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Callable U. S. Treasury Bonds:
Optimal Calls, Anomalies, and Implied Volatilities

1 Introduction

Interest-rate contingent claims have grown substantially in variety, open interest, and trading
volume in recent years. Concomitant with these developments have come a number of
interest-rate valuation models. The equilibrium-based models of Cox, Ingersoll, and Ross
(1985), and Vasicek (1977) have been adapted by Black, Derman, and Toy (1990), Black and
Karasinski (1991), and Hull and White (1990) to fit arbitrary term structures of interest rates
and volatilities. Arbitrage-based approaches, taking the term structure as a starting point,
were developed by Ho and Lee (1986) and Heath, Jarrow, and Morton (HJM) (1990, 1992).
Chan, Karolyi, Longstaff, and Sanders (1992) provide an empirical comparison of several
models of deterministic volatility. These models have been extensively tested using exchange-
traded and over-the-counter interest-rate derivatives which has necessarily restricted the
analysis to recent years when these instruments were traded [e.g., Amin and Morton (1994)
and Flesaker (1992)]. One interest-rate dependent contingent claim, however, has a long
history that has not heretofore been analyzed: callable U.S. Treasury bonds.

We implement a variant of the Black and Karasinski (1991) interest-rate model to value
callable bonds conditional on an assumed volatility for the short rate process. By finding
the volatility that fits the observed bond price, the implied volatility is computed. Taking
appropriately weighted cross-sectional averages of implied volatilities, we may analyze the
history of interest-rate volatility over the 1926-1995 period, a far more extensive period than
is possible with other derivative instruments. Using cross-sectionally derived estimates of
interest-rate volatility, we document the changes in volatility through time.

The use of callable U.S. Treasury securities requires that we confront the issue of possible
irrational pricing of these securities. A number of authors, beginning with Longstaff (1992),
have found negative option values implicit in the market prices of callable U.S. Treasuries

to varying degrees. Negative option value bonds do not have implied volatilities. This



raises the twin questions of whether callable bonds are rationally priced and whether the
cross-sectional averages of their implied volatilities are meaningful. The meaningfulness of
implied volatility calculations also hinges, in part, on whether or not the U. S. Treasury
is rational in exercising the embedded call option. Bonds with negative option values, and
those with implausibly high implied volatilities, are shown to contain little reliable volatility
information as measured by the sensitivity of bond value to changes in volatility. The
negative option values noted by Longstaff and others exist predominantly when the option
is deep in-the-money and may be attributed to pricing errors well within the normal range
found in non-callable Treasury securities. Inter alia we extend both the sample period and
sample breadth beyond that permitted by the techniques employed by other investigators of
this phenomenon and resolve the inconsistencies in their results.

Lastly, we derive the optimal call policy for callable U.S. Treasury securities and then
examine whether the Treasury’s call decisions in the past have been consistent with such an
optimal rule. Longstaff’s (1992) analysis of callable Treasuries, based on Vu (1986), overlooks
certain critical features of Treasury call provisions as well as option theory, a problem shared
by other authors. These, and other, authors base their call/no-call decision on the market
price of the callable bond. We argue that the market price is subject to distortions and
that the value, based on an interest-rate model incorporating both interest rate movements
and volatility, is needed to make an informed decision. Further, several authors, including
Longstaff (1992), have ignored the 120-day call notification period, which the Treasury must
provide to holders of callable bonds.*

Our optimal call rule is based on the principle of minimizing the expected value of the
liability on the call date; either the principal to be repaid if the bond is called, or the expected
value of the callable bond if it is not. To do this we introduce the “threshold volatility,” or
volatility at which the issuer should be indifferent between calling and not. By comparing

this value to prevailing levels of implied volatility at the time, derived from our analysis of

IThe predecessor paper, Vu (1986), also ignores the less-onerous requirement for corporate
bonds, which typically have a prior notification period of between 30 and 90 days.



cross-sectional implied volatilities of all callable bonds, we are able to determine the optimal
decision.

Analysis of past Treasury call decisions shows that most past calls decisions have been
optimal. Those that have not may sometimes be explained using the naive call decision
rules suggested by Vu, Longstaff and others. In a few cases, the call decisions were clearly
irrational under any rule. Our valuation model, which embeds the optimal call decision rule,
demonstrates that callable bonds can rationally trade at substantial premiums to par as
observed, but not explained, in Longstaff (1992).

The remainder of the paper is organized as follows. Section 2 discusses the empirical
techniques used for modeling interest rate movements, computing fitted values of callable
bonds, and estimating implied volatilities. The time-series properties of implied volatility
estimates are discussed and analyzed. Section 3 addresses in detail the issue of negative
option values. We show that the effect is present throughout our sample period but that
the frequency of mispriced bonds is time-varying. This, together with an analysis of how
violations are counted, is shown to resolve the sometimes conflicting results of previous, more
limited studies. Section 4 develops the optimal call policy for callable bonds and examines
the history of U.S. Treasury call decisions in the light of this and the naive rules. Section 5

concludes.

2 Calculation of Implied Volatility

2.1 Stochastic Models of Interest Rate Movements

As reviewed above, the finance literature has provided an abundance of stochastic interest-
rate models. We propose to use the following risk-neutral stochastic model for spot interest

rate movements:?

dr = purdt +ordz, (1)

2Any reference hereafter to expectations F(-) or variance Var(-) constitutes a reference to the
variable’s risk-neutral distribution.



where

dr = the change in the short-term rate of interest r;

it = the expected change in dr/r; the p;’s for t = 1,...,T are chosen to precisely
match the observable term structure of interest rates;
o = a measure of the standard deviation; thus, Var(dr) = o?r?dt;

dz = is the stochastic Brownian process, with E(dz) = 0 and Var(dz) = dt.

In implementing the above model, we precisely match the term structure of interest rates.?
As is well-known, models such as equation (1) are widely used both in academia and industry.
These models are not, however, without their academic critics. Specifically, in discrete time,
the use of the vector py = [11, o, ..., pr] (designed to match the time-0 term structure
exactly) typically gives rise to intertemporal inconsistency. Intertemporal consistency would
require that the vector of the time drift parameters at time 1, p,, equal that at time 0 less
p1, i.e., py = [p2, ps, ..., pr) . This property is typically not satisfied with arbitrary term
structures for times 0 and 1. Nevertheless, we adopt the usage of equation (1) due to its
important ability to exactly match the observable term structure of interest rates. In so
doing, we make maximal use of the information available in the term structure of interest

rates and are able to match the prices of underlying non-callable assets.*

2.2 Data

The data for this study are taken from the CRSP monthly Government Bonds tapes. In order
to perform our tests, we require an estimate of the term structure of interest rates, which
estimate we obtain from the prices of non-callable Treasury securities. Bills of less than one
month to maturity and notes and bonds whose maturity was less than the longest maturity

bill in the same month were excluded from the term structure estimation subsample. These

3This means that under the risk-neutral expectation generated by eq. (1), for given o,y is

chosen so that .
E<exp{—/rsds}>:PVt, vt=1,...,T
Jo

where PV; is the price of a zero-coupon bond of maturity ¢.
4No single term structure is able to match exactly the prices of all non-callable Treasury secu-
rities, as shown in Bliss (1996).



bills, notes and bonds were used to create term structures using two different methods, as
outlined below. In addition, a sample of coupon STRIPS prices was obtained from Merrill
Lynch to create a third estimated term structure.’

A subsample of callable bonds was also extracted from the CRSP files. To avoid using
term structure estimates which extrapolated beyond the available non-callable instruments
used to create the term structures, we excluded those callable bonds whose maturities are not
spanned by their non-callable counterparts. To avoid having additional embedded options
beyond the call option being analyzed, we excluded callable bonds which were also flower
bonds.® Figure 1 presents the availability and maturities of callable U.S. Treasury bonds
before and after applying these filters for the period 1926-1995. In total there were 16,521
observations on 88 issues during the sample period. The filters reduced the usable sample
to 8880 observations on 74 separate issues. This represents, by far, the largest sample and
longest sample period of callable bonds studied to date.

The usable issues break into three periods. Prior to 1960, there was a large sample of
callable bonds available for analysis; however, this is a period of little variation in interest
rates. Between 1960 and 1980, there are many callable bonds, but few non-callable bonds.
Thus, in this period we cannot construct a non-callable term structure. In addition, most of
the callable bonds issued between 1945 and 1970 were flower bonds. Fortunately, few callable
bonds were within their call period during this time, so our analysis of the Treasury’s call
history is not impacted materially. The post-1980 period saw the re-issuance of long maturity
non-callable bonds and so the previously existing callable bonds could again be analyzed.

Issuance of flower bonds ceased in 1965.

SSTRIPS stands for “Separate Trading of Registered Interest and Principal Securities.” Several
studies have shown that stripped principal payments contain liquidity effects. Stripped coupons
are free of these distortions and provide a more complete term structure.

6Flower bonds have an embedded put option which permits a person’s estate to redeem the
bonds at face value in payment of estate taxes if the decedent held the bonds at time of death,
or six months before, depending on the issue. Flower bonds tend to trade at below-market yields-
to-maturity and are presumably held by persons expecting to exercise the put option in the near
future.



2.3 Numerical Implementation Techniques

To ensure that our analysis is robust to measurement errors in the estimated term structure,

we estimate the term structure of interest rates using three alternative procedures:

1. Yields on stripped Treasury coupons. C-STRIPS data were available beginning in
February 1985.

2. Implementation of the Fama-Bliss (1987) method of extracting the pure discount rate
curve from a sample of non-callable bonds.” The Fama-Bliss term structures were

computed over the entire post-1925 sample period.

3. Implementation of the Nelson-Siegel-Bliss method of extracting the pure discount rate
curve from a sample of non-callable bonds. See Bliss (1996) for details. Sufficient
density of non-callable bonds to estimated Nelson-Siegel-Bliss term structures was

available beginning in 1970.

See Appendix A for a description of the latter two estimation methods.

This produces three alternate estimates of the current risk-free present value function,
PV, for 0 < t < T; the value of T" will be dictated by the maturity date of the longest-
maturity non-callable bond in each monthly sample. Given the term structure, Jamshidian
(1991) provides the forward-induction procedures used for estimating the vector of drifts p,
in an efficient manner in the context of a binomial tree for the short-term rate of interest.

The binomial tree is built through appropriate calculation of the centrality parameters
of the tree for all future periods. Thus, for a period of length A, calculating the centrality
parameter for the second time interval requires solving the nonlinear equation for u as given
by

PVop =PVA E (exp {—U2A602}> ,

where the discretized Brownian motion z has F (Z) = 0 and Var(z) = A.

"The CRSP Fama-Bliss files extend only to a maturity of five years. The same underlying
procedure was utilized to extend our calculations to the maturity date of the longest non-callable

bond.



A recursive procedure is then used to construct the tree for successive time intervals.
Appendix B provides a numerical example of the implementation of this procedure for the
lognormal interest-rate distribution in eq. (1). In the implementation of the interest-rate
tree, we utilize a six-month time step for A. However, we need to account for the time
interval from the quote date to the first coupon date, which will generally be different from
six months. Appendix B also demonstrates the numerical procedure implemented to account
for the distinct length of the first time interval from subsequent ones.

Once we have completed the calculation of u;a for all periods i, for a given ¢ we can
calculate the value of the callable bond through backward induction. The implied volatility

is chosen to equate the model’s bond value with the market price.

2.4 Implied Volatility Results

To check the robustness of the estimated implied volatilities to the underlying term structure
used to build the binomial tree, the summary statistics for the several estimates and their
correlations are presented in Table 1. This table covers only the latter period when all three
term structures were available. (During this period there were insufficient short-maturity
callable bonds to compute meaningful summary statistics.) As discussed below, it was not
always possible to estimate a usable implied volatility. Table 1 excludes those cases where
the option value was negative or the implied volatility implausibly high.

There is substantial agreement across term structure estimation methods in the resulting
implied volatilities for intermediate maturities. At longer maturities, the implied volatility
levels differ somewhat across term structures but are still highly correlated. The lognormal
interest-rate process assumed in the interest-rate model and the binomial-tree implementa-

tion is more sensitive to changes in interest rates at longer horizons.



Finally, the term structure-independent result that longer-maturity bonds have higher
implied volatilities suggests the existence of a term structure of volatilities. This could not
be captured by the methodology employed in this study.®

The vega, or partial derivative of callable bond price with respect to a change in implied
volatility, provides a measure of the information content in the implied volatility. A small
measurement error in a bond with a low vega will result in a large change in the measured
implied volatility. For this reason, we discarded issues with vegas of less the 0.02 and then
weighted the remaining implied volatilies by the associated vegas when averaging them.

Multiple observations of rationally priced callable bond prices with vegas exceeding .02
are available only for the period 1926-1946 and 1987-1995. In the period 1947-1986, such
usable data occurred only infrequently.

Figure 2a presents usable callable bonds’ vega-weighted implied volatilities for the period
1926-1955 using the Fama-Bliss method for the estimation of the term structures of interest
rates. A cyclical pattern of variation in the implied volatilities is evident through 1949, along
with occasional months where the weighted implied volatility appears to jump temporarily.
Between 1926 and 1933, implied volatilities lie in a range between 5% and 30%. From 1933
through 1948, implied volatilities were considerably higher, in the range from 20% to 70%.
Between 1949 and 1956 the consistent pattern breaks down and the implied volatilies show
little consistency other than lying below 50%.

Figure 2b presents the vega-weighted implied volatilities for the period 1978-1995 for each
of the three estimated term structures. Between 1978 and 1988 there is little consistency
in implied volatilities, either across term structure estimation methods in a given month, or
across months for a given term structure estimation method. Fortunately, in this period no

bonds were currently callable. Post-1987 the pattern becomes more consistent with implied

8Interestingly, it also suggests an upward-sloping term structure of volatility which is contrary
to received wisdom and the finding of other studies. Two explanations may obtain. First, the
non-mean reverting interest-rate process may lead to numerical problems at long horizons. Second,
longer maturity bonds differ systematically from intermediate maturity (and hence older) issues in
terms of coupon rate and hence moneyness; so the two samples of implied volatilities may not be
strictly comparable if a “smile effect” exists.



volatilities varying in the range of 6% to 18% and showing common time-series variation

across estimation methods.

3 The Callable Treasury Paradox

The literature on apparent mispricing of callable U.S. Treasury bonds, the so-called “Callable
Treasury Paradox,” is extensive; at least six articles have been written on the subject with
varying conclusions. In this section we analyze the issue for two reasons. First, our data set
and method of determining which bonds are mispriced allows a much more extensive analysis,
in time and bonds covered, than has been possible in the past. Second, our subsequent
analysis of implied volatilities necessarily ignores mispriced bonds. We therefore wish to
establish that the information in these excluded bonds regarding general levels of implied
volatilities is minimal.

We begin by showing that the sometimes conflicting results in existing papers on the
subject may be resolved by attention to differences in sample periods, bonds included, and
methods of measuring the frequency of violations. We then demonstrate that the Treasury
Paradox has substantial time variation and that there is a systematic pattern in the bonds

found to be mispriced.

3.1 Arbitrage Bounds on the Pricing of Callable Bonds

There are two well-known arbitrage bounds for callable bonds that should be satisfied
by any no-arbitrage valuation model. These pertain to the relationship between the market
price of the callable (at par) bond B, on the one hand, and the values of two hypothetical
non-callable bonds (with identical coupons) maturing at the first call date and the maturity
date. We denote the values of these bonds as S and L, respectively. It can be shown that,
in the absence of arbitrage,

B <min{S, L}. (2)



Intuitively, inequality (2) is motivated by the fact that the option not to precommit on
the call/no-call decision is valuable.” Any violation of relation (2) gives rise to an arbitrage
opportunity and hence cannot be rationally explained by an arbitrage-free valuation model.

The callable bond can be thought of as a long bond, L, with a call option, C', whose value
is non-negative. Since the option belongs to the bond issuer who is short the underlying long
bond, the callable bond’s value must be L — C' < L, since C' > 0. If B > L, a long position
in the long bond coupled with a short position in the callable bond will earn arbitrage profits
equal at least to B — L. If interest rates increase, so that both bonds trade at a discount, do
nothing. Since their coupon and principal amounts exactly offset each other, net future cash
flows are zero. However, if at any call date interest rates have declined sufficiently so that
the long bond is selling at a premium, then selling the long bond and calling the shorted
bond will earn an additional profit equal to the premium.

The callable bond can also be thought of as a short bond, S, maturing on the next call
date, together with a put option P allowing the issuer to put the bond back to the bond
holder at its face value on the call date, effectively extending the maturity. The value of the
embedded put option is non-negative, so the callable bond must also be valued at S—P > S.
To profit from a negative implied put option value, if B > S, sell short the callable bond
and buy the short bond, pocketing the difference. On the first call date, S will pay $100,

which may then used to call the shorted bond.
3.2 Previous Studies
Longstaff (1992) first examined the question of apparent negative option values in U.S.

Treasury bonds using a subset of five callable U.S. Treasury bonds over the period June 1989
through September 1990. Longstaft’s method was to construct a synthetic matched-maturity,

9Jordan, Jordan, and Jorgensen (1995) point out that this relation must hold for all call dates,
not merely the first one. In practice, this is unimportant since the prices of similar-coupon rate non-
callable bonds is almost always monotonic in maturity (increasing or decreasing depending on the
shape of the term structure). It is highly unlikely that a callable bond will satisfy B < min{S, L}
but violate the arbitrage condition with respect to an intermediate call date. Nonetheless, our
methodology for detecting mispricing implicitly accounts for all the intermediate call dates, not
just the one at the extremes.

10



matched-coupon non-callable bond, L in our notation, using an existing matched-maturity
non-callable bond together with a single coupon STRIPS maturing on the same date as the
callable and non-callable bonds.!' By combining the non-callable coupon bond with the
STRIPS coupon in an appropriate portfolio, the coupon rate, as well as the maturity, of the
callable bond can be matched. The call option value is then just the difference in the prices
of the callable bond and the synthetic bond. Longstaff uses bid-asked midpoint prices in his
calculations. He finds that, on average, in 61.5% of the observations the implied option value
is negative; i.e., B > L. Percentages across individual bonds varied from 14.7% to 95.6%.
Longstaff considers a number of possible explanations for this surprising phenomenon, but
finds none satisfactory.

Edelson, Fehr, and Mason (1993) examine a subset of 14 callable bonds (including the
five in Longstaff’s sample) in the period March 1985 through September 1991. Edelson et
al. build synthetic bonds in the same manner as Longstaff, but use bid prices for the callable
bond and asked prices for the bonds in the synthetic portfolio. In addition to looking at the
call prices implicit in the maturity-matched synthetic bond, Edelson et al. examine the put
options implicit in prices of synthetic bonds maturing on the first call date. This permits
examining options embedded in an additional 12 bonds.

Edelson et al. find negative call option values in 56.4% of their observations, with bond-
specific frequencies varying from 9.9% to 87.8%. Taking account of the use of spreads, which
will tend to price the synthetic higher and callable lower than using mid-prices, these results
are comparable to Longstaff’s. Put option violations, B > S, occurred in 20.2% of cases and
varied from 0.02% to 40.9% across bonds. Edelson et al. do not report, and it is impossible
to infer, violations of B < min{S, L} in the three cases where it was possible to create

synthetic S and L for the same callable bond.

10Sufficient non-callable bonds are purchased to match the coupon payment amounts of the
callable bond, and then the STRIPS are used to adjust the principal. The technique of build-
ing synthetic bonds using existing matched-maturity instruments limits the callable bonds that
may be studied to a small fraction of those outstanding. Most studies of the Treasury paradox,
Carayannopoulos (1995), Jordan, Jordan, and Kuipers (1996) and this study excepted, have used
a variant of this technique.

11



Both Longstaff and Edelson et al. report persistence in the occurrences of negative option
value bonds. Their results suggest that random measurement errors alone are not sufficient
to account for the existence of negative option values.

Jordan, Jordan, and Jorgensen (JJJ) (1995) examine seven callable bonds over various
periods, depending on the method of constructing synthetic bonds, ending in April 1993.
They use monthly data and bid-asked prices to account for the spread. The longest sample
begins November 1984, though most observations are post-1990. JJJ use a variety of methods
to construct the synthetic bonds: (1) a matched-coupon non-callable bond maturing on a call
date, (2) a combination of a non-callable coupon bond and a coupon STRIPS (“striplets”),
and (3) two matched-maturity non-callable coupon bonds (“triplets”).

JJJ treat each embedded option as a separate observation. Thus, a not-currently-callable
callable bond with a 5-year call period is considered to provide 10 independent put value
option observations, with associated non-callable synthetic bonds maturing on each of the
feasible call dates, and one call option value observation with the associated non-callable
synthetic bond having the same maturity as the callable bond.!! Because JJJ usually report
only the fraction of “options” mispriced, it is impossible to determine the fraction of bonds
which are mispriced. Therefore, their results are difficult compared to Longstaff or Edelson
et al.

JJJ find that only a small fraction of embedded options are mispriced; 3.24% with the
matched-coupon method, 2.26% with the triplets method and “near maturity” methods.
However, when looking only at embedded call options using the triplets method, the per-
centage negative increases to 28.9% for mid-market prices and 7.23% when the spread is
accounted for. This analysis, however, only covers two callable bonds.

JJJ conclude that previous finding of significant incidence of negative option values is

due, in part, to tax effects in the pricing of STRIPS and that actual negative option values,

HThis creates a distortion in the number of “mispricings” reported by permitting a single callable
bond to contain both fairly and irrationally priced options. Since these options are not independent,
exercising a call option early extinguishes the “remaining” put and call options. We prefer to define
mispricing in terms of bonds: if any of the embedded options has a negative value, the bond is
mispriced.

12



when they occur, are too small to give rise to trading opportunities; that is they find no
anomaly. However, the tax argument relies implicitly on the unlikely absence of a tax-exempt
entity which can ignore the tax effects and arbitrage the pricing errors.

Carayannopoulos (1995) examines all 23 callable bonds outstanding over the period July
1989 through June 1993. Synthetic bonds are constructed entirely from coupon STRIPS.
Carayannopoulos constructs both short and long synthetic bonds, tests for violations of the
condition B < min{S, L}, and finds violations in 28.6% of cases when mid-market prices are
used and 17.8% when spreads are accounted for.

Jordan, Jordan, and Kuipers (JJK) (1996) re-examine Carayannopoulos’ results using the
same method, 22 callable bonds, and data for the period January 1990 through December
1994. JJK find 18.9% violations of B < L (negative call options) when using spread adjusted
comparisons (21.3% using bid prices only), and 4.0% (9.0%) violations of B < S (negative
put options). Depending on the overlap of bonds violating B < L and B < S, the incidence
of violations of B < min{S, L} could be anywhere from 18.9% to 22.9%, actually higher than
Carayannopoulos’ 17.8%. However, by counting the violations as independent outcomes and
averaging them, JJK report a violation rate of 8.9% and thereby assert that violations are
less frequent than reported by Carayannopoulos. Both Carayannopoulos and JJK find that
the incidence of violations are related to the premium/discount status of the callable bond.

To summarize, past studies have found varying frequencies of mispriced callable bonds.
Only Jordan, Jordan and Jorgensen have dismissed the phenomenon, but their method of
counting violations leaves their conclusion in doubt. Because, in part, of their reliance on
STRIPS to construct synthetic bonds, none of these studies has covered a very long time

period.

3.3 Long-Term History of the Treasury Paradox

In contrast to these studies, our sample covers the period 1926 through 1995. Unlike
Longstaff, Edelson et al., and Jordan, Jordan and Jorgensen, our methodology does not
depend on finding like-maturity non-callable bonds from which to construct synthetic non-

callables. Unlike Carayannopoulos and Jordan, Jordan, and Kuipers, we do not rely

13



exclusively on the existence of STRIPS prices either. We construct synthetic non-callable
bonds using two different estimates of the term structure of interest rates estimated from
the full range of non-callable bills, notes and bonds available on each observation date. For
the post-1985 period, we use STRIPS prices as well. For the post-1985 period the results of
our analysis are broadly in agreement regardless of what term structure is used—differences
in the incidence of violations are small. Because the Fama-Bliss term structures cover the
longest sample period, those results are reported here.

Rather than constructing the non-callable equivalent and comparing its price to that
of the callable bond, we use the term structures and our interest-rate model to estimate
implied volatilities. A finding of a negative option value is not interest-rate model-specific
because a violation of inequality (2) depends only on values of S and L, which come from
the term structure rather than a dynamic interest-rate model. Therefore, when an implied
volatility of zero results in the bond being over-priced relative to the observed market price,
it is equivalent to the option value being negative. In addition, when an implausibly high
implied volatility is insufficient to lower the fitted price to the observed value, we conclude
that the callable bond is irrationally underpriced. Thus, unlike previous studies, we are able
to identify both over- and under-priced callable bonds. When checking for negative option
values, the bid price was used to compute the implied volatility, thus biasing against finding
a violation. When looking for “huge” violations, the asked price was used. The Fama-Bliss
term structure estimation used mid-market prices, the Nelson-Siegel-Bliss estimation method
incorporated the spread, and for STRIPS the mid-market prices were used.

Using term structures of interest rates estimated via the Fama-Bliss method, we de-
termine which callable bonds are overpriced (“negative” option values), rationally priced
(“good” implied volatilities), and irrationally underpriced (“huge” implied volatilities). Fig-
ure 3 plots the annual frequency of these outcomes. It is apparent that mispricing of callable
bonds was prevalent in one form or another prior to 1992. The irrationally underpriced bonds
occurred mainly between 1935 and 1950, periods during which interest rates were low and
showed little variability. The degree of actual mispricing is not usually large. In fact, very

small price changes, on the order of the fitted price errors for out-of-sample non-callable
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bonds observed in Bliss (1996), would have been sufficient to obtain reasonable implied
volatilities.

Our results indicate that there is considerable time variation in the frequency of callable
bonds with negative option-values, a point not previously noted. The frequency of negative
option value callable bonds has declined in recent years. This provides an explanation for
the differential results reported in previous studies. Leaving aside the method of counting
violations, the differences between results reported by different authors is evidently related
to the sample periods used. Later studies included more recent data when violations were

rare. Looking at sub-periods used in previous studies, we find:

Previous Period Percentage of | Our Findings
Study Covered Violations | for Same Period
Edelson, Fehr, and Mason Mar’85-Sep’91 56.4 38.1
Longstaff Jun’89-Sep’90 61.5 25.2
Carayannopoulos Jul’89-Jun’93 17.8 20.4
Jordan, Jordan, and Kuipers Jan’90-Dec’94 18.9 14.3

Our sample of bonds in each period is not always identical, which accounts in part for
differences. For instance, for the five bonds used by Longstaff, we find 40% violations in the
period of his study, suggesting that his results are due in part to sample selection. However,
overall our results confirm the time dependence of the differences found in other studies.

Using term structures of interest rates estimated via the Fama-Bliss method, we next

bRANNA4

examine the classification of callable bonds’ implied volatilities into “negative,” “good,” and
“huge” in the 1985 through 1995 period in Table 2. The results are broken down by maturity,
the moneyness of the callable bond’s forward price, and by sensitivity of the option value (and
hence callable bond value, V') to volatility, or vega = dV/do. The rationale for examining an
option’s vega lies in vega’s relation to the informativeness of the estimated implied volatility.
A low-vega option will require large changes in implied volatility to accommodate small
changes in option value, and thus will be particularly sensitive to measurement errors in
market prices. A high-vega option, on the other hand, will be more robust to measurement

errors. More reliance may, therefore, be placed on implied volatilities with higher associated

vegas.
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An option’s vega depends on its moneyness and time-to-expiration 7" and is non-monotonic
in both.!? Thus, in considering the classification of callable bonds’ implied volatilities into

Y14

“negative,” “good,” and “huge,” we look both at the interest-rate model-specific vegas and
the interest-rate model-independent characteristics of moneyness and time-to-maturity.

Table 2 demonstrates that the “good” volatilities are overwhelmingly medium- and high-
valued vegas, and hence informative. In contrast, the “negative” and “huge” implied volatil-
ities occur predominantly in low-vega bonds, where the volatility estimates, if they were
possible, could not contribute meaningfully to our later analysis. Further, the “huge” im-
plied volatilities are overwhelmingly long-dated in-the-money-forward bonds. These results
are also not term structure estimation method-specific.

These pricing errors may well be a consequence of bonds with low vegas and low option
time-values being more sensitive to market imperfections such as tax-clientele or tax-timing
option effects. With low vega and low option time-value, small pricing errors will cause
the bond to exhibit “negative” or “huge” implied volatilities. Recalling that the prices of
non-callable U. S. Treasury bonds also contain pricing “errors” (in that they cannot all be
fitted by a unique term structure of interest rates), the prevalence of low-vega bonds in
the “negative” and “huge” classifications is consistent with callable bonds’ pricing errors
displaying behavior similar to that of their non-callable counterparts.'3

Our analysis of the data underlying Figure 3 and Table 2 indicates that the “huge”
volatilities may arise from (at least) three possible sources. First, short maturity bonds
combined with a fixed-interval (six months) binomial lattice produce an insufficiently dense
distribution of future bond prices. Second, long-dated callables are priced under an interest-

rate distribution that has sparse density at reasonable interest rates; the remaining few

12To see this, consider the well-known case of a call option on stock. For such securities, vega
peaks at-the-money-forward, per Cox-Rubinstein (1985, p. 225), and declines as the price of the
underlying asset moves away from the strike price. As a function of time-to-maturity 7, vega starts
at zero for T = 0, when a stock option’s value is max{S — K, 0} and thus not dependent on o,
rises to a maximum, and then falls to zero as T — oo, when the option’s value reduces to the
o-insensitive S.

13Bliss (1996) has shown that the fitted price errors of out-of-sample non-callable bonds increase
with maturity.
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nodes at the center of the tree have insufficient density to produce meaningful changes in the
bonds’ present values as o changes. The consequence of both these phenomena is to produce
extremely low vegas, with bond values that are insensitive to changes in volatility. Finally,
we observe a number of intermediate-maturity, low-coupon bonds, primarily in the 1950s,
whose prices appear unreasonably low and cannot be attributed to numerical problems.
Their (reasonable) vegas indicate a price sensitivity to volatility changes, but even “large”
volatilities are unable to explain the large option value.

For the purpose of this study, these results are fortuitous. We are not interested in esti-
mating implied volatilities for options far away-from-the-money. Indeed, it is most difficult
to do so: the option’s vega (defined as 0V/0do, at the o where model value equals market
price) will be extremely low, rendering the implied volatility estimate unreliable. Thus,
we will not be concerned with having to discard those observations for which the implied

volatility could not in any case have been reliably estimated.

4 The Optimality of the Treasury’s Call Policy

We begin by reviewing the past literature on when a callable bond should be called and
point out the fallacies of these recommended rules. Next we develop the optimal call rule
based on option theory and the institutional framework in which calls take place. Lastly, we
analyze the optimality of the Treasury’s past call policy by examining the decisions made at
every event date when the Treasury could have called a bond in the past.'

The pertinent institutional details are that the indenture provisions for (most) callable
U.S. Treasury securities call for a 120-day notification period prior to a call. Most callable
Treasury bonds are call protected until five years prior to maturity, after which the actual

call can take place only on a coupon payment date, i.e., twice per annum.'®

Biihler and Schultze (1993) investigated the German government’s call policy and concluded
that rational call opportunities were frequently missed. Not surprisingly, they also document the
presence of implied negative option values in the German bond market.

15Bliss and Ronn (1996) note exceptions to these norms, mostly in the first half of this century.
They also discuss in intuitive terms the rules developed rigorously below.
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4.1 Previously Recommended Call Rules

Vu (1986), studying callable corporate bonds, argued that callable bonds should be called
when their market price first exceeds the call price. We will refer to this as the “naive rule”
for reasons which will be made clear shortly. Vu asserts that this will minimize the value
of the embedded non-callable bond and thus maximize the value of equity. Longstaff (1992)
adopts this rule to the Treasury context and asserts that callable U.S. Treasury bonds should
be called when their price exceeds par (the call price for Treasury bonds). Longstaff then
notes:

“One particularly surprising result ... is that the callable bond price is often

substantially above the call price of 100 at the time the Treasury calls the bond.

On average ... 61 cents (based on a par value of $100) ... (p. 584)”
Longstaff also notes bonds trading above par that are not called. Addressing the call notice
period, Longstaff concludes that “[n]evertheless the call notice period cannot account for an
average premium of 61 cents over par.” Jordan, Jordan, and Jorgensen (1995) also assert
that calling a U.S. Treasury bond as soon as it reaches par is optimal (p. 160).

One obvious short-coming of the naive rule is that it ignores the effect of the notice period.
A call cannot be executed immediately. Edelson, Fehr, and Mason (1993) modify the naive
rule to calling when the callable bond price exceeds the present value of par plus the next
coupon, in effect “call when B > S.”1¢ Jordan, Jordan, and Kuipers (1996, footnote 2) and
Jordan and Jorgensen (1996, p. 11) assert a similarly motivated, though perhaps somewhat
imprecise, rule that the Treasury should call when the price of the callable bond exceeds the
price of a 4-month Treasury Bill on the notification date.
Unfortunately, the naive rule, in both its original and modified forms, is wrong for two

key reasons:

1. The lack of informativeness of the callable bond’s current market price, B;

2. It ignores the time-value component of the option value.

6Note that it is quite possible for 100 < B < S. In this case, the naive rule would say “call”
and the modified rule “do not call.” Similarly it is possible, when the term structure is downward
sloping, for S < B < 100 with the opposite results.
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The current market price of the callable bond is of little use in deciding what to do. If the
bond is marginally in- or out-of-the-money, the Treasury has relatively little, and imprecise,
information on which to act. Further, as we have seen, a single bond may be mispriced, due
to minor market frictions or the possible impact of taxation.'” The current market price also
embeds the market’s expectations of what the issuer will do. Using these expectations as a

basis for deciding what should be done leads to a circularity of reasoning.

4.2 The Optimal Call Decision Rule

The correct decision rule is to compare the present value of the bond if it is called (par plus
the final coupon payment) with the expected value if it is not called (the next coupon and
the expected value of the remaining callable bond at that future date). The former may be
easily valued using today’s term structure. The latter requires an interest-rate and volatility
model. The naive rules contain neither.

In order to base the call/no-call decision on the wide array of information available in
the prices of traded bonds—i.e., in the fair value, V, of the bond—we estimate the term
structure of interest rates from the prices of non-callable securities, and then use the callable
bond’s coupon rate to assess the threshold volatility, the volatility at which the call option
time-value would have eroded to zero, and thus the bond should be called (or purchased, if
V < S). Setting the callable bond price to just below S, we solve for the implied volatility
at that price. This threshold volatility is denoted op. We show that when o is “large” in
the sense defined below, the bond should be called.

Consider now a bond that is approaching the end of its call protection period. Since
Treasury securities typically pay interest mid-month, and given our end-of-month price ob-
servations, we constrain the Treasury to decide whether or not to call no later than 4.5

months prior to a coupon payment date. Clearly, any decision at 5.5 or 6.5 months prior to

17An analogy from equity markets may be useful: European-style options, as they near their
expiration dates, may sell at a slight discount to their intrinsic value due to the tax implications
of exercising a call option. Tax effects in bond markets have been documented by Schaefer (1982),

Ronn (1987), Bliss (1996), and Jordan and Jordan (1991) and hence constitute potential “non-PV?”
effects in bond prices.
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the next coupon payment would be suboptimal. At 4.5 months prior to the next call date,

the Treasury should give call notification if both of the following two conditions are satisfied:

1. On the notification date, the option is in-the-money forward.

This will be true if the forward price of the long bond L as of the next call date,
observed on the notification date, is greater than par, or equivalently the long bond L
is trading at a premium to the short bond S. Recall that L was previously defined to
be an otherwise-equivalent non-callable bond that matures on the callable bond’s final
maturity date. Let Sy5.,, be an otherwise-equivalent bond that matures in 4.5 months.

This first necessary condition specifies that if

L - (54.5771 - 100 Pv4.5m)
PV4.5 m

FPys5,, = > 100 <= L > Sism, (3)

then the option’s intrinsic value is positive.'®

2. The time-value of the option has eroded to zero.

The value of the currently callable bond at a notification date 4.5 months prior to the

next coupon date is

Vo(o) = min{ fnlo) + Visulo)

PV4.5m; S4.5 m} )

where

Vo(o) = is today’s value of the callable bond conditional on interest-rate volatility
being equal to o;
Vs.m(0) = the value of the callable bond 4.5 months hence, if not called today, in
the up- (s = u) and down-states (s = d), for the same level of volatility
o, next period.

18The quantity (S4.5m —100PVy45,,) strips the present value of the next coupon payment, which
must be paid regardless, from the long bond value, leaving present value of the coupon and principal
payments due during the remaining period when the bond is callable. To arrive at the forward
price, this quantity is compounded to the first call date by dividing by PVy4.5,.

20



The first term in the min operator is the value of the callable bond if the option is not

exercised; the second term is the value if it is. The difference,

(Vits (o) + Vitsu(0)) PVasim = Susm,

N —

represents the time-value remaining in the option. When this difference is zero, and

Vo(o) = Sa5m, the time-value is completely eroded.

Now, define the threshold volatility, o7, implicitly by the relation

‘/4?5 m,(JT) + ‘/4d5 m,(JT)
2

Vo(op) = min { PVism, 54.5m} = lim Sy 50 — ¢, (4)

for a positive, but arbitrarily small, ¢ (e.g., ¢ = 5 cents).!? Note that o is defined only on
notification dates, i.e., 4.5 months prior to the next call date/coupon payment date.

The threshold volatility, o, represents the maximum volatility consistent with an extin-
guished time-value. If this maximum volatility is large relative to “normal” market volatil-
ities, we can conclude that there is no time-value remaining in the call option, and the
Treasury should call the bond if it is in-the-money forward.? On the other hand, if the
threshold volatility is small, there must be time-value remaining in the option at normal lev-
els of volatility, and the Treasury should refrain from calling the bond. Note that o depends
only on the interest-rate model and the prices of non-callable bonds needed to generate the
term structure—it does not depend on the observed prices of callable instruments.

Suppose that option is in-the-money (forward) and that o has a low, but positive value.
Then the true o is likely to be greater than or and V(o) < Vo(or) = Sism — €. In this
case the bond’s value is less than the value at which it should be called, and calling is thus

suboptimal since it increases the value of the liability.

YIf V(o = 0) < Si5m, the threshold volatility condition (4) cannot be satisfied (the threshold
volatility is not defined), and the bond should not be called.

20 Alternatively, the Treasury should purchase the bond in the marketplace if its current price is
less than Sy 5.,. For example, the 7s of May 1993—-1998 could have been acquired at 101.76 rather
than called at the (effective) price of S = 102.26.
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If, on the other hand, for a very large o (we use o = 100%), it is still true that V(o) >
Sysm — €, we conclude that o is arbitrarily large and cease our search. Clearly, for such
large or’s, the true o cannot exceed op, and for the true o Vy(o) > Sy5.,m — €. To minimize

the Treasury’s liability, the bond should be called.

4.3 Analysis of Past Treasury Call Decisions

Given observed information on or beliefs regarding volatility, we are now in a position to
examine the Treasury’s call policy. We deem it optimal when the Treasury calls a bond
if and only if both (1) FPy5,, > 100 and (2) oy exceeds normal values for that period
are satisfied, and suboptimal whenever it clearly deviates from such a policy. Where the
threshold volatility approximates normal market volatility within the normal ranges shown
in Figure 2, we designate these cases as “ambiguous.”

Table 3 documents the threshold volatilities for U.S. Treasury callable bonds for the time
period for which C-STRIPS prices are available: 1985-1995. During this time frame, there
were five bonds that ended their call protection period: the 7%8 of August 1988-1993, the Ts
of May 1993-1998, the 8%8 of May 1994-1999, the 7%8 of February 1995-2000, and the 8%8
of August 1995-2000.

Several important conclusions can be drawn from Table 3:

1. The term structure estimates provided by the C-STRIPS data, and the Fama-Bliss and
Nelson-Siegel-Bliss methods, are in broad agreement with respect to the present values
of cash flows: i.e., FP45,,, Si5m and L. Further, all term structure estimates are in
agreement with respect to cases when L < Sy5.,,. Therefore, the usage of Fama-Bliss
and Nelson-Siegel-Bliss term structures is appropriate when C-STRIPS prices are not

available.

2. The three term structure estimates yield essentially similar estimates of the threshold

volatility o7

3. We conclude from Table 3 that, at least in recent years, the Treasury has called the

bonds optimally. They did not call the bond when the forward price was at a discount,

22



and they did not call precipitously: the threshold volatility was at least in the 20%
range when a call was triggered. Note, specifically, that the Treasury declined to call
when, on 28 March 1991, the option was in-the-money forward, but the threshold
volatility was a normal 7.5% to 10.3%. This bond, the 7%5 of August 1988-1993,
provides the only recent clean test of the optimality of the call policy. In this case,
the bonds were in-the-money forward in March 1991, but with relatively low threshold
volatilities. When the Treasury did call the following September, both conditions were

clearly met.

Table 4 presents evidence from the Fama-Bliss term structure estimates for the earlier
part of the century, the years 1932 through 1971.2! The table displays the call decisions for
the 41 callable bonds that had moved beyond their call protection period in the four decades

beginning in the 1930s. Several conclusions can be drawn from Table 4:

1. There were a total of 11 bonds with apparently suboptimal Treasury behavior. For
the remaining 33 cases, the call decision was optimal, giving the Treasury the benefit

of the doubt when the threshold volatility was in the normal range for the period.

2. A clearly irrational decision is calling a bond when the forward price is at a discount
because that implies that the option is being exercised when it is out-of-the-money.
There are only four instances when the Treasury has called a bond when the option
was out-of-the-money. In each case the spot price was at a premium, but the forward
price was at a discount, suggesting that the Treasury ignored the forward nature of

the call.

3. On the other hand, for the most part the Treasury also did not wait unduly to call.
Thus, we see in the remaining 40 bonds only seven bonds with high threshold volatilities
and forward prices in excess of par unaccompanied by a call. These seven bonds

involved 17 missed optimal call opportunities.

2IThere were no currently callable bonds, with maturities spanned by non-callable bonds, between
November 1971 and February 1988.
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4. In comparing the Flat Price column with Sy 5,,, we observe that the market was rea-
sonably efficient in anticipating the Treasury’s call: in virtually all cases, P ~ Sis5m

when a subsequent call notice was given.??

5. In 14 instances the naive rule recommended calling a bond, while the correct optimal
rule gave an unambiguous “no-call” signal. In 9 of these cases the Treasury did not
in fact call the bond. In cases of two of the bonds involved, the Treasury eventually
called when it should not have, indicating that their earlier, and correct, forbearance

may not have been due to application of the optimal call rule.

6. In a single case, the optimal rule unambiguously recommended calling an at- or below-
par bond which was not callable under the naive rule. In this case, the bond was not

called.

7. In the earlier part of the century, the Treasury issued callable bonds with other than

a five-year terminal call period.

While we cannot justify each Treasury call decision, the overall Treasury call policy appears
consistent with financial principles. This result may be a fortuitous consequence of a naive
strategy. In most instances where calls were made, both the naive and optimal rules lead to
the same decision.

Lastly, returning to Longstaff’s “anomalous” observation of bonds trading above par at
time of call or trading above par and not being called, this is explained by our optimal call
rule. In Tables 3 and 4 we find 86 instances of bonds trading in excess of par on their call
notification dates. The average premium was 1.02% and the maximum 4.67%. Of these,
46 were optimally callable (30 were actually called) with average premiums of 0.97% and a
maximum premium of 4.67%. A few of these bonds were clearly overpriced (P > S), but
most were within a few basis points of their rational prices. In 15 instances, it was optimal
to defer the call even though the bond was trading above par. The average premium in these

15 cases was 0.82% and the maximum 3.31%. The remaining 25 cases involved bonds with

22 A notable exception is the 3%3 of June 1947. When the call notice was given in 1935, Si5., =
101.70, but the market price was quoted at an inflated 104.70.
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threshold volatilities in the normal ranges. These ambiguous cases had average premia of
1.24% and a maximum premium of 4.25%. The 40 cases of premium bonds that should not
clearly be called demonstrate that there is nothing inherently irrational in observing market

prices of currently callable bonds in excess of par.

5 Summary

Using a lognormally distributed interest-rate model, numerically implemented using a bi-
nomial lattice, we have examined the valuation of callable U.S. Treasury securities from
the late 1920s to the present and calculated the volatilities implicit in the pricing of these
instruments. Post-1987, these implied volatilities are typically in the range of 6% to 18%.

We formally derive an optimal bond call policy, taking into account the required prior
notification period of intent to call a Treasury bond. We do this by developing the concept of
the “threshold volatility,” which we use to determine when the option’s time-value has been
driven to zero. Applying this technique, we then examine the optimality of the Treasury’s
observed call policy and conclude on balance that this policy has been reasonably optimal.

We find that the prices of such securities frequently exhibit “irrationalities”— in the
sense that they appear mispriced relative to similar non-callable securities—predominantly
in cases where the option is away-from-the-money forward, precisely those cases wherein the
estimate of implied volatility will be unreliable due to the bond’s low vega. The conflicting
estimates of the frequency of negative option values is shown to result from time-variation
in the frequency of negative option value bonds together with the disparate sample periods
used in previous studies. Another discrepancy arose from differences in the nature of the
violations being measured and the means of counting them.

A second apparent form of “irrational” pricing, bonds trading above their call price,
is shown to be, in fact, frequently rational when the deferred exercise element is properly
accounted for. This resolves the anomaly noted in Longstaff (1992).

Unlike the negative option value determinations, determinations of whether to call or not

are interest rate model-specific. Alternative models of interest rate movements, for instance
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a square-root process, might yield different estimates of implied volatilities and historical
optimal call decisions. More sophisticated models might incorporate a term structure of
volatility, though given the paucity of available callable bonds in most periods, fitting such
highly parameterized models may prove difficult. Future research may investigate the degree
to which call decisions are dependent on the interest-rate model assumed. Indications in this
paper from robustness tests using different estimates of the term structure suggest that

borderline cases will be relatively few.
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Appendix A Descriptions of Term Structure Estimation

A.1 The Unsmoothed Fama-Bliss Method

The Unsmoothed Fama-Bliss method is a minor variant on the term structure estimation
method employed in Fama and Bliss (1987). The underlying idea of the Fama-Bliss method

is as follows:

e Assume the shortest maturity issue is a bill (as is always the case). We can then
compute the value of the term structure at that maturity which would exactly price

the bill.

e We assume that the term structure from maturity 0 to the maturity of the first issue

is constant (flat).

e We then examine the next longest maturity issue. Taking the previously determined
term structure as given, we compute the constant forward rate over the interval from
the previously included maturity to this issue’s maturity, which would result in the

current issue being accurately priced.

e We continue to extended the term structure by adding longer and longer maturity
issues, at each point computing the (constant) forward rate necessary to exactly price

the new issue, holding fixed the previously determined term structure.

e The Unsmoothed Fama-Bliss method achieves a continuous term structure by linearly

interpolating the discount rates between maturities.

A number of filter rules are iteratively applied during the process to exclude issues that
produced large jumps or reversals of the fitted term structure at adjacent maturities—the
logic being that, while most issues are correctly priced, data collection and transcription
procedures occasionally introduce erroneous quotes that do not reflect useful information.
This method necessarily prices the remaining included issues exactly. The reader is referred
to the Fama and Bliss (1987) paper for the full details of the original method, including filter

rules, parameters used, and the iterative selection procedure.
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The Fama-Bliss method reduces quotations to a single value, the mean of the bid and

asked quotes, as is the practice with most methods.

A.1.1 Differences from Previous Work

The application of the Fama-Bliss method in this paper differs from the original in several

minor ways.

e The term structure beyond five years was computed and used.

e Rather than picking off selected values at fixed maturities, as was done in Fama and
Bliss (1987), we use here the full information set produced by the Fama-Bliss estimation
method with discount rates determined at each horizon corresponding to the maturity
of a bond in the sample. This preserves all the information in the prices of the included
issues. When pricing bonds with principal and coupon payments, which may occur at

any point along the term structure, this additional detail is necessary.

e The original Fama-Bliss method forced in the longest available issue. This did not
matter since the term structure was subsequently truncated at 5 years. In this paper,
where we utilize the full term structure, we have chosen to let the longest maturity

bond be included or excluded on the basis of the same filters used for other issues.

A.2 The Nelson-Siegel-Bliss Method

The Nelson-Siegel-Bliss method developed in Bliss (1996) introduces a new estimation method
to fit a modified version of the approximating function developed by Nelson and Siegel (1987).
The Nelson-Siegel-Bliss method brings together several desirable characteristics—accounting
for bid /asked spreads, fitting the discount rate function directly to bond prices, and produc-

ing an asymptotically flat term structure?>—using the following approximating function:

_ ,—m/T1 _ ,—m/T2
r(m) = [y + 1 <1 ¢ ) + By <1€— _ em/m) ) (5)

m/ﬁ m/TQ

BLivingston and Jain (1982) and Siegel and Nelson (1988) demonstrate that this property is
appropriate if forward rates are finite.
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The parameter vector ¢ = {Bo, B1, B2, T1, T2} is then estimated using the following non-

linear, constrained optimization, estimation procedure:
Ny
. 2
mqan > (wie;)?,
i=1

where

PA— P if P> P

¢ =< PP—P, if P, <PP

)

0 otherwise

and the weights, w;, are defined in terms of Macaulay duration, d;, measured in days

1/d;
e Z;-V:tl 1/dj
subject to:
0 < r(mypin)
0 < 7r(oc0)
and

exp [—r(my) me] > exp [=r(mgs1) mes1]  Vme < mmax.

The constraints ensure that the discount function is non-increasing (non-negative forward
rates) and that the short and long ends of the discount rate function are positive. Only the

long-rate constraint proved binding, and then only rarely.
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Appendix B Computing Implied Variances from Callable
Bond Prices

B.1 Iterative Search Procedure

The term structure model used in this paper is the Black and Karasinski (1991) lognormal
process with constant proportional variance, zero mean reversion, and time-varying drift, p,

calibrated to the current term structure:
dr = prdt+ordz.

The process for finding the implied interest-rate volatility for a particular callable bond

has three steps:

1. The term structure of interest rates is estimated from the prices of non-callable bonds

using any of several estimation methods or from the prices of Treasury C-STRIPS.

2. A value for the short-interest-rate volatility is assumed. This volatility is then used to
build a binomial tree of the future evolution of the short rate. This tree is constructed
to match the term structure estimated in the first step. To enhance speed of execution
the tree is constructed using the forward induction method developed by Jamshidian
(1991). The nodes of the tree are placed at horizons corresponding to the cash flows

of the particular bond being priced.

3. The fitted price for the callable bond is next determined by backward induction begin-
ning with the tree nodes at the maturity of the bond. This fitted value is conditional
upon the assumed o, as well as the estimated term structure, bond cash flows, and call

timing, which remain invariant.

A search is conducted over feasible values of o, repeating (2) and (3) at each iteration, until

a o is found for which the fitted price is equal to the observed price for that bond.
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B.2 Matching the Term Structure in a No-Arbitrage Recombining
Interest-Rate Lattice

4 is constructed for a given value of o to

In Step (2) above the short-rate tree, ry;,?
guarantee that three conditions are met:
At each node (t, j),

e The expected change in the natural logarithm of the short rate is the same regardless

of the actual state j at time ¢ (though it will vary for different time horizons, t).

e The variance of the change in the logarithm of the short rate is equal to o regardless

of the actual state 5 or time ¢.
And lastly:

e At each horizon t the “median” interest rate w, is selected so the price of a zero-coupon

bond maturing at the horizon will conform to the pre-specified discount function.

The construction of the tree guarantees that the first two conditions are met. These condi-
tions also ensure that the process underlying the short rate is Markovian.

A generic node of the binomial tree looks like:

| < A - |
t t+1
_ i+1) o VA
L Teal el = W €UT Jo VA
2
thzutej”\/K )
_ i—1)ov/A
7’t+1,j—1:Ut+1€(] Jo VA

The expected change in the short rate and its variance are:?

E(Alnrgy |r) = In <ut+1>;

Uy

24The tree is constructed for {(t,5) : ¢t =0,1,...,T;j = t,t —2,...,—t}, where ¢ indexes the
time horizons, j indexes the possible states at that horizon, and T corresponds to the maturity of
the callable bond being priced.

25We are cognizant of the fact that the time index is more properly incremented by A than by
unity. For example, the expectation in the text should be written In (u; A /u¢). We maintain the
integer increment for simplicity of notation and understanding in this exposition.
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Var (Alnrgy |r) = o*A.

Notice that £ (Alnryq | r¢) is independent of j and Var (Alnryyq | r4) is independent of
both j and t.
For valuing coupon bonds the normal interval of interest A corresponds to the semi-

annual coupon payment dates.?

B.3 A Numerical Example

A simple numerical example will demonstrate the lattice, or “tree,” approach to the valuation
of callable bonds. Suppose A = 1 year, and the present value factors have been calculated

to be

PV, = 0.9561,
PV, = 0.9028.

Thus, 1 = In(1/0.9561) = 4.489%. Note that the forward rate here is —In(.9561/.9028) =
5.736%. Assume further that o = 9%.
Using a volatility of 9%, the interest-rate tree specifies that the short-term rate moves in

a binomial fashion:

26We ignore slight differences in the length of time between coupons arising from variation in the
number of days in a half year and the adjustment for coupon payment dates that fall on weekends.
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Today Time 1 Time 2

Uy €2X0:09
/
g €009
/ N\
4.489% U
N\ /
g =009
N\
Uy €=2X009

We seek to find a parameter, designated w;, such that the price of $100 in two years’
time conforms to the current yield curve’s implied value of $90.28. The price behavior of the

two-year zero-coupon bond is:

Today Time 1 Time 2
100 exp{—u1>®} — 100
p <
100 exp{ —ue *®} — 100
The no-arbitrage properties of the model imply that the price of the zero-coupon bond must

equal the discounted expected value, using probabilities of 0.5,% of the cash flows next

period. In other words, P, must satisfy

1 1
P2 — 100 6_0'0459 <§ exp{_u160.09} + 5 eXp{—u16_0'09}> )

2TThe choice of risk neutral probability of {0.5,0.5} is innocuous in this application. Any other
valid pair of probabilities could be used, and the values of u;’s would adjust. The resulting tree
would price securities identically to the tree using {0.5,0.5}.
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Since we know P, = 90.28 from the current yield curve, we can solve for u; = 5.714%. (Note
that this u; is approximately equal to the forward rate, 5.36%.) This procedure can then be
repeated to derive the interest-rate tree out to 30 or more years.

Suppose we now seek to find the no-arbitrage value of a two-year, 6% bond callable at

par in one year’s time. The interest-rate tree is

5.714% x %% = 6.252%

4.59%<

5.714% x 7909 = 5.222%
The price behavior of the two-year callable 6% coupon bond is:

Today Year 1 Year 2

6+ min {106 %2 100} =6+ 9958 — 106
g
N\
6 + min {1066_0'05222, 100} =6+ 100
The bond is called at Year 1 if rates decline to 5.222%. Hence, the current bond value B is

given by

1 1
B = 700459 <§105.58 + 5106) = 101.04.

With the current term structure, the value of a non-callable two-year 6% bond is given

by the present value of the cash flows:
6 x P+ 106 x P, =6 x 0.9561 4+ 106 x 0.9028 = 101.43.

Thus, the value of the one-year call is 101.43 — 101.04 = 0.39.
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B.4 Accounting for the Length of the First Time Interval in the
Construction of the Interest-Rate Tree

The time to the first remaining coupon will rarely equal six months,?® so we must con-
struct the tree with a short first time interval, Ag.

Because of the short first interval, the two possible ¢ = 1 interest rates are “too close
together” and the tree must be adjusted to ensure that the variance of changes from ¢ = 1

to t = 2 equals o. This is done by using a trinomial tree over that interval as follows:

|~—Ag— |~ A -

| < A |
t=0 1 2 3

1
/
_ 20V A
ﬂ-; 7/.272 = uze J\/_ \1\
— oV A
1 — oo / 1 T3 = use va
3 .1 = u e . /
/ ) 71—0
To \%\ T2,0 = U2 1
— 70
\ i TS,—l = U3€_U
2
T™—2 /
T2772 = UQGQG\/Z\l\
ry_g = uge VA

The binomial sections of the tree have only one degree of freedom, u;, and this is used
to match the term structure. Over the second interval we have five degrees of freedom,
{ug, 75, mo, 5, Mo }, and five conditions to meet: that the expected changes in log-interest
rate are identical whether we begin at r1; or r _;, that the variance of changes in the log-
interest rate is likewise invariant and equal to o, and finally that the tree through ¢t = 2

correctly prices a (A + A)-period zero-coupon bond.

28This arises because most Treasury notes and bonds mature on the 15th of the month and our
quotes are all month-end quotes. For this reason % < Ap < 5% months while A = 6 months.
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Table 1a — Summary Statistics for Implied Volatilities

Data Period: January 1987 — December 1995

Intermediate Maturities (5 — 20 Years) Long Maturities (> 20 Years)
Estimation Mean Standard N Mean Standard N
Method Implied Vol Deviation  (months) | Implied Vol Deviation (months)
Nelson-Siegel-Bliss 9.15% 3.77% 105 17.82% 4.88% 93
Fama-Bliss 9.02% 3.93% 105 16.04% 3.65% 93
C-STRIPS 9.09% 4.08% 87 12.29% 3.65% 81
Table 1b — Correlation Matrices for Implied Volatilities
Data Period: 1987 — 1995
Intermediate Maturities (5 — 20 Years) Long Maturities (> 20 Years)
Estimation Nelson-Siegel- Fama- Nelson-Siegel- Fama-
Method Bliss Bliss C-STRIPS Bliss Bliss C-STRIPS
Nelson-Siegel-Bliss 1.000 1.000
Fama-Bliss 0.970 1.000 0.661 1.000
C-STRIPS 0.852 0.853 1.000 0.626 0.621 1.000

Notes:

1. Statistics are computed using the monthly vega-weighted implied volatilities,

2. Using observations with “good” implied volatilities and vega > 0.02.



Table 2 — Breakdown of Implied Volatility Estimates by Moneyness, Maturity, and Vega
Dates: January 1985 — December 1995

Implied Maturities Included

Volatilities | Moneyness | Short Medium Long All || Vega Frequency

Neg. Out 0 236 23 259 || Low 658
At 5 281 121 407 || Medium 102
In 0 10 88 98 || High 4
Total 5 527 232 764 764

Good Out 7 49 4 60 || Low 78
At 27 528 59 614 || Medium 801
In 0 612 796 1408 || High 1203
Total 34 1189 859 2082 2082

Huge Out 0 0 0 0 || Low 50
At 3 0 0 3 | Medium 2
In 0 0 49 49 || High 0
Total 3 0 49 52 52

1. Fama-Bliss term structure estimates were used to estimate the implied volatilities and
vegas.

2. “Implied Volatilities” refers to whether the implied volatility could be estimated.

e “Huge” indicates that the implied volatility exceeded 100% and was deemed un-
reasonably large.

e “Good” indicates that an implied volatility was found in the range [0,100%].

e “Neg.” indicates that the option value was negative and the implied volatility
could not be computed.

3. “Moneyness” refers to the forward price of the equivalent non-callable bond as of the
call date. For “at-the-money” bonds: 95 < FP < 105. “In-” and “out-of-the-money”
bonds have forward prices above and below that range respectively.

4. “Maturities” are measured as of the notification date. “Medium” maturities are defined
by: 5 years < T, < 20 years.

5. “Vega” refers to OV /0o and is measured at the implied volatility for “good” implied
volatilities, at zero volatility for negative option value bonds, and at 100% volatility
for “huge” implied volatilities. Medium vegas are in the range [2%,10%)].



Table 3 — Analysis of Threshold Volatilities

Dates: March 1988 — December 1995

Term Structure Estimation Technique Used

Quote T, Flat C-STRIPS Fama-Bliss Nelson-Siegel-Bliss

Date Price | FPys5m  Sism L or [ FPysm  Sism L or | FPysm  Sism L or
7%5 of Aug’88-93
880331 5.37 97.16 96.40  100.38 96.87  Neg. 96.68  100.37 97.13  Neg. 96.60  100.49 97.17  Neg.
880930 4.88  95.38 95.25 99.88  95.26  Neg. 95.63 99.83  95.58  Neg. 95.53 99.89  95.55  Neg.
890331 4.37 92.38 93.08 99.26  92.58  Neg. 93.15 99.28  92.67  Neg. 93.29 99.34 92.85  Neg.
890929 3.88 96.75 97.55 99.69 97.32  Neg. 97.21 99.63  96.92 Neg. 97.29 99.67  97.04  Neg.
900330 3.38 96.41 96.51 99.76  96.38  Neg. 96.73 99.74  96.56  Neg. 96.78 99.77  96.64  Neg.
900928 2.88  98.25 98.04 99.95 98.05  Neg. 98.32 99.95 98.31 Neg. 98.17 99.97 98.19  Neg.
910328 2.38 100.50 | 100.02 100.60 100.62 7.5% | 100.18 100.56 100.74 9.7% | 100.18 100.56 100.73 10.3%
910930 1.88 101.41 | 101.85 100.79 102.61 66.2% | 101.86 100.77 102.59 66.2% | 101.90 100.79 102.66 67.5%
Called Feb’92 Call was optimal Call was optimal Call was optimal
7s of May’93-98
921231 5.37 100.87 | 102.37 101.37 103.72 20.3% | 102.15 101.31 103.44 19.4% | 102.37 101.38 103.72 19.8%
Called May’93 Call was optimal Call was optimal Call was optimal
81s of May’94-99
931231 5.37 101.88 | 113.25 101.96 115.06 62.8% | 113.26 101.88 114.98 63.1% | 113.34 101.94 115.12 63.1%
Called May’94 Call was optimal Call was optimal Call was optimal
7%5 of Feb’1995-2000
940930 5.38 100.84 | 101.67 100.97 102.61 11.1% | 101.58 100.92 102.46 10.2% | 101.55 100.99 102.51 9.8%
Called Feb’95 Call was optimal Call was optimal Call was optimal
83s of Aug’1995-2000
950331 5.37 100.69 | 105.11 100.94 105.94 20.0% | 104.84 100.86 105.59 19.1% | 104.92 100.88 105.69 19.5%
Called Feb’96 Call was optimal Call was optimal Call was optimal
Notes:
T = Time to maturity, in years Flat Price = Market price, excluding accrued interest
FP45.,,» = Forward price of L on next call date date Sism = Present value of otherwise equivalent non-callable

bond which matures in 4.5 months

L = Present value of otherwise equivalent non-callable o = Threshold volatility; “Neg” means negative option

bond to T},
Appendix B. describes the term structure estimation techniques,

value



Table 4 — Analysis of Threshold Volatilities
Dates: January 1932 — October 1971

Quote T Flat ~ Fama-Bliss Term Structure Estimates Optimal  When
Bond ID Date Price  FP4ys5.,  Sism L or to Call?  Called Evaluation

3%5 of Mar’30-32 290830 2.54  97.50 99.93 99.41  99.34  Negative No
300228  2.05  99.56 99.90 99.97  99.88  Negative No
300829  1.55 100.72  100.53  100.05 100.58 70.0% Yes
310228 1.05 100.06 101.51 100.08 101.59 > 100% Yes Mar’31  Suboptimal (Late)

3%5 of Sep’30-32 300228 2.55  99.56 99.90 99.95 99.85  Negative No
300829  2.05 100.72  100.70  100.05 100.75 48.7% Yes
310228 1.55 100.06 101.68 100.08 101.76 > 100% Yes Mar’31  Suboptimal (Late)

3%5 of Dec’30-32 300529 2.55 100.37 100.40 100.55 100.95 15.0% ?
301129  2.05 101.03 100.87 100.01 100.88 58.1% Yes
310529 1.55 101.53 102.13 100.12 102.25 > 100% Yes
311130 1.04 100.03 100.89 100.06 100.95 > 100% Yes Dec’31  Suboptimal (Late)

4s of Nov’27-42 270430 15.54 100.03 109.77 100.24 109.83 11.2% ?
271031 15.04 99.81 110.74 100.04 110.77 17.3% ? May’28 Optimal
3%5 of Mar’41-43 401031 2.37 102.38 106.42 101.20 107.62 > 100% Yes Mar’41 Optimal

e “Optimal to Call?”
— “Yes” indicates (1) the threshold volatility, o, is higher than normal levels of volatility observed in the market, indicating that the time
value of the option has eroded to zero, and (2) the forward price is in the money, i.e. FPy5,, > 100.
— “No” indicates either (1) or is low relative to normal and therefore that the option time has value remaining; or that (2) FP4.5,, < 100.

— “?” indicates op is comparable to market levels and that calling or not is a matter of indifference.
e “Evaluation”

— “Optimal” indicates either
* the call was made at the first call date at which it was clearly indicated by the forward price and high threshold volatility, or
* the bond was clearly not optimal call at each notification date and the call never occurred.

— “Suboptimal (Late)” indicates that the call was rational but should have occurred at another, earlier date.

— “Irrational” indicates that the bond was called either when the forward price was not in-the-money or when the time value remaining
in the option was high, as indicated by a low threshold volatility.



Table 4 — Analysis of Threshold Volatilities (Cont’d)

Dates: January 1932 — October 1971

Quote T Flat  Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price  FP4ys5,, Sism L or to Call?  Called Evaluation

3%5 of Jun’40-43 400131 3.37 102.00 109.02 101.21 110.22 > 100% Yes Jun’40 Optimal
Sis of Apr'44-46 431130 2.38 101.05 104.34 100.97 105.31 > 100% Yes Apr’44 Optimal
3%8 of Jun’43-47 430130 4.38 101.06 108.53 101.15 109.67 > 100% Yes Jun’43 Optimal
3%5 of Jun’32-47 320130 15.38 94.47 98.54  100.28 98.83  Negative No

320730 14.88 101.13 103.42 101.19 104.61 7.7% No

330131 14.37 103.31 106.80 101.29 108.09 17.3% No

330731 13.87 102.63 107.35 101.24 108.59 16.4% No

340131 13.37 101.31 104.56 101.13 105.69 8.4% No

340731 12.87 103.94 108.78 101.29 110.07 26.4% ?

350131 12.37 104.25 111.81 101.24 113.05 34.4% ? Jun’35 Optimal
4s of Jun’32-47 320130 15.38 95.00 104.26 100.46 104.68 4.8% No

320730 14.88 100.22 109.20 101.38 110.56 16.4% No

330131 14.37 101.47 112,56 101.47 114.03 26.4% ?

330731 13.87 101.00 112,93 101.43 114.35 25.3% ? Jun’35 Optimalx
2%5 of Sep’45-47 450430 2.38 100.94 103.28 100.77 104.04 > 100% Yes Sep’45 Optimal
3s of Jun’46-48 460131 2.37 101.00 104.29 100.83 105.11 > 100% Yes Jun’46 Optimal
Sés of Jun’46-49 460131 3.37 101.03 106.93 100.88 107.79 > 100% Yes Jun’46 Optimal
2s of Mar’48-50 471031 2.37 100.36 101.87 100.43 102.29 > 100% Yes

480430 1.88 101.25 100.89 100.39 101.28 > 100% Yes

481029 1.38 100.78 100.55 100.35 100.89 > 100% Yes

490429 0.88 100.69 100.39 100.32 100.70 > 100% Yes *% Suboptimal (Late)
2s of Dec’48-50 480730 2.38 100.44 101.17 100.38 101.55 92.5% Yes Dec’48 Optimal

x: The 4s of Jun’32-47 were called two years after the last date for which we have price quotations.

x+: The 2s of Mar’48-50 were first partially called in Mar’48.



Table 4 — Analysis of Threshold Volatilities (Cont’d)

Dates: January 1932 — October 1971

Quote T, Flat  Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price  FPys5,  Sism L or to Call?  Called Evaluation

2%5 of Mar’48-51 471031 3.37 100.69 105.00 100.71 105.69 > 100% Yes Mar’48 Optimal
2s of Jun’49-51 490131 2.37 100.31 101.30 100.31 101.60 97.5% Yes Jun’49 Optimal
2s of Sep’49-51 490429 2.38 100.30 101.47 100.32 101.79 > 100% Yes Sep’49 Optimal
2s of Dec’49-51 490729 2.38 100.44 101.52 100.40 101.91 > 100% Yes Dec’49 Optimal
2s of Mar’50-52 491031 2.37 100.36 101.64 100.35 101.99 > 100% Yes Mar’50 Optimal
2s of Sep’50-52 500428 2.38 100.36 101.17 100.34 101.50 90.0% Yes Sep’50 Optimal
2%5 of Sep’50-52 500428 2.38 100.59 102.15 100.53 102.67 > 100% Yes Sep’50 Optimal
3%3 of Dec’49-52 490729 3.38 100.92 105.48 100.82 106.28 > 100% Yes Dec’49 Optimal
2s of Sep’51-53 510430 2.38 100.00 101.51 100.21 101.72 > 100% Yes

511031 1.87 100.09 100.10 100.17 100.26 25.0% ?

520430 1.38 100.19 100.18 100.17 100.35 75.0% Yes

521031 0.87 100.02 100.03 100.09 100.12 > 100% Yes Never  Suboptimal (Late)
2%5 of Dec’51-53 510731 2.37 100.44 100.64 100.31 100.94 39.4% ? Dec’51 Optimal
2%3 of Dec’49-53 490729 4.38 100.69 104.76 100.59 105.33 93.7% Yes Dec’49 Optimal
2%3 of Mar’52-54 511031 2.37 100.28 101.07 100.35 101.41 62.5% Yes Mar’52 Optimal
2s of Jun’52-54 520131 2.37 100.00 100.01 100.13 100.14 11.2% No

520731 1.87 99.84 99.88  100.07 99.95 Negative No

530130 1.38 99.78 99.84  100.09 99.93  Negative No

530731 0.87 99.75 99.76 99.98 99.74  Negative No Never Optimal
2%5 of Jun’51-54 510131 3.37 100.59 103.09 100.49 103.56  82.50% Yes Jun’51 Optimal



Table 4 — Analysis of Threshold Volatilities (Cont’d)

Dates: January 1932 — October 1971

Quote T Flat  Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price  FP4ys5.,  Sism L or to Call?  Called Evaluation

2s of Dec’44-54 450131 9.87 101.28 110.36  100.41 110.75 59.1% ?

450731 9.37 102.80 110.38 100.45 110.80 66.2% ?

460131 8.87 104.67 110.74 100.46 111.17 89.4% Yes

460731 8.37 103.78 109.34 100.42 109.74 81.2% Yes

470131 7.87 103.00 106.77 100.44 107.19 53.0% ?

470731  7.37 102.84 106.85 100.47 107.30 63.1% ?

480130 6.88 101.13 103.79 100.37 104.15 35.2% ?

480730 6.38 101.19 104.10 100.38 104.46 41.2% ?

490131 5.87 101.56 103.94 100.31 104.23 45.9% ?

490729 5.38 102.33 103.45 100.40 103.84 51.6% Yes

500131 4.87 101.84 103.01 100.33 103.33 51.6% Yes

500731 4.37 10148 101.96 100.31 102.27 43.1% ?

510131 3.87 100.62 100.99 100.21 101.19 26.2% ?

510731 3.37 100.09 100.16 100.21 100.37 8.1% ?

520131 2.87  99.97 99.96  100.13 100.09 0.0% No

520731  2.37  99.80 99.80  100.07 99.87  Negative No

530130 1.88  99.66 99.65  100.09 99.74  Negative No

530731 1.37  99.47 99.60 99.98  99.59  Negative No

540129 0.88 100.72 100.28 100.54 100.82 > 100% Yes Never  Suboptimal (Late)
4s of Dec’44-54 440731 10.37 101.36  129.98 101.26 131.17 > 100% Yes Dec’44 Optimal
2s of Jun’53-55 530130 2.38 100.13  99.52 100.09  99.61  Negative No Jun’53 Irrational
Qis of Jun’52-55 520131 3.37 100.17 100.58 100.23 100.80 21.2% ?

520731 2.87 100.09 100.28 100.16 100.45 16.2% ?

530130 2.38  99.97  100.01 100.18 100.19 6.2% ?

530731 1.87  99.69 99.77  100.07 99.84  Negative No

540129 1.38 100.44 100.63 100.64 101.26 > 100% Yes Jun’54 Optimal
3s of Sep’51-55 510430 4.38 100.68 106.90 100.59 10745 > 100% Yes Sep’51 Optimal



Table 4 — Analysis of Threshold Volatilities (Cont’d)

Dates: January 1932 — October 1971

Quote T, Flat  Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price  FPssm  Sism L or to Call?  Called Evaluation

2s of Dec’51-55 510731 4.37 100.03 100.19 100.21 100.40 5.6% ?

520131 3.87  99.91 99.70  100.13  99.84  Negative No

520731  3.37  99.78 99.52  100.07 99.60  Negative No

530130 2.88  99.38 99.45  100.09 99.54  Negative No

530731  2.37  99.06 99.16 99.98  99.14  Negative No

540129 1.88 100.69 100.52 100.54 101.07 72.5% Yes

540730 1.38 100.69 101.05 100.67 101.72 > 100% Yes Dec’54  Suboptimal (Late)
3%5 of Mar’46-56 451031 10.37 101.13 128.94 101.10 129.95 > 100% Yes Mar’46 Optimal
2%5 of Jun’54-56 540129 2.38 100.47 101.15 100.64 101.79 77.5% Yes Jun’54 Optimal
2%3 of Mar’56-58 551031 2.37  99.94  100.23 100.20 100.43 0.0% No

560430 1.88  98.69 98.93 99.89  98.82  Negative No

561031 1.37  98.97 99.29 99.82  99.12  Negative No

570430 0.88  99.28 99.32 99.81  99.14  Negative No Never Optimal
2%5 of Mar’57-59 561031 2.37  97.81 98.17 99.78  97.96  Negative No

570430 1.88 97.91 98.50 99.76  98.28  Negative No

571031 1.37  98.00 98.78 99.46  98.25  Negative No

580430 0.88 100.37 100.47 100.47 100.94 > 100% Yes Sep’58 Optimal
2%5 of Sep’56-59 560430 3.38 100.19  99.22 99.98  99.20 Negative No Sep’56 Irrational
2%3 of Mar’55-60 541029 5.38 100.84 103.95 100.76 104.70 47.3% ? Mar’s55 Optimal
2%8 of Jun’58-63 580131 5.37 100.38  99.26  100.37 99.63  Negative No Jun’58 Irrational
2%5 of Dec’60-65 600729 5.38 100.19  96.81  100.05 96.89  Negative No

610131 4.87 10047 95.86  100.09 95.99  Negative No

610731 4.37 100.50 96.34  100.16 96.53  Negative No

620131 3.87 100.34  95.91 99.97 9593  Negative No

620731 3.37 100.31  97.13 99.97  97.13  Negative No Dec’62 Irrational



Table 4 — Analysis of Threshold Volatilities (Cont’d)
Dates: January 1932 — October 1971

Quote T, Flat Fama-Bliss Term Structure Estimates Optimal When

Bond ID Date Price FP4ss5,  Sism L or to Call? Called Evaluation
2%5 of Sep’67-72 670428 5.38 91.00  90.19 99.46 89.79  Negative No
671031 4.87 88.13  87.46 99.15 86.83  Negative No
680430 4.38 88.88  88.46 98.84 87.54  Negative No
681031 3.87 91.63  91.26 98.87 90.31 Negative No
690430 3.38 90.56  90.73 98.64 89.58  Negative No
691031 2.87 87.56  89.28 98.13 87.71 Negative No
700430 2.38 88.72  90.17 98.29 88.71 Negative No
701030 1.88 92.88  93.98 98.73 92.84  Negative No
710430 1.38 96.81 97.46 99.42 96.92  Negative No

711029 0.88 98.31  98.95 99.36 98.33  Negative No Never Optimal



Term to Maturity in Years
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Figure 1a: Maturities of Available Callable Bond Quotations
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Figure 1b: Maturities of Usable Callable Bond Quotations
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Vega-Weighted Implied Volatility

Figure 2a: Implied Volatilities, 1926 - 1955

Minimum Vega: 0.02; Minimum Oservations/Month: 1
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Figure 2b: Implied Volatilities, 1978 - 1995

Minimum Vega: 0.02; Minimum Observations/Month: 1
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Number of Observations per Year
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Figure 3: Classification of Callable Bonds by Implied Volatilities

(Using Fama-Bliss Term Structures)
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