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Abstract

We present the application of network theory in analysing paynewntorks with specific attention to
systemic stability. As an example we use Dutch paymentvdaitzh represent an average system in
Europe. We first show that payments are well behaved throonghand that there are no structural
imbalances in the system. Since the Dutch market is hagingentrated, we zoom in on behaviour of
the largest participants. Subsequently, we analyse theenies of prominent network measures
against time. As payment links are temporary by natueadle of time is crucial. Finally, we show
that the network is susceptible to directed attacks hadthe recent ‘sub prime’ turmoil in credit
markets has not materially affected the network stractur
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INTRODUCTION

From the late 1990s the study of the topological structure dbrametworks has gained momentum.
Empirical observations from large and rapidly evolving netwdikes the World Wide Web (Albert
(1999)) and the Internet (Faloutsos, et al. (1999)) brought to dighirprising compactness (‘small
world phenomenon’) and relatively many highly connected networkseelts (Dorogovisev and
Mendes (2003)). These findings have shifted attention awaydiassical, static networks (Erdds and
Rényi (1959)) towards growing networksAn important property of the latter is their robustness
against random failures. At the same time, however, theyvalnerable against directed attacks
(Albert, et al. (1999)).

The ideas of network theory can be applied to the fielcohomics, for example to study the risk of
widespread propagation of financial distresgstemic risk There is a vast literature analysing the
interactions of various financial markets such as equity llond market$. A small but growing
literature examines the riskiness of interbank markets, wizarks exchange relatively short term and
largely unsecured fundsThese papers, however, do not focus on the network topology of the
markets. Inaoka, et al. (2004) and Soramaki, et al. (2007)stanted to describe large value financial
payment systems (in Japan and the US, respectively) froehwaork perspective. Another example is
Bech and Garrat (2006) which analyses the effects of ase@le-disruption on the functioning of the
interbank payment system. Our paper builds on this literaturd adds to it by illustrating (1) the
influence of the chosen time frame on the propertieseopayment network and (2) the central role of
highly connected banks in the functioning of the payment networkud®elata from the Dutch large

value payment system, an active, medium sized network.

Importantly, in contrast to for instance analysemt#rbank exposures (e.g. Boss, et al. (2004) or van
Lelyveld and Liedorp (2006)), payments networks are by definitiont dhad: as soon as the
payment is settled, the visible, recorded connection betweds lhsappears. As we analyse and
discuss in more detail in (Propper, et al. (2007)), thisctsffeur understanding of what constitutes a
network. Here we show that thiene frameused to compute the network measures materially affects
the outcomes. A proper understanding of the evolution of the retiwomportant from a risk
management perspective. Ultimately, the purpose is tonget@erstanding of the level of stability or,

alternatively, vulnerability of the system to random orated failures and to systemic risk.

! The former, equilibrium random networks, have Poistegree distributions (the degree of a node is the
number of its links). The latter, non-equilibrium randoeetworks, may under the right conditions result in fat-
tailed, scale-free degree distributions close to a ptaverThis is the case when they are governed by (arline
kind of) preferential attachment which means that netwark elements are more likely to attach themsetves
elements that are already highly connected (Barabashiaed (1999)).

2 See Pericoli and Sbracia (2003) for an overview.

% See Allen and Gale (2000) for a theoretical charactimnisaf these markets and van Lelyveld and Liedorp
(2006) and the references therein for an empirical asaljkie general finding is that interbank markets are
from a systemic stability point of view relativelgfs.



Network theory equips us with promising tools. The questionsvileanswer are tackled by first
studying the (time development of) network structure of the payrsystem in terms of commonly
used network properties like the size of the payment nejwibek connectivity between banks,
distances in the network, the distributions of connectionsdsztWwanks and network correlations This
for example allows us to take a first, indirect peek afrigles that the system faces, by assessing the
importance to the network of the most highly connected banlkesddition, we present results of the
impact on the payment network of the sub prime crisis (in 200iQhncaused worldwide turmoil on

financial markets.

The set-up of our paper is straightforward. We start wiihort description of the institutional detail
of the Dutch large value payment system (TOP), the tedhdieiils of the data set and an
international comparison of aggregate key figures. Nextdiseuss the intraday behaviour of the
system. Then we investigate whether there are structabalances (between individual —or groups
of— participants) in the system. After this examinatiomhef basic properties of our data we examine
the build up of the network over time. First we analysedéheslopment over time of commonly used
network measures in the literature. Second, we andbgseulnerability, or, alternatively formulated,
systemic stability, of the system. We report the impacthe network structure and on the key system
figures of removing the ten most highly connected participarttseimlata set. In addition, we analyse
whether the recent ‘sub prime’ crisis in credit markets dféected the network properties of the

payment system. We end with the conclusions.

THE DUTCH PAYMENT SYSTEM

Since 1999 the Dutch large value payment system (TOP) tisop#ne European system for euro-
denominated payments, TARGETL.OP is restricted to a limited set of participantsjniyabanks.
Connections to participants in other TARGET countries takase through TARGET.

For the system to function properly it is essentiak tharticipants have sufficient funds so that
payments can be made without delay. Intraday credit provige@NB (secured by collateral)
facilitates a smooth functioning of the payment system aadepts gridlock® In the Netherlands,
commercial banks permanently hold (pledged) collateral ateh&ral bank, generally at a relatively

stable level during the year.

* Trans-European Automated Real-time Gross settlemene&xiransfer system.

® By the end of 2007, TARGET will be replaced by TARGETBjal is a single shared platform. All local
systems, including TOP, will then migrate to TARGEM2hiree phases. Technically, the latter is a centralised
system, but legally it is a decentralised system in kvbaxch country designates its own component system.

® See Ledrut (2006) for a discussion of the optimal pravisidntraday liquidity.

" In addition to maintaining a collateral pool, it is pbssito place collateral through repo transactions. When
credit balance becomes insufficient, collateral @ight in and the balance is raised, usually in the mgrain
the end of the day, the transaction is reversed.



Regular opening hours are from 7h until 18h and during theses the payment system processes all
transaction types. In addition, there is an evening seitieperiod from 19:30h to 22h, which is used
for settling ancillary system batches and not for standEmestic transactions and cross border
(TARGET) payments. Incidentally, the latter two typésransactions make up for more than 80% of
the value transferred (Oord and Lin (2005)).

We analyse a data set consisting of one year of tramsatzata from the Dutch large value payment
system, running from June 2005 to May 2006 (257 business ‘d@yaisactions carried out during

evening settlement are excluded. No standard domestic, tioc@sespondent bank and cross border
transactions through TARGET are carried out during evesitigement. We use the settlement time
rather than the moment a transaction is entered intsyftem in our analysis. Participants with more
than one account are consolidated. Payments betweeradomunts of a single participant are
therefore not included in the analysis. Also, due to lim#tations of the dataset, cross border
transactions are not analysed on a participant, but onrdrgdevel. In short, we analyse a network of

participants, not of accounts, and some participantscangtries rather than banks.

Table 1 shows daily averages on numbers of participaatsdction volumes, values transferred and
(average) transaction values for the Top (NL), TARGEU)(ECHAPS (UK) and Fedwire (US)
payment systems. The TOP figures are presented with dnoutvevening settlementThey include
incoming and outgoing cross border payments through TARGETniitmbers show that TARGET
and Fedwire are both large payment systems of the saiee @r magnitude. The Dutch domestic

system is clearly smaller; only the average transactbre is relatively high.

Tablel: Key figureson daily payment characteristics Top (NL), TARGET (EU), CHAPS (UK) and

Fedwire (US).
Top TARGET CHAPS Fedwire
(without / with
evening settlement)

Measurement Period 6/2005-5/2006 2005 2005 2005
Participants 1557 10,197 Not available 6,819
Of which direct particpantg 100 1,126 15 not available
Transactions (x1000) 15.1/18.1 312 116 519
Value (in billion €) 151/173 1,987 297 1,634
Transaction value (in 9.9/9.5" 6.4 2.6 3.1
million €)

Source: Top (DNB), Target (ECB bluebook), CHAPS and Fed®i6 (2007).

8 Processing of data has been done in Java by extendifgdatpstructures from Goodrich and Tamassia
(2006).

® Numbers including evening settlement are relevansdotion ‘Net value transferred’; numbers without
evening settlement are relevant for intraday paymehatiour discussed in section ‘Intraday dynamics’.

9 The number of active participants in the measurementcbanmunts to 129 (or 131 with evening settlement)
1 All payments within a second from and to the sanméiqgigant are aggregated. When every payment is treated
separately, the average value decreases to approxiratglynillion. In case the incoming cross border
payments are excluded the average payment value is €6dmill



TRADITIONAL CHARACTERISTICS

Now we first turn to an examination of ‘traditional’ chateristics of the payment system. The
network measures discussed later will not render thesiidreal measures obsolete: they are
complementary measures. We will first look into the irisadynamics. Relatively stable dynamics
are important when considering different time frames rietwork measures later in this study.
Secondly we will analyse the net payment position of particspawveer different horizons. This should

tell us whether there are persistent net payers or resewnerthereby indicate if directions in payment
links between participants matter when studying network ptiegeWe will also examine the role of

the three biggest banks in the Netherlands. Market comatientis high and therefore the behaviour of

the large banks is an important determinant of the overalket structure.

Intraday dynamics

Figure 1 displays for each business hour the average valosferred, the number of transactions
processed and the transaction value. The first pane showek Banks are willing to pay early in the
day: value transferregpeaks (€20.0 billion) during the first business hdéuFhis is due to payments
entered the day before. Numbers strongly increasa @l day high (€26.6 billion) between 16h and
17h. Some of this activity is the result of banks that reelével their balances as a result of the
intraday credit used or to fulfil their cash reservgureements. These payments are usually few in
number but relatively large in value. In the last busiess, from 17h to 18h, only transactions
between banks are processed (no retail orders), but mostumsrddy do not wait until the last hour
to close their balance of the day, and finish before Thbrefore, value transferred slumps in the last
hour. Closer inspection of the distributions around the meawealed they are fairly symmetrical.

This is also the case for the distributions of the nurabgmansactions and the transaction values.

The second pane, showing tmember of transactionsillustrates that on average about 3,500
transactions are processed in the first hour, almostegaey second. The 5% and 95% percentile
values range from 2,800 to 4,600. The rest of the day transatakasplace in smaller numbers
(between 900 and 1,750 transactions) along a somewhat downwarthdiegid against time that
abruptly drops to very low numbers in the last hour (5% péteex 200). The average number of
transactions per hour and per day respectively amouh377 and 15,148. The distribution range is
significant and comparable through time (between 45% to @b8te average value for the specific

hour).

Finally, the third pane shows thimnsaction value The average transaction value during the day

amounts to €9.9 million but in the last two hours of busirtassrieases strongly to respectively €22

12 pAgainst an average value transferred per hour (day) of €1317 billion.



Figure1l: Averagevaluetransferred, number of transactions processed and
transaction value during regular opening hours.
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Note: the averages for a particular hour (over alhef257 business days) are denoted by
a dot; the bars run from the 5% low to the 95% high p¢ites of the observations. The
horizontal lines depict daily averages over regular opdmings.

million and €71 million. The last hour, however, hardly contesub the overall average due to the

small number of transactions.

Overall we observed payment characteristics do change duringathePayment behaviour in the
beginning and the end of the day differ most from the reiteoflay. In the morning many payments
seem to be driven by ‘good customer’ behaviour to pay edrile \wayments during the last hour very

likely reflect liquidity decisions mainly.
NET VALUE TRANSFER AND CIRCULAR FLOWS

Introduction

The payment system is a closed system: for the tgsaém there is no net displacement in value.
Structural net payment flows could still exist betweenygsoof) participants within the time frame of
our data set. Conceptually, at least two independent typstuctural flows can be distinguished.
Individual participants can either have a non-zero net eatsthe rest of the system or circular flows
may exist between participants. In the latter casen¢healue transfer of each individual participant

in the circular flow may still be zerd.If participants become dependent on such structural flows then

13 Note that in a typical payments network net valuesfiarfrom any bank to the remaining banks is limited a
they have to maintain an average reserve value on ttoeinat during the reserve period. In case of an



this is likely to increase sensitivity to disruptions the system. We will show that individual
participants generally manage their balance actively tovihedsest of the system. However, when we
focus on the three largest banks in the system and onhoo$s TARGET payments at the country

level, the payment system will prove to contain significanictural circular flows.

Net value transfer by individual participants

To capture possible structural behaviour between individuéitipants and the rest of the system, i.e.
net value transfer, the participants are first ranked Hejr tnet value transferred during “time
snapshots” of fixed length (respectively for one hour, aag five days and ten days). For time
snapshots of one day this results in 257 rankings of parttsipafe align these rankings at the middle

participant of each ranking. Then, net value distributemrsssthe rankings are determined.

It is important to emphasize this procedure includespaiticipant institutions, but none of the
TARGET country accounts (for it would be hard to sdarxse management for these accounts). The
latter issue will resurface when we analyze structurablar flows between countries below. The
current analysis should not be labelled ‘domestic’, thosgite accurate determination of the net
value transfers of individual institutions requireslusion of all payments, including cross-border
transactions to and from other TARGET countries. In amdisome of the largest foreign banks have

their own participant numbers in the system.

Figure2: Net value rankings of individual participants; distributionsfor snapshots
of 1 hour, 1 day, 5and 10 days.
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insufficient average at the end of the period the g@pent will obtain funds (a loan) from another partiaipar
pledge more collateral.



Note: Displayed in each pane are median (in red), maxinmghmanimum values and in
different colour shades the 5th, 10th, 15th, 20th, 25th, 75th, 80th, @%th and 95th
percentiles.

Figure 2 shows the resulting distributions on the logarithmic y-ag&nst participants on the x-
axis** The figure points at fairly consistent net payment bieha over time, with many smaller
participants and a few larger participants. For the one haiwdpehe distribution width is clearly
wider, decreasing for longer periods. Remarkably, the maxirmnod minimum net value amounts
remain more or less constant for all four time perigdaximum between €15 billion and €18 billion;
minimum between €-13 billion and €-22 billiof)For the entire period of 257 days (not shown) the
maximum and minimum values are even smaller, respéc#e billion and €-8 billion. Total gross
value on the other hand increases from on average €9.8 billidhef@mne hour period to on average
€173 billion for the one day period (see also Table 1) and €44,575 lolienall 257 days. The
relative net displacement of value (net value/gross ydherefore strongly decreases as the time
period increases. The net flow in a year’'s time is nedéigib comparison with the gross value

transferred and we will thus proceed abstracting fronditeetion of payments.

To illustrate further, measured over all 257 days the tensapgeticipants (gross value) account for
75% of total gross value transferred. Besides large shathlese include the TARGET countries
Germany, UK, Belgium and France. The maximum ratio oiakie over gross value amounts to only
0.36% in this group of ten individual participants. So, whileghe a substantial flow of funds to and
from these participants (banks and countries) the net \diiptacement can almost be ignored.
Overall, this leads to the conclusion that the system ddesontain a group of significant structural
net receivers or payers (cf. Furfine (1999)). It suggestsglifisant participants actively manage

their balance over time.

Cross-border TARGET payments (net circular flows)

Table 2 illustrates total net cross-border payments from ttehDTOP payment system through
TARGET to the other TARGET countries, from June 2005 to 2@96. In aggregate, there was a
negligible net inflow of €12.6 billion (only 0.04% of the total ggacross-border payment flows of
€29,831 billion). On the country level, however, large net outfliake place to DE and in particular
the UK (together €513 billion). These are largely balancedrige laet inflows of similar, but opposite
size from IT, ES, BE, EU/ECB and FR (together €472 billion). Ne#herlands prove to be part of an
international structural circular net flow between TARIGEbuntries. For similar considerations can

also be made for the other TARGET countries. The UKet@mple (also shown in the table) has a

* The order and total number of active participantthenx-axis will vary over snapshots.

15 Unless explicitly stated otherwise, logarithms in thisguawill have base ten.

' The maximum (minimum) net value need not be at thedar (left) end of the x-axis. The maximum
(minimum) net values across all snapshots may be linkadgtapshot that is not the largest in terms of the
number of participants.



large net outflow of €1,758 billion to DE, FR, EU/ECB, SE, &%l DK and a large net inflow of
€1,776 billion from BE, IT, NL and LUX. The system as a vehisla closed system.

Rosati and Secola (2005) analygesscross-border large value payment flows through TARGET and
speak of a ‘tiered market structure for liquidity’. The bauntries (DE, FR and GB) are at the center
of a core integrated market which also comprises oBH and NL. The other, smaller countries form
a sort of ‘periphery’. They also mention the basic ided #ignificant and stable payment patterns
between countries could entail dependencies resulting sibp@shannels of contagion of liquidity
tensions. Here we add to this analysis evidence forxiséeace of large circulamet flows between
TARGET countries (order of size of GDB).

Table 2: Cross-border net value transfersfrom The Netherlands and UK through TARGET to other
TARGET countries (6/2005-5/2006).

Net value transfer Net value transfer
From NL From UK
To country Value (in bn €) | To country Value (in bn 4§
GB 414 |DE 827
DE 99 [FR 619
IE 37 |[EU 104
SE 4 |SE 92
PT 2-|ES 62
DK 14-|DK 53
GR 16-GR 29
AT 16-|AT 16
Fl 22-{FI 5
LU 24-(PT 124
FR 76-|1E 194
EU 83-{LU 69-
BE 97-{NL 414
ES 1034IT 427
IT 11341BE 866
Total 13- Total 0
Source: ECB

The three largest banks in the system (gross circular flows)

The three largest banks in the system play a dominnénd are involved in 52% of all transactions
and 63% of total value transferred (see also sectioim@rability of the network structure’). These
figures emphasize their important role in balance meameent over time. Active balance management
by each of the three banks separately is suggested, besaigsal numbers of net value transfer, by
the presence of relatively high, negative autocorrelation44(-60.44 and -0.29 for banks A, B and C

respectively) when the net value series of each bankftedslover one day. Positive (negative) net

' These net flows should be accompanied by opposite streastiser markets, such as the capital markets and
markets for goods and services.



value positions are likely to be followed by negatives(ppee) net value positions the next day. These

autocorrelations do not extend beyond one day.

Gross payment flows between the three largest banks isydtem over the data period of one year
reveal relatively large structural net flows exist betweaoh pair of two banks. In particular, a large
net flow of around €90 billion exist between one bank (A) and therdwo banks (B and C). One
circular flow in the system can therefore be identiiedun from bank A to banks B and C, from
there to the rest of the system and from the rest ofy§tera back to bank A. As the payment system
is a closed system, no circular flow runs solely betwkierttiree banks. These observations add to the
idea that the large banks form the central core of theanktand are natural counterparts for the other

banks in the system.

Further work could be directed at identifying the most irt@d circular flows in the system and at
investigating the implications they have on the stability of gagment system. This could reveal
possible vulnerabilities in the system. One conclusion wea@ady draw is that that the network is
directed of nature. Since the current study principally svemteveal the time development of network
measures, we have, however, chosen to proceed by analysiygtéma ;1 the next sections from the

simplified perspective of an undirected network.
NETWORK MEASURES

Introduction

The previous sections have described the payment system fri@diteonal perspective in terms of
transactions processed and values transferred. Thigitan insight in the behaviour of individual
participants and of the system as a whole. Now the pergpastll shift towards describing the

payment system in terms of itetworkproperties.

A network (or graph in mathematics) is a set of connest{bnks) between pairs of objects (nodes).
Examples of real-life networks are numerous and inchatéal networks, communications networks,
transportation networks, biological networks, the World Wideb, the Internet and financial
networks. In a payments network, like the one studied herepatteipants form the nodes and
transactions establish links between the nodes. Withinteaelperiod considered, a link between two
nodes is created by the first transaction between them. gudrgdransactions add weight to the link
in terms of the number of transactions processed analdiiitional value transferred over this litk.
Every pair of nodes can be connected by two opposing links tsiagedividual transactions contain a

clear direction from payer to receiver, i.e. the network irected network Finally, a path is an

18 |n this paper link weights are not taken into accinigietermining network properties (to prevent
subjectivity) and all links are thus considered equivalent.

19 The payment network is also a ‘simple network’. htains no self-loops (payer = receiver) nor parailel
multiple links from one sender to one other receiVle links of the network form a set of node pairs (ost &



alternating sequence of nodes and links such that eacis lingident to its predecessor and successor

nodes. A path can be directed (along directed links) or uneltéalong undirected links).

For illustrative purposes graphical representations of sonie (oaslirected) network types are shown
in Figure 3. These include a complete network, a starankf\a tree network and a network with two
disconnected components. In a complete network all nodes are aahteeell other nodes by a link.
In a tree network all nodes are connected by exactly onempatbdps or cycles). A star network is a
network in which the nodes connect to a central node called thelrhabnetwork component all
nodes are connected by at least one path. A network is conifetteeahsists of a single component;

if a network is not fully connected it consists of twanwsre components.

For an introduction into the theory of random networks andrdament of real-life examples and

extensive lists of reference material the interestadaeis referred to Albert and Barabasi (2002),

Figure3: Basctypesof (undirected) networks
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Dorogovtsev and Mendes (2003) and Newman (2003). Statisticaipfiest of financial networks
are scarce in literature, however, which probably relatéke confidentiality of the transaction data.
This may be especially true for payment systems. BExareptare Soramaki, et al. (2007), Lubldy
(2006), and Inaoka, et al. (2004).

collection, see Goodrich and Tamassia (2006). For soplieaipns this sense of direction is not esseritial.
that case, connections between nodes are formedigle, sindirected link (undirected network). This may for
instance be the case when the establishment of acttwta transaction is important, but not the directibthe
transaction.
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Evolution of network properties

Payment systems are dynamic networks of which the nunilberdes and links can vary greatly over
time. The actual transfer of money only creates a tempbrk. As we have argued in Propper, et al.
(2007), the choice of timescale for the statistical descrigifometwork properties is important and,

for the Dutch case, the network properties of the dominetnwork component are representative for

the whole payments network after about a 10 minute time p@riod.

The network measures we analyse are explained in thendp@é They include network size in
nodes and links, connectivity, reciprocity, path length, eccéyt degree, degree correlation, degree
distribution, nearest and second nearest neighbours, and clgsféne treatment of these properties
aims at giving more insight in the topological structofethe network. Figure 4 displays the
development over time of the various network meastmeshe dominant network componeifior
each of the measures, the x-axis represents the diffem@nperiods investigated (i.e. 1, 3, 5, 10, 30
minutes, 1, 3, 5 hours, 1, 3, 5, 15, 257 days) in minutes.uBle of a logarithmic scale enables
coverage of all time periods. It requires careful integti@n of the figures, though, to get a good
understanding of the high rates of development for short timedseg one hour) and lower rates for
periods beyond one day. The discussion of the results is largétictel to the relatively variable
outcomes for the one hour time period and the relativelyestalitomes for the time period of one
day. The former generally represent intraday network ptiepewell, the latter network properties for

periods from and beyond one day.

The figure shows major developments take place mostly ifirgtéhour of network formation. From
one hour to one day the network grows more gradually sie®f the network measured 88+6 nodes
on an hourly basis and 129+5 nodes on a daily basis (top lefthdthe whole period of 257 days
(only) 183 nodes have been active in total. These numbersctdrigze a small-size network, also with
respect to other investigated banking netwdfks. Inaoka, et al. (2004) the total number of banks
amounted to 354, in Boss, et al. (2004) to about 900 and im 8@t Soramaki (2005) more than 5000

banks made up the system.

On an hourly basis 326176 directiétks were found between the nodes (top middle). On a daily basis
there are almost four times as many links: 1182+61. The nuafdanks increases at a higher rate
than the number of nodes, but the numbepadsiblelinks increases with the number of nodes
squared Over the whole period a mere 12% of the possible nurmbdmks between nodes
(183*182=33306) actually did become a link, to a total of 4079 fimkene or more transactions.

20 After one (ten) minutes 36% (68%) of the data sampieady consists of a single network component
(Propper, et al. (2007)). In the case of the ten minuite fiame, in the overwhelming majority of the 32%
remaining cases there are only one or two mininsaflgd other components of two, three nodes.

2L And in for example Dorogovtsev and Mendes (2003) and Séiaetil. (2007).

22 payments through TARGET to and from different bankénsame EU country are all recorded under the
same country code and therefore belong to the sameTluiddeads to a downward bias.
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The fraction of actual to possible linkspnnectivity gives better insight in the relative growth of
nodes and links based on the proper, quadratic relation betiwear(top right). The values show that
the network remains very sparse over all time periodan€aivity rapidly declines from 0.16+0.12
after one minute to a minimum of 0.04+0.01 after approximad@yto 60 minutes, to increase
thereafter at a lower pace to 0.07+0.00 after one day and @et2a7 days. The explosion of nodes
in the first hour suppresses connectivity, because the growttkeidoes not keep up with the growth
of nodes but after one hour the situation reverses. At adistimowever, the network keeps its low
connectivity and remains far from connected. Even after 2$3 88% of all theoretically possible
links have not been used for a single transaclatiprocity the fraction of links with a link in the
opposite direction, displays a rapid increase in tis¢ fiour to 0.44+0.12 and increases at a lower rate
to 0.63+0.02 after one day. It means that a link in one deatnplies a high probability of a link in
the opposite direction. Payments often take place in dwections. This, however, gives no

information on the intensity of activity in both direats.

Figure4: Development of network propertiesover time (in minutes): nodes, links, connectivity,
reciprocity, path length, eccentricity, degree (also max degree, max in-degree, min degree, min
in-degree) and degree correation (for one node and for two nodes), clustering, nearest and
second nearest neighbours
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The averagpath lengthbetween two randomly selected nodes forms another wangasure the size
of the network (middle left). This distance peaks at @.3#nodes at the beginning of network
formation (5 min) to decline gradually thereafter to 2.0 nadies 257 days. The latter is of the order

of the logarithm of the size of the network (number of node®ature predicted both for the classical

12



equilibrium and fat-tailed, scale-free non-equilibrium relg (Dorogovtsev and Mendes (2003)).
The numbers indicate that every node on average connects tizerammde through only one
intermediate node. The maximum distaneegentricity (or diameter), amounts to 4.1+0.7 after 5
minutes and declines gradually to 2.8. This means that tower the maximum number of steps
participants have to take to reach the other participanteasss. Concentric, spherical connections
gain strength in comparison to linear, radial connectidhs. network gets more structure and on a
local level it becomes less ‘tree-like’. The resultsimganphasize the small size of the network (in
‘length’ this time) and raise the question whether thenmteliary node is also random in general, or

that a core of central nodes exists through which other romhemct.

Nodedegree the number of links connected to a node, forms an edsemigsure for the description
of the direct surroundings of a node (middle right). The degressure can be split in in-degree and
out-degree on the basis of the number of in- and outgoing [ittesconcept of a degree can easily be
extended and generalized to concentric circles of neighbouring mattes¢ength 1, 2, .n (n <
network size). A close relationship therefore existsvbenh degree and length of the network
(Dorogovtsev and Mendes (2003)). Here the focus will only be estdieighbours of length 1. From
an initial value of 1 the network degree increases to(387links per node after one hour and at a
somewhat slower pace to 9.2+0.4 links per node after one dake# nearly the rest of the 256 days

to (more than) double to 22.3 links per node.

These outcomes deviate significantly from many theoretiwadlels of growing networks which
assume a fixed degree (linear growth). In these modelsasitigd node is accompanied by a fixed
number of new links (e.g. Barabasi and Albert (1999)ass® discussion in Dorogovtsev and Mendes
(2003)). The payment network clearly exhibits a form of kecated growth, because the degree
increases during network growth. The model of network drombuld also differ from theoretical
models due to the upper boundary in the number of pamisip&rowth in nodes inevitably declines
over time, since fewer nodes can be added. The theoretical ofdtie payment network, including
accelerated growth in links and a declining growth in nodestd the limited number of participants,

is a subject for further study.

The time development of thmaximum degreshows node degree covers a large range of values
across the network (middle right). The maximum degree isesetom a level of about 9 times the
average degree after 1 minute, to a level of around 20 fadgdretween ten minutes and three hours,
slowly declining over time to a level of 11 afterwards. Camtye it means that after one hour the
average node may hold 3.7+0.8 links, but the maximally linked nodellycholds 79+13 links.
Maximum out-degresurpassemaximum in-degreor periods up to a day. These maxima reflect the
presence of one or more highly connected nodes. The preserrgenflifferences in degree values

also reflects large differences in the local networlicstire, hinting at a structure of many low-degree
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and some high-degree nodes. The actual degree distributimdes$ across the network, discussed at

the end of this section, therefore contains indispensafaiemation about the local structure.

The degree correlation(centre) between in-degree and out-degree of individual nodes gifirts
negatively but becomes very strongly positive after justytinminutes ([70%-100%]). This means that
above (below) average in-degree has a high chance of hmiogypanied by above (below) average
out-degree. Nodes that make payments to many counterpalde@seceive payments from many
counterparties. The results on reciprocity already shomeks are often counterparties in both
directions. Degree correlations between in-degree and gueelef two connected nodes largely
follow the same pattern (bottom left). Degree correlatioatween in-degree respectively out-degree
of two connected modes prove negative. The results on degreltons again suggest the existence

of a few strongly connected nodes linking to several weakly coeti@odes.

The clustering coefficientbottom middle) measures the probability of two neighboura ofode
sharing a link among themselves, too. Where distance medsuogés, clustering measures density of
the network structure at a local level. It gives informat@bout the direct surroundings of the nodes.
As expected, the development of the clustering coefficient twex confirms that formation of
connections across neighbours takes more time to develophgangsowth of the network. Still, the
rate of increase in clustering is relatively high in fingt hour and somewhat lower afterwards. The
average clustering coefficient increases from 0.26+£0.09 afterhour to 0.40+0.02 after one day.
After 257 days, average clustering amounts to 0.53. It méanson average, in half of the cases the
neighbours of a randomly chosen node are connected among tresnsab. When comparing this to
classical equilibrium networks, the numbers indicatatnetly high correlations in the form of
clustering exist on a local level. As in Soramaki, et(2007) the number of nodes with a clustering
coefficient 0, however, is very high: 49% after one hour, 27% afte day. These can mostly be
attributed to nodes with only one or just a few links, becausgitobability of at least a single link
across neighbours increases rapidly with the number of I{nkgre precise: the number of
combinations of neighbours increases with the numbemks §quared. In any case, local density

proves absent for a significant part of the network orcal level.

The last pane (bottom right) displays the numbemeérest neighbours; zand second nearest
neighbours zof a node. In determining and z the direction of the links has been igno?%sli,nce it

is the presence of a connection that matters here (not detialr of it). The number of nearest and
second nearest neighbours amounts to 5.7+0.1, respectively #Bt4ome hour. These numbers
increase to 12.5+0.5, respectively 753 after one day. Theyasize that the number of direct
contacts zstrongly increases over time and that the second line tdiasrg through z (logically) is

a multiple of the first line (the number of contacts gratvengly between the first and second line).

2 This distinguishes,Zrom the degree.
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Like in the case of the clustering coefficient, the reszdtsfirm that local structure takes more time to

develop than the size of the network.

We now turn todegree distributionsAs mentioned earlier, these distributions give indispensable
information about the relative “popularity” of participantstire system. Large banks are obvious
examples of popular (highly connected) participants, buttalsespecific clearing institution which
settles many, relatively small, customer driven paymensssuch payments go to and from most

institutions, this clearing institution will be a highlgrimected node many participants attach to.

The concept of degree can easily be extended from neaighbaurs to second nearest neighbours,
to third nearest neighbours, etc, but here the focus witinbeearest neighbours only. In Figure 5 the
degree is plotted on the x-axis with the associated prdalyabil the y-axis (both on a logarithmic
scale)” The darker the dot associated with each degree buckédydee the size of the firm(s) in that

bucket. We measure firm size by total annual transactioe.va

For one hour time snapshots the distribution already steeplineteat very low degree values; for
one day time snapshots this rapid decline starts off fralegaee value of about twenty. The largest
observed size of a one hour (day) network amounted to 116 ¢i8fBs. The networks are
characterized by a high number of nodes with relatively éewnections and a small number of
(relatively) highly connected nodes. Each of the smaller huahpise high degree end of the x-axis
accounts for an individual node or a small group of individuades. These humps are basically

distributions of individual (groups of) nodes.

Further, in going from one hour to one day time snapshots theefiey of highly connected nodes
increases at the expense of weakly connected nodes. Duritngatment of the clustering coefficient
and degree correlations it was already mentioned that ciomime across neighbours take more time to
develop than growth of the network. The local structure bes@tnenger with time. Also, the degree
distributions for the payment network cover too few order ofakegr 2), to perform any fitting to a

power—law distribution (to test whether the distribution is esftae, fat-tailed distributiorfy,

24 Averaging has taken place over all snapshots in the dataset.

% See §5.6 and footnote 11 of Dorogovtsev and Mendes (2008)fitical note on the empirical ‘observations’
of power-law distributions. Scale-free networks havee-dependent cut-off, which sets strong restrictions for
such observations over 2 or 3 orders of degree.
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Figure5: Degreedistributions for time snapshots of one hour and one day, respectively
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The shading of the dots in the graph tells us that forteshttime periods, in this case the one hour
shapshots in the left pane, the firms with the highest degmeenot necessarily the largest firms (in
terms of value transferred). The left pane clearly shthesimportance of participants that handle
batches of consumer payments; the value of these payment®otahigh but they do entail many
connections. In comparison, the one day snapshots in the rightspaweus that high degrees are

associated with large turnover.

VULNERABILITY OF THE NETWORK STRUCTURE

In the introduction we noted that the study of the topoldgitacture of the payment network (or any
other network) is not a goal in itself, but a meanafaterstanding the processes that make use of the
structure. A particularly interesting topic of reseaicthe vulnerability (or resilience) of the network
to random or directed failures. The impact of a failura single node may remain confined locally or
cause a shockwave that propagates through the systenmsyssk). The purpose here is to show

that network theory provides tools for studying this risk.

We analyse the impact on network properties of remarad, by one, of the most highly connected
nodes (cf. Albert, et al. (1999)). Risks to the system muajace upon showing the importance of
specific nodes to the topological structure. The removalepioe is equivalent to building the
network from the raw transaction data, but leaving out all iddali transactions that involve the
specific ‘removed’ nodes. It is a static procedure with slhanings, like for instance the absence of
any adaptive behaviour. The topology after remowirspecific nodes is always the same, but the path
in getting there will differ upon changing the order of remafathe nodes. It means the procedure

will not identify a unique dependence of the topology on arthe@findividual, removed nodes. What
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the procedure does bring to light is the dependence of the topmiaggmoval of a limited number of

highly connected nodes.

Following the literature we choose one day as the timeszaheasure the network properties. Figure
6 shows the impact of the removal procedure on several sklesti®ork properties. The x-axes show
network properties in the initial situation ('0’) and, going to the right, those properties after
removing the most highly connected node (*-1’), the second mostyheghinected node (*-2’), etc.,
until ten nodes have been removed (-10%). The initial situat@hfor all properties is the same as in

Figure 6 (one day time period).

The network becomes smaller and even more sparse mst@nce shown by théegreevalues (top

left corner) which decrease steadily, except for point ‘H8m 9.2 to 4.3. This results from the
number of nodes having declined from 129 to 89 (-31%) and the nwilieks from 1182 to 378 (-
68%). Moreovergconnectivitydecreases from 0,072 to 0,049. The network loses more nodefi¢han t
10 deliberately removed nodes, because on average 30 neighbouring lodesingle link will lose
their last connection during this procedure. The seventh nodg &-& good example, since the

degree actually increases upon removing this node.

The removal of central, highly connected nodes increases thelgmagths between the remaining
nodes. In the removal of the seventh node this phenomenon is outwiigtiezlaccompanying loss
of the single link nodes and the shortest paths between themllasitier nodes. Specificallypath

lengthand maximum path length (top right corner)eocentricity increase from 2.2 to 2.5 and from

3.3t0 4.2, respectively.

The outcomes for clustering and correlations both show dbal Istructure starts to break down
(bottom left corner). Clustering, or density of connectionsadocal scale, decreases from 0.40 to
0.23. The removal of nodes two to four has an unevenly negafpget on clustering in comparison

to the other nodes. The out-out degree correlation increazessteadily from -0.38 to -0.14 (= loss

of correlation)’® The outcomes for nearest neighbours and second nearestauegylconfirm this

breakdown in structure (bottom right corner).

The impact of removing the ten most highly connected nodes okethaggregate figures of the
payment network is severe. Value transferred and numbetraoBactions decline steeply to
respectively only 6% and 12% of the initial situation (not shdwre). This marks these nodes as
essential to the core function of the payment network. fidids especially for the first 4 nodes, since
by their removal value transferred and the number ol&etions have already declined to 27% and

30%, respectively, of the initial situation.

% In-in degree correlation increases from -0.38 to -0ri@ut degree correlation decreases from 0.93 to 0.59.
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Figure 6: Impact of node removal on network properties. degree, path length,
eccentricity, clustering, out-out degree correlation, nearest and second
nearest neighbours (z; and zy)
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It should be clear that random removal of ten nodes woolichave caused the same impact on the
network structure and key aggregate figures. In this ¢bagesults are comparable to those in Albert,
et al. (1999) in that the system is vulnerable to a dirdei@de (here: removal of a highly connected
node) due to the importance of the relatively highly connectedsnodehe tail of the degree
distribution. In addition, the discussed procedure of node remsovaincingly shows network theory

provides tools for analysing distortions to the network.

THE NETWORK STRUCTURE DURING RECENT TURMOIL IN CREDIT MARKETS

In the previous section the vulnerability of the network hamnbbBustrated principally by a static,
hypothetical procedure of node removal. The dependence of kepnaperties on the most highly
connected nodes proved to be strong. Other, more realistidssegan also affect the proper
functioning of the payment system. A prime example is a peskibs in confidence between banks
which would reduce the liquidity of funds in the markétfanks delay or stop making payments to
(some) other banks, this will have its effect on the fmitig of the payment system if the scale of

such change in behaviour or the scale of banks involvedys éarough.

In 2007 problems in de US ‘sub prime’ mortgage market have dausddwide turmoil in credit
markets. Initially, US homeowners with risky sub prime mayggawere confronted with strongly

rising housing costs due to rising variable mortgage .ratesir subsequent payment troubles led to
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heavy valuation losses on mortgage portfolios. Theséofiost had often been securitised and sold to
third-party investors. Previously liquid credit markets glyiddried up due to a loss of confidence
between counterparties. Credit spreads increased stramglycentral banks (ECB, FED, BoOE)
intervened to supply liquidity. In this section we invedigidne impact on the functioning of the high
value payment system. To this end we compare in Figuhe payment system between June and
September 2007 (the part of the turmoil period we investigatg)the same period in 2006. This

procedure ensures seasonal effects do not get misinestpret

Figure 7 displays the functioning of the payment system bytimgot selection of previously
discussed measures: average transaction value, degreéerirofuand connectivity. If, as a result of a
loss in confidence, participants would be more conservativehoosing their counterparties or in
transferring large sums of money, it would show up in thesesares. Some important events during
the period of turmoil have been indicated by the verticad Yars difficult to exactly pinpoint when
the broad market turmoil started, but the first event (“BBtarns”) is a good candideteT his event is
indicated in the figure by the most left vertical lineclaser view of the individual measures points to
the importance of comparing the relevant period in 2007 witlptéeéous year. The top left pane of
Figure 7 shows the average transaction value of the investiget®ds in 2006 and 2007. This figure
shows that the average transaction value is higher in 200di&r days compared to the same period
in 2006. However there are no remarkable deviations, eithetiygeosr negative, on one of the
highlighted events, nor on the other business days. The deboee) in the top right of the figure, is
slightly higher for the 2007 period but follows a similar tréflde clustering on the bottom left shows
a similar result as the degree. The bottom right paneshdugher connectivity during the turbulent
period in 2007. In general it can be concluded that the payméwmityaevas higher during the
investigated turmoil period in 2007 than in the correspondinggén 2006. In both series we see
similar periodic and non-periodic developments causing daiiiahility in the displayed measures.
Unlike other markets where for example credit spreadplgtesse and activity declined, the payment
system seems to have functioned properly and not to haare disrupted noticeable outside the
bandwith of regular daily fluctuations. Such disruptions ghatiéarly show up in the discussed
measures. These outcomes are representative for therathgylotted measures and have been tested

thoroughly for their validity?

%" The vertical bars from left to right indicate marketving news involving Bear Sterns (22-06, working day
(wd) 16), IKB (30-07, wd 42), Goldman Sachs (07-08, wd 48), BNRO&)%vd 50), FED and ECB liquidity
support (09-08, wd 51), FED cuts rates (17-08, wd 56) and Bankefifa (22-08, wd 59).

28 Earlier events before June 2007 such as the bankruptdy®faortgage bank did not receive the same
worldwide attention.

29 For example by filtering out transactions below diffetinéshold values and by filtering out all TARGET
transactions to and from other countries. Also, dtinee frames shorter than 1 day have been tested.
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Figure7: Development of a selection of traditional system measures and network propertiesover time:
transaction value, degree, clustering, and connectivity.
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Note: To make the two sets of data comparable welsitirtseries on the same day of the week. Further, we
have dropped all days corresponding to Dutch public holidays.

The results of this section demonstrate the usefulness ofamogiboth traditional system measures
and network properties in order to assess the functionitigegfayment system.
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CONCLUSIONS

Recently, interest in the topological structure of netwdrks risen significantly. Application of the
ideas of network theory to payment systems is still #tyitthough. This study adds to literature in
showing the measures available to characterize such netwidr&sapplication of these measures
illustrates the influence of the chosen time frame on thpepties of the payment network (discussed
in more detail in Propper, et al. (2007)) and the cenwokd of highly connected banks in the

functioning of the payment network.

In this study we use data from the Dutch large value patysystem TOP (part of TARGET) as TOP
takes on a middle position in comparison to other (Europgatgrs in terms of value transferred and
number of transactions processed. It is a natural caedidanalyse, although naturally each country

system will have its unigque characteristics.

We first gave a description of the network in terms wdditional’ measures such as turnover and
average payment size. An international comparison with gibhgment systems revealed that the
analyzed network is midsized and relatively active. Lookinmtraday developments activity proves
high right after opening, mainly due to queued ordersrettéhe previous day. With a brief rise in
activity right before lunch, the all day high in valuensterred takes place between four and five

o’'clock.

Then we turned our attention to the question whether staligayment flows exist between (groups
of) participants for two types of such flows: net valtensfer and circular flows. Such dependencies
might make the system more vulnerable to failures andldvemphasize the need to include
information on the direction of payments in the descriptionedvork properties. We examined this

issue both for the full sample, as well as for thegla@egest banks in the sample.

The distributions of net value rankings of individual participaremain remarkably similar for

different time periods. In addition, the relative net dispfaent of value (net value/gross value) of
individual participants strongly decreases as the time penioeases. These findings led us to
conclude that the system does not contain a group of sighifitaictural net receivers or payers. For
periods of one day and beyond a dominant group of active pantgipgists that hardly transfers any
net funds relative to gross value transferred. The owsmuggest all significant participants actively

manage their balance over time.

By focusing on the three largest banks in the system wiel adentify the existence of an important
structural, circular flow in the payment system. It madespayment system is a directed network. In
addition, a short analysis of total net cross-border pagsnéhrough TARGET revealed The
Netherlands are part of an international structural @rcuokt flow (order of size of GDP). The

observations of the presence of large circoktiflows between TARGET countries add to the idea of
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Rosati and Secola (2005) that significant and stable paymgatrzabetween countries could entail
dependencies resulting in possible channels of contagion ditigtensions. Further work could aim
at identifying the most important, circular flows in thetérnational) system and at investigating the
implications of structural flows on the stability of the paym system. Since the current study
principally wants to reveal the time development of netwodasures, we have, however, chosen to

proceed by analysing the system from the simplified petisgeof an undirected network.

Then we proceeded with a presentation of the time develdpofeseveral important network
measures. As we have argued in Propper, et al. (2007)isticnecial in analysing networks with short
lived links, like payment networks. The outcomes have madecéxpliwhat extent fast development
takes place in the early phase of network formatioralmjut one hour and slower development
afterwards. The payment network proves to be small (in node&sy] compact (in path length and
eccentricity) and sparse (in connectivity) for all timeigds. Measurements of degree and degree
correlations, clustering, and the number of nearest aodnd nearest neighbours describe the
development of network structure at a local level. As exggeaievelopment of network structure
takes more time than growth of the network in termsizé. The actual degree distribution contains
indispensable information on the local structure. It provasttie network is characterized by a high
number of nodes with relatively few connections and a low murob highly connected nodes. Of
particular importance is the observation that the avedeggee increases during growth of the
network. This contrasts with many theoretical models asatime node degree remains fixed. Further
work could therefore be directed at modelling the payment anktwsing a type of accelerated

network growth in links.

Finally, we showed that the payment system is vulneraldedioected failure and that recent market
turmoil has not materially affected the network structiitee vulnerability of the network was tested
by removing, one by one, the ten most highly connected nodes. Nodeatdradwa strong impact on
value transferred, number of transactions and netvpodperties like degree, path length and
eccentricity, clustering and degree correlation, andeseaand second nearest neighbours. These
outcomes emphasized the central role the most highly connectks! legpecially the top 4 of these,
play in the payment system: they are essential to theefoaction of the payment network. We also
investigated whether the recent ‘subprime’ turmoil in creditkets has led to changes in the structure
of the payment network by comparing recent time-seriggettfork measures with the same period a
year earlier. We concluded that it has not materiaffgcted the network structure of the payment
system during the investigated period. Since severe disraptiorthe payment system would
inevitably show up in the discussed measures, it is useful toandmitchanges in traditional system
measures and in network properties. A comparison with develisnm previous years may ensure

seasonal effects do not get misinterpreted.
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The current study intends to show how various measures azselan analysing payment networks.
It is also an exploratory study: two clear directions fiarther research are analysing, first, the
importance of link weights and, second, the role of caidtand available liquidity in absorbing

shocks. Ultimately, knowledge of the functioning of the paymetivork is aimed at gaining a better
understanding of the means to preserve its stability.
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APPENDIX NETWORK PROPERTIES™®

Size

The most basic network properties are the number of maatkss (n}andlinks (I). The former is often
referred to as thsizeof the system. The relative number of link& the possible number of links

determines the netwokonnectivity (c) It represents the probability of two nodes sharing a link.aF

directed network, with links between nodes in two directionennectivity is given by
c=l /(n [ﬂn —1)). For a connected network (i.e. without disconnected compg)| = n—1. In the
special circumstancl =n-1 the network is a so called tree network with minimahrectivity
¢ =1/n. Connectivity reaches it maximum valic =1 for a completely connected network. All

possible links have then been realized. Reciprocity|lying the fraction of links with a link in the

opposite direction (range from O to 1).

Path length

A pathis an alternating sequence of connected nodes and lirtkstahis and terminates at a node. If
all links represent unit lengtipath length ] between nodesandj is the length of the shortest path
between the nodes. The average path lehdtr nodei is the average distance to all other nodes.
Although a directed network in principle consists of drdcpaths that are being traversed in the
direction of the links, direction is not taken into accohmete. The path represents a connected
sequence of contacts in the form of transactions r#thera sequence of directed flows of payments.
Link weights in terms of value transferred may vargmigly over one path so that direction of flow,
without explicitly taking into account link weights, notcessarily contains very valuable information.
Average network length,q is the average of all path lengthslt determines the average undirected

shortest path. Networleccentricity (e)is defined as the largest of the observed path lengths:

e=max ().

Degree

The number of links between one nadad other nodes determines tiuele degree (k In a directed
network these connections consist of incoming and outgoing lirtkshwespectively determine the

in-degree (k;), theout-degree (k+), andnode degree (kby ki =k, ; +k Every link contributes

out,i *
exactly one unit to both the out-degree of the node at whicliginates and to the in-degree of the

node at which it terminates. Theerage degree {l) of a network is the relative number of all links

to all nodes k,,, =1/n= 1/2nz k =1/ nz Ky, =1/ nz Kouti -

%0 Based on Dorogovtsev and Mendes (2003) and Soraméki(20@).
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The maximum in-degreek; = max,; (kin,i)’ maximum out-degrek = max,; (kout,i) and

in,max out,max

maximum degrelk . = max,; (ki ) = max; (kin,i + kout,i) determine the maximum degree values and

the maximum deviations (to the upside) from the respectiveageategree values. More informative
and more elaborate to determine are the degree distriblR{&hsP(k,;) andP(k..; for a specific
nodei. Summation over all nodesand taking averages results in the total degree distribugith)s
P(kn) andP(k.u). Two examples of degree distributions are respectivégisson distribution and a
power-law distribution. The former results when a fixed bernof nodes is randomly connected on
the basis of the fixed network degr&g, Larger networks asymptotically follow the Poisson

-k k

avg

distribution P(k) = Tavg(classical equilibrium network). In practice, however pgnaetworks

have (relatively recently) been found to follow a power-iistribution P(k) O k™. These non-

equilibrium networks are characterized by fat-tailsol mark the relatively high frequency of highly
connected nodes in comparison to classical equilibrium neswdrkey originate from growing
networks in which new nodes (linearly) preferentially dité@ other nodes. They have no natural
scale and are called scale-free networks. In recentsyiehas been demonstrated that many social,
informational, technological and biological networks havetdded, scale-free degree distributions
(see for instance Amaral, et al. (2000), Newman (2008 Paomogovtsev and Mendes (2003)).

Degree correlations

Degree correlationsbetween neighbouring nodes provide additional information on theorie
structure. In an uncorrelated network the degree of one naageigsandent of its neighbouring nodes.
Degree correlations therefore provide information on whetbdes are generally connected to nodes
with comparable degree, to nodes of different degree,tbei€ is no relation at all. Classical random
networks have no correlations. Fat-tailed, scale-fréearks on the other hand may exhibit strong

correlations.
Several measures exist for degree correlations. Forpdeam
« Betweerk;, andk,, for individual nodes
* Betweerk;, andky,, ki, andk,, or k., andk,,: for two nodes

Clustering coefficient

Another concept to describe the correlation between nodi® idustering coefficient ( which
gives the probability that two neighbours of a node share an urdirBok among themselves. It
marks the density of connections in the direct neighbourhoodhotla (cliquishness). The clustering

coefficient is determined by the number of actual undagthks between nearest neighbouiss;)(of
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a nodei as a fraction of the number of possible undirectedsii C, =W. The average

clustering coefficien{C.,,) over all nodes determines the network clustering. The meanitiieo

coefficient becomes particularly clear in a social contekiere it is the extent of the mutual
acquaintance of friends. The clustering coefficient rarfggm O for a tree network to 1 for a
completely connected network. The classical random netlvogtly has a tree-like structure (loops

cease to exist in the infinite network). Fat-tailedledree networks may exhibit strong clustering.
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