is a monotonic increasing function of θ0. In addition, it shows that the difference between

the constrained and unconstrained HJ-bounds is also a monotonically increasing function of θ0.

Lemma 6. For a given R0, σ2
c is a strictly increasing function of θ0. In addition, let

h(θ0) = σ2
c − σ2

0 , h̃(θ0) =
σ2

c

σ2
0

− 1. (23)

We have (1) h(θ0) and h̃(θ0) are positive and strictly increasing function of θ0. (2) limθ0→0 h(θ0) =

limθ0→0 h̃(θ0) = 0, and (3) limθ0→∞ h(θ0) = limθ0→∞ h̃(θ0) = ∞.

Lemma 6 tells us that when the Sharpe ratio of the tangency portfolio is small, we expect the

constrained and unconstrained HJ-bounds to be very close to each other. It is only when the

tangency portfolio has a large Sharpe ratio that we can expect some meaningful difference between

the two HJ-bounds.

With Proposition 1, we can now solve for the minimum truncated second moment portfolio q∗.

This allows us to better understand the relation between the truncated Sharpe ratio of q∗ and the

constrained HJ-bound as given in Lemma 3. In Figure 4, we provide a graphical illustration of this

relation in the space of (σ+
p , µ+

p ) under the assumption that returns have a multivariate normal

distribution. When the risk-free rate is R0, the two curves emanating from the point (0, R0)

represent the minimum/maximum truncated variance frontier of the risk-free asset and the N

11



risky assets. It can be readily shown that just like the mean-variance frontier, the truncated mean-

variance frontier is also a linear combination of the risk-free asset and the tangency portfolio, so that

we can easily trace out the frontier by altering the weight in the risk-free asset. However, there are

two major differences between the mean-variance frontier and the truncated mean-variance frontier.

The first one is that the truncated mean-variance frontier is not represented by two straight lines

as in the case of the mean-variance frontier. When the weight of the risk-free asset in a portfolio

is close to one, the gross return on the portfolio has very small probability of assuming a negative

value, and the truncated mean-variance frontier is almost identical to the mean-variance frontier

when it is near the point (0, R0). When the portfolio has significant positive or negative weights

in the tangency portfolio, then the truncated mean and standard deviation of the portfolio return

can differ significantly from the mean and standard deviation. The second difference is that the

truncated mean of the portfolio return has a lower bound, so the lower curve does not continue to

go down but instead turns around after reaching a minimum.7 Once it turns around, the curve

becomes the maximum truncated variance frontier rather than the minimum truncated variance

frontier. The turnaround occurs because the probability of getting both large positive and negative

returns increases with more short-selling of the tangency portfolio. Beyond a certain point, more

short-selling of the tangency portfolio can actually increase the truncated expected return on the

portfolio, since the negative returns are dropped in the calculation of the truncated mean.

Since E[(R+
p )2] = (µ+

p )2 + (σ+
p )2, the portfolio with minimum truncated second moment has

the shortest distance from the origin. In order to locate the portfolio with minimum truncated

second moment, we draw a circle with its center at the origin, and the location of the minimum

truncated second moment portfolio q∗ can be obtained from the point where the circle is tangent to

the minimum truncated variance frontier of the risk-free and risky assets. Note that the truncated

Sharpe ratio of q∗ as well as σq∗/µq∗ are both equal to θc. Suppose that we draw a solid line joining

the origin and q∗ and a horizontal dotted line at the level of 1/R0 = µm. Then, the intersection

point of these two lines has a horizontal distance of µmθc = σc from the y-axis. Therefore, this

distance gives us the constrained HJ-bound on the standard deviation of nonnegative admissible

SDFs.

Figure 4 about here

7Let u∗ be the solution of the equation φ(u)/Φ(u) = θ0. It can be shown that minw µ+
p = R0Φ(u∗).
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2. Sample Hansen-Jagannathan Bounds

Since the population HJ-bounds are unobservable, we need to estimate them using realized returns.

Suppose that we have a time series of gross returns on the N risky assets, Rt, t = 1, . . . , T . We can

estimate the mean and the covariance matrix of Rt using the GMM estimators

µ̂ =
1
T

T∑

t=1

Rt, (24)

V̂ =
1
T

T∑

t=1

(Rt − µ̂)(Rt − µ̂)′. (25)

In order to estimate the unconstrained HJ-bound for a given value of µm = 1/R0, researchers

typically use the sample counterpart of (10)

σ̂2
0 = âµ2

m − 2b̂µm + ĉ, (26)

where â, b̂, and ĉ are the sample estimators of the three efficiency set constants

â = µ̂′V̂ −1µ̂, b̂ = 1′N V̂ −1µ̂, ĉ = 1′N V̂ −11N . (27)

For the constrained HJ-bound σ2
c = Var[mc], Hansen, Heaton, and Luttmer (1995) suggest a sample

estimator of σ2
c which can be obtained in two steps. We first estimate E[R+

q∗
2], where q∗ is the

minimum truncated second moment portfolio. This can be accomplished by computing the sample

counterpart of (12)

λ̂ = min
w

1
T

T∑

t=1

max[0, R0 + w′(Rt − R01N)]2, (28)

where R0 = 1/µm. From property (3) of Lemma 2, we know that E[m2
c ] = 1/E[R+

q∗
2]. Therefore,

using λ̂ as an estimator of E[R+
q∗

2], we can estimate σ2
c using

σ̂2
c =

1
λ̂
− µ2

m. (29)

We call σ̂2
c the nonparametric estimator of σ2

c because it does not require any knowledge of the

joint distribution of the returns.

Note that in computing σ̂2
c , we need to solve for w∗ in (28) numerically. Without a good initial

estimate, numerical minimization can be time consuming and can also give us a local minimum

rather than a global minimum. Based on our experience, the sample counterpart of (19) often

13



provides a good initial estimate of w∗ and leads to fast convergence of the numerical minimization

problem.

When returns are multivariate normally distributed, we propose an estimator of σ2
c that is

simpler to compute and is more efficient than σ̂2
c . Following Proposition 1, we let η̂∗ be the unique

solution to

g(η) =
µm

σ̂0
, (30)

where σ̂2
0 is the sample unconstrained HJ-bound defined in (26). Using η̂∗, we compute the maxi-

mum likelihood estimator of σ2
c as

σ̃2
c =

σ̂0(η̂∗µm + σ̂0)
Φ(η̂∗)

− µ2
m. (31)

Unlike the nonparametric estimator σ̂2
c which requires solving an N -dimensional minimization prob-

lem, the maximum likelihood estimator σ̃2
c requires solving only one nonlinear equation. As a result,

σ̃2
c is significantly easier to obtain than σ̂2

c . In addition, there is only one solution to (30), so that

we do not need to worry about getting a local minimum.

When returns are normally distributed, σ̃2
c is asymptotically more efficient than σ̂2

c . The reason

is that we only need to estimate µ and V to obtain σ̃2
c . In contrast, σ̂2

c requires us to estimate the

joint distribution of the returns, and there could be substantial volatility in its estimates. When

returns are close to but not exactly normally distributed, we may still prefer to use σ̃2
c instead of

σ̂2
c because the latter can be very volatile. The finite sample performance of these two estimators

under normal and non-normal distributions will be studied in Section 3.

2.1 Asymptotic Distributions

Traditionally, statistical inferences on the HJ-bounds are based on the asymptotic distributions of

the sample HJ-bounds. In this section, we briefly review the existing asymptotic results on the

sample unconstrained and constrained HJ-bounds. We then specialize the asymptotic results to

the case where returns are multivariate normally distributed, under which we can derive analytical

expressions for the asymptotic variance of the sample unconstrained and constrained HJ-bounds.

The results under normality will be used in the next section, where we investigate how well the

asymptotic distributions of these estimators approximate their finite sample distributions.
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Under the assumptions that returns are jointly stationary and ergodic, and their fourth moments

exist, Hansen, Heaton, and Luttmer (1995, Proposition 2.1) provide the asymptotic distributions

of σ̂2
0 and σ̂2

c . Define m0,t and mc,t as the realizations of m0 and mc at time t

m0,t =
1− (µ − R01N)′V −1(Rt − µ)

R0
= µm − (µmµ − 1N)′V −1(Rt − µ), (32)

mc,t =
R+

q∗,t

‖R+
q∗,t‖2

, (33)

where q∗ is the minimum truncated second moment portfolio. With some simplifications, the

asymptotic results of Hansen, Heaton, and Luttmer (1995) can be written as
√

T (σ̂2
0 − σ2

0) A∼ N(0, v0), (34)
√

T (σ̂2
c − σ2

c ) A∼ N(0, vc), (35)

where v0 =
∑∞

j=−∞ E[φ0,tφ0,t+j ] and vc =
∑∞

j=−∞ E[φc,tφc,t+j ], and

φ0,t = m2
0,t − µ2

m − σ2
0 , (36)

φc,t = m2
c,t − µ2

m − σ2
c . (37)

In order to obtain a consistent estimator of v0, we can replace φ0,t by

φ̂0,t = m̂2
0,t − µ2

m − σ̂2
0, (38)

where

m̂0,t =
1 − (µ̂ − R01N)′V̂ −1(Rt − µ̂)

R0
= µm − (µmµ̂ − 1N )′V̂ −1(Rt − µ̂) (39)

is the sample estimate of the minimum-variance SDF. Similarly, we can construct a consistent

estimator of vc by replacing φc,t with

φ̂c,t = m̂2
c,t − µ2

m − σ̂2
c , (40)

where

m̂c,t =
R+

q̂∗,t

1
T

∑T
t=1(R

+
q̂∗,t)

2
=

R+
q̂∗,t

R0
1
T

∑T
t=1 R+

q̂∗,t

, (41)

and R+
q̂∗,t is the gross return on the sample minimum truncated second moment portfolio at time t.8

When returns are i.i.d. multivariate normally distributed, we can derive analytical expressions of
8The last equality in (41) follows from the fact that the first order condition of the minimization problem is

1
T

∑T
t=1 R+

q̂∗ ,t(Rt − R01N ) = 0N , which implies that

1

T

T∑

t=1

(R+
q̂∗,t)

2 =
1

T

T∑

t=1

R+
q̂∗,tRq̂∗,t =

1

T

T∑

t=1

R+
q̂∗,t[R0 + w∗′(Rt − R01N )] = R0

1

T

T∑

t=1

R+
q̂∗,t. (42)
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the asymptotic variances of σ̂2
0 and σ̂2

c . In addition, we can also derive the asymptotic distribution of

the maximum likelihood estimator of σ2
c . These asymptotic results are summarized in the following

lemma.

Lemma 7. Suppose that Rt, t = 1, . . . , T , are i.i.d. multivariate normally distributed. Then, the

asymptotic distributions of σ̂2
0, σ̂2

c , and σ̃2
c are given by

√
T (σ̂2

0 − σ2
0)

A∼ N

(
0,

2θ2
0(2 + θ2

0)
R4

0

)
, (43)

√
T (σ̂2

c − σ2
c )

A∼ N

(
0,

θ3
0[θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

− θ2
0(η

∗ + θ0)2

R4
0Φ(η∗)2

)
, (44)

√
T (σ̃2

c − σ2
c )

A∼ N

(
0,

2θ2
0(2 + θ2

0)
R4

0Φ(η∗)2

)
, (45)

where θ2
0 is defined in (7) and η∗ is defined in Proposition 1. In addition, Avar[σ̂2

c ] ≥ Avar[σ̃2
c ].

Since η∗ is uniquely determined by θ0 (the absolute value of the Sharpe ratio of the tangency

portfolio of the risky assets), the asymptotic distributions of σ̂2
0, σ̂2

c , and σ̃2
c in Lemma 7 only

depend on R0 and θ0. In particular, these asymptotic distributions do not depend on N , the

number of risky assets. This is in sharp contrast with our results in the next section which show

that N plays a crucial role in determining the finite sample distributions of σ̂2
0, σ̂2

c , and σ̃2
c .

3. Finite Sample Distributions of the Sample Hansen-Jagannathan
Bounds

While the asymptotic distributions of the sample HJ-bounds are simple and easy to compute, they

may not be reliable in finite samples. In this section, we present the finite sample distributions of

σ̂2
0 and σ̃2

c under the normality assumption. For σ̂2
c , we cannot provide a simple expression of its

finite sample distribution. Nevertheless, we are able to show that the finite sample distribution of

σ̂2
c only depends on a single parameter. As a result, we are able to present a simple simulation

approach to efficiently approximate the finite sample distribution of σ̂2
c .

Before analyzing the finite sample distributions of the sample HJ-bounds, we first present the

finite sample distribution and moments of the squared sample Sharpe ratio of the tangency portfolio

θ̂2
0 = (µ̂ − R01N)′V̂ −1(µ̂ − R01N ) (46)
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in the following proposition. The distribution of θ̂2
0 can be easily obtained by using Theorem 3.2.12

of Muirhead (1982). It can also be obtained as a special case of the distribution of the Gibbons,

Ross, and Shanken (1989) test when the number of factor mimicking portfolios is equal to zero.

Proposition 2. Under the i.i.d. multivariate normality assumption on Rt, the distribution of the

sample squared Sharpe ratio of the tangency portfolio is proportional to a noncentral F -distribution

θ̂2
0 ∼

(
N

T − N

)
FN,T−N(Tθ2

0), (47)

where Fm,n(δ) denotes a noncentral F random variable with m and n degrees of freedom, and

noncentrality parameter δ. The r-th moment of θ̂0 exists if and only if −N < r < T − N . When

−N < r < T − N , we have

E[θ̂r
0] =

Γ
(

N+r
2

)
Γ

(
T−N−r

2

)

Γ
(

N
2

)
Γ

(
T−N

2

) 1F1

(
−r

2
;
N

2
;−Tθ2

0

2

)
, (48)

where Γ(x) is the gamma function and 1F1(a; b; x) is the confluent hypergeometric function. When

r/2 is a nonnegative integer, we have

E[θ̂r
0] =

(
N
2

)
r/2(

T−N−r
2

)
r/2

r/2∑

i=0

(
r/2
i

) (
Tθ2

0
2

)i

(
N
2

)
i

, (49)

where (n)r = n(n + 1) · · ·(n + r − 1) and (n)0 = 1.

3.1 Sample Unconstrained Hansen-Jagannathan Bound

Since σ̂2
0 = θ̂2

0/R2
0 is a linear transformation of θ̂2

0, we can easily use the result in Proposition 2 to

compute the finite sample distribution of σ̂2
0 as follows

P [σ̂2
0 < v] = P [θ̂2

0 < R2
0v] = FN,T−N,Tθ2

0

(
(T − N)R2

0v

N

)
, (50)

where Fm,n,δ(x) is the noncentral F cumulative distribution function with m and n degrees of

freedom, and noncentrality parameter δ.

In Figure 5, we plot the exact distribution of σ̂0 as a function of T for some representative

values of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume R0 = 1.005 and plot the

population value of σ0 using a horizontal solid line.9 We then plot the 1st, 5th, 50th, 95th, and
9Note that θ0 of 0.2 and 0.4 cover a reasonably wide range of Sharpe ratios observed in monthly data. In addition,

an R0 of 1.005 seems sensible since it corresponds to an annual net return on the risk-free asset of about 6%.
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99th percentiles of σ̂0 as functions of T . By comparing the four graphs in Figure 5, we can obtain

a good understanding of how the finite sample distribution of σ̂0 varies with θ0, N , and T . In

general, we see that the σ̂0 is not symmetrically distributed around σ0. The distribution of σ̂0 gets

tighter as T increases but even for T as large as 600, there is still substantial volatility in σ̂0. By

comparing the two upper panels (θ0 = 0.2) with the two lower panels (θ0 = 0.4) in Figure 5, we see

that σ̂0 is more volatile for higher θ0 but that the distribution of σ̂0 is more symmetric for higher

θ0. By comparing the two left panels (N = 5) with the two right panels (N = 25) in Figure 5, we

can see that an increase in N significantly increases the volatility of σ̂0 and drives the distribution

of σ̂0 further away from σ0. When θ0 = 0.2 and N = 25, we notice that even for T = 600, the 1st

percentile of σ̂0 is higher than the true σ0, indicating that σ̂0 provides a very poor estimate of σ0.

Figure 5 about here

The plots in Figure 5 suggest that there can be a significant upward bias in the distribution of σ̂0

especially when N is large. The underlying reason is that the sample tangency portfolio represents

the outcome of an optimization problem that uses the sample mean and covariance matrix of

returns. Since the optimizer tends to put heavy weights on assets with high average returns (but

not necessarily high expected returns), the Sharpe ratio of the sample tangency portfolio (θ̂0) tends

to be considerably higher than the true θ0, especially when the number of assets is large.

Using the exact moments of θ̂0 in (49), we can obtain the exact mean and variance of the sample

unconstrained HJ-bound σ̂2
0 as10

E[σ̂2
0] =

N + Tθ2
0

(T − N − 2)R2
0

if T − N > 2, (52)

Var[σ̂2
0] =

2[(N + Tθ2
0)2 + (N + 2Tθ2

0)(T − N − 2)]
(T − N − 2)2(T − N − 4)R4

0

if T − N > 4. (53)

Therefore, the ratios of the asymptotic mean and variance to the exact mean and variance of σ̂2
0

are given by

σ2
0

E[σ̂2
0]

=
(T − N − 2)θ2

0

N + Tθ2
0

, (54)

10Using the mean of σ̂2
0 , we can easily derive an unbiased estimator of σ2

0 as suggested by Ferson and Siegel (2003)

σ̂2
0u =

(
T − N − 2

T

)
σ̂2

0 − N

T
µ2

m. (51)
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Avar[σ̂2
0]

Var[σ̂2
0]

=
(T − N − 2)2(T − N − 4)θ2

0(2 + θ2
0)

T [(N + Tθ2
0)2 + (N + 2Tθ2

0)(T − N − 2)]
. (55)

These two ratios are only functions of N , T , and θ0. It is easy to show that both ratios are less than

one, indicating that the exact distribution of σ̂2
0 has a higher mean than σ2

0 and that σ̂2
0 is more

volatile than what is suggested by the variance of its asymptotic distribution. In Figure 6, we plot

the ratios σ2
0/E[σ̂2

0] and Avar[σ̂2
0]/Var[σ̂2

0] as functions of T for four different choices of number of

assets (N = 2, 5, 10, and 25). The top two panels present the plots for the case in which θ0 = 0.2

and the bottom two panels present the plots for the case in which θ0 = 0.4. As expected, Figure 6

shows that the asymptotic distribution of σ̂2
0 provides a better approximation to the finite sample

distribution of σ̂2
0 when T increases. Comparing the upper panels with the lower panels in Figure 6,

we also find that the asymptotic distribution of σ̂2
0 is more accurate when θ0 is higher. Finally,

the quality of the approximation of the asymptotic distribution significantly deteriorates with an

increase in N . When N = 25, the asymptotic distribution of σ̂2
0 provides a poor approximation to

the exact distribution of σ̂2
0 even for T as large as 600.

Figure 6 about here

3.2 Maximum Likelihood Estimator of the Constrained Hansen-Jagannathan
Bound

While the maximum likelihood estimator of the constrained HJ-bound, σ̃2
c , looks complicated, it is

actually just a monotonic transformation of θ̂2
0. To see this, we can rewrite σ̃2

c in (31) as

σ̃2
c =

1
R2

0

[
θ̂0(η̂∗ + θ̂0)

Φ(η̂∗)
− 1

]
, (56)

where η̂∗ is the solution to g(η) = 1/θ̂0. Using the same proof as in Lemma 6, we can show that σ̃2
c

is a monotonic increasing function of θ̂2
0 . Denoting the monotonic relation between σ̃2

c and θ̂2
0 by

σ̃2
c = f(θ̂2

0), θ̂2
0 = f−1(σ̃2

c ), (57)

we can again use Proposition 2 and obtain the finite sample distribution of σ̃2
c as follows

P [σ̃2
c < v] = P [f−1(σ̃2

c ) < f−1(v)] = FN,T−N,Tθ2
0

(
(T − N)f−1(v)

N

)
. (58)

The only difference is that in this case we need to numerically compute f−1(v). Since f(x) is a

monotonic increasing function of x, solving for f−1(v) is fast and numerically stable.
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In Figure 7, we plot the exact distribution of σ̃c as a function of T for some representative

values of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume that R0 = 1.005 and plot the

population value of σc using a horizontal solid line. We then plot the 1st, 5th, 50th, 95th, and 99th

percentiles of σ̃c as functions of T . Since σ̃c is a monotonic transformation of σ̂0, the distributions

of σ̃c in Figure 7 are quite similar to the distributions of σ̂0 in Figure 5. Using a proof similar

to the one of Lemma 6, we can show that the difference between σ̃c and σ̂0 is large only when σ̂0

is large. As a result, the lower percentiles of σ̃c and σ̂0 are almost identical. However, the 95th

and 99th percentiles of σ̃c are significantly larger than those of σ̂0, especially when N and θ0 are

large. Despite the difference in the right tails of the distributions of σ̃c and σ̂0, the general pattern

that we observe in the distribution of σ̂0 continues to hold for the distribution of σ̃c. Namely, the

distribution of σ̃c has a significant positive bias, and this bias becomes more severe when N is large

and T is small. Similar to the σ̂0 case, the percentage bias of σ̃c is larger for smaller θ0.

Figure 7 about here

In Figure 8, we plot the ratios σ2
c/E[σ̃2

c ] and Avar[σ̃2
c ]/Var[σ̃2

c ] as functions of T for four different

choices of number of assets (N = 2, 5, 10, and 25). The top two panels present the plots for the

case of θ0 = 0.2 and the bottom two panels are for the case of θ0 = 0.4. Although we can compute

the exact distribution of σ̃c, it is not easy to obtain simple expressions for the finite sample mean

and variance of σ̃2
c . Therefore, we use the sample mean and variance of 100,000 simulations of σ̃2

c

to approximate E[σ̃2
c ] and Var[σ̃2

c ].

Figure 8 about here

The plots in Figure 8 are very similar to the plots in Figure 6. They show that the asymptotic

distribution of σ̃2
c does not always provide a good approximation to the finite sample distribution

of σ̃2
c . The quality of the approximation improves with larger T , larger θ2

0 , and smaller N . When

N = 25, the asymptotic distribution of σ̃2
c is unreliable even for T as large as 600.

Since σ̃2
c can be a heavily biased estimator of σ2

c , it is desirable to obtain an approximate

unbiased estimator of σ2
c . Let σ2

c = f(θ2
0) and σ̃2

c = f(θ̂2
0). Using a first-order Taylor series

expansion and the fact that ∂σ2
c/∂θ2

0 = 1/[R2
0Φ(η∗)], we have

σ̃2
c = f(θ̂2

0) ≈ f(θ2
0) + f ′(θ2

0)(θ̂
2
0 − θ2

0) = σ2
c +

1
R2

0Φ(η∗)
(θ̂2

0 − θ2
0). (59)
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Taking the expectation of both sides, we obtain

E[σ̃2
c ] ≈ σ2

c +
1

R2
0Φ(η∗)

(E[θ̂2
0]− θ2

0) = σ2
c +

N + (N + 2)θ2
0

(T − N − 2)R2
0Φ(η∗)

. (60)

Therefore, we can replace θ2
0 and η∗ by their sample counterparts and use

σ̃2
c −

N + (N + 2)θ̂2
0

(T − N − 2)R2
0Φ(η̂∗)

(61)

as an approximate unbiased estimator of σ2
c . However, θ̂2

0 can be a heavily upward biased estimator

of θ2
0 , especially when N is large. As a result, the above estimator tends to over-adjust and it can

be biased downward when N is large. Another problem with the above estimator is that it can be

negative. To correct for these two problems, we propose the use of

σ̃2
cu = max

[
0, σ̃2

c −
N + (N + 2)θ̂2

0u

(T − N − 2)R2
0Φ(η̂∗

u)

]
(62)

as an adjusted estimator of σ2
c , where

θ̂2
0u = max

[
0,

(
T − N − 2

T

)
θ̂2
0 − N

T

]
(63)

and η̂∗
u is a solution to the following equation

u +
φ(u)
Φ(u)

=
1

θ̂0u

. (64)

In Figure 9, we plot the exact distribution of σ̃cu as a function of T for some representative values

of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume that R0 = 1.005 and plot the

population value of σc using a horizontal solid line. We then plot the 1st, 5th, 50th, 95th, and

99th percentiles of σ̃cu as functions of T . By comparing Figure 9 with Figure 7, we observe that

σ̃cu is much better behaved than σ̃c. For example, the four plots in Figure 9 show that the 50th

percentile of σ̃cu is very close to σc, while the 50th percentile of the unadjusted σ̃c in Figure 7 is

significantly higher than σc, even for T as large as 600. Overall, the distribution of σ̃cu tends to be

more symmetric and less volatile than the distribution of σ̃c.

Figure 9 about here

Using 100,000 simulations of σ̃2
cu, we estimate E[σ̃2

cu] and Var[σ̃2
cu] and plot the ratios σ2

c/E[σ̃2
cu]

and Avar[σ̃2
cu]/Var[σ̃2

cu] as functions of T for four different choices of number of assets (N = 2, 5,
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10, and 25) in Figure 10. The top two panels present the plots for the case of θ0 = 0.2 and the

bottom two panels are for the case of θ0 = 0.4. The plots of the ratios of the asymptotic mean

to the finite mean in Figure 10 are substantially different from the ones in Figure 8. They show

that σ̃2
cu is close to being an unbiased estimator of σ2

c , except for when N = 25 and T is very

small. Although the asymptotic variance of σ̃2
cu is still substantially lower than the finite sample

variance of σ̃2
cu, the ratio is closer to one after the bias adjustment. This suggests that σ̃2

cu is not

only effective in removing the bias of σ̃2
c , but is also less volatile than σ̃2

c . Therefore, we consider

σ̃2
cu to be a superior estimator of the constrained HJ-bound than σ̃2

c .

Figure 10 about here

3.3 Nonparametric Estimator of the Constrained Hansen-Jagannathan Bound

The last estimator that we consider is the nonparametric estimator of the constrained HJ-bound,

σ̂2
c . Although we cannot obtain the exact distribution of σ̂2

c , we show in the following proposition

that the distribution of σ̂2
c only depends on θ0.

Proposition 3. Under the i.i.d. multivariate normality assumption on Rt, the distribution of σ̂2
c

has the same distribution of
1

R2
0

(
1
λ̃
− 1

)
, (65)

where

λ̃ = min
w̃

1
T

T∑

t=1

max[0, 1 + w̃′zt]2, (66)

and zt ∼ N([θ0, 0′N−1]
′, IN).

Proposition 3 provides us with an efficient way of simulating σ̂2
c . It suggests that one only needs

to simulate zt (whose distribution only depends on θ0) for t = 1, . . . , T to obtain a draw of σ̂2
c .

Based on 100,000 simulations, we plot the exact distribution of σ̂c as a function of T for some

representative values of θ0 (0.2 and 0.4) and N (5 and 25) in Figure 11. In each case, we assume

that R0 = 1.005 and plot the population value of σc using a horizontal solid line. We then plot

the 1st, 5th, 50th, 95th, and 99th percentiles of σ̂c as functions of T . By comparing Figure 7

with Figure 11, we can see that the nonparametric estimator σ̂c tends to be more volatile than the

maximum likelihood estimator σ̃c. This is particularly the case when N = 25 and T ≤ 120, where
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we find that σ̂c can often be very large. Note that σ̂c is inversely related to λ̂ in (28), which is a

nonparametric estimator of E[R+
q∗

2], where q∗ is the minimum truncated second moment portfolio.

However, when N is large and T is small, there is a high probability that we can find a portfolio

that has negative gross returns in almost every period in the sample. When this occurs, we have

λ̂ ≈ 0 and this results in a very large value of σ̂c.

Figure 11 about here

The very fat right tail of σ̂2
c renders the asymptotic distribution of σ̂2

c grossly inappropriate for

approximating the finite sample distribution of σ̂2
c , especially when N is large and T is small. In

fact, we are able to establish that P [λ̂ = 0] > 0 so that P [σ̂2
c = ∞] > 0, which in turn implies the

nonexistence of moments for σ̂2
c .11 To show this, we note that for any nonzero N -vector w0, we

have

P [λ̂ = 0] = P

[
min

w

T∑

t=1

max[0, R0 + w′(Rt − R01N)]2 = 0

]

≥ P

[
T∑

t=1

max[0, R0 + w′
0(Rt − R01N )]2 = 0

]

=
T∏

t=1

P [R0 + w′
0(Rt − R01N ) ≤ 0]

= Φ
(
−µp

σp

)T

, (67)

where µp = R0+w′
0(µ−R01N) and σ2

p = w′
0V w0. The second to last equality in the above equation

follows from the independence property of Rt. While P [λ̂ = 0] goes to zero as T increases, it remains

nonzero for any finite T . As a result, the moments of σ̂2
c do not exist and we can no longer study

the finite sample mean and variance of σ̂2
c as we do for σ̃2

c . Note that the result that σ̂2
c does not

have any finite moment is quite general and is not limited to the normality case. For any joint

distribution of Rt, if there exists a nonzero N -vector w0 such that P [R0 +w′
0(Rt−R01N ) ≤ 0] > 0,

then we have P [λ̂ = 0] > 0 and the moments of σ̂2
c do not exist.

11Burnside (1994) notes that λ̂ can be equal to zero for some values of R0. In his simulations, he also finds that
such an event occurs quite frequently. Our result is stronger in the sense that we show analytically that P [λ̂ = 0] > 0
for any value of R0.
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3.4 Confidence Intervals

From the results in the previous subsections, we find that all the sample HJ-bounds are quite

volatile and have a serious bias, especially when N is large and T is small. This problem is

particularly serious in the case of the nonparametric estimator of the constrained HJ-bound because

this estimator does not even have finite moments. Given the high volatility of the sample HJ-

bounds, it is unwise to rely solely on the point estimator of the HJ-bound to make inferences. It

would be ideal to have an interval estimator of the HJ-bounds to improve our understanding of

where the true HJ-bounds may fall.

As it turns out, constructing confidence intervals for σ2
0 and σ2

c is the same as constructing a

confidence interval for θ2
0 . Suppose that we can find a pair (θ2

0, θ̄
2
0) to form a 100(1−α)% confidence

interval for θ2
0, i.e.

P [θ2
0 ≤ θ2

0 ≤ θ̄2
0 ] = 1 − α. (68)

Then, using the fact that σ2
0 and σ2

c are monotonic increasing transformations of θ2
0, we can obtain

the confidence interval for σ2
0 as (θ2

0/R2
0, θ̄

2
0/R2

0) and the confidence interval for σ2
c as (f(θ2

0), f(θ̄2
0)),

where f is a function such that f(θ2
0) = σ2

c .

From Proposition 2, we know that the finite sample distribution of θ̂2
0 is proportional to a

noncentral F -distribution with noncentrality parameter Tθ2
0. Since the noncentral F -distribution

is decreasing in its noncentrality parameter, we can use the statistical method (see, for example,

Casella and Berger (1990, Section 9.2.3)) to construct a confidence interval for θ2
0.

12 Using this

methodology, we first plot the 100(α/2) and 100(1− α/2) percentiles of the distribution of θ̂2
0 for

different values of θ2
0 . We then draw a horizonal line at the observed value of θ̂2

0. This horizontal

line will first intersect the 100(1− α/2) percentile line and then the 100(α/2) percentile line of θ̂2
0 .

The interval between these two intersection points gives us a 100(1 − α)% confidence interval for

θ2
0. Mathematically, θ̄2

0 and θ2
0 are implicitly determined by the following equations

FN,T−N,θ̄2
0
(x) =

α

2
, (69)

FN,T−N,θ2
0
(x) = 1 − α

2
, (70)

where x = (T − N)θ̂2
0/N , δ̄ = Tσ̄2

0/µ2
m, and δ = Tσ2

0/µ2
m. Note that since FN,T−N,δ(x) is de-

12Lewellen, Nagel, and Shanken (2006) also use the statistical method to construct the confidence interval for the
unexplained squared Sharpe ratio of an asset pricing model.
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creasing in the noncentrality parameter δ, (70) will not have a nonnegative solution for θ2
0 when

FN,T−N,0(x) < 1 − α/2. In this case, we set θ2
0 = 0. Similarly, if FN,T−N,0(x) < α/2, we cannot

find a nonnegative solution for θ̄2
0, and we set θ̄2

0 = 0.13

3.5 Effects of Nonnormality and Conditional Heteroskedasticity

The distributional results on the sample HJ-bounds in this paper are derived under the strong

assumption of i.i.d. multivariate normality. While we certainly do not think that returns are exactly

i.i.d. normal, we view the normality assumption as a good working approximation for monthly and

annual returns, which are used in most of the applications of the HJ-bounds. Nevertheless, we

are interested in understanding how robust our results are to departures from the i.i.d. normality

assumption. In particular, we are interested in return distributions with fat tails because the

returns on financial assets often exhibit a leptokurtic behavior. We therefore study two alternative

return distributions that exhibit leptokurtic behavior: (1) the case where returns are multivariate

t distributed; and (2) the case where returns exhibit conditional heteroskedasticity of a GARCH

type as in Bollerslev (1986).

3.5.1 Nonnormality

In this experiment, we study the case where returns are multivariate t distributed with five degrees

of freedom. With the choice of five degrees of freedom, the t-distribution exhibits extreme fat tails

and potentially presents a serious challenge for our finite sample results that are derived under the

normality assumption. Since we cannot derive the finite sample distribution of σ̂2
0 and σ̃2

c under the

multivariate t-distribution assumption, we have to rely on simulation.14 Using 100,000 simulations,

we find that the distribution of θ̂2
0 under the t-distribution assumption has a slightly fatter right

tail than under the normality assumption. However, the noncentral F -distribution remains a very

good approximation of the exact distribution of θ̂2
0 . To demonstrate this, we present in Figure 12

the coverage probabilities of the 90%, 95%, and 99% confidence intervals for σ2
0 (which are exact

under the normality assumption) when returns are multivariate t distributed with five degrees of

freedom. We plot the probability of coverage of the three confidence intervals as a function of T for

13A Matlab program for computing the confidence intervals for σ2
0 and σ2

c is available upon request.
14It can be shown that under the multivariate t-distribution assumption on Rt, the finite sample distribution of θ̂2

0

(and hence σ̂2
0 and σ̃2

c ) only depends on θ0.
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some representative values of θ0 (0.2 and 0.4) and N (5 and 25). The plots show that the actual

probabilities of coverage are quite close to the confidence levels. For the 99% confidence intervals,

the coverage probability is almost exact. For the 90% and 95% confidence intervals, the coverage

probabilities are almost exact for the case in which θ0 = 0.2 but off by about 1% to 2% for the

case in which θ0 = 0.4. The reason why the coverage probabilities are slightly off when θ0 = 0.4

compared to the case where θ0 = 0.2 can be understood by noticing that V̂ is more volatile under

the t-distribution assumption than under the normality assumption and that the sample squared

Sharpe ratio of the tangency portfolio is given by θ̂2
0 = (µ̂−R01N )′V̂ −1(µ̂−R01N). Therefore, the

increased volatility of V̂ has a bigger impact on θ̂2
0 when average excess returns are high (i.e., when

θ0 is high) than when average excess returns are low (i.e., when θ0 is low). Consequently for larger

θ0, θ̂2
0 is more volatile under the t-distribution assumption than under the normality assumption

and this leads to a decrease in the coverage probabilities of our confidence intervals.

Figure 12 about here

In Figure 13, we repeat the same exercise for the confidence intervals for σ2
c . One additional

issue emerges when computing the probability of coverage of the confidence intervals for σ2
c : the

population value of σ2
c under the multivariate t-distribution assumption is different from the one un-

der the multivariate normality assumption. It can be shown that for the multivariate t-distribution

with ν degrees of freedom, σ2
c is given by15

σ2
c =

1
R2

0

[
θ0(θ0 + η∗)
Φν−2(η∗)

− 1
]

, (71)

where Φν−2(·) is the cumulative distribution function of a standard t-distribution with ν−2 degrees

of freedom, and η∗ is the solution to the following equation

ηΦν

((
ν

ν−2

) 1
2
η

)
+ φν−2(η)

Φν−2(η)
=

1
θ0

, (72)

where φν−2(·) is the density function of a standard t-distribution with ν − 2 degrees of freedom.

When θ0 = 0.2, σc is almost identical under the normality and the t-distribution assumptions.

When θ0 = 0.4, σc = 0.3983 under the normality assumption but it increases to 0.4024 under the

t-distribution assumption with five degrees of freedom.
15The proof of this result is available upon request.
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Since there is only a small difference in the population value of σ2
c under the two distributional

assumptions, Figure 13 shows that the probabilities of coverage of the confidence intervals for σ2
c

are quite close to the confidence levels even when returns are multivariate t distributed. When T

increases, we can see a small decrease in the probability of coverage for the case in which θ0 = 0.4

(due to the fact that our confidence intervals are designed to cover a slightly different σ2
c ), but

the probability of coverage is still quite accurate for T as large as 600. For the 99% confidence

intervals, the coverage probability is almost exact. Similar to the unconstrained case, the coverage

probabilities of the 90% and 95% confidence intervals are almost exact for the case in which θ0 = 0.2

but off by about 1% to 2% for the case in which θ0 = 0.4.

Figure 13 about here

3.5.2 Conditional Heteroskedasticity

In this experiment, we introduce conditional heteroskedasticity in the return data generating pro-

cess and investigate whether the noncentral F -distribution remains a good approximation of the

exact distribution of θ̂2
0 . For modeling returns on financial assets, the GARCH(1,1) process pro-

posed by Bollerslev (1986) has become a fairly popular choice in the literature. However, since

we have multiple assets in our framework, we also need to make assumptions on the dynamics

of the correlations of the returns on different pairs of assets. For simplicity, we use Bollerslev’s

(1990) constant correlation multivariate GARCH(1,1) model that assumes that these correlations

are constant over time. Instead of assuming that excess returns follow a constant correlation mul-

tivariate GARCH(1,1), we assume that the following transformed excess returns follow a constant

correlation multivariate GARCH(1,1)

zt = P ′V − 1
2 rt, (73)

where rt is an N × 1 vector of excess returns, and P is an N ×N orthonormal matrix with its first

column equal to V − 1
2 (µ − R01N)/θ0. This assumption is made for convenience because it allows

us to generate the time series of each element of the transformed returns independently using the

following univariate GARCH(1,1) process

zit = E[zit] + εt
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εt ∼ N(0, ht)

ht = ωi + αiε
2
t−1 + βiht−1, (74)

where ωi > 0, αi ≥ 0, βi ≥ 0, and αi+βi < 1 for i = 1, . . . , N . Since the unconditional variance of zit

is equal to one, we set ωi = 1−αi−βi. In addition, we assume E[z1t] = θ0, and E[zit] = 0 for i > 1,

so that the returns have the desired unconditional Sharpe ratio of θ0. In order to simulate zt, we

also need to choose the αi and βi parameters. We calibrate these parameters using the transformed

excess returns on the 25 monthly Fama-French size and book-to-market portfolio returns over the

post-World War II period (1946/1–2006/12).16 The average αi and βi parameter estimates across

the 25 assets are 0.092 and 0.815, respectively. We use these estimated parameters to generate

strings of simulated zt. In Figure 14, we present the coverage probabilities of the 90%, 95%, and

99% confidence intervals for σ2
0 when each of the transformed return series follows a GARCH(1,1)

process. Using 100,000 simulations, we plot the probability of coverage of the three confidence

intervals as a function of T for some representative values of θ0 (0.2 and 0.4) and N (5 and 25).

For the N = 5 case, we use only the first five elements of the simulate zt, while for the N = 25

case we use all the elements of the simulated zt. The plots show that the actual probabilities of

coverage are quite close to the confidence levels. Similar to the t-distribution case, the coverage

probability of the 99% confidence intervals is almost exact, while the coverage probabilities of the

90% and 95% confidence intervals are almost exact for the case in which θ0 = 0.2 but off by about

1% to 2% for the case in which θ0 = 0.4.

Figure 14 about here

In Figure 15, we repeat the same exercise for the confidence intervals for σ2
c . Since we cannot

analytically derive the population value of σ2
c under the GARCH(1,1) assumption, we rely on a

large-scale simulation. Similar to Ferson and Siegel (2003), we form artificial samples just like in

the simulations, but with 1,000,000 observations. Then, using the nonparametric estimator of the

constrained HJ-bound, we set the population values of σ2
c equal to the sample values in the artificial

samples with 1,000,000 observations. Based on our parameter values, we have σc = 0.1990 for the

θ0 = 0.2 case, and σc = 0.3985 for the θ0 = 0.4 case. These population values are very close to

the ones that we would obtain if the returns were normally distributed. Since there is only a small
16We thank Kenneth French for making these data available through his website.
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difference in the population value of σ2
c under the two distributional assumptions, Figure 15 shows

that the probabilities of coverage of the confidence intervals for σ2
c are quite close to the confidence

levels even when each element of the transformed returns zt is GARCH(1,1) distributed. For the

99% confidence intervals, the coverage probability is almost exact. Similar to the unconstrained

HJ-bound case, the coverage probabilities of the 90% and 95% confidence intervals are almost exact

for the case in which θ0 = 0.2 but off by about 1% to 2% for the case in which θ0 = 0.4.

Figure 15 about here

In summary, the coverage probabilities of the confidence intervals proposed in this paper are

quite accurate even when returns exhibit severe departures from the i.i.d. multivariate normality

assumption. Hence, we expect our confidence intervals to have good coverage probabilities when

using monthly data to estimate the unconstrained and constrained HJ-bounds. Our confidence

interval analysis under normality would work even better when carried out on annual return data

since the departures from the i.i.d. multivariate normality assumption are smaller for annual data.

In cases where returns have extreme fat tails and when the population Sharpe ratio is rather large,

the actual coverage probabilities of our confidence intervals for the HJ-bounds can be smaller than

the stated confidence levels. In those cases, one may treat our confidence intervals for the HJ-bounds

as conservative estimates of the uncertainty of the location of the population HJ-bounds.

4. Conclusions

In this paper, we provide a geometrical interpretation of the unconstrained and constrained HJ-

bounds in the mean-variance and truncated mean-variance frontiers of returns, respectively. Under

the multivariate normality assumption on returns, we present the finite sample distributions of the

sample unconstrained and constrained HJ-bounds. In addition, we show that the moments of the

traditional nonparametric estimator of the constrained HJ-bound do not exist in finite samples. To

overcome this problem, we present a simpler and more reliable maximum likelihood estimator of the

constrained HJ-bound. To correct for the finite sample bias in the maximum likelihood estimator,

we also provide an approximate unbiased estimator of the constrained HJ-bound.

For typical number of assets and length of time series, the sample constrained and unconstrained
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HJ-bounds are very volatile. To account for their sampling variability, we propose a simple method

to construct confidence intervals for the unconstrained and constrained HJ-bounds. Given how easy

it is to compute these confidence intervals, we believe it would be good practice to report both the

point estimates and the confidence intervals for the HJ-bound. Using simulation experiments, we

show that our confidence intervals have accurate probabilities of coverage even when the distribution

of the returns has fat tails and exhibits conditional heteroskedasticity that follows a GARCH(1,1)

process.
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Appendix

Proof of Lemma 1: (1) Since E[R] = µ, the expectation of the second term in (9) vanishes and

we have E[m0] = 1/R0. (2) Using the fact that E[R(R− µ)′] = V , we have E[m0R] = (µ − (µ −

R01N ))/R0 = 1N . (3) ‖m0‖2 = E[R2
p∗]/‖Rp∗‖4 = 1/‖Rp∗‖2. (4) Using (3), we have m0/‖m0‖2 =

(Rp∗/‖Rp∗‖2)‖Rp∗‖2 = Rp∗ . (5) Since Rp∗ is the gross return on a portfolio, we have E[mRp∗] = 1.

Using (3), we obtain

E[mm0] =
E[mRp∗]
‖Rp∗‖2

=
1

‖Rp∗‖2
= E[m2

0]. (A1)

This implies that

Cov[m, m0] = E[mm0]− E[m]E[m0] = E[m2
0] − E[m0]2 = Var[m0], (A2)

0 ≤ Var[m− m0] = Var[m] − 2Cov[m, m0] + Var[m0] = Var[m]− Var[m0]. (A3)

This completes the proof.

Proof of Lemma 2: (1) Differentiating E[R+
p

2] = E[R+
p Rp] with respect to w, we can easily show

that the return on the minimum truncated second moment portfolio must satisfy the following first

order condition

E[R+
q∗(R − R01N )] = 0N . (A4)

Using (A4), we obtain

E[R+
q∗

2] = E[R+
q∗Rq∗] = E[R+

q∗(R0 + w∗′(R − R01N))] = R0E[R+
q∗]. (A5)

It follows that E[mc] = E[R+
q∗]/E[R+

q∗
2] = 1/R0. (2) Dividing the first order condition (A4) by

‖R+
q∗‖2 and using E[mcR0] = 1, we obtain

E[mc(R − R01N)] = 0N ⇒ E[mcR] = 1N . (A6)

(3) ‖mc‖2 = E[R+
q∗

2]/‖R+
q∗‖4 = 1/‖R+

q∗‖2. (4) Using (3), we have mc/‖mc‖2 = (R+
q∗/‖R+

q∗‖2)‖R+
q∗‖2

= R+
q∗ . (5) Since m > 0 and Rq∗ is a portfolio return, we have E[mR+

q∗] ≥ E[mRq∗] = 1. Using (3),

we obtain

E[mmc] =
E[mR+

q∗]

‖R+
q∗‖2

≥ E[mRq∗]
‖R+

q∗‖2
=

1
‖R+

q∗‖2
= E[m2

c]. (A7)
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This implies that

Cov[m, mc] = E[mmc]− E[m]E[mc] ≥ E[m2
c ] − E[mc]2 = Var[mc], (A8)

0 ≤ Var[m − mc] = Var[m]− 2Cov[m, mc] + Var[mc] ≤ Var[m] − Var[mc]. (A9)

This completes the proof.

Proof of Lemma 3: Using (A5), we can simplify the squared truncated Sharpe ratio of q∗ to

θ2
c =

(E[R+
q∗]− R0)2

Var[R+
q∗]

=
(E[R+

q∗] − R0)2

R0E[R+
q∗]− E[R+

q∗]2
=

R0 − E[R+
q∗]

E[R+
q∗]

. (A10)

Similarly, we have

Var[R+
q∗]

E[R+
q∗]2

=
E[R+

q∗
2] − E[R+

q∗]
2

E[R+
q∗]2

=
R0E[R+

q∗] − E[R+
q∗]

2

E[R+
q∗]2

=
R0 − E[R+

q∗]

E[R+
q∗]

. (A11)

Finally, using properties 1 and 3 in Lemma 2 and (A5), we have

σ2
c

µ2
m

=
E[m2

c] − µ2
m

µ2
m

=

1
E[R+

q∗
2]
− 1

R2
0

1
R2

0

=
R2

0

E[R+
q∗

2]
− 1 =

R2
0

R0E[R+
q∗]

− 1 =
R0 − E[R+

q∗]

E[R+
q∗]

. (A12)

Therefore, we have θ2
c = Var[R+

q∗]/E[R+
q∗]

2 = σ2
c/µ2

m. This completes the proof.

Proof of Lemma 4: We first present some truncated moments of a standard normal random variable

that will be used throughout the Appendix. Suppose that y ∼ N(0, 1). Using integration by parts

and the fact that dφ(y)/dy = −yφ(y) and φ(−η) = φ(η), we obtain
∫ ∞

−η

yφ(y)dy = −φ(y)|∞−η = φ(η), (A13)
∫ ∞

−η
y2φ(y)dy = −yφ(y)|∞−η +

∫ ∞

−η
φ(y)dy = −ηφ(η) + Φ(η), (A14)

∫ ∞

−η
y3φ(y)dy = −y2φ(y)

∣∣∞
−η

+ 2
∫ ∞

−η
yφ(y)dy = (η2 + 2)φ(η), (A15)

∫ ∞

−η

y4φ(y)dy = −y3φ(y)
∣∣∞
−η

+ 3
∫ ∞

−η

y2φ(y)dy = −(η3 + 3η)φ(η)+ 3Φ(η). (A16)

Letting y = (Rp − µp)/σp and using (A13)–(A14), we obtain

E[R+
p ] =

∫ ∞

0
Rpf(Rp)dRp

=
∫ ∞

−η
(µp + σpy)φ(y)dy
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= µpΦ(η) + σpφ(η), (A17)

E[R+
p

2] =
∫ ∞

0
R2

pf(Rp)dRp

=
∫ ∞

−η
(µp + σpy)2φ(y)dy

= µ2
pΦ(η) + 2µpσpφ(η) + σ2

p [−ηφ(η) + Φ(η)]

= (µ2
p + σ2

p)Φ(η) + µpσpφ(η). (A18)

This completes the proof.

Proof of Lemma 5: Define

f(u) =
φ(u)
Φ(u)

. (A19)

For u ≥ 0, it is obvious that g(u) = u + f(u) > 0. For u < 0, Gordon (1941) shows that

0 < g(u) ≤ − 1
u

. (A20)

Therefore, we have g(u) > 0 for all u. limu→∞ g(u) = ∞ is obvious. Taking the limit of (A20), we

have limu→−∞ g(u) = 0. Differentiating g(u), we have

g′(u) = 1 + f ′(u) = 1− f(u) [u + f(u)] > 0 (A21)

by the inequality 1 − uf(u) − f(u)2 > 0 due to Birnbaum (1942) and Sampford (1953). This

completes the proof.

Proof of Proposition 1: Using the following derivatives

∂µp

∂w
= µ − R01N , (A22)

∂σ2
p

∂w
= 2V w, (A23)

∂σp

∂w
=

1
σp

V w, (A24)

∂Φ(η)
∂w

= φ(η)
[
(µ − R01N)σp − ηV w

σ2
p

]
, (A25)

∂φ(η)
∂w

= −ηφ(η)
[
(µ − R01N)σp − ηV w

σ2
p

]
, (A26)

and Lemma 4, we can show that

∂E[R+
p

2]
∂w

=
∂[(µ2

p + σ2
p)Φ(η) + µpσpφ(η)]

∂w
= 2Φ(η) [V w + σpg(η)(µ− R01N)] . (A27)
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Setting this equal to zero, we have the following first order condition for portfolio q∗

w∗ = −σq∗g(η∗)V −1(µ − R01N). (A28)

The variance of Rq∗ is then given by the following identity

σ2
q∗ = w∗′V w∗ = σ2

q∗g(η∗)2(µ − R01N )V −1(µ − R01N) = σ2
q∗g(η∗)2θ2

0. (A29)

Since g(η∗) and θ0 are positive, we can take the square root of both sides and obtain

g(η∗) =
1
θ0

, (A30)

and w∗ must satisfy

w∗ = −σq∗

θ0
V −1(µ − R01N ). (A31)

With this expression, the expected return on q∗ is given by

µq∗ = R0 + w∗′(µ − R01N ) = R0 −
σq∗

θ0
(µ − R01N)′V −1(µ − R01N) = R0 − θ0σq∗ . (A32)

Dividing both sides by σq∗ and using the fact that η∗ = µq∗/σq∗ , we obtain

σq∗ =
R0

η∗ + θ0
. (A33)

Substituting this into (A31), the minimum truncated second moment portfolio is given by

w∗ = − R0

θ0(η∗ + θ0)
V −1(R− R01N). (A34)

Using (A5) and Lemma 3, we have

E[R+
q∗

2] = R0E[R+
q∗] = R0[µq∗Φ(η∗) + σq∗φ(η∗)] = R0σq∗Φ(η∗)g(η∗) =

R2
0Φ(η∗)

θ0(η∗ + θ0)
, (A35)

where the last equality is obtained by using (A30) and (A33). From property (3) in Lemma 2, we

have

E[m2
c] =

1
E[R+

q∗
2]

=
θ0(η∗ + θ0)
R2

0Φ(η∗)
. (A36)

Using property (1) in Lemma 2, we have E[mc] = 1/R0 = µm. Using the fact that σ0 = θ0/R0, we

obtain the expression for Var[mc]. This completes the proof.
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Proof of Lemma 6: We first derive ∂η∗/∂θ0. Differentiating both sides of (18) with respect to η∗

and using (A21) gives us

− 1
θ2
0

∂θ0

∂η∗ = 1− φ(η∗)
Φ(η∗)

[
η∗ +

φ(η∗)
Φ(η∗)

]

⇒ − 1
θ2
0

∂θ0

∂η∗ = 1−
(

1
θ0

− η∗
)

1
θ0

⇒ ∂η∗

∂θ0
=

1
1− θ0(η∗ + θ0)

. (A37)

We then obtain the derivative of σ2
c with respect to θ0 as

∂σ2
c

∂θ0
=

∂

∂θ0

θ0(η∗ + θ0)
R2

0Φ(η∗)
=

η∗ + θ0
∂η∗

∂θ0
+ 2θ0 − θ0(η∗ + θ0)

φ(η∗)
Φ(η∗)

∂η∗

∂θ0

R2
0Φ(η∗)

. (A38)

Using the fact that φ(η∗)/Φ(η∗) = (1/θ0) − η∗ and (A37), we can simplify the derivative to

∂σ2
c

∂θ0
=

η∗ + 2θ0 − η∗[1 − θ0(η∗ + θ0)]
∂η∗

∂θ0

R2
0Φ(η∗)

=
2θ0

R2
0Φ(η∗)

> 0. (A39)

Using this derivative and the fact that σ2
0 = θ2

0/R2
0, we obtain

h′(θ0) =
2θ0

R2
0Φ(η∗)

− 2θ0

R2
0

> 0 (A40)

because 0 < Φ(η∗) < 1. From Lemma 5, we know limθ0→0 η∗ = ∞ which implies limθ0→0 φ(η∗) = 0

and limθ0→0 Φ(η∗) = 1. Consequently, we have

lim
θ0→0

θ0η
∗ = lim

θ0→0

η∗

η∗ + φ(η∗)
Φ(η∗)

= 1. (A41)

It follows that limθ0→0 σ2
c = 1

R2
0
− 1

R2
0

= 0 and limθ0→0 h(θ0) = 0. In order to show that limθ0→∞ h(θ0) =

∞, it suffices to show that h′′(θ0) > 0 because h(θ0) is a strictly increasing function of θ0. The

second derivative of h(θ0) is given by

h′′(θ0) =
2− 2θ0

φ(η∗)
Φ(η∗)

∂η∗

∂θ0

R2
0Φ(η∗)

− 2
R2

0

=
2[1− Φ(η∗)]− 2θ0

φ(η∗)
Φ(η∗)

∂η∗

∂θ0

R2
0Φ(η∗)

. (A42)

The first term is obviously positive. The second term is negative because ∂η∗/∂θ0 < 0 using

Lemma 5. It follows that h′′(θ0) > 0.

Using the L’Hôpital’s Rule, it is easy to show that limθ0→0 h̃(θ0) = limθ0→0
1

Φ(η∗)
− 1 = 0 and

limθ0→∞ h̃(θ0) = limθ0→∞
1

Φ(η∗)
− 1 = ∞. The derivative of h̃(θ0) is given by

h̃′(θ0) =
1
σ4

0

[
2θ0

R2
0Φ(η∗)

σ2
0 −

2θ0

R2
0

σ2
c

]
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=
2θ0

σ4
0R

4
0

[
θ2
0

Φ(η∗)
− θ0(η∗ + θ0)

Φ(η∗)
+ 1

]

=
2θ2

0

σ4
0R

4
0Φ(η∗)

[
Φ(η∗)

θ0
− η∗

]

=
2θ2

0

σ4
0R

4
0Φ(η∗)

[
Φ(η∗)

(
η∗ +

φ(η∗)
Φ(η∗)

)
− η∗

]

=
2θ2

0

σ4
0R

4
0Φ(η∗)

[−η∗ (1 − Φ(η∗)) + φ(η∗)] . (A43)

Let u = −η∗ and using the fact that 1 − Φ(−η∗) = Φ(−η∗) = Φ(u) and φ(η∗) = φ(−η∗) = φ(u),

the term in the bracket can be written as

uΦ(u) + φ(u) = Φ(u)
(

u +
φ(u)
Φ(u)

)
, (A44)

which is greater than zero as shown in the proof of Lemma 5. It follows that h̃(θ0) is a strictly

increasing function of θ0. This completes the proof.

Proof of Lemma 7: Let ut = (µ −R01N )′V −1(Rt − µ). Under the i.i.d. normality assumption, it is

easy to verify that E[ut] = 0, E[u2
t ] = θ2

0, E[u3
t ] = 0, and E[u4

t ] = 3θ4
0. Hence, we have

v0 = E[φ2
0,t] = E

[(
(1− ut)2

R2
0

− 1 + θ2
0

R2
0

)2
]

=
2θ2

0(2 + θ2
0)

R4
0

. (A45)

Under the i.i.d. normality assumption, we have vc = E[φ2
c,t]. In order to derive E[φ2

c,t], we need

explicit expressions of the following terms

E[m2
c,t] =

1
‖R+

q∗,t‖2
, (A46)

E[m4
c,t] =

E[(R+
q∗,t)

4]

‖R+
q∗,t‖8

= E[m2
c,t]

4E[(R+
q∗,t)

4]. (A47)

The first term is straightforward. Using (A36), we have

E[m2
c,t] =

θ0(η∗ + θ0)
R2

0Φ(η∗)
. (A48)

The key is to derive E[(R+
q∗,t)

4]. Suppose that Rp ∼ N(µp, σ
2
p). Then, we have

E[(R+
p )4] =

∫ ∞

−η

(µp + σpy)4φ(y)dy

= µ4
pΦ(η) + 4µ3

pσpφ(η) + 6µ2
pσ

2
p [−ηφ(η)+ Φ(η)]

+4µpσ
3
p(η2 + 2)φ(η) + σ4

p [−(η3 + 3η)φ(η)+ 3Φ(η)]

= [(η4 + 6η2 + 3)Φ(η) + η(η2 + 5)φ(η)]σ4
p (A49)
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by applying (A13)–(A16). Using this result, we obtain

E[(R+
q∗,t)

4] = [(η∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]σ4
q∗

=
[(η∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]R4

0

(η∗ + θ0)4
(A50)

by using the expression of σq∗ in (A33). It follows that

E[m4
c,t] =

θ4
0[(η

∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]
R4

0Φ(η∗)4
. (A51)

Using the fact that φ(η∗)/Φ(η∗) = 1/θ0 − η∗, we can write

E[m4
c,t] =

θ4
0

[
(η∗4 + 6η∗2 + 3) + η∗(η∗2 + 5)( 1

θ0
− η∗)

]

R4
0Φ(η∗)3

=
θ4
0(η∗2 + 3)
R4

0Φ(η∗)3
+

η∗θ3
0(η∗2 + 5)

R4
0Φ(η∗)3

=
θ3
0 [θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

. (A52)

It follows that

E[φ2
c,t] = E[m4

c,t] − 2(σ2
c + µ2

m)E[m2
c,t] + (σ2

c + µ2
m)2

= E[m4
c,t] − E[m2

c,t]
2

=
θ3
0 [θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

− θ2
0(η∗ + θ0)2

R4
0Φ(η∗)2

. (A53)

The asymptotic distribution of σ̃2
c can be easily obtained using the delta method. Note that both

σ2
0 and σ2

c are monotonic functions of θ0. Using the fact ∂σ2
0/∂θ0 = 2θ0/R2

0 and ∂σ2
c/∂θ0 =

2θ0/R2
0Φ(η∗) from (A39), we obtain ∂σ2

c/∂σ2
0 = 1/Φ(η∗). Using the delta method, we obtain

√
T (σ̃2

c − σ2
c )

A∼ N

(
0,

v0

Φ(η∗)2

)
. (A54)

Finally, Avar[σ̂2
c ] ≥ Avar[σ̃2

c ] follows from the fact σ̃2
c is the maximum likelihood estimator of σ2

c

and hence it is asymptotically most efficient. This completes the proof.

Proof of Proposition 2: Under the normality assumption, we have

µ̂ ∼ N(µ, V/T ), (A55)

TV̂ ∼ WN(T − 1, V ), (A56)
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and they are independent of each other. Define θ̃2
0 = (µ̂ − R01N)′V −1(µ̂ − R01N ). Using Theorem

3.2.12 of Muirhead (1982), we have

Y ≡ T θ̃2
0

θ̂2
0

∼ χ2
T−N , (A57)

and the ratio is independent of µ̂ and hence independent of θ̃2
0. From (A55), we have

µ̂ − R01N ∼ N(µ − R01N , V/T ). (A58)

Therefore,

X ≡ T θ̃2
0 ∼ χ2

N (Tθ2
0) (A59)

and is independent of Y . Together, we have

θ̂2
0 =

T θ̃2
0

Y
=

X

Y
∼

(
N

T − N

)
FN,T−N (Tθ2

0). (A60)

Using the independence between X and Y , the r-th moment of θ̂0 is given by

E[θ̂r
0] = E[X

r
2 ]E[Y − r

2 ]. (A61)

Note that E[X
r
2 ] exists if and only if r > −N and E[Y − r

2 ] exists if and only if r < T − N .

Using the moments of a noncentral chi-squared distribution (see, for example, Johnson, Kotz, and

Balakrishnan (1995, p.450)), we have

E[X
r
2 ] =

2
r
2 Γ

(
N+r

2

)

Γ
(

N
2

) 1F1

(
−r

2
;
N

2
;−Tθ2

0

2

)
, (A62)

E[Y − r
2 ] =

2−
r
2 Γ

(
T−N−r

2

)

Γ
(

T−N
2

) . (A63)

Combining these two expressions, we obtain

E[θ̂r
0] =

Γ
(

N+r
2

)
Γ

(
T−N−r

2

)

Γ
(

N
2

)
Γ

(
T−N

2

) 1F1

(
−r

2
;
N

2
;−Tθ2

0

2

)
. (A64)

When r/2 is a nonnegative integer, the confluent hypergeometric function can be simplified to

1F1

(
−r

2
;
N

2
;−Tθ2

0

2

)
=

r/2∑

i=0

(
− r

2

)
i(

N
2

)
i

−
(

Tθ2
0

2

)i

i!
=

r/2∑

i=0

(
r/2
i

) (
Tθ2

0
2

)i

(
N
2

)
i

. (A65)

This completes the proof.
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Proof of Proposition 3: The nonparametric estimator of σ2
c is given by

σ̂2
c =

1
R2

0

(
1
λ̃
− 1

)
, (A66)

where λ̃ is defined as

λ̃ =
1

R2
0

min
w

1
T

T∑

t=1

max[0, R0 + w′(Rt − R01N)]2. (A67)

Defining rt = Rt −R01N as the excess returns on the N risky assets at time t, we can rewrite λ̃ as

λ̃ =
1

R2
0

min
w

1
T

T∑

t=1

max[0, R0 + w′rt]2 = min
ŵ

1
T

T∑

t=1

max[0, 1 + ŵ′rt]2, (A68)

where ŵ = w/R0.

Letting µ̃ = V − 1
2 (µ− R01N ), we have that µ̃′µ̃ = θ2

0. Now, define P as an N × N orthonormal

matrix with its first column equal to µ̃/(µ̃′µ̃)
1
2 = µ̃/θ0. Since rt ∼ N(µ− R01N , V ), we have that

zt ≡ P ′V − 1
2 rt ∼ N([θ0, 0′N−1]

′, IN). (A69)

Having defined zt, we can rewrite λ̃ as

λ̃ = min
w̃

1
T

T∑

t=1

max[0, 1 + w̃′zt]2, (A70)

where w̃ = P ′V
1
2 ŵ. This completes the proof.
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Figure 1
Confidence intervals for the unconstrained Hansen-Jagannathan bound. The figure presents the
standard deviation and mean of the stochastic discount factor implied by a time-separable constant
relative risk aversion utility function for different coefficients of relative risk aversion γ ranging
between zero and 20 (in increments of one) and a subjective discount factor of 0.99. The figure
also presents the sample unconstrained Hansen-Jagannathan bound (solid line), the bias-adjusted
sample unconstrained Hansen-Jagannathan bound (dashed line), and the 95% confidence intervals
(dotted lines) for the unconstrained Hansen-Jagannathan bound. The sample Hansen-Jagannathan
bounds and the confidence intervals are computed using annual real returns on the S&P composite
stock price index and commercial paper over the period 1891–1985.
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Figure 2
Confidence intervals for the constrained Hansen-Jagannathan bound. The figure presents the stan-
dard deviation and mean of the stochastic discount factor implied by a time-separable constant
relative risk aversion utility function for different coefficients of relative risk aversion γ ranging
between zero and 20 (in increments of one) and a subjective discount factor of 0.99. The figure
also presents the maximum likelihood (solid line), the nonparametric (dashed-dotted line) and an
approximate unbiased (dashed line) estimator of the constrained Hansen-Jagannathan bound as
well as the 95% confidence intervals (dotted lines) for the constrained Hansen-Jagannathan bound.
The sample constrained Hansen-Jagannathan bounds and the confidence intervals are computed
using annual real returns on the S&P composite stock price index and commercial paper over the
period 1891–1985.
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Figure 3
Graphical representation of the unconstrained Hansen-Jagannathan bound. The figure provides
a geometrical interpretation of the unconstrained HJ-bound using the mean-variance frontier of
portfolio returns. R0 is the gross risk-free rate. The two solid lines emanating from the point
(0, R0) represent the minimum-variance frontier of the risk-free and risky assets in the space of
(σp, µp). The portfolio with minimum second moment is represented by p∗ and it is the portfolio
that is closest to the origin. The absolute value of the Sharpe ratio of p∗ as well as σp∗/µp∗ are
both equal to θ0. The horizontal distance between the point (0, 1/R0) and the solid line joining p∗

and the origin is equal to σ0, where σ0 is the unconstrained HJ-bound on the standard deviation
of admissible SDFs with E[m] = 1/R0.
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Figure 4
Graphical representation of the constrained Hansen-Jagannathan bound. The figure provides a
geometrical interpretation of the constrained HJ-bound using the truncated mean-variance frontier
of portfolio returns. R0 is the gross risk-free rate. The two curves emanating from the point (0, R0)
represent the minimum/maximum truncated variance frontier of the risk-free and risky assets in
the space of (σ+

p , µ+
p ). The portfolio with minimum truncated second moment is represented by q∗

and it is the portfolio that is closest to the origin. The absolute value of the truncated Sharpe ratio
of q∗ as well as σ+

q∗/µ+
q∗ are both equal to θc. The horizontal distance between the point (0, 1/R0)

and the solid line joining q∗ and the origin is equal to σc, where σc is the HJ-bound on the standard
deviation of nonnegative admissible SDFs with E[m] = 1/R0.
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Figure 5
Exact distribution of the sample unconstrained Hansen-Jagannathan bound. The figure presents
the 1st, 5th, 50th, 95th, and 99th percentiles of the exact distribution of the sample unconstrained
HJ-bound for different number of risky assets (N) and length of time series observations (T ) under
the normality assumption. The upper two panels are for θ0 = 0.2 and the lower two panels are for
θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets. The gross
risk-free rate is assumed to be 1.005 and the solid line in the figure represents the population value
of the unconstrained HJ-bound.
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Figure 6
Ratio of asymptotic to exact moments of the sample unconstrained Hansen-Jagannathan bound.
The figure presents the ratios of the asymptotic mean and variance to the exact mean and variance
of the sample unconstrained HJ-bound (σ̂2

0) for different number of risky assets (N) and length of
time series observations (T ) under the normality assumption. The upper two panels are for θ0 = 0.2
and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of
the N risky assets.

48



60 150 240 330 420 510 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T

σ̃
c

θ0 = 0.2, N = 5

1

1%/99%

1

5%/95%

1

50%

1

60 150 240 330 420 510 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
σ̃

c

θ0 = 0.2, N = 25

1

1%/99%

1

5%/95%

1

50%

1

60 150 240 330 420 510 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

σ̃
c

θ0 = 0.4, N = 5

1

1%/99%

1

5%/95%

1

50%

1

60 150 240 330 420 510 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

σ̃
c

θ0 = 0.4, N = 25

1

1%/99%

1

5%/95%

1

50%

1

Figure 7
Exact distribution of the maximum likelihood estimator of the constrained Hansen-Jagannathan
bound. The figure presents the 1st, 5th, 50th, 95th, and 99th percentiles of the exact distribution
of the maximum likelihood estimator of the constrained HJ-bound for different number of risky
assets (N) and length of time series observations (T ) under the normality assumption. The upper
two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio
of the tangency portfolio of the N risky assets. The gross risk-free rate is assumed to be 1.005 and
the solid line in the figure represents the population value of the constrained HJ-bound.
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Figure 8
Ratio of asymptotic to exact moments of the maximum likelihood estimator of the constrained
Hansen-Jagannathan bound. The figure presents the ratios of the asymptotic mean and variance
to the exact mean and variance of the maximum likelihood estimator of the constrained HJ-bound
(σ̃2

c ) for different number of risky assets (N) and length of time series observations (T ) under the
normality assumption. The exact moments are estimated based on 100,000 simulations. The upper
two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio
of the tangency portfolio of the N risky assets.
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Figure 9
Finite sample distribution of an approximate unbiased estimator of the constrained Hansen-
Jagannathan bound. The figure presents the 1st, 5th, 50th, 95th, and 99th percentiles of the
finite sample distribution of an approximate unbiased estimator of the constrained HJ-bound for
different number of risky assets (N) and length of time series observations (T ) under the normality
assumption. The upper two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4,
where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets. The gross risk-free
rate is assumed to be 1.005 and the solid line in the figure represents the population value of the
constrained HJ-bound.
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Figure 10
Ratio of asymptotic to finite moments of an approximate unbiased estimator of the constrained
Hansen-Jagannathan bound. The figure presents the ratios of the asymptotic mean and variance
to the finite mean and variance of an approximate unbiased estimator of the constrained HJ-bound
(σ̃2

cu) for different number of risky assets (N) and length of time series observations (T ) under the
normality assumption. The finite moments are estimated based on 100,000 simulations. The upper
two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio
of the tangency portfolio of the N risky assets.
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Figure 11
Exact distribution of the nonparametric estimator of the constrained Hansen-Jagannathan bound.
The figure presents the 1st, 5th, 50th, 95th, and 99th percentiles of the exact distribution of the
sample estimator of the constrained HJ-bound for different number of risky assets (N) and length
of time series observations (T ) under the normality assumption. The exact moments are estimated
based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and the lower two panels are
for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets. The gross
risk-free rate is assumed to be 1.005 and the solid line in the figure represents the population value
of the constrained HJ-bound.
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Figure 12
Probabilities of coverage of the confidence intervals for the unconstrained Hansen-Jagannathan
bound. The figure presents the probabilities of coverage of the 90%, 95%, and 99% confidence
intervals for the unconstrained HJ-bound for different number of risky assets (N) and length of
time series observations (T ) under the assumption that returns are multivariate t distributed with
five degrees of freedom. The probabilities of coverage are estimated based on 100,000 simulations.
The upper two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the
Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 13
Probabilities of coverage of the confidence intervals for the constrained Hansen-Jagannathan bound.
The figure presents the probabilities of coverage of the 90%, 95%, and 99% confidence intervals
for the constrained HJ-bound for different number of risky assets (N) and length of time series
observations (T ) under the assumption that returns are multivariate t distributed with five degrees
of freedom. The probabilities of coverage are estimated based on 100,000 simulations. The upper
two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio
of the tangency portfolio of the N risky assets.
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Figure 14
Probabilities of coverage of the confidence intervals for the unconstrained Hansen-Jagannathan
bound. The figure presents the probabilities of coverage of the 90%, 95%, and 99% confidence
intervals for the unconstrained HJ-bound for different number of risky assets (N) and length of time
series observations (T ) under the assumption that the transformed excess returns are GARCH(1,1)
distributed, with the parameters chosen based on the monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios over the period 1946/1–2006/12. The probabilities of
coverage are estimated based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and
the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the
N risky assets.
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Figure 15
Probabilities of coverage of the confidence intervals for the constrained Hansen-Jagannathan bound.
The figure presents the probabilities of coverage of the 90%, 95%, and 99% confidence intervals
for the constrained HJ-bound for different number of risky assets (N) and length of time series
observations (T ) under the assumption that the transformed excess returns are GARCH(1,1) dis-
tributed, with the parameters chosen based on the monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios over the period 1946/1–2006/12. The probabilities of
coverage are estimated based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and
the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the
N risky assets.
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