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A Discrete-Time Two-Factor Model for Pricing Bonds and Interest

Rate Derivatives under Random Volatility

1 Introduction

Extending the work of Vasicek (1977), Cox, Ingersoll and Ross (1985, henceforth CIR)
and Heath-Jarrow and Morton (1992, henceforth HIM), researchers have developed a
plethora of models for the term structure of interest rates that often involves pricing
bonds and/or interest rate derivatives. One class of models often takes the short
rate to be the state variable and then prices bonds and bond options by deriving the
risk-neutral dynamics of the short rate. Since the short rate is not a traded asset, a
parameter related to the interest rate risk premium appears in the formulae. On the
other hand, the HJM approach takes the entire yield curve (or equivalently the set of
forward rates or the bond prices) to be the state variable and derives arbitrage-free
prices of option on bonds such that any functional specification for the risk premium
is not required to compute option prices because the various bonds are traded assets.
Also the HIM approach is able to match the existing term structure by default as the
term structure is itself the state variable.

It is well known that the dynamics of the term structure cannot be captured by
one factor (see Litterman and Scheinkman (1991)). In fact, Dybvig (1997) emphasizes
the existence of a second factor related to the volatility of interest rates that may not
have any major impact on the prices of the spot bonds, but may be very important
for bond options. Andersen and Lund (1996) also find that a factor which helps
explain the curvature of the yield curve and is, in fact, closely related to the volatility
of the short rate. Unlike the HJM approach, the short rate based approaches can
easily accommodate a second non-traded state variable such as volatility and maintain
analytical as well as numerical tractability. In fact, Longstaff and Schwartz (1992,

henceforth LS) and Chen and Scott (1992, 1994, henceforth CS) develop continuous-



time two-factor models along the lines of CIR (1985) that can incorporate random
volatility in the evolution of the short rate and offer analytical solutions for bonds
and other interest rate derivatives.

Although the continuous-time models offer valuable insights, they are hard to
implement for pricing and hedging bonds and bond options with volatility as the
second factor. This is simply because volatility is unobservable in these continuous-
time stochastic volatility models and it is not possible to filter a continuous volatility
variable from discrete observations of interest rates or bond prices.! An unobservable
volatility implies that the spot volatility at time ¢ which is needed to price bonds
and bond options is not known at the time such a price needs to be calculated and
one is constrained to use the spot volatility inferred from a previous period that
does not necessarily reflect the current information in the term structure.?. The non-
observability of volatility also precludes the use of the information in the time series
of interest rate/bond prices for parameter estimation; instead one is constrained to
use the information only in a cross-section of bond/option prices.

While GARCH volatility processes have been very popular to describe the dynam-
ics of volatility in equity and currency markets (see Bollerslev et al. (1992)), Brenner,
Harjes and Kroner (1996), Koedjik et al. (1994) and others have shown that certain
GARCH processes can also capture the volatility dynamics of interest rates; also it
is possible to allow correlation between interest rates and interest rate volatility in
the GARCH models. As shown in Foster and Neslson (1994), GARCH models are
closely related to the continuous time stochastic volatility models because discrete-

time GARCH processes converge to continuous-time stochastic volatility processes as

!One could possibly use an extended Kalman filter (an approximation to the regular Kalman
filter) to get the spot volatility in continuous time models as in Melino and Turnbull (1990). Aside
from being computationally intensive, the volatility obtained therein is only an approximation and
options prices can be very sensitive to errors in volatility. The same is true of the efficient methods
of moments of Gallant and Tauchen (1996).

20One can calibrate the continuous-time stochastic volatility models to market data on op-
tions/bonds and therefore get an estimate of the volatility at an earlier time, say ¢t — 1, which
is different from the volatility at time ¢



the time/trading interval shrinks. However, a discrete-time volatility model based on
GARCH has the advantage that volatility is an observable function of the history of
interest rates/bond prices. Until now though there did not exist explicit solutions for
bond prices and prices of various interest rate derivatives under a GARCH process.?

This paper develops a discrete time two-factor model of interest rates with an-
alytical solutions for bonds and other interest rate derivatives in which the second
factor is a random volatility following a GARCH process while the first factor is the
mean reverting short rate and the two factors are correlated. Besides bond and bond
futures, the model generates explicit analytical solutions for prices of options on dis-
count bonds, discount bond futures as well as other interest rate derivatives such as
caps, floors, average rate options etc. The advantage of this model besides its analyt-
ical tractability is that unlike continuous-time stochastic volatility models, volatility
is easily estimated from the discrete observations of the short rate. Thus the spot
volatility that is input to the options formula is known and can be updated on the ba-
sis of the most current information. Therefore, in terms of parameter estimation, our
model enables the simultaneous use of the implied information in the cross-section of
bond/bond-option prices and the historical information in the evolution of the inter-
est rate. Moreover, for derivatives like average rate options, our discrete-time model
has the practical advantage that the average rate can be explictly computed because
in practice, the payoff at maturity is based on the average of rates observed at discrete
time intervals and not any continuously observed rate as assumed in continuous time
models.

Calibrating our model to the yield curve (eight different maturities) for a few
randomly chosen two week intervals in the period 1990-1996, we find that the two-
factor version does not improve (statistically and economically) upon the nested one

factor model (which is a discrete-time version of the Vasicek model) in terms of pricing

3Duan (1996) resorts to a computationally intensive Monte Carlo procedure for valuing bonds
and bond options under GARCH.



the cross-section of spot bonds. This occurs despite the fact that the one-factor is
rejected in favor of the two factor model in explaining the time series behavior of a
chosen short rate (computed from the three month T-bill yields). Also this particular
conclusion is robust to the length of the interval used to sample the term structure.
However, given option prices (on discount bonds) from our two-factor model, the
implied volatilities from the Black model (which is a one-factor model and widely
used in the market place) exhibit the smirk/skew feature. These option prices are
generated not by conjectured parameter estimates, but actual parameter estimates

obtained by calibrating the model to the observed yield curve.

2 Model

We assume that the short rate, r;, which is the interest rate applicable on a loan at
time t, that is to be repaid at time, ¢t + A, follows the following process over time

steps of length A.

Tipn = o+ pre + AN + g nzien (1)
hein = wt Bhi+alz —yy/h)? (2)

where 2, is a standard normal and h;, is the variance of r o — 7, conditional on
the information at time {. The dynamics of h; is similar to the asymmetric GARCH
processes, namely, NGARCH and VGARCH that were used by Engle and Ng (1993.
A non-zero vy allows correlation between the level of interest rates and the conditional
variance. Note that h;a is known as of time ¢ given the history of r, until ¢. In
particular, in the above system of equations, we have a mean reverting short rate
with GARCH volatility and the level of the short rate is itself a function of the
volatility. Ignoring the A term in (1) , it can be roughly thought of as a discrete-
time counterpart of the Vasicek (1977) model, augmented with GARCH volatility. In

fact, if we restrict h; to be constant, we do have the discrete-time counterpart of the
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continuous-time Vasicek model. Note that we can easily drop A from (1) and still
generate all the results of this paper. Similarly we can include r; in the RHS of (2)
to reflect that the level of the variance depends on the level of interest rates and still
get the analytical solutions.

Following Heston and Nandi (1999) (who model the convergence to continuous-
time along the lines of Foster and Nelson (1994)) it is easy show that the continuous-

time limit of (1) and (2) as A shrinks to zero is

d?"t = (,UO + ,UT’I} + A ’Ut) dt + \/U_tth (3)
dUt = /‘i(g — 'Ut)dt + U\/?)_tth (4)

where, pf = iy — 1, a(A) = 10%2A%, B(A) = 0, w(A) = (k0 — 10 A?, and y(A) =
% —Zand A(A) = X and W, is a Wiener process. Note that unlike the continuous-
time limit of many GARCH processes, the same Wiener process drives the short rate
and its volatility. It can be verified that the continuous-time models lends itself to an
affine structure in that the logarithm of a bond yield is affine in r, and v;. As a result,
one can work out analytical solutions for the continuous-time model also. However,
this paper will concentrate only on the discrete-time model as parameter estimation
and therefore model implementaion is much easier under the discrete-time setup.
From now on, working with the discrete-time model, we will set A = 1. Let
the time ¢ price of a discount bond that matures at 7' be P(t,T). As is the case,
we will work under the risk-neutral distribution to evaluate bond and bond option
prices. It can be shown (see the appendix) that under the risk-neutral distribution,
2 is replaced by z{, such that 2z} = z; — 1v/hs11 is a standard normal under the risk-

neutral distribution, where 7 is a constant. In other words, the risk neutral dynamics

of r, and h, are given by

Teer = o+ mare + N R+ he 2l (5)



hiv1 = W+ﬁht+a(z7?—7*\/h7t)2 (6)

where \* = A+ 17, v* = v —n. Consider the price of a zero coupon bond at t that
expires at t+2 i.e., P(t,t + 2). It is true by simple definition that,

P(t,t+2) = exp(—rEl(exp(—ri)))

= exp(— (po + (1 + Dre + (A" + 0.5) g 41)) (7)

where /() is the conditional expectation under the risk-neutral distribution.

Thus the yield of the two period bond is § (1o + (1 + 1)ry + (A* 4 0.5)hy41). Note
that the bond yield is affine in the state variables r; and h;y 1. In particular, we can
similarly calculate the yield on a three period bond by using iterated conditional
expectation and show that the three period yield is also affine in the state variables.
The affine nature of the bond yield in the state variables, r; and h;, imply that we

can write the price of the a bond with T-t periods to maturity as
P(t7 T) - eXp(A<ta T) + B(ta T>Tt + C(t7 T>ht+1> <8>

as in Cox-Ingersoll-Ross (1985), Heston (1990), Duffie and Kan (1996) and many
others. As r; and hy,1 are known as of time ¢, it remains to solve for the coefficients
A(t,T), B(t,T) and C(t,T) in terms of the model parameters. These coefficients
can be solved recursively from a boundary condition. For the boundary condition,

consider the price of a bond (that will mature at T') at T — 2.
P(T - 2a T) = eXp (A<T - 27 T) + B(T - 2a T>TT—2 + C(T - 2a T)hT—l) <9>

But, following (7), it is also true that P(T'—2,T") = exp(— (pto + (g1 + 1)rp—o + (A* + 0.5)hy_1)).
Equating the two expressions for P(T' — 2,T) and matching coefficients on the state



variables and the constant, we get the following boundary conditions,

AT =-2T) = —po (10)
BT =2,T) = —(u+1) (11)
O(T—2,T) = —(\ +0.5) (12)

Now we will derive the backward recursion formula for the coefficients A(t,T), B(t,T)
and C(t,T) given the above boundary conditions. Since the expected one-period
appreciation in the price of a bond under the risk-neutral distribution is the short

rate,

P, T) = exp(—r)E{[P{t+1,T)]
= exp(—ry) Ef lexp(A(t+ 1,T)+ B(t + 1,T)ry

+ C@t+ 1,T)hio)] (13)

Substituting the risk-neutralized dynamics for r;,; and h;. 1, and doing the algebra

as shown in the appendix, we get that,

Alt,T) = A+ 1,T)+pBt+1,T7)+wC({t+1,T)

_ %log(l—QaC(tJrl,T)) (14)
BUT) = mB(t+1,T)—1 (15)

C(t,T) = XNB(+1,T)+pC{+1,T)

B(t+1,T)2 * %2
v oaC(t+1,T) | 20D 27BUALT) +7
’ 1—2aC(t+1,7)

(16)

In other words, starting from the boundary conditions, (10), (11) and (12), we have
to do a simple backward recursion using (14), (15) and (16) to find the coefficients
A(t,T), B(t,T) and C(t,T) and once we have these, then P(t,T) is given by (8).

The next section describes how one can calculate bond futures prices in this model.



3 Bond Futures Prices

Let F(t,7,T) be the time t price of a futures contract on a discount bond such that
the futures contract expires at 7 and the discount bond expires at T, where T > 7.

As with the spot bond, let the futures price be given by*

F(t,7,T) = exp(As(t;7,T) + Be(t; 7, T)ry + Cr(t; 7, T) hyya) (17)

As with the bond price, the coefficients, A¢(t;7,T), Bs(t;7,T) and C;(t;7,T) are
derived recursively from a boundary condition. To derive the boundary condition,

note that futures price equal the spot price at the maturity of the futures contract.

Therefore, F'(1,7,T) = P(r,T). This implies the following;:

Ag(r;1,T) = A(r,T) (18)
By(r;7,T) = B(1,T) (19)
Ce(r;,T) = C(1,7) (20)

where A(7,T), B(7,T) and C(7,T) are known from the recursions needed to calculate
the price of the discount bond that matures at T'.
It is a well known result that futures prices are martingales under a martingale

measure (see Cox, Ingersoll and Ross (1981)). Thus

F(t;r,T) = BY[F(L +1;7,T)] (21)

Substituting the guess for the futures price in the above equation,

exp(Af(t; 7, T) + By (t; 7, T)re + Cp(t; 7, T )herr) = Effexp(Ap(t+ 1;7,7)

+ Byt +1L;7,T)rem

4The fact that we can write the bond futures price in this form is simply due to the fact that like
spot bonds, prices of bond futures are also affine in the state variables.
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+ Cit+ L7, T)hy)]  (22)

Substituting the dynamics of ry,1, hy19 in the above, taking the relevant expectation

and matching the coefficients, we get

A7, T) = At +1;7,T) + poBs(t + 1;7,T) + wCs(t + 1;7,T)

_ %log(l—QaCf(t+1;77T)) 3)
By(t;7,T) = mBy(t+1;7.7) 24)
Cy(t;m.T) = NBy(t+ L7.T) + 6Cs (1 + 1,7, T)

B (t+1;7—7T)2 * . *2
Z(Xfo(t—i-l;T,T) o 2’7 Bf(t + 17 T, T) + 7

1 —=2aC(t+ 1;7,T)

+ aCi(t+ 1;7,7) (25)
Given the boundary conditions in (18), (19) and (20), (23), (24) and (25) will give us
the required coefficients that are needed to calculate F'(¢,7,T). This completes our

calculation of the bond futures price.’

4 Bond Options

4.1 Option on Discount Bond

Now we will calculate the price of an European option on a discount bond. Although
we do not have explicit representations for the prices of American options on puts,
one could compute the early exercise premium from the continuous-time analog of
the nested one-factor model (the Vasicek model) along the lines of Carr, Jarrow and
Myneni (1992), Huang, Subrahmanyam and Yu (1996), Ju (1998) and others by using
the price of the discount bond that matures at the same time as the option as the

numeraire. This early exercise can be added to the European value to obtain an

5Note that we can readily adapt our formula to calculate futures prices in the way they are
sometimes quoted in the market.



approximate American value.

Let the time to expiration of the option be 7 and that of the underlying bond
be T and T > 7. Let the price of a call option (at time t) on the discount bond be
Co(t, 7, T). The payoff from the option at maturity is Cyo(7,7,T) = max|[P(7,T) —
K,0]. As in Merton (1973), instead of the money market account, we choose the
7 maturity bond as the numeraire and assume that it is traded. Deflated by the
numeraire, all asset prices are martingales under the martingale measure, which we
shall refer to as the forward measure (as in Jamshidian (1989), Brace, Gatarek and

Musiela (1997) and others). Hence, C‘}g(ftTT)T) = Ef (C}’D((TTTT)T)) where E]'() is the con-

ditional expectation under the forward measure. Noting that P(7,7) = 1, we have

that

Co(t,7,T)

Pl = BF (max[exp(A(7,T) + B(t, T)r, + C(1,T)h,41) — K,0]) (26)

Let « = A(r,T) + B(1,T)r; + C(1,T)h;11. Thus, in order to calculate the option
price, we have to know the conditional density of x under the forward measure which
in turn is known if we know its corresponding characteristic function or equivalently
the moment generating function. Let f(¢) = EI (exp(¢z)) denote the conditional
moment generating function of = at time t. f(¢) also depends on the state variables
and the parameters of the model; however, they are being suppressed for notational

convenience. We shall guess the following affine functional form for f(¢)°,

f(9) = exp(Ai(t;¢,7) + Bi(t; ¢, 7)1 + C1(t; 6, ) i) (27)

The coefficients A; (t; ¢, 7), By (t; ¢, 7) and C(¢; ¢, T) can be obtained from a boundary

6The fact that the moment generating function is affine in the state variables as bond yields were
verified to be affine in the date variables in a previous section.
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condition using a recursive procedure. The boundary conditions are

AI(T;¢aT> =0 (28>
Bi(r;¢,7) = ¢B(r,T) (29)
Ci(1;0,7) = ¢C(1,T) (30)

where A(1,T), B(7,T) and C(7,T) are known from the recursions needed to calculate
the price of the discount bond that expires at T, P(t,T). Let A*(t + 1;¢,7) =
A(t+1;0,7)+ A+ 1;7), BS(t+1;7) = Bi(t+ 1;0,7)+ B(t+ 1;7), C*(t+ 1;7) =
Ci(t+1;0,7) + C(t + 1;7) where A(t+ 1;7), B(t + 1;7) and C(t + 1;7) are already
gotten from the recursion needed to compute the price of the discount bond that
expires at 7, P(t,7). The recursion required for calculating f(¢) from the above
boundary conditions are than given as follows (note that they are very similar to the
recursions for bond price). For brevity of notation, we are suppressing 7' from the

notations in the following recursion (derivation is in the appendix):

Ai(td,7) = —A(LT) + A+ 1:6,7) + B (L + 150, 7) + wC*(t + 1: ¢, 7)

- %log(l—QaC*(t+1;¢,7)) (31)
Bi(t;¢,7) = —(Bt;7)+ 1) +mB*(t +1;6,7) (32)
Cit;o,7) = —C;7)+NB*(t+1;0,7)+ BC*(t + 1;6,7)

B*(t+1;¢,7)? * D% . *2
boaCH(t 4 g, r) | ECEen TP RO
T 1 —2aC*(t+ 1;0,7)

(33)
At time t, having gotten Ay (¢, t;7), B1(4,t; 7) and Cy (¢, t; 7), we know the conditional

moment generating function of x at time ¢. If f(¢) is the moment generating function,

f(ig) is the characteristic function. Inverting the characteristic function as in Heston

11



and Nandi (1999), one gets the price of the call option to be

Co(t;T, T) = %P(t T)+ P(t,7)— ! /Ooo Re [ei¢10g(l((;£)<i¢ t 1>] do
e (e L R[] )

The derivation of (34) is shown in the appendix. By a simple rearrangement, we
can also write the above equation in the typical Black-Scholes format as C,(t;7,T) =
P(t, T)M,() — KP(t,7)Ms() where M;() and M() are two probability distribution
functions. The two univariate integrals converge very fast and are very easy to in-
tegrate numerically. In particular, the two univariate integrals can be combined and
evaluated as a single univariate integral in fractions of a second using any good inte-
gration routine. We used the "Romberg” integration routine of Press et al. (1992) to
produce option prices, for example the prices of options on bond futures (discussed
next) that generate the smile shown in Figure 2.

Options on coupon bonds cannot be evaluated through a straightforward analyti-
cal procedure unlike in the one-factor model (see Jamshidian (1979)). While one can
write down a formula for these options and evaluate them quasi-analytically as in
Chen and Scott (1992), the numerical accuracy of such a procedure is an open issue

that cannot be addressed within the scope of this paper.

4.2 Options on Bond Futures

This section shows how one can calculate the price of an European option on a
discount bond futures under our model. Let F'(t,7'1,72) denote the current futures
price for a contract on a discount bond that expires at T2; the futures contract expires
at T'l. Suppose a call option is traded on the futures contract and the option expires

at 7. Let 7 < Tl < T2. It can be shown that the price of the option, C,(t;7,T1,T2)

12



is given by

. _ Lo 1o Te s 1 (i +1)
Co(t;7,T1,T2) = P(t, 1) <§F(t,T1,T2) + }/0 Re [ (i) ] do
1 1 oo efirblog(K)f(?;gb)
- (3 e[ o) )

As in the preceding section for options on discount bonds, f(i¢) is the characteristic

function and the corresponding moment generating function is

f(9) = exp(Ai(t;¢,7) + Bi(t; ¢, 7)1 + C1(8;6, ) i) (36)

f(¢) can be calculated recursively exactly as with options on discount bonds, but

with a different boundary condition as given below:

Ay (7_; ¢7 7—) - (bAf (7_7 Tla T2) (37)
Bl(T; (ba 7—) = ¢Bf (7_7 Tla T2) (38)
Ci(r;0,7) = ¢Cy(1,T1,T2) (39)

Note that A¢(7,71,72), By(r,T1,72) and C(7,T1,T2) are known from the recur-

sions needed to calculate the futures price, namely the price of a .

5 Caps (Floors), Average Rate Options

Prices of other types of interest rate options such as caps and floors can be calculated
in the same way as above by noting that these are portfolios of options on discount

bonds (see Hull (1997) for the analogies).
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5.1 Average Rate Option

The price of an Asian option on interst rate or an option on the average rate from
some time ¢ until some later time T' can be computed by taking advantge of the affine
structure for bond prices as in the continuous-time models of Bakshi and Madan
(1998) and Ju (1998). Our model has a distinct advantage over continuous time
models in this regard because in practice the average rate can only be calculated from
the interest rates that are observed at discrete intervals of time. Using a discrete-
time averaging in a continuous time averaging formula is problematic as it can induce
biases, the magnitudes of which are not known. However, our model being set in
discrete time has the exact average and therefore can be readily implemented in
parctice without any biases.
1 u=T—1

Let the payoff from the call option at time, 7" be max(z=5 >0 =g 7o — K, 0). Let

M, T—1)=>"="1r,and a(t — 1) = S5 r,. Thus the price of the call option

u=t u=0

at time t, C,(t,T) is

O, (1, T) = ﬁp(t, TY(EF (maxfa(t — 1) + M(t,T —1) — K(T —1),0])  (40)

where E]'() denotes the expectation under the forward measure i.e. where the nu-
meraire is the price of a discount bond that expires at T'. Let x = a(t—1)+M (t,T—1).
Let f(i¢) = EF (exp(igx)) be the characteristic function of z. It can be shown that

Jli¢) = exp (iga(l — 1) + Ai(t; 0, T — 1) + Bi(t; 6, T — 1)y + C1(L; 0, T — 1) hyyr)(41)

Note that a(t — 1) and hyy1 are known as of time ¢t. As with bond options, the the
coefficients A (t; 9, T — 1), Bi(t;,T — 1) and Cy(t;¢,T — 1) can be obtained from
a boundary condition using a recursive procedure. The boundary conditions are (see

the appendix):

AT =26,T 1) = —AT ~2,T)+ (i¢ — 1o (42)

14



Bi(T-2¢T) = —B(T—-2T)+ (ig—1)(1+m) (43)
CT —26,T—1) = —C(T—2,T)+ (i¢ — 1) >\*+%(i¢—1) (44)

Note that A(t—2,T), B(T—2,T) and C(T—2,T) can be obtained from the recursions
for computing the price of the zero-coupon bond expiring at time 7. In fact, the
recursions for Ay(t,T) and C4(t,T) are functionally equivalent to the recursions for
the option on the zero-coupon bond i.e., (31) and (33). However, the recursion for

By (t,T) is slightly different and is given as

where B(t,T) and B(t + 1,T) come from the recursion needed to compute the price
of a zero-coupon bond expiring at 7" and is known as of time t (note that B(t,T) is
independent of ¢). Inverting the characteristic function one gets the price of the call
option to be (derivation of (46) is shown in the appendix),

——P(.T) [(%Ef(M(t, 7)) + % /Ooo Re [L{W] d<b>

()

where, K* = (T — 1)K —a(t — 1) and f,(i¢) = afw’) At this stage we do not know
fs(ig) and EF (M (t,T)). However, both of these can be explicitly computed given

Cot;7,T) =

the model parameters.

Note that

OM(,. T —1) | OB, T —1)  9Ci(56,T 1)

folid) = F(ig) |alt ~ 1) + ZEEL f—n -

hiy1 | (47)

and the recursions for each of the partial derivatives can be calculated from the

recursions for Ay (t; 0, T—1), By(t; ¢, T—1) and C(t; ¢, T—1) and using the following
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boundary conditions:

OA((T — 2,0, T — 1)

96 = THo (48)
OB(T — 2,0, T — 1
=2 lol (49)
IO —26T-1) .
5 = N1 (50)

For example, the recursion for 9B, ta(‘;T D s

OB (t;9, T —1)  0Bi(t+1;0,T —1)

9 = 9 (51)
Now we will show how to calculate EF[M(t,T — 1)]. Note that
EF M, T —1)] = PT) EZ [M(t,T — 1) exp(=M(t, T — 1)] (52)
Let g(¢) = EF [exp(¢M (t, T —1))]. Then it follows that
) — B (M(LT — 1) exp(o(M(6.T — 1) (58)

From (52) and (53), it directy folows that Ef [M(¢,T—1)] = P(tl’T) a%—((;m\(b:_l. Note
that g(¢) can be explicitly calculated as follows: g(¢) = exp(As(t, T — 1) + Bs(t,T —
D)ry+Cs(t, T —1)hyy1), where the coefficients As(), Bs and C3 can be computed using
the recursions for options on the zero-coupon bond i.e. (31), (32) and (33), but with

the following boundary conditions:

AT =27 1) = opo (54)
BT —2,T—1) = ¢(1+m) (55)
(T ~2,T—1) = 6(X +50) (56)
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Note that having obtained ¢g(¢) one can obtain a%—gm through straight differentitaion

in exactly the same way as %{g’b) was derived.

6 Estimation

Having developed analytical formulae for bonds and bond derivatives, we do an ex-
ploratory investigation of how well the model fits the observed term structure and
whether strike price biases (such as the smile/smirk in implied volatilities in some
interest rate derivatives market) from a one-factor model such as the Black model
can be accounted for in our framework after we have estimated the model parame-
ters. It is to be noted that the purpose of this section is not to undertake a thorough
empirical /econometric investigation of the theoretical model because model building
and not model testing is the focus of this paper. Nevertheless, calibrating the model
to the actual term structure should generate some basic insights about the basic func-
tionality of the model in the context of the real world that hopefully will inspire more
extensive empirical research in the future.

For the zero coupon bond prices of various maturities, we use a modification
of the Fisher, Nychka and Zervos (1995) method of constructing zero coupon yield
curves constructed from the daily CRSP bond file data due to Waggoner (1996)(see
Bliss (1997) for the details).” The criterion function for parameter estimation is the
minimization of the sum of squared errors between model and market zero coupon
bond prices. In fact, for a random sample of two weeks of consecutive data in the

period spanning 1990-1996, we minimize the following criterion function:

T Ne

min Y > (B, — M;,) (57)

HOos11 ,w,a,ﬁ,v,)\,n t=1 i=1

where F;; and M;; are respectively the model and market prices and for bond ¢ on

“We thank Daniel Waggoner for constructing the zero coupon yield curves.
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date t. Note that in computing the above criterion function, one needs to know A,y
which is the conditional variance of the r;.; —r, at time , t. However, at each ¢, h;4
is known from the history of the short rate until time ¢. For the short rate, we use
the continuously compounded overnight rate implicit in the three month T-bill prices.
The cross-section of maturities (in days) used are: 90,180,270,360,730,1095,1460,3650.

As an example, the parameter estimates obtained by fitting the model to market
prices for two weeks starting on January 03, 1994 are as follows: gy = 2.13 x 1078,
pr = 0.999, A = —3.36, v = 15.58, w = 1.44 x 10~ ", 8 = 0.256, o = 1.093 x 107!,
v = 12.68. Table 1 shows the market and model yields for the various maturities
on January 03, 1994. Now, if we fit the nested one-factor model (the discrete time
version of the Vasicek model),® to the same sample, we find that the average absolute
pricing error is only a little higher (around two basis points) than the two-factor
model. A likelihood ratio test of testing the nested one-factor model against the
two-factor model cannot reject the one-factor model. In other words the two-factor
model is only a trivial improvement if fitting the entire yield curve over a given period
of time is used as the criterion function.® This is in sharp contrast to checking the
model directly on the time series of a short rate (computed from the three month
T-bill yields) where the one-factor version is overwhelmingly rejected.'® In other
words caution is warranted in drawing conclusions on the adequacy of an interest
rate model in being able to describe the entire yield by checking only the dynamics
of a prescribed short rate.

Having found that a random volatility does not add much to a simple one-factor

model in terms of explaining the cross-section of bond prices, we now turn to options

8The discount bond prices for the one-factor or the constant volatility model are easily derived
by noting that z; = z; — 7, instead of 2] = z; — nhyy1 as in the two-factor model.

9We have repeated this estimation exercise for other randomly chosen two week periods between
1990 and 1996 and the conclusions regarding the mispricing remain essentially unchanged, although
the parameter estimates are somewhat different depending on the period.

10Checking directly the short rate is performing a straightforward maximum likelihood estimation
on a time series of the short rate as described by (1) and (2). The results of such an estimation on
a daily time series of the short rate are available from the authors upon request.
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markets where volatility is expected to be of much more importance. Using the
parameters estimated from the cross-section of bond prices, in other words from the
previous yield curve calibration, we generate prices of options on discount bond of
different strike prices under our two-factor model. Then using the Black (1976) model,
which is a widely used one-factor model for pricing these options in the market place,
we back out the implied volatility of different strike prices. It is found that the
implied volatilities decrease as the strike price increases. In other words, the implied
volatilities display a smirk/skew across strikes for these options (see Figure 1). Thus
our results suggest that volatility as a second factor is important primarily for bond

options, rather than for spot bonds or bond futures.

7 Conclusion

We developed a discrete time two-factor model of interest rates, in which the sec-
ond factor is a time varying volatility following an asymmetric GARCH process; the
model can be used to price spot bonds, bond futures and different and bond op-
tions using easily computable analytical solutions. Unlike continuous-time two-factor
models with random volatility, volatility in our model is observable on the basis of
the history of interest rates. This makes the empirical estimation of the model very
straightforward and tractable unlike the estimation of continuous time stochastic
volatility model of interest rates. Moreover for a class of interest rate Asian options
called average rate options, unlike continuous time models, our model can be readily
implemented without any bias. This is because in practice one can only calculate
the average of interest rates observed at disceret intervals and not the average from
continuous sampling.

We find that the second factor does not matter so much for the cross-section of
spot bonds as it does for bond options. While we cannot reject the nested one-factor

version of the model for the entire cross-section of spot bonds, on the basis of param-
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eters estimated from the yield curve, our model produces the smirk/skew in implied
volatilities under the one-factor Black model for options on discount bonds. Future
research can be directed towards calibrating our model directly on bond options data
and checking its out-of-sample pricing performance against alternative models, such

as the various HJM specifications for forward rate volatilities.
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Appendix

In this appendix we show how one obtains the risk-neutralized representation of
the interest rate process in (1) and (2). Also it is shown how one obtains (14),(15)
and (16), the recursions needed to calculate the bond price and the price for options
on discount bonds and discount bond futures.

In our interest rate environment, it is not possible to derive a risk-neutral repre-
sentation solely on the basis of arbitrage arguments. This is simply because we have
a discrete-time model in which the short rate at the next instant can take an infinite
number of values and therefore spanning by a finite number of discount bonds is not
possible. Instead has to specify a process for the state price density (pricing kernel)
or the marginal utility of consumption as in Constantinides (1992) and others and
then perform the change of measure or compute prices under the statistical /data gen-
erating measure. Let M; denote the state price density process (proportional to the
marginal rate of substitution in a representative agent economy) and X; = log(M,).
Note that standard asset pricing theory implies that a cash flow V,; can be valued

as of time ¢ as

M4
V, = B (v ) 58
AR (58)
Let X; follow the process,
L,
Xipr = X = heprzens = 50 e =1 (59)

Note that the state price density process, My = exp(X;), specified through the dynam-
ics of X, in (59) is a valid state price density as it is positive and values a non-random
cash flow of $1 at t + 1 as earning the risk free rate from ¢ to t + 1. Although we
have exogenously specified the state price density given the interest rate process, this
state price density can be derived endogenously from a production economy with

agents having logarithmic utility (see Constantinides (1992) and also Campbell, Lo
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and McKinlay (1997)). Given (59), a cash flow of V;;; at t + 1 can be valued at ¢ as,

Vi = Ey(Vigrexp (X — Xy))

1
= F <V2+1 exp (77 Pig1ze41 — 5772ht+1 — Tt)) (60)

Writing out the above expectation in the integral form, taking the expectation with

respect to the distribution of 2,41 and letting z = 214,

1

Vi = eXP(—Tt)/_ Viy1 exp(n ht+1Z—§U2ht+1)

1 1,
exp(—=z7)dz
o p(—5%7)

00 1 1 2
= eXP(—Tt) LOO W+1ﬁ exp <—§<Z -1 ht+1) ) dz (61)

In the above equation, let 2/ | = 2,41 — nv/hi1. Given this, we can write (61) as,

1 1

Vi = exp(—my) /_Oo W—Hﬁ eXP(‘g (Zq)Q)qu

= exp(—r) Bf (Vi) (62)

where /1 is the expectation corresponding to the random variable z?. Note that the
under the distribution generated by 27, the expected appreciation in the risky asset is
the risk free rate and therefore F? is the expectation with respect to the risk-neutral
distribution. In particular, it can be shown that z¢ is distributed as a standard normal
under the risk-neutral distribution.!! Thus, under the risk-neutral distribution, the

dynamics of r; is given by,

Tevr = o+ pare + XNhepr + e 2 (63)
P = wt Bt a(el =7y ), (64)

"7t suffices to note that if f(x) is the probability density corresponding to the data generat-

ing/statistical measure, then one can define another valid probability density f?(x) such that the

Radon-Nikodym process, L ;((;)) = exp(n\/hiy12e41 — %thH_l). The interested reader is referred to

Karatzas and Shreve (1988) for greater details regarding this type of calculation.
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where \* = A +nand v* =~ —n and 2§ = 2z, — nvVhei1.
Now we will show how one derives (14),(15) and (16). Substituting the dynamics

of reyq and hyyq in (13),

exp(A(t,T)+ B(t,T)ry + C(t,T)hey1) = exp(—ri+A{t+1,T)
+ B+ 1,T)(po + pare + Ahepa)
+ Ct+1,T)(w+ Bhit1).
E; lexp(B(t + 1, T)\/Eztﬂ

2
+aCl+ 1T~ v ) |69)

Completing the square in the portion to which the expectation applies, using the

fact that for a standard normal z*, E(a(z + b)?) = exp(—3 log(1 — 2a) + la_l’;a) and

matching the coefficients on ry, hyy 1 and the constant, we get (14), (15) and (16).
The next thing is to show how one arrives at (31), (32) and (33). Recall that

r = A(r,T) + B(r,T)r; + C(1,T)h,41. [(¢) = Ef (exp(¢z)) is the conditional

moment generating function of x under the forward measure. Following (1997), the

Radon-Nikodym derivative process, L; to go from the risk-neutral to the forward
P(t,1)
exp(Zi;lo 74 )P(0,7) ’
(1988, Lemma 3.5.3) that E" and EJ are related as follows for any random variable,

measure is L; = Given this, it follows from Karatzas and Shreve

Y that is measurable with respect to the information set at time t+1:

Pt+1,7)

Ef[Y] = E |Y exp(—r) Pl

(66)

where P(t,7) and P(t 4+ 1,7) are the time ¢ and ¢t + 1 prices of a discount bond
maturing at 7, when the option matures.

Now, we will show how one arrives at (34). If the 7 period zero-coupon bond is
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chosen to be the numeraire, the call option price is given by
C,(t,7,T) = P(t,7)EF (max[exp(z) — K, 0]) (67)

where © = A(7,T) + B(r,T)r; + C(1,T)h:41. Let g(x) be the conditional density
function of x. In terms of integrals

Co(t, 7, T) = P(t,7) (/log(K) exp(x)g(z)de — K () g(x)dx) (68)

Define a new density ¢g*(z) such that ¢*(z) = %. Note that it is a valid

probability density because it is non-negative and [0 ¢g*(z)dz = 1 because under the

numeraire, deflated asset prices are martingales, i.e., F}; (1;((;::)) ) = l;((i::)) Now, the

moment generating function of ¢*(z) is

[ eplong@ids = SETL [ (o + Dag(as

. PUT) oo
e+ 1P, 7)
P, T) (69)
This implies that
O(t,7,T) = P(t,T) /1:(K) 9" (x)dz — KP(t,7) /1:(K) g(x)dz (70)

Now using the inversion formulae to recover the distribution functions from their

corresponding characteristic functions as in Heston (1993) and others we get (34).
The options on bond futures formula is derived exactly like the options on discount

bonds, except noting that futures prices are martingales under the new numeraire and

exp(z)g(z

hence one can define a density g*(z) such that ¢g*(z) = F(”T)) where z is such that

F(r,7,T) = exp(x).
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Table 1
This table shows the market and model (two-factor) zero-coupon yields in per-
centages for eight different bills, notes and bonds as of January 03, 1994. The market
yields are computed from the daily CRSP bond file using a procedure of Waggoner
(1996) that is a modification of Fisher, Nychka and Zervos (1995).

Maturity (in days) Market Yield Model Yield

90 3.13 3.23
180 3.3 3.36
270 3.46 3.49
360 3.67 3.62
730 4.26 4.11
1095 4.65 4.53
1460 5.04 4.9

3650 6.09 5.95
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Shows the implied volatilties from the Black model for call options on discount bonds. The bond and the option expire in 500 and 100 days respectively.
Moneyness is the ratio of strike price to the price of the discount bond.



