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Empirical Tests of Two State—Variable HIM Models

1 Introduction

In the last decade increased attention has been placed on the volatility structure of both spot
and forward interest rates. There are two main reasons for this. First, the volatility structure
of forward rates plays a key role in pricing and hedging interest rate contingent claims.
Second, the structure of forward rate volatilities determines how shocks to the underlying
state variables are transmitted along the yield curve. An empirical characterization of this
volatility structure will provide insight into the underlying process that causes yields to
change over time.

Heath, Jarrow and Morton (1992) (hereafter HIM) show that, given an initial term
structure, arbitrage-free price paths of all bonds can be established once the structure of
all forward rate volatilities is supplied. The simplest forward rate volatility structure is the
constant variance structure, first proposed by Ho and Lee (1986). In this model, all shocks
to the term structure are permanent; that is, the absolute magnitude of the change in all
forward rates to new information is constant across maturities, and thus independent of both
the level of the forward rate and its maturity. Over the last decade, more realistic volatility
structures for forward rates have been proposed, in which volatilities fluctuate according
to forward rate levels and maturities. Unfortunately, if the structure for these volatilities
is left quite general, the evolution of the term structure is usually path dependent and it
may not be possible to characterize its dynamics by a finite collection of state variables. In
such cases it is difficult to implement the HIJM theory, especially for longer term interest
rate dependent claims that have early exercise features. As a result, while many proposed
forward rate volatility structures have been motivated by the need to incorporate added
realism, other structures have been motivated by a desire to eliminate the path dependence
problem and to make the resulting models for interest rate claims more tractable.

Recently, Ritchken and Sankarasubramanian (1995) (hereafter RS) identified necessary
and sufficient conditions on volatility structures that permit the term structure of HIM

models to be characterized by two state-variables regardless of the structure for spot interest



rates. Indeed, the volatility of the spot interest rate could depend on its level, or on any set
of rates drawn from the present or past term structures. For example, spot rate volatility
structures could take on the form of all the models examined by Chan, Karolyi, Longstaff and
Sanders (1992), including the constant volatility model of Vasicek (1977}, the square root
structure of Cox, Ingersoll, and Ross (1985), and the proportional structure of Dothan (1978).
Alternatively, spot interest rate volatilities could be modeled as GARCH processes as in
Brenner and Kroner (1994). For a two state-variable representation to exist, the relationship
of forward rate volatilities relative to the spot rate volatility has to be curtailed in a way
that will be made precise later on. The resulting class of forward rate volatility structures
include the Ho-Lee and Generalized Vasicek structures as well as others.

The purpose of this article is to establish whether there is any empirical support for
these two state-variable HIM models. If volatility structures belong to the RS class, then
informational events are transmitted across the yield curve in a constrained fashion. In
particular, knowledge of just two points on the term structure at any date, together with the
original term structure, is sufficient to uniquely characterize the entire yield curve at that
date. Since this implies a relatively simple intertemporal linkage between term structures,
pricing and hedging interest rate claims is greatly simplified. On the other hand, rejection
of the class will imply that simple two state-variable HIM models are unlikely to describe
the linkages between term structures. In this case, HIM models, which are more consistent
with empirical evidence, will either have to retain all their path dependence or will require
more state variables to capture the intertemporal relationships between term structures.

Most tests of term structure models have assumed the number of state variables that cap-
ture the dynamics of the term structure equals the number of sources of uncertainty (i.e. the
number of factors). All the tests reported in Chan, Karolyi, Longstaff, and Sanders (1992),
for example, assume one state-variable is sufficient to characterize the term structure, in a
one factor economy. The single-factor/single state-variable models have had mixed success
at best. One approach to extending these models is to increase the number of sources of risk.
For example, Longstaff and Schwartz (1992) added stochastic volatility; while Brennan and
Schwartz (1979) added a stochastic long rate. An alternative approach is to keep the single

factor, or source of risk, but to have that factor effect the term structure through not only



its current value, but also its history. In the HIM paradigm, for example, one can construct
one factor models, where the number of state-variables that are necessary to characterize the
term structure is infinite. With constraints on the volatilities, models with a finite number
of state-variables are possible. For example, the single factor generalized Vasicek model, is a
one state-variable HJM model developed under a specific deterministic forward rate volatil-
ity assumption and the single factor Li, Ritchken and Sankarasubramanian (1995) model
is & two state-variable HIM model. Indeed, under appropriate volatility restrictions, it is
possible to develop k state-variable models where & > 2, all developed in a single factor
framework. This article will focus on one factor models, but will investigate whether there
is support for any two state-variable HIM model.

The paper proceeds as follows. In section 2 we review the HIM paradigm, emphasizing the
consequences of alternative volatility structures. In section 3 we transform the finite state-
variable models into alternative forms that are more useful for empirical analysis. Section
4 develops specific hypotheses, reports the tests, and examines whether the extension from
the class of volatility structures that lead to one state-variable HIM models to the larger
class of two state-variable models derived from the RS class leads to economically significant

differences. Section 5 concludes.

2 Path Dependence, Volatility Structures, and Finite
State-Variable HIM Models

Let f(t,s) be the instantaneous forward rate for time s viewed from date t. Forward

rates are assumed to follow a diffusion process of the form
df (¢, T) = pr(t,T)dt+a4(t,T) dw(t) ; f(0,T) given VT.

Here pu(t,T) and o(t,T) are the drift and volatility parameters which could depend on the
level of the term structure itself, and dw(t) is the Wiener increment.
HJIM (1992) show that, given the initial forward rate curve, f(0,T), and a structure

for volatilities of all forward rates, of(t,T), interest rate claims can be uniquely priced



without explicitly modeling utility dependent parameters such as the market price of risk.
In particular, pricing can proceed as if the local expectations hypothesis holds under the

following modified process:

T
df(t,T) = [crf(t,T) /: O'f(t,s)ds} dt + o4(t, T)duw(t)

Unfortunately, in general, the evolution of this term structure will not be Markovian with
respect to a finite collection of state variables. That is, knowledge of a finite numbers of
forward rates at any future date may not be sufficient to characterize other forward rates
at that time. Moreover, the dynamics of any interest rate, including the instantaneous spot
rate, will usually depend on the entire path taken by forward rates since the initialization
date. These issues create difficulties for developing efficient numerical procedures for pricing
interest rate claims.

While the general HIM model has these problems, for special subclasses derived using
curtailed forward rate volatility structures, the path dependence issues fall away. Caver-
hill (1994), Hull and White (1993) and Ritchken and Sankarasubramanian (1995) show, for

example, that if the volatility structure of forward rates has the form:
o1(t, T) = ok(t, T)
where k(t,T) is a deterministic function satisfying the following semi-group property

k(t,T) = k(t,u)k(u,T) t<u<T
kluu) = 1

then, conditional on knowing the initial term structure, knowledge of any single point on the
term structure at date ¢ is sufficient to characterize the full yield curve at that date. Usually,
the single point is taken as the instantaneous spot interest rate, and its dynamics are path
independent. If no time varying parameters are used in the volatility structure, then the

structure for k(t, T) is necessarily the exponentially dampened structure:



k(t,T) = e™=T1), (1)

Such volatility structures are referred to as Generalized Vasicek (hereafter GV) structures.
This structure implies that the volatility of the spot rate is a constant, independent of its
Jevel. Under the GV model, forward rate volatilities are exponentially declining in their
maturities, and the future value of the state variable is normally distributed. As a result,
it is not surprising that ana.lyf.ical solutions exist for a variety of European claims and
that efficient numerical procedures exist for American claims. Empirical tests of the Ho-Lee
model, which is a special case of the GV model with £ = 0 in equation (1), has been conducted
by Flesakar (1992) while Amin and Morton (1994) examine the more general structure.! No
support is found for the Ho-Lee model. However, the GV model was found useful in that it
was capable of generating abnormal returns in particular trading strategies. Unfortunately,
there appears to be little empirical support for the constant spot rate volatility structure.
Chan, Karolyi, Longstaff and Sanders (1992), for example, conclude that the volatility of
the spot interest rate should depend on its level, and that models which allow volatilities to
be independent of their level will be misspecified.

RS (1995) consider a class of interest rate processes in which volatilities can fluctuate
according to their levels. Let o,(t,.) represent the volatility of the instantaneous spot rate,
r(t), at date t. This structure could depend on any term structure information available at
time t. As examples, this structure could depend on the level of rates or it could take on a
GARCH form. RS then show that if the volatility structure of forward rates is given by:

a5(t,T) = 0,(t,.) k(t, T) 2)

where k(t, T') again is a deterministic function satisfying the semi-group property, then, given
an initial term structure, there exists a two state-variable representation of the evolution of

future interest rates.

1Cohen and Heath (1992) and Abken and Cohen (1994) investigate some volatility structures that do not
permit a Markov representation, and Raj, Sim and Thurston (1995} compare some HIM models to the Cox,
Ingersoll, and Ross models.



The class of volatility structures admitted by equation (2) is quite large. As an example,

o,(t,.) = ofr(t)]".

Notice that for v = 0 the volatility structure is identical to that of Vasicek (1977) while
~ = 0.5 yields the square root volatility used in Cox, Ingersoll and Ross (1985).2 For
volatility structures that do not contain time-varying parameters, the only feasible k(t,.)
function is again the deterministic, exponentially dampened function given by equation (1),
and thus

oi(t,T) = o.(t,.) e =T,

Equivalently, the volatility of the forward rate, normalized by the volatility of the spot

interest rate, must be a deterministic, exponentially dampened function of maturity

ST _ o -

Heath, Jarrow, Morten and Spindel (1992) provide cursory evidence that is inconsistent
with this structure. In particular, they conclude that the term structure of volatilities is
humped, increasing and then decreasing. Amin and Morton (1994) estimate the exponen-
tially declining volatility structure model. They find point estimates of  that are negative,
implying that volatilities of forward rates are increasing in maturity. This result is implan-
sible for all maturities, and may result from the fact that their analysis is limited to data
sets with short maturities. Over this narrow region a negative £ might be consistent with
the theory that the term structure of forward rate volatilities is humped. Unfortunately, a
humped term structure is inconsistent with any of the path-independent models described
in this paper.

Other examples of volatility structures ot in the two-state-variable HIM class include
some of the forms tested by Amin and Morton (1994). For example, if volatilities are
proportional to their levels as:

o5(t,T) = o[ f(& T,

IThe drift terms for r(t) in these models are different from their single state-variable counterparts.
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then a two state-variable representation is not possible.
For volatilities belonging to the two state-variable class, RS show that there is a simple
analytical linkage between term structures at dates s and ¢. Let

Plt,t+T) = e " St

represent the time ¢ price of a T-maturity pure discount bond that pays $1 at date ¢t + T.
Given an initial term structure, P(s,.) at time s, the price of a bond, at any future date,
t, s <t < T, must be defined in terms of its forward price at date s, the short interest rate
at date ¢, and a third variable capturing the history of the path of interest rates from s to ¢
as follows: |

Pl e+ 7= (2T e {3 my 000+ 5Ty wi0) @

where

BT) = (1—e™)

¢(t) = foi(st)ds

() = f(st)—r()
If this is not the case the no-arbitrage assumption will be violated. In this representation,
conditional on the time s term structure, the entire term structure at a subsequent time
t can be reconstructed once #{t) and (¢) are given. Neither of these factors depends on
maturity 7. Thus, this model is a two state-variable model, even though there is still only
a single stochastic driver. Equation (4) identifies the two state-variables as the ex post
forward premium on the spot interest rate, ¥(t), and the “integrated variance” factor, ¢(t).
RS characterize the dynamics of the two state-variables, ¢(t) and ¥(t), in terms of their
current values and the forward rate curve at an earlier date s. Specifically, interest rate
claims can be priced as if the local expectations hypothesis applied; if the dynamics of the

‘tate variables are taken as:

d(t) = [xy(t) + o(t)) dt + ov (2, )dwl(t)
dé(t) = [o2(t,.) — 2r(t)]dt



The dynamics of the instantaneous spot interest rate under the RS assumption is given by
d
dr(t) = |k(t) + &(t) + o f(s,t)| dt + o, (2, . )dw(t).

Note that since the dynamics depend only on the values of the two variables ¢ and ) at time
¢, the evolution of the spot rate is Markovian. This contrasts with the general HIM models
" in which the spot interest rate process cannot be described by a Markov process with a finite
number of state variables.

Let HIM-RS denote the restricted form of HIM models that follow from the assumption
in equation {3) and presented in equation (4).

3 Empirical Implications of the HJIM-RS Models

Let y,[t,t + T represent the continuously-compounded annualized forward yield over the
time period, [t,t + T] measured at date s < ¢.> That is,

1 ft+T
yltht+T] = —[ f(s,z)dz.
Th
Equation (4) can be rewritten in yield form as

F(T)

wlt,t + T)T = w{t,t + T| T + B(T)(t) — Ttﬁ(t) (5)

That is, the yield at date t equals its original forward yield plus a deviation which is fully
determined at date ¢ by the two state-variables, ¥(t) and ¢(t). Let

Ayt t+T) = wlt,t + T — valt, t + T7, {6)

3Thus the yield on a T-maturity pure discount bond paying $1 at time t + T and costing P[t,t + T] at
date ¢ will be .

1
yolt,t + T = — TlnP[t,t+T]
and the forward rate observed at time s < t for the period ¢ to ¢ + T is

t+T -3 t—s
yal8,t+ T + T a3, 2}

y,[t,t+T] ==



represent the deviation between the actual yield at date ¢ and the original forward yield at
previous observation date s. We shall refer to this deviation simply as the “forecast error”
which it would be under the pure expectations hypothesis, though this reference is only for
convenience and does not imply a maintained hypothesis that the expectations hypothesis
is correct. Substituting we have:

Awit b+ T = B0 - L0

(1) (7)

3.1 Empirical Implementation of HIM-RS Model

Unfortunately, the state variables 1(t) and ¢(¢) are not readily observed. Duffee (1995)
shows that using a short maturity bill to proxy for the spot rate r{t) is problematic, and
even shorter rates, such as Fed. Funds or overnight repo rates, are subject to shocks specific
only to these markets.

Our solution to the problem of unobservable state-variables is to transform the state-
variables. Note that by selecting any two distinct maturities ; and 7, say, and observing

the values for Ayft,t + 7] and Ayt t+72) we can invert the following pair of equations for
¢(t) and ¥(t)

Ayt[t,t + Tl] n .52(7'1)

i

amywte) - 2 g0
Bl - i)

Ayg[t, t4 Tg] T2
Substituting back into equation (5) we obtain:
Ayt t + T = Agft, t + 1) Hi (T 11, 12) + At t + 7o) Ho(T; 11, 12) (8)

where

1 5( )[/3(‘7'2) B(T)|
T (1) (B(r2) — B(ny)]

Hi(T;n,m)



L mA@BT) )
BoTimm) = g B(r) = Ar)]

Thus, we transform the equation (7), which involves unobservable state-variables, @(t) and
$(t), into equation (8), which involves the observable state-variables, Ayt t + 1] and
Ayt t + 7). '

In summary, if the volatility structure in equation (3) obtains, and the no-arbitrage con-
dition holds, then the forecast error over the period [s, ], for yields of any arbitrary maturity,
T. can be linked to the forecast error of any two benchmark maturities 71 and . Equiv-
alently, if two state-variables are to characterize a term structure in an HIM model with a
single stochastic drivef, then the relationship in equation (8) must hold. Conversely, if equa-
tion (8) does not hold, then the volatility structure is not of the form given in equation (3)
and hence is not in the class of HIM-RS models, and more assumptions will be necessary
for two or fewer state-variables to characterize the term structure.

Equation (8) does not contain any parameters that characterize the volatility of the spot
rate, o-(t,.). Regardless of its structure, if a two state-variable HJM-RS representation is
to obtain, then the linkage between term structures, in terms of two state-variables, only
depends on the parameters characterizing §(.), namely, «.4

In order to test this relationship, we first recognize that annualized yields are measured

with error. We assume that:

wlt,t +T) = gt + T) + elt, 4+ T) 9)

where y[t,t + T] is the measured yield on a T-maturity pure discount bond at date ¢, and
e[t,t + T'] is the measurement error term, the set of which are assumed to be independent,
identically distributed normal random variables with mean 0 and variance n?. As a firs
approximation this is reasonable. Bliss (1994), for example, shows that bonds of longer
maturities have larger pricing errors. Measurement errors resulting from stale prices may be

reasonably expected to be random. While other sources of error, such as liquidity differences,

4 Actually, in equation (8), we have assumed the parameters of the volatility structure are not time varying.
For a discussion on the use of time varying parameters see RS (1995).
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may be systematic, modeling these is problematic at best. Since we use non-parametric

hypothesis tests, any misspecification of our error structure is going to reduce the efficacy of

our estimates, and bias against finding positive results.

The simple error structure, (9), assumed for raw yield measurements, implies a very

specific error structure for the forecast error. Substituting equation (9) into (6) we obtain,

after simplification:

Ayt t +T) =yttt + T) -y it t + T + €[, £ + T)

where
t+T)
T

eft,t+T) =€t t+T) ~ e(s,t+T)+ %e(s, t)

The €'(-)'s are normally distributed with mean 0 and covariances

1+ (%) +(§)?) forT=S5

Covle'lt,t + T),€"(t,t + S)) = { 2
(%3) for T # S

Substituting equation (10) into equation (8) and rearranging leads to:

Ayttt + T = Ayl ¢+ n)Hy(T) + Ayt ¢ + w2l Ho(T) + €[t t + T

where

e[t t + T] = e[t t + m|Hi(T) + €'[t,t + m] Hao(T) — et t+T]

The €*[t, ]s are normally distributed with mean 0 and covariances given by:

X(T, ) = Cov ("[t,t + T}, e™t,t + 8]) = {

where

C!’(T) = (HI(T)1H2(T):_110)
'7!(3) = (HI(S):H'Z(S):O!_]')

11

o (DYZ(T, S)y(S) forT#S
o (DT, Ta(T) forT=3S8

(10)



and

2(1 + (£) +(2)?) £ & 2
=T, 5) = s WrE D = s
= L5 2(1 + (%) + (F) s

5 5 o 21+ (3) + (3

This empirical HIM-RS model has two unknown para.nieters, x and 72 which must be
estimated from the data. | |

3.2 Empirical Implementation of HIM-GV Model

Equation (7) holds regardless of the volatility structure, d. (), of the spot interest rate. If,
however, the volatility of the spot interest rate is a constant, independent of the level of
rates, then the dynamics of the forward rates correspond to the GV model. In this case, ¢(t)

becomes
2

o(t) = % (1 - 6'-2‘:)

which is deterministic, and 1(t) is the sole state-variable. Only a single benchmark maturity,
7, is needed in this case. The GV analog to equation (11) is:

Ayl t+ T = (DAYt + 7] + o2k(T) +e*[t,t + 7 (12)
where
_ 1)
WT) = T )
KT) = BTAEIBET) - AL - ™)
ett+T) = AT+ 7] —€*[t,t + T

12



The €**[t, -]s are normally distributed with mean 0 and covariance

a” (TYZHT,S)v*(S) for T# S
X*(Tw S) = ,
o (T)2(T,T)a*(T} forT=S8
where
a”(T) = (WT),-1,0)
7“(8) = (h(S),G, *1)
and
21+ (L) +(£)?) i 5
=T, 5) =7’ e 21+ (£) + (£ =
= s 201+ (5) +($)?)

'This empirical GV model requires estimating three parameters, «, n?, and o?.

4 Empirical Tests and Results

4.1 The Data and Methodology

Our raw data set consists of the monthly unsmoothed Fama-Bliss yields,

1982 to 1994.° A set of 9 target maturities were chosen to cover the term structure. These

were (.25, 0.5, 1, 2, 3, 5, 7, 10, and 19 years.® For each adjacent pair of months we computed

the forecast errors Ay[t,¢ + T for each of the target maturities.

Figure 1a shows the box and whiskers plot of the forecast errors for each of the 9 matu-

rities. The plots are based on 13 x 12 = 156 data points for each maturity.

5See Fama-Bliss (1987} and Bliss (1994) for details of the method used to extract pure discount yields

from the set of available coupon bond prices each month.

8These maturities correspond to the 7”s above. To compute the month-before forward prices we also

e 1 4 T 14
need maturities of 5, {5, 13, 133, etc.

13

over the period



If forward yields were perfect predictors of future spot yvields, then there would be no
unexplained variability, and the whiskers in the plot would have zero length. Figure la
shows that forecast error dispersion varies moderately with maturity and there is evidence
of a maturity dependent bias in the forecasts; at short maturities forward rates tend to over
state subsequently realised yields on average, but this effect disappears at longer maturities.
To see if there was a term structure of forecast errors we subtracted the errors each month by
the forecast error of the shortest maturity. The “normalized” results, presented in Figure ib
show a positive relation between the premium of long-maturity forecast errors over the
shortest forecast error, and maturity. In addition, normalized forecast errors show dispersion
increasing markedly with maturity.

The question is whether our two models, HIM-RS and HIM-GV, can “explain” these
forecast errors in terms of two (or one) state-variables as proxied by selected benchmark
maturities and in the manner implied by the models.

We divided our 156 months of observations into 13 annual groupings. This was done to
minimize reliance in stationarity of the parameters to be estimated, and to provided multiple
independent estimates of the parameters and to be able to compare the models’ individual
and relative performances.

Two maturities were selected as 7, and 7. The HIM-GV model required a single bench-
mark to substitute for the single state variable, so one of the pair was used for estimation
and the other was simply discarded. This was done so that the set of remaining maturites,
over which the models were be tested would be identical in both cases.”

The next step was to estimate the model parameters, and 7 for HIM-RS and x, 7and ¢
for HIM-GV. This was done by maximum likelihood, making use of the variance-covariance
structure developed above. The process was repeated for each of the 13 years and 7; and
T, were varied to investigate the dependence of the results on the maturities selected as
benchmarks. The following analyses were based on the residuals from the estima.ted models,
ie.

et +T) = Ayllt ¢+ T) = Ayt ¢+ 1) HA(T) — D (Bt + ) Hao(T)

TWe also compared the resuits to models which retained the best of two GV models based on separate
use of the two candidate state variables. Similar results were obtained, _
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4.2 HIM-RS Model Results

Using 71 = 0.25 and » = 5 years respectively, Figure 2a shows a box and whiskers plot of
the monthly residuals for each of the remaining maturities. As in figure la, each box and
whiskers is based on 13 x 12 = 156 residuals. There is a marked reduction in variance and
the bias observed in Figure 1a is no longer apparent. Figure 2b shows an elimination of the
heteroskedasticity evident in the raw data

The lack of biases in the above plots suggest that the structural form of the model in
equation (11) may have some merit, and indicates that there may be empirical support for
the normalized volatility restriction. What remains, therefore, is the task of testing this
specification against some plausible alternatives. If the model provides unbiased estimates
of yields for all maturities, and if these estimates have smaller mean squared errors than
alternative estimators, then the underlying assumptions must be somewhat consistent with
actual market behavior. In particular, such evidence would indicate that the normalized
volatility constraint, given in equation (3) is not severe and that a two state-variable Markov
representation of the term structure is permissible.

Table 1 shows the point estimates and standard errors for the parameters x and # for
each of the 13 years when 7 = 0.5 and » = 5. In addition, in column 2 of the table we
report statistics on the total sum of squared forecast errors, TSS, and in column 3 we report
the sum of squared residuals, RSS, that remain unexplained after equation (11) has been fit.

Clearly, at any date, knowledge of two points on a future term structure must be useful,
in that forward yields can now be modified so as to reflect this information and reduce the
“unexplained” variability. The question that needs to be addressed is whether our model uses
this information to update forecasts in such a way that it explains more of this variability
than some other simple specifications which use the same information.

On average the HIM-RS model is explaining about 90% of the forecast errors. While
this number might seem large, it is possible that there are superior ways of using the “extra”
information provided by these two points, to revise predictions of future spot yields than
proposed by equation (11). Of course, in order to perform statistical hypothesis tests, very
specific alternatives need to be developed. We shall return to this issue later.
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The actual point estimates of the parameters k Tange from 0.09 to 0.28 while those for 7
range from 0.04 to 0.20. In general, the standard errors of k are quite large, while those of
are small. In all 13 years the point estimates of k are positive. A non- parametric test of the
hypothesis that £ < 0 against the alternative £ > 0 is strongly rejected at the 0.05% level
of significance. This finding is consistent with the results of Flesaker (1992). Our results,
however, are not consistent with those of Amin and Morton (1994). As noted above they
obtained negative estimates of s in tests of their GV structure. Flesaker (1992), and Heath,
Jarrow, Morton and Spindel (1993) also remark that the volatility structure of forward rates
may not be monotone in the maturity of the rates. In the next section we shall return to
study this issue more carefully.

Under the normalized volatility restriction, any two points on the yield curve can act as
the state variables. Moreover, regardless of the two state-variable proxies used, the param-
eters are the same, and hence the estimates should all be “close” to one another. Further,
there should be no systematic relationship between the estimates and the maturities of the
state variables. Table 2 provides the point estimates of x for each year, under a variety of
choices of the two state variables. The results show that the point estimates of x depend on
the choice of the state variables. In particular, given 7y, as T; increases, the point estimates
of x decrease. This implies that the model is not able to capture all elements of volatility
shocks.®

Notice that under an exponentially dampened structure, with &« > 0, very long term
forward rates will remain somewhat unchanged. The parameter £ controls the speed of
adjustment to an informational event across the yield curve. If the volatility of yields at
distant maturities is high, then the model will produce point estimates of x that are lower
then would be the case if the volatility were low. If shocks to the yield curve have per-
manent effects, (i.e. the shocks are parallel) then higher than anticipated volatilities may
be encountered on distant maturities, and as 7, increases, one would expect the estimates
produced by the model to decline. In this regard, Table 2 provides some evidence that the
RS constraint may not be fully satisfied and that other specifications could improve upon

B Ap alternative source of the dependence of x estimate on 7, and 7o may lie in the assumption that the
€jt,t + T in equation (9) are homoskedastic and independent.
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this postulated structure. For example, a two factor mode], with an exponentially dampened
structure for the first factor, and a constant structure associated with the second structure
might have some advantages. A model with these features, would, in the HIM paradigm,
have 3 state-variables. '

In summary, the lack of systematic patterns in the residuals and the fact that the signs
of the estimates are consistently positive indicates that the model may have some predictive
attributes. On the other hand, the fact that the estimates of x decrease as 7 increases,
suggests that the model could be missing a factor that captures parallel shifts. While more
complex structures may provide added realism, the two state-variable model still may have

predictive capability beyond that of well specified alternative models, such as the GV model.

4.3 Hypothesis Tests

There are two reasons for using HIM-GV as a benchmark against which to compare the
HIM-RS model. First, the HIM-GV mode] is the only single state-variable model in the
HIM class and has been used in a number of theoretical and empirical studies. Second,
Amin and Morton (19'94) have shown that this simple structure has predictive power, and
that trading schemes based on estimates of the parameters of this structure can generate
abnormal risk adjusted returns. QOur goal, therefore, is to establish whether the HIM-RS
structure has significantly greater predictive capability, beyond that of the GV model. In
particular, we are keen to investigate whether the residuals generated by the model (11) are
smaller than those generated by the GV model, for all maturities across the spectrum of the
term structure.

Towards this goal, for each year we estimate the three parameters of the GV model and
the two parameters of the two state-variable model. Then for each month we record the
absolute value of the residuals for all the remaining maturities. For each maturity we count
the number of times (out of 12) that the RS model had a smaller deviation than the GV
model. Table 3 shows these numbers for each maturity and for each year, when 7 = 0.5,
and 7, = 5, for the RS model and 7 = 7, for the GV model.

The “winner” for the year was then identified. This experiment was then repeated for all
13 years, and a non-parametric test performed to establish if the RS model out-performed
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the GV model. The result is an overwhelming rejection of the hypothesis that the two models
are not different. In particular, in each year the two state-variable model out-performed the
GV model.

Table 4 reports summary statistics when alternative pairs of maturities are used as state-
variables.

In summary, we can conclude that models developed under the normalized forward rate
volatility restriction, provide a significant improvement over the GV model. Since the differ-
ence between the two models arises solely from the fact that the spot rate volatilities in the
GV models are constant, we can conclude that alternative spot rate volatility specifications

can lead to further improvements.

4.4 The Volatility Hump

Several studies on the volatility structure of forward rates claim or infer that the volatility
structure of forward rates is humped, increasing over short horizons before decaying. If this
structure is correct, then the exponentially dampened normalized volatility structure, with
no time-varying parameters, equation (3), will be misspecified. We now investigate whether
there is a “hump” in the normalized volatility structure. We accomplish this without making
assumptions on the spot rate volatility structure.

First, parallelling Amin and Morton’s (1994) study, we re-estimate the HJM-RS model
using only short maturities. In the presence of a humped term structure of volatilities, an
exponentially declining model such as HIM-RS or HIM-GV might come up with positive
point estimates of x when fitted across the entire maturity spectrum, but should produce

negative estimates when fitted to short maturities only. Our short-horizon maturity targets

113
42 4

were 1, 1%, 2, 2% and 3 years. From this set, % and 3 years were selected as teu; and
5. Table 5 reports the results. For all 13 years, the estimates of 5 remain positive. This
suggests that the normalized volatility structure is a decreasing function of maturity, even
near the short end of the curve.

Returning to our original target-maturity set, as a final test to establish whether the
estimates of  are maturity dependent, we estimate x for each maturity separately, again

using 7, = 0.5 and 73 = 5. If there is no maturity dependence, then plots of these estimates
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against maturities should not reveal distinct patterns. Figure 3a presents the cross-maturity
k estimates for each of the 13 years of data. Although « estimates vary across maturities
within each year, there is no obvious pattern to the point estimates. To emphasize this point
we plot, in Figure 3a, the x estimates for each maturity “normalized” by subtracting out the
estimate for the shortest maturity.

The only pattern evident here is that the short-maturity « does not seem to fit in with
the others, appearing to be unusually low relative to the others part of the time, and too
high at other times. As for the remaining maturities, the only pattern is one of increasing
dispersion with maturity.

In neither Figure 3a nor 3b is there any evidence of a “numped” pattern in the x éstimates.
This confirms the evidence in Table 5 and is consistent with the success of the HJM-RS model
in fitting the forecast errors. Our results are thus strongly supportive of an exponentially
declining term structure of normalized forward rate volatilities consistent with the HIM-RS
class of models. This conclusion contrasts with the results of Amin and Morton {1994) and
Heath, Jarrow, Morton and Spindel (1993)

5 Summary and Conclusions

One of the main drawbacks of the HJIM paradigm for pricing interest rate claims concerns
the fact that for an arbitrary forward rate volatility structure, a finite collection of state
variables, which are sufficient to describe the price process of bonds, may not exist. Im-
plementations of the general HJM model requires keeping track of the entire history of the
forward rate process since the initialization date. For short term contracts, Heath, Jar-
row, and Morton (1990) discuss feasible lattice based procedures. However, for longer term
contracts, the path-dependence causes complications. Lattice models, for example, do not
recombine, and actually grow exponentially in the number of periods. However, if the struc-
ture for forward rate volatilities belongs to the HIM-RS class, given in equation (2), then
the computational problems are simplified. In this case, two state-variables can be identified
and the path-dependence is avoided, resulting in computationally efficient HIM models for

pricing a wide variety of European and American type interest rate contingent claims.

19



This article explores whether there is any empirical support for the HIM-RS volatility
constraint. The constraint makes no particular assumptions about spot rate volatilities, but
rather about forward rate volatilities relative to spot rate volatilities. Our empirical tests
allows us to avoid having to postulate a particular spot rate volatility and thus avoid a
joint-hypothesis dilema.

Based on the analysis it appears that the HJM-RS model, based on the normalized
volatility structure of forward rates being exponentially dampened in maturity, outperforms
the GV model. In particular, there is support for a decaying volatility structure, with no
evidence of a “hump” existing in the volatility structure.

Given the two state variables, corresponding to forecast errors at maturities 7, and ,
the estimates of individual «'s vary with maturity, but without pattern. The ability of
a cross-maturity fixed-x to fit the data suggests that a constant x produces an adequate
representation of the data.

The fact that estimates of x depend on the selection of the state variables implies that
not all information is being captured by the exponential structure.

One possible explanation for the results in Table 2 is that a two factor model might be
more appropriate. It remains for future research to test such models. While alternative
models could do equally well or better than the single-factor/ two state-variable model,
with nnexplained forecast-error variance already reduced to 10%, it is unlikely that such an

approach can produce economically beneficial advantages.
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Ayy[t,t+T] (in percent)

Figure 1a: Box Plots of Raw Data

Ayt[tst"'T] = yt[t!tll'-r.l - y°[t:t+-r.|
(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean)
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Figure 1b: Box Plots of Data Relative to Ay|t,t+0.25]

AYt[t,t"‘T] = Yt[t,t‘|'1-_| = YO[t,t"'-r_l
(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean)
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Figure 2a: Box Plots of Raw Errors
e[t,t+T] = Ay Jtt+T] - H,(Tit,, 1) Aydttte,] - Hy(Tity, 1)) Ay ftit+e)]
(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean)
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Figure 2b: Box Plots of "Normalized” Errors
e[t,t+T] = Ayt[t,t+T] - H1(T;T1s Tz) Ayt[t,t""t.‘] " Hz(T;Tp Tz) Ayt[tst"'tg]
(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean)
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Figure 3a: Plot of Annually Computed K's
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Figure 3b: Plot of Annually Computed K's Relative to K(1/4)
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Table 1 — HIM-RS Model Results for ; = 0.5 and 7, =5

Year

Ay
TSS

RSS

R2

K

S.E.

1

S.E.

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

62.894
15.172
24.985
21.247
18.229
13.433
9.978
11.694
7.143
8.313
8.299
4.556
6.524

9.525
2.420
1.892
1.213
1.957
1.207
0.775
0.628
0.754
0.652
0.913
0.553
1.221

Overall R?: 89.4%

0.849
0.841
0.924
0.943
0.893
0.910
0.919
0.946
0.894
0.922
0.890
0.879
0.813

0.276
0.081
0.178
0.104
0.094
0.170
0.091
0.349
0.098
0.164
0.287
0.207
0.210

0.679
0.013
0.022
0.014
0.011
0.026
0.017
0.039
0.013
0.034
0.036
0.022
0.038

0.207
0.072
0.084
0.067
0.069
0.071
0.043
0.053
0.049
0.048
0.058
0.046
0.067

0.016
0.006
0.007
0.005
0.0605
0.005
0.003
0.004
0.004
0.004
0.004
0.004
0.005




Table 2 — & and Overall Performance of HIM-RS Model for Various 7; and 7

E] 0.25 0.25 0.25 0.25 0.25 0.25
T 2 3 5 7 10 19
Year

1982 0.537 0427 0300 0222 0154 0.081
1983 0.088 0.085 0.082 0.078 0.074 0.063
1984 0.196 0.190 0.180 0.172 0.164 0.148
1985 0.111 0109 0.105 0.101 0.096 0.083
1986 0.098 0.097 0.094 0.092 0.089 0.081
1987 0.195 0.186 0.172 0.161 0.148 0.124
1988 0.102 0.098 0.092 0087 0079 0.057
1989 0.388 0375 0.355 0339 0324 0305
1990 0.105 0.103 0.099 0.096 0.091 0.081
1991 0209 0193 0.168 0.149 0128 0.088
1992 0.325 0.313 0292 0276 0258 0.227
1993 0223 0218 0.209 0202 0194 0.180
1994 0.265 0244 0.215 0.195 0173 0133

Overall R%: 70.7% 82.4% 86.7% 854% 83.9% 75.8%

Ty 0.5 0.5 0.5 0.5 0.5 0.5
Year

1982 0.485 0390 0276 0.206 0.146 0.079
1983 0.087 0.085 0.081 0.078 0.073 0.062
1984 0.194 0188 0.178 0.171 0.162 0.146
1985 0111 0.108 0.104 0.100 0.095 0.083
1986 0.098 0.097 0.094 0.092 0.089 0.081
1987 0.192 0.184 0.170 0.159 0.147 0.122
1988 0.101 0.097 0.091 0.08 0078 0.056
1989 0.383 0.370 0.349 0333 0317 0.296
1990 0.105 0.102 0.098 0.095 0.091 0.080
1991 0.204 0.188 0.164 0.146 0.125 0.086
1992 0.321 0.308 0.287 0.271 0.252 0.218
1993 0221 0216 0.207 0200 0.192 0179
1994 0258 0.238 0210 0.190 0.169 0.130

Overall R 75.1% 855% 89.4% 89.2% 88.8% 83.6%




Table 3 — Comparison of HIM-RS and HIM-GV Model Results for i =0.5and 7o =5

Delta, HIM-RS Model HJM-GV Model RSS Wins
Year TSS RSS R? RSS R? Ratio Ratio
1982 62.89 9.52 0.85 16.34 0.74 1.72 1.07
1983 15.17 2.42 0.84 3.47 0.77 1.43 1.02
1984 2498 1.89 0.92 6.66 0.73 352 1.19
1985 21.26 1.21 0.94 2.95 0.86 2.43 1.26
1986 18.23 1.96 0.89 4,24 0.77 2.16 1.31
1087 1343 121 091 3.12 Q.77 2.58 1.21
1988 9.58 0.77 0.92 1.11 0.88 1.44 0.81
1989 1169 0.63 0.95 1.23 (.89 1.96 1.14
1990 7.14 0.75 0.89 1.95 0.73 2.59 1.14
1991 8.31 0.65 0.92 1.25 0.85 1.91 1.02
1992 8.30 091 0.89 1.85 0.78 2.03 124
1993 456 0.55 0.88 1.88 (.59 3.40 133
1994 6.52 1.22 0.81 2.12 0.68 1.73 1.31

Overall R*: 89.4% 77.2%

Table 4 — Comparison of HIM-RS and HIM-GV Model Results for Various 7; and 7
Number of years that HIM-RS Model beats HJM-GV Ratio of Annual

Criterion RSS Ratio Individual [eft, t + T1| Ave(RSS/TSS)

Tt 025 050 0.25 0.50 0.25 0.50
T2

2 3 7 2 5 (.61 0.91
3 7 11 7 8 0.95 1.47
5 11 13 10 12 1.38 2.15
7 11 13 12 13 1.60 2.50
10 11 13 12 13 1.91 3.13

19 11 12 11 13 2.10 3.18




Table 5 — Short-Maturity HIM-RS Model Results for 7, = 0.5 and = 3

Year Ay TSS RSS R? K S.E. 7 S.E.

1982 73.841 5501 0925 0.718 0.129 0.116 0.010
1983  12.668 0.994 0922 0.426 0.118 0.053 0.004
1984 25975 1.111 0.957 0.728 0.070 0.053 0.004
1985 18144 0.609 0.966 0.446 0.090 0.049 0.004
1986 12.061 0.493 0.959 0035 0.106 0.040 0.003
1987 12337 0.54% 0.956 0513 0.069 0.044 0.004
1988 8.781 0.273 0.96% 0.34% 0.080 0.029 0.002
1983 13.095 0.246 0.981 0593 0.049 0.031 0.003
1990 5942 0.452 0924 0.445 0.096 0.038 0.003
1991 9.348 0.311 0967 0.325 0.108 0.033 0.003
1992  8.717 0301 0965 0.238 0.074 0.034 0.003
1993 3.202 0.189 0.941 0.388 0.056 0.025 0.002
1994 6.022 0.847 0.859 0628 0.099 0.049 0.004

Overall R?: 94.6%




