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Abstract

We describe counterfeiting activity as the issuance of private money,
one which is di¢ cult to monitor. Our approach, which amends the
basic random-matching model of money in mechanism design, allows
a tractable welfare analysis of currency competition. We show that
it is not e¢ cient to eliminate counterfeiting activity completely. We
do not appeal to lottery devices, and we argue that this is consistent
with imperfect monitoring.

1 Introduction

Since the beginning of time, every monetary economy has had to deal with
the issue of counterfeit currency. In spite of this robust observation, to date
there is no model that provides an understanding of the value of genuine
money and the boundaries to counterfeiting.1 In this paper, we identify the
basic ingredients that a theory of counterfeiting requires. In particular, we

�We have bene�ted from the discussions at the New York Fed Workshop on Payments,
the SED Meetings, the SAET Meetings and the Cleveland Fed Workshop on Money,
Banking, Payments and Finance.

1Counterfeiting activities are pervasive, having a tendency to become more attractive
the more valuable a currency becomes. Adoption of monitoring processes that increase
detection rates and counterfeiting costs is the usual response, but it is evident that new
technologies also become available for the provision of crime itself.
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view counterfeiting as a second-best outcome, which arises because monitor-
ing resources are scarce. A key insight is that a theory of counterfeiting is
essentially a theory of private money� albeit a private money that is a rather
undesirable substitute for the real thing.
One can think of a counterfeit note as a good that is produced and priced

in a competitive environment: we do not take this approach. We believe that
a purely technological explanation for counterfeiting� one that uses classic
price theory to predict the value of money� is a dead end. For the fun-
damental value of money� and its substitutes� comes from their ability to
overcome exchange di¢ culties and not from the scarcity of paper and ink
needed to produce them. As a result, an attractive theory of private money
should describe formally what problem money is solving, what its exchange
value is, and to what extent substitutes can be adopted or, in the case of
counterfeiting, tolerated. This is what we mean by the boundaries of coun-
terfeiting.
It is important to emphasize that private money, or for that matter credit,

is a response to an opportunity that may arise; in the case of credit, the op-
portunity is the existence of would-be borrowers and lenders and enforcement
devices. And counterfeiting is no exception. In modern economies, resources
are allocated for some transactions� typically high-value transactions� to
ensure that settlement is seamless. And seamless settlement requires a high
level of monitoring. For example, stock market purchases are settled through
broker accounts and house purchases are settled by escrow accounts. These
types of accounts are designed to detect counterfeiting activity almost surely;
more to the point, these types of high-value transactions are not the kind
of opportunities that counterfeiters can use to successfully put their notes
into circulation.2 Since monitoring is costly, society will allocate its scarce
monitoring resources to important, high-value transactions, leaving relatively
small-value transactions less protected.
The notion that limited monitoring is necessary for the essentiality of

money is a reasonably old one, dating back at least to Ostroy (1973). A more
recent formulation appears in Kocherlakota (1998), who emphasizes that
holding money constitutes tangible evidence of an earlier socially-desirable
activity; that is, it indicates that the current holder of money has in the

2One can think of the use of these accounts as a form of signaling: one has assets of
good quality and is willing to wait before trading so that the asset quality in the account
can be veri�ed. Obviously, not all transactions can be performed on this trading-account
basis.
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past traded valuable goods for money. Cavalcanti and Wallace (1999) take
it a step further by introducing imperfect monitoring of agents in a way
that gives rise to the coexistence of money and credit transactions. In their
model, the notion of imperfect monitoring concerns the ability� or inability�
to record the actions that people take. In this paper, we pursue another
avenue: imperfect monitoring applies not to people but to the attributes of
the means of payments. In particular, whether the means of payments are
recognized as being either genuine or counterfeit.
A more general model of multiple assets� which may include undesir-

able ones such as counterfeit money� would allow ranges for monitoring of
both people�s actions and assets�attributes. Society would set up trading
institutions, with an eye on monitoring costs, which ultimately generates a
spectrum of exchange opportunities, where large transactions will be heavily
monitored and small ones will not. Individuals would respond by issuing
questionable quality assets for only the small-value transactions. In this pa-
per, we focus exclusively on small-value transactions and assume that it is
only possible to imperfectly monitor assets. We tackle this by amending the
basic random-matching model of money� which has only one asset� to allow
for a mechanism-design analysis of the coexistence of genuine and counter-
feited money.
For reasons of tractability, we preserve the anonymity of individuals and

restrict attention to pairwise exchanges, where money holdings are restricted
to either zero or one units. We ask what is the best incentive-feasible response
to counterfeiting? Because we describe an optimum, we can verify whether
the coexistence of counterfeits and genuine money is a robust phenomenon.
Indeed, we �nd a necessary condition for robustness: counterfeiting oppor-
tunities must be distributed unevenly across individuals.
The rest of the paper is as follows. In section 2, the environment and our

concept of implementability are presented. In section 3, we discuss optimal-
ity. In section 4, we provide concluding remarks, which include comments on
the existing literature and a discussion of why we choose not to use lotteries.
The appendix contains all the proofs and additional algebra for solving the
model.
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2 The environment and the equilibrium con-
cept

Our model modi�es the environments of Trejos andWright (1995), Shi (1995)
and Cavalcanti and Wallace (1999) to allow for the costly production of an
alternative medium of exchange. We will refer to lawful money or outside
money as �at notes, and the alternative as counterfeit notes.

2.1 The environment

Time is discrete and the horizon is in�nite. A unit measure population is
divided into N �xed types according to the goods they can produce and
consume, where N � 3. There are N types of perishable goods. An i-type
individual specializes in consuming only good i and producing only good
i+ 1 (modulo N). Individuals maximize discounted expected utility. Period
utility for an i-type individual who produces a counterfeit note is u(x)�y�!
and u (x)� y if he does not, where x is the amount of good i consumed, y is
the amount of good i + 1 produced and ! is the utility cost of producing a
counterfeit note. The function u is continuous, concave, di¤erentiable, with
u(0) = 0, u0(0) = +1, and u0(+1) = 0. The discount factor is � 2 (0; 1).
Individuals are unable to commit to future actions, and histories of their

actions are private information. In order to facilitate trade, a durable object,
such as money, is required. We assume that individuals can hold either one
unit of money or no money at all. If an individual holds a unit of money,
it may be either a �at note or a counterfeit note. The economy is endowed
with a �xed stock of �at money, �1 2 (0; 1), to be chosen by a planner. Fiat
money is perfectly durable and lasts forever. Counterfeit money, however,
is not perfectly durable: In each period there is a �xed probability that a
counterfeit note disintegrates.
Each period has two subperiods. At the beginning of the �rst subperiod,

each individual draws an idiosyncratic realization for a nonnegative utility
cost of counterfeiting !. The cost of counterfeiting, !, is modeled as the
realization of a random variable, identically and independently distributed
over time and across individuals, according to the cumulative distribution
function F , assumed to have support in a bounded interval of R+. Except
for a degenerate case considered in one part of the analysis, the function F is
assumed to be continuous and di¤erentiable, with F (0) = 0 and F 0(0) < +1.
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After individuals learn their current-period !, those who are not holding any
type of money will either produce a counterfeit note or not. After counterfeit
notes are produced, with probability � 2 [0; 1], a counterfeit note� either an
old note or a newly produced one� disintegrates.
In the second subperiod, individuals meet randomly and in pairs. In

a single-coincidence meeting� e.g., a meeting between i-type and i � 1-
type individuals� a perishable good may be produced and consumed if the
buyer� the i-type individual� has a unit of money and the seller� the i� 1-
type individual� does not. The seller is unable to distinguish between a unit
of counterfeit money and �at money at the time of trade. After trade occurs,
the seller learns about the type of money� �at or counterfeit� that he has
just acquired and this information remains private. As a result, buyers are
eventually informed about the quality of the money they hold.

2.2 Allocations

The planner�s problem is to maximize the average ex ante utility of individ-
uals, by choosing an allocation in some class. We restrict attention to a class
with symmetry and stationarity properties. We further restrict attention to
allocations in which counterfeit notes trade for the same level of output as a
�at note, so that only �one price�is observed.
The average utility in the planner�s objective is taken with regard to

the endogenous distribution of individuals, as indexed by their money hold-
ings. The planner�s maximization problem includes participation constraints,
which are dictated by individual rationality. As in Cavalcanti and Wallace
(1999), we assume that individuals cannot coordinate on defection, so the
participation constraints only re�ect the possibility of an individual defec-
tion.
The distribution of money at the beginning of the �rst subperiod is given

by � = (�0; �1; �2), where �0 represents the fraction of individuals holding
no money, �1 is the fraction of individuals holding a �at note and �2 is
the fraction of individuals holding a counterfeit note. The beginning-of-the-
�rst-subperiod value functions associated with the various money holdings
are denoted by w = (w0; w1; w2), where the notation should be obvious.
The beginning-of-the-second-subperiod value functions� which are evaluated
after the counterfeiting costs are incurred and after a fraction � of counterfeit
notes disintegrate, but before individuals are matched� are denoted by v =
(v0; v1; v2).

5



We anticipate that a necessary condition for optimality will, in part, be
characterized by the existence of a cuto¤ counterfeiting cost, �!, such that
only individuals who do not hold money and draw an ! < �! will choose to
produce a counterfeit note. As well, we anticipate that in any allocation,
holders of money never dispose of their monies in the �rst subperiod: There
is no point for a holder of a counterfeit note to dispose of it at the beginning
of the �rst subperiod only to (possibly) produce another one that has an
identical chance of being disintegrated. As well, since a �at note has no
chance of being disintegrated and has value, a holder of a �at note will
never dispose of it. Notice that the realization ! for an individual is not a
state variable at the second subperiod because counterfeiting decisions have
already been made in the �rst subperiod.
In a steady state, in�ows and out�ows into the di¤erent money holding

states �cancel out�; this implies that in a steady state the distribution of
money holdings at the beginning of the �rst subperiod, � = (�0; �1; �2), also
describes the distribution of money holdings at the beginning of the second
subperiod. The stationarity requirement for (�; �!) is as follows. In the steady
state, the amount of counterfeit notes produced at the beginning of the �rst
subperiod, �0F (�!), must equal the amount that disintegrates at the end of
the �rst subperiod, ��0F (�!) + ��2. With the understanding that � is a
probability measure, (�i � 0 and �0 + �1 + �2 = 1), an allocation (�; y; �!) is
said to be stationary if it satis�es

�2 =
(1� �)F (�!)

�
�0: (1)

In summary, we assume a class of outcomes that are stationary and sym-
metric across consumption/production types and states. We de�ne an alloca-
tion to be a list (�; y; �!) satisfying (1), where money holdings are distributed
according to �, both monies trade for y� the level of output produced and
consumed in single-coincidence meetings� and counterfeit notes are created
according to �!.

2.3 Implementability

Allocation (�; y; �!) is implementable if it satis�es individual rationality re-
quirements. Individual rationality for producers of consumption goods takes
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the form of the participation constraint

y � �[ �1
�1 + �2

(w1 � w0) +
�2

�1 + �2
(w2 � w0)]; (2)

since the producer can only use his knowledge about � to infer the probability
he is receiving �at or counterfeit money. The di¤erence wi�w0 represents the
increase in expected discounted utility associated with an individual start-
ing the �rst subperiod with money i = 1; 2 compared to starting with no
money at all. The bracketed term on the right-hand side of (2) represents
the increase in expected discounted utility associated with accepting a unit of
money in trade in exchange for some output. Since a producer receives this
bene�t beginning the next period, the value of this bene�t (today) must be
discounted by �. The left-hand side of (2) represents the cost of receiving this
bene�t, i.e., the cost of producing output y. Hence, the seller will produce
y if the bene�t exceeds y. Since we assume that �at and counterfeit money
trade for the same level of output, individual rationality for the consumer is
simply

u(y) � �maxfw1 � w0; w2 � w0g: (3)

The consumer knows whether he is holding a counterfeit or �at note; he will
only trade the note if the bene�t of surrendering the note, which is given by
the left-hand side of (3), exceeds the cost, which is given by the right-hand
side (3).3

Notice that there is an individual rationality constraint associated with
the production of counterfeit notes, i.e., ! < �!. We can be more explicit
about the critical cuto¤ �!. The bene�t of creating a counterfeit, w2�v0, can
be simpli�ed to read

w2 � v0 = (1� �)v2 + �v0 � v0 = (1� �)(v2 � v0);
where � is the probability that a counterfeit note disintegrates. Therefore,
the cuto¤ value for !, �!, for which ! � �! produces a counterfeit note,
satis�es

�! = (1� �)(v2 � v0): (4)

The allocation (�; y; �!) is implementable if there exists nonnegative (w; v)
satisfying participation constraints (2)-(4), as well as the standard Bellman
equation (which is described in the appendix).

3In the appendix we show that if (2) holds, then so does (3). This is what one would
expect. A producer will be only willing to supply output for a unit of money if he expects
to spend it on a consumption good when he is a consumer.
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2.4 The planner�s objective

It is straightforward to demonstrate that the average utility,
P

i �iwi, asso-
ciated to any implementable allocation (�; y; �!), is proportional to

W (�; y; �!) =
1

N
�0(1� �0)[u(y)� y]� �0

Z �!

0

!dF: (5)

Equation (5) de�nes our ex-ante welfare criteria. The term 1
N
�0(1 � �0)

represents the probability that a good is traded for money. The probability
that a particular money holder (buyer) is matched with a seller who produces
the good that he desires is 1

N
times �0, and the total measure of potential

buyers is �1+�2 = 1��0. The term 1
N
�0(1��0) is sometimes referred to as

the extensive margin. In each single-coincidence match, total period utility
�ow is u(y) � y; this �ow is sometimes referred to as the intensive margin.
Finally, in each �rst subperiod, there is a measure of agents without money,
�0
R �!
0
dF , who choose to produce counterfeit bills, where the total cost of

counterfeiting these bills is �0
R �!
0
!dF .

3 Optimality

We demonstrate in the appendix how the choice of an optimal allocation can
be separated into steps: �rst a margin (�0; y) is selected; next a station-
ary allocation (�; y; �!) is constructed from (�0; y); �nally, if the allocation
satis�es the producer�s participation constraint, then it is shown to be im-
plementable. The optimum is the one that maximizes the ex ante welfare
criteria among the implementable allocations.
There are two attractive features of this algorithm. On the one hand it

allows an easy comparison with the optimum of the standard model, where
counterfeiting is ignored. This is convenient because the algebra necessary
to derive the producer participation constraint with counterfeiting is quite
lengthy, and the comparison with the standard case provides a simple check
on our algebra. Incidentally, we have chosen the sequence of events so that
the �-shock happens before trade. Hence, even if a subset of individuals have
low counterfeiting costs, then, as � approaches unity, counterfeiting does not
take place, and the optimum is identical to that of the standard model.
On the other hand, under some conditions, we can show that the opti-

mum problem can be solved on the (�0; y)-space itself. We can show (in the
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appendix) that both the objective (5) and producer participation constraint
are well de�ned for a given margin and �!. Moreover, we can also show that
when F is uniform, �! is uniquely de�ned for a given margin. The optimum
problem is, however, not necessarily transformed into the maximization of
(5) subject to only the producer participation constraint because, unlike the
standard model, not all margins yield stationary allocations in our model.
Speci�cally, if, for given �0, the level of output y is su¢ ciently high, then
the associated �! may generate, from (1), a �2 > 1 � �0, which violates the
nonnegativity of �1. As a result, in addition to the producer participation
constraint, the nonnegativity requirement

(1� �)F (�!)
�

�0 � 1� �0 (6)

must be satis�ed to ensure that the margin (�0; y) is implementable.
Notice that if �0 � 1

2
and � � 1

2
, then inequality (6) is always satis�ed.

This observation is useful because, as we show, when � is su¢ ciently high,
the optimum is characterized by �0 <

1
2
. Hence, inequality (6) is satis�ed in

a large neighborhood of the standard model (where the standard model has
� = 1) when � is high. Note also that reductions in �0 relax the nonnegativity
constraint (because it also reduces the value of money, it also reduces �!).
Since the details associated with solving the model are not crucial to

understanding the main results, we leave these derivations to the appendix.4

The main result is divided into two propositions. The �rst is

Proposition 1 Assume that F (!) > 0 for all ! > 0, and let y� be the unique
maximizer of the intensive margin u(y) � y. Then any optimum (�; y; �!)
features �2 > 0. Moreover, if � is su¢ ciently high, then �0 <

1
2
and y < y�.

The proposition thus states a su¢ cient condition for which the optimum
features a second-best allocation with counterfeiting, and it is that for some
people, the cost of counterfeiting has to be arbitrarily small.5 It also states
that when there is enough patience� so that the participation constraint
for the producer can be ignored� both the extensive and intensive margins
will be distorted, in contrast to the standard model (without counterfeiting),

4We derive the conditions under which the optimum problem is reduced to the standard
case, i.e., the model with no counterfeiting; see claim 3 in appendix A3.

5In Nosal and Wallace (2007) if the cost of counterfeiting is su¢ ciently small, then
there does not exist a monetary equilibrium.
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where the optimum would set �0 =
1
2
and y = y�. The deviation from the

�rst-best optimum quantity of money is biased towards in�ation.
The basic idea underlying proposition 1 is that the planner is aware that

a higher value of money encourages more counterfeiting, and that some coun-
terfeiting should be tolerated up to the point that the distortions it imposes
on the economy become too high.
In numerical simulations with F uniform, we also found that y < y� is ro-

bust to reductions in �. When the participation constraint binds, reductions
in y below y� tend to reduce �! and the value of counterfeits. We are unable
to prove the result in general because we cannot establish how changes in �!
a¤ect the participation constraint for arbitrary parameter values.
We now argue that, except in some extreme cases, the planner can and

will essentially eliminate counterfeiting when the distribution of shocks is
degenerate. The basic idea is as follows. Consider a perturbation of an im-
plementable allocation with positive counterfeiting when the distribution of
shocks is degenerate and individuals without money are indi¤erent between
counterfeiting or not. Keeping the margin (�0; y) constant, consider a per-
turbation that reduces the measure of those creating counterfeits at all dates,
accompanied by a corresponding increase in the measure of those who hold
genuine money. Because, as we show, �! is determined by (�0; y) alone�
and thus invariant to the ratio �2=�1� the indi¤erence to counterfeiting is
maintained. Indeed, the value of holding one unit of genuine money is not
a¤ected because consumption opportunities are fully described by (�0; y).
Likewise, the value of holding a counterfeit does not change. Because the
ratio �2=�1 is reduced, the participation constraint for the producer is weak-
ened and the perturbation is thus implementable. But because �2 is reduced,
the �ow of resources lost to counterfeiting is also reduced, and social welfare
is, therefore, increased. The argument implies that, under homogenous coun-
terfeiting opportunities, the optimum either has none or all of the individuals
without money counterfeiting. We consider the �rst case� (i) below� to be
the relevant one.

Proposition 2 Assume that the support of F is the singleton f~!g. (i) No
Counterfeiting: If � is su¢ ciently low or su¢ ciently high, then the optimum
has no counterfeiting. (ii) Counterfeiting: (�; y; �!) with �! > ~! is imple-
mentable if and only if �0 � �, �2 = 1��

�
�0, �1 = 1� �0 � �2 � 0,

�! =
1� � + �

N
�0

1� � + � �
N

f1� �
N

[�0u(y) + (1� �0)y] + �̂~!g; (7)
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y � �~! + ��1
�1 + �2

��!

(1� �)(1� � + �
N
�0)
; (8)

where �̂ = � (1� �)
�
1� 1

N

�
, and the associated discounted utilities solving

the Bellman equation are nonnegative.

The �rst part of proposition 2 tells us that if � is su¢ ciently high, then
it is not possible to have �! > ~!; hence, there cannot be counterfeiting.
Intuitively, if the probability of having a counterfeit bill con�scated is high,
then the critical cost of counterfeiting, �!, will be extremely low; in fact,
it will be lower than the actual cost of counterfeiting, ~!. If, on the other
hand, � is su¢ ciently low, then in order to ensure that �1 is nonnegative,
�0 must also be su¢ ciently low. But if both � and �0 are low, there will
be very few trading opportunities and, hence, it will not be possible to have
�! > ~!. The second part of proposition 2 describes implementable allocations
when all individuals without money choose to counterfeit. In particular, the
proposition suggests that an allocation with � = (�; 0; 1 � �) and y = �~!
can be implementable if ~! is not too high, so that discounted utilities are
nonnegative.

4 Final remarks

There is a small literature on counterfeiting,6 and the papers closest to ours
are Green andWeber (1996) and Nosal andWallace (2007). In the former, the
supply of counterfeit notes is essentially exogenous. Both papers assume that
the cost of counterfeiting is homogeneous and neither emphasizes optimality.
The focus of the latter paper is on the emergence of separating prices when
traders can use lotteries. We conclude by defending our assumptions of no
lotteries and 0-1 money holdings.
Recall that lotteries were introduced in monetary theory to approximate

divisible money. Absent lotteries, models with indivisible money holdings
could predict ine¢ cient trade outcomes� too much output is produced�
and such a result is a direct implication of the indivisibility. But this is

6In the monetary models of Kultti (1996) and Williamson (2002), small levels of coun-
terfeiting is a possibility but not an equilibrium outcome. Quercioli and Smith (2007)
develop a static model in which individuals also choose monitoring e¤orts on di¤erent
denominations, but the lack of general equilibrium makes statistics about �money�value
and circulation di¢ cult to interpret.
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not a relevant issue here. First, in our model, output production is never
ine¢ ciently high. Second, and more importantly, counterfeiting money, as
opposed to wine, is about the attempt to misrepresent the quality of a given
indivisible object.
One can think of Nosal and Wallace (2007) as presenting a fundamen-

tal result about signaling in pairwise trades, where signaling requires the
use of lotteries. Although we do believe that signaling is a relevant issue
for counterfeiting� for example, see footnote 2� we have, as a �rst step, fo-
cused on lightly monitored exchanges and have �ignored�the more heavily
monitored transactions where signalling is relevant.
In practice, there are large costs associated with distributing counter-

feit bills in an economy. For example, one would not purchase a $600 suit
with 30 counterfeit $20 bills; instead, one would use a very small number of
counterfeits at any one time to avoid detection. For this reason, we feel com-
fortable with our 0-1 money holding structure. More generally, the existence
of monitoring costs will restrict the scope of counterfeit or private money
usage, relegating it to relatively small trades. Because trading opportunities
are bounded, as are pro�ts, private money can coexist with outside money.
This idea has been laid out in a random-matching model by Cavalcanti et
al. (1999).
Future research could expand our model in the direction of allowing small

and large transactions, as well as the allocation of scarce monitoring tech-
nologies across them. Such an extension should yield predictions about the
formation of markets where large transactions become safer. At the same
time, it could o¤er insights about the supremacy of money issued by the
government for settling large transactions as a result of its recognizability.
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APPENDIX

A1 The Bellman equation, incentive constraints and proof to Proposition 1

The possibility of counterfeiting forces a higher dimensionality of station-
ary allocations with respect to those of the standard monetary environment.
Implementable distributions of money � are now tied to the level of output,
y, insofar as changes in the value of (�at) money� which can be brought
about by changes in y� a¤ect the supply of counterfeits. By contrast, in the
standard model with holdings in f0; 1g, the distribution of money holdings
can be set independently of y . Here we have to address the admissibility of
the distribution of money holdings, �, relative to y.
After describing admissibility, we show how to convert the current prob-

lem with counterfeiting into a standard one. The optimal problem can be
stated in various ways, as di¤erent series of sub-problems, where, for exam-
ple, the planner could choose �1 2 [0; 1], the quantity of �at money, and then
optimize with respect y, and then �market forces�choose �2 according to in-
centive constraints. We prefer to present the problem as choosing �rst the
intensive and extensive margins� that is, the point mass �0 and the �price�
y� and then look for equilibrating �1 and �2. We then examine if the implied
allocation satis�es the participation constraints (2) and (3).
We say that a margin (�0; y) is admissible if there exists (�1; �2) and �!

such that [(�0; �1; �2); y; �!] satis�es the stationarity requirement (1) and im-
plementability requirement (4), where �1; �2 � 0. In the standard monetary
environment, (�0; y) de�nes a unique allocation. In our problem, the inclu-
sion of ��!�in the description of outcomes is important because �! helps to
describe the in�ow of counterfeits and their costs. One has to check, there-
fore, whether an arbitrary (�0; y) is admissible. In particular, there must
exist an �! such that (i) � is a probability measure that satis�es (1); and (ii)
(w; v) satisfy both (4) and the Bellman equation associated with (�0; y). The
following lemmas explains how the critical cost of producing a counterfeit, �!,
can be determined for a given (�0; y). We shall present the Bellman equation
in a way that facilitates proving these lemmas.

Lemma 1 A margin (�0; y) is admissible if and only if there exists �! satis-
fying

(1� �)F (�!)
�

�0 � 1� �0 (9)
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and

�!F (�!)a(�0) + �!b(�0) = c(�0; y) +

Z �!

0

!dF , (10)

where a, b, and c are continuous and increasing functions described below.

The inequality (9) assures that the �2 given by (1) implies a nonnegative
�1, where �1 = 1� �0� �2, while (10) is the condition (4) after the Bellman
equation is solved for (w; v), given (�0; y) and the stationarity assumption
(1).

Lemma 2 There exists at least one solution to (10). If F is uniform, with
support [0; !H ], and either !H is su¢ ciently high or y is su¢ ciently low, then
this solution is unique in [0; !H ].

Let admissible (�0; y) be the margin of allocation (�; y; �!). We say that
(�0; y) is implementable if (�; y; �!) is implementable. Hence implementabil-
ity of a margin requires existence of an allocation that, in addition to the
admissibility requirements, yields nonnegative discounted utilities and satis-
�es the producer�s and consumer�s participation constraints (2) and (3). We
now show how to verify the satisfaction of these participation constraints in
a simple way.

Lemma 3 Suppose that an allocation (�; y; �!) yields nonnegative discounted
utilities and its margin is admissible. This allocation is implementable if and
only if

y � d(�0; �!); (11)

where d is a continuous function to be described below.
The Bellman equation has the standard structure satisfying a contraction-

mapping property: when an allocation (�; y; �!) is �xed, current discounted
utilities are given by the utility �ow corresponding to the �xed allocation,
and by future discounted utilities, discounted by �. A unique solution (w; v)
is therefore associated to the �xed (�; y; �!). Instead of solving for (w; v)
we choose below a more tractable algebra that solves the Bellman equation
for the di¤erences �i � vi � v0, for i = 1; 2, which su¢ ces for checking
admissibility and implementability.
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We start by showing how the solution for �2 is used to produce the
requirement (10), expressing the consistency between �2 and �! by the way
of (1) and (4).
The following notation will be useful: k �

R �!
0
!dF and f � F (�!). The

discounted utility w2 is related to v2 and �2 according to

w2 = (1� �) v2 + �v0 = v2 � � (v2 � v0) = v2 � ��2: (12)

The discounted utility w0 is related to k, f , v0 and �2 according to

w0 =

Z �!

0

(w2 � !) dF + (1� f) v0

= �
Z �!

0

!dF + w2

Z �!

0

dF + (1� f) v0 (13)

= �k + v0 + f (w2 � v0)
= �k + v0 + f (1� �)�2:

We now derive explicit expressions for the value function v. Starting with
the discounted utility v1,

v1 =
�0
N
(u+ �w0) +

�
1� �0

N

�
�w1:

Since w1 = v1,

(1� �) v1 =
�0u

N
+ �

�0
N
(w0 � v1) (14)

=
�0u

N
+m0 (�k ��1 + f (1� �)�2) ;

where mi � ��i=N . Note that �=N = m0+m1+m2. The discounted utility
v2 satis�es

v2 =
�0
N
(u+ �w0) +

�
1� �0

N

�
�w2

=
�0
N
(u+ �w0) +

�
1� �0

N

�
� (v2 � ��2)
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or

(1� �) v2 =
�0u

N
� ���2 +m0 (� (v2 � w0) + ��2)

=
�0u

N
� ���2 + (15)

m0[� (v2 � (�k + v0 + f (1� �)�2)) + ��2]

=
�0u

N
� ���2 +m0 (�k ��2 + f (1� �)�2 + ��2)

=
�0u

N
� ���2 +m0 (�k � (1� f) (1� �)�2) :

Finally, the discounted utility v0 can be represented as

v0 =
1� �0
N

�
�y + �

�
�1

�1 + �2
w1 +

�2
�1 + �2

w2

��
+

�
1� 1� �0

N

�
�w0

= �1� �0
N

y +m1w1 +m2w2 +

�
1� 1� �0

N

�
� (�k + v0 + f (1� �)�2)

or

(1� �) v0 = �1� �0
N

y � �k + �f (1� �)�2 +m1w1 +m2w2

+(m1 +m2)w0

= �1� �0
N

y � �k + �f (1� �)�2 + (16)

m1 (w1 � w0) +m2 (w2 � w0)

= �1� �0
N

y � �k + �f (1� �)�2 +m1 (k +�1 � f (1� �)�2)

+m2 (k + (1� f) (1� �)�2) :

Subtracting (16) from (14), and recognizing that (1� �) v1�(1� �) v0 =
(1� �)�1, we get
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(1� �)�1 =
�0u

N
+m0 (�k ��1 + f (1� �)�2)��

�1� �0
N

y � �k + �f (1� �)�2 +m1 (k +�1 � f (1� �)�2)+

m2 (k + (1� f) (1� �)�2)g

=
�0u

N
+
1� �0
N

y + �k +m0 (�k ��1 + f (1� �)�2)

��f (1� �)�2 �m1 (k +�1 � f (1� �)�2)��
�

N
�m0 �m1

�
(k + (1� f) (1� �)�2) (17)

=

�
�0u

N
+
1� �0
N

y + �k � �

N
k

�
� �f (1� �)�2 �

(m0 +m1)�1 +
�

N
f (1� �)�2 �m2 (1� �)�2

= M +
�

N
f (1� �)�2 � �f (1� �)�2 � (m0 +m1)�1 �m2 (1� �)�2;

where

M =
�0u

N
+
1� �0
N

y + �k

�
1� 1

N

�
: (18)

Similarly, subtracting (16) from (15), we get

(1� �)�2 = ����2 +
�0u

N
+m0 (�k � (1� f) (1� �)�2)�

�f1� �0
N

y � �k + �f (1� �)�2 + (19)

m1 (k +�1 � f (1� �)�2) +m2 (k + (1� f) (1� �)�2)g

= ����2 +M � �f (1� �)�2 �
�

N
(1� f) (1� �)�2 +

m1 (1� �)�2 �m1�1:

Now, subtracting (19) from (17) we get

(1� �) (�1 ��2) = � (m0 +m1)�1 +
�

N
f (1� �)�2 �m2 (1� �)�2 ��

����2 �
�

N
(1� f) (1� �)�2 +m1 (1� �)�2 �m1�1

�
= �m0�1 +m0 (1� �)�2 + ��2�:
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Rearranging terms we get

(1� � +m0)�1 = [1� (1� �) (� �m0)]�2; (20)

which implies that �1 > �2 for �2 > 0. Substituting for (1� �)�1 from
equation (17), into the above, we get�
M +

�

N
f (1� �)�2 � �f (1� �)�2 � (m0 +m1)�1 �m2 (1� �)�2

�
+m0�1 = [1� (1� �) (� �m0)]�2

or �
1� � + �� + �f (1� �) +m2 (1� �)�

�

N
f (1� �) + (1� �)m0

�
�2

= M �m1�1

or �
1� � + �� + �f (1� �) + �

N
(1� f) (1� �)�m1 (1� �)

�
�2

= M �m1�1

If we multiply both sides of the above equation by 1��+m0 and use equation
(20) to substitute out for �1 on the right-hand side, we get

f�2 (1� � +m0) �

�
1� 1

N

�
(1� �) +

�2 (1� � +m0)

�
1� �

�
1� 1

N

�
(1� �)�m1 (1� �)

�
= ((1� � +m0))M �m1 (1� (1� �) (� �m0))�2

or

f�2 (1� � +m0) �

�
1� 1

N

�
(1� �) +

�2 (1� � +m0)

�
1� �

�
1� 1

N

�
(1� �)

�
��2m1 (1� �)

= ((1� � +m0))M �m1�2
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or

f�2 (1� � +m0) �

�
1� 1

N

�
(1� �) +

�2 (1� � +m0)

�
1� �

�
1� 1

N

�
(1� �)

�
��2m1�

= (1� � +m0)M

or

f�2�

�
1� 1

N

�
(1� �)+�2

�
1� �

�
1� 1

N

�
(1� �) + m1�

(1� � +m0)

�
=M:

(21)
In order to derive equation (10), let us use the notation.

�̂ � �
�
1� 1

N

�
(1� �)

Since, from (4)

�2 =
�!

1� � ;

we can rewrite the above equation as

�!f�̂ + �!

�
1� �̂ + m1�

(1� � +m0)

�
=
1� �
N

(�0u+ (1� �0) y) + �̂
Z �!

0

!dF

or

�!f�̂ + �!

�
1� �̂ + m1�

(1� � +m0)

�
= ĉ+ �̂k; (22)

where
ĉ =

1� �
N

[�0u+ (1� �0) y]:

Note that (22) is a function of both m0 and m1. We will be able to
use (1) and the restriction �0 + �1 + �2 = 1 to eliminate m1 from this
equation, provided that the nonnegativity condition (9) holds. Recognizing
that mi = ��i=N , from equation (1), m1 can be written as

m1 =
�

N
�m0 �

(1� �)
�

fm0: (23)
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Substituting (23) into (22) and rearranging, we get

�!�̂f + �!

(
1� �̂ + �

�
�
N
�m0

�
1� � +m0

)
� �!f (1� �)m0

1� � +m0

= ĉ+ �̂k:

We can rewrite the above equation as

�!f

�
�̂ � (1� �)m0

1� � +m0

�
+ �!

(
1� �̂ + �

�
�
N
�m0

�
1� � +m0

)
= ĉ+ �̂k: (24)

Letting now

a � 1� 1

�̂

(1� �)m0

1� � +m0

;

b � 1� �̂
�̂

+
�

�̂

�
�
N
�m0

�
1� � +m0

;

c =
ĉ

�̂
;

equation (10) follows. The proof of Lemma 1 is thus complete. Note that

(10) was derived using only value functions and equations (1) and (4).
We now prove Lemma 2. If y = 0, then a nonnegative solution to the

Bellman equation exists only if �! = 0 (and thus wi = vi = 0 for all i). Since
c = 0 for y = 0, the proof is trivial in this case. Let us assume now that
y > 0, so that c > 0. Letting

h (�!) � aF (�!)�! + b�! = �! (aF (�!) + b) ;

g (�!) � c+
Z �!

0

sdF ;

equation (10) can be compactly represented as h (�!) = g (�!).

Claim 1 h is increasing, continuous, h(0) = 0, h(!) � 0 for ! � 0, and
h(+1) = +1.
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Proof. The proof follows from the assumed continuity of F in the benchmark
case, from the the de�nition of h, and from the fact that a + b > 1, since
�̂ < 1 and

�̂(a+ b)

=
1� � +m0 + �

�
�
N
�m0

�
� (1� �)m0

1� � +m0

=
1� � + � �

N

1� � +m0

> 1:

Claim 2 g is nondecreasing, with g(0) > 0 and g(+1) < +1.

Proof. The proof follows from the fact that c > 0 for y > 0, and that F has
�nite mean.
The properties of h and g demonstrated above implies that the equation

h(!) = g(!) has at least one solution on R+, and, generically, an odd number
of solutions.
If F is uniform then h(!) � g(!) = (a � 1

2
) !

2

!H
+ b! � c for ! 2 [0; !H ]

and h(!H) � g(!H) = !H(a + b � 1
2
) � c. Since a + b > 1, it follows that

h(!H)�g(!H) > 0 if !H is su¢ ciently high, or if y (and thus c) is su¢ ciently
low. But then, for such values of !H and y, the quadratic form of h� g and
the fact that h(0)� g(0) < 0, imply that there cannot exist two solutions in
[0; !H ], as stated. This proves Lemma 2.

We now prove Lemma 3. We �rst derive the expression (11) for the
participation constraint for producers (2) , and then show that it implies the
participation constraint for consumers. Let us write down the participation
constraint for producers in terms of (�0; y; �!).
For convenience, let x � � �m0; recall that

�1 =
1� (1� �)x

1� x �2

and k �
R �!
0
!dF . We know that

w2 � w0 = k + (1� f) (1� �)�2

w1 � w0 = k +�1 � f (1� �)�2

= k +
1

1� x f1� (1� �)x� f (1� �) (1� x)g�2
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Consider now the weighted sum

m1 (w1 � w0) +m2 (w2 � w0)
= (m1 +m2) k +

1

1� x

��
�

N
�m1 �m0

�
(1� f) (1� �) (1� x)+

m1 [1� (1� �) (x+ f (1� x))]g�2:

Let us take a closer look at the f�g term;

f�g =

��
�

N
�m0

�
(1� f) (1� �) (1� x)+

�
m1 [1� (1� �) (x+ f (1� x))� (1� f) (1� x) (1� �)]

=

�
�

N
�m0

�
(1� f) (1� �) (1� x) +m1�

Now we have

m1 (w1 � w0) +m2 (w2 � w0)
= (m1 +m2) k +

1

1� x

��
�

N
�m0

�
(1� f) (1� �) (1� x) +m1�

�
�2

Since
�
�
N
�m0

�
= m1 +m2, the participation constraint becomes

y � �k + �
�
(1� f) (1� �) + � m1

m1 +m2

1

1� � �m0

�
�2: (25)

Note that

m1 +m2 =
�

N
�m0; (26)

from the �ow equation �m2 = (1� �)m0f ,

m1 =
�

N
�m0 �

1� �
�

m0f ; (27)

and
�2 =

�!

1� � : (28)
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Substituting (26), (27) and (28) into (25) we get, after some algebra,

y � �k + �

�
�

�
�

N
�m0

�
+ (1� �) (1� � +m0)

�
�

N
�m0

�
(29)

� (1� �) f
�
�

N
�
�
�

N
�m0

�
(� �m0)

��
�!

1� �
1

1� � +m0

1
�
N
�m0

;

which de�nes the expression for inequality (11). The proof of Lemma 3 is
now complete.
We now show that satisfaction of (11) implies satisfaction of the partic-

ipation constraint for consumers, (3). These inequalities assure that trade
provides a nonnegative �ow of expected utility. In the case of the producer,
it is equivalent to v0 � �w0, as the Bellman equation shows. That is, v0 is
bounded below by the option of not producing, which provides discounted
utility �w0. Likewise, buyers holding genuine money, face the lower bound
v1 � �w1, while those holding counterfeits face v2 � �w2. In addition, as
demonstrated above,

w1 � w0 = k +�1 � f(1� �)�2 � k +�2 � f(1� �)�2 � ��2 = w2 � w0

so that, the relevant inequality in (3) is u � �(w1�w0), which is equivalent to
v1 � �w1. Since w1 = v1, it su¢ ces to show that v0 � �w0� which is the pro-
ducer participation constraint� implies v1 � 0� which would satisfy the con-
sumer participation constraint. Since w2�v0 = (1��)(v2�v0) = �! � 0, then
if v0 � 0, then v2 � 0; but this implies, by v1 � v0 = 1�(1��)(��m0)

1��+m0
(v2 � v0),

that if v0 � 0, then v1 � 0. So if w0 � 0� which implies v0 � 0 by
the producer participation constraint� then v1 � 0� which means the con-
sumer participation constraint is satis�ed. So all we need to demonstrate
is that w0 is nonnegative. From the Bellman condition (13), we have w0 =R �!
0
(w2 � !) dF + (1� f) v0; but since �! = w2 � v0, this Bellman condition

can be rewritten as w0 =
R �!
0
(�! � !) dF +v0. Therefore, the producer partic-

ipation constraint, v0 � �w0, implies (1� �)w0 �
R �!
0
(�! � !) dF � 0, which

means that w0 � 0. We are now ready to complete the proof of Proposition
1.
Since F (!) > 0 for all ! > 0, then any implementable allocation must

feature �2 > 0 unless y = �! = 0. Since u is concave and u0(0) = +1 then,
for a �xed �0, any y positive but su¢ ciently small satis�es the producer par-
ticipation constraint (29). (Note that �!

1�� = �2 and �2 is a function of u (y),

24



see equations (18) and (21).) Since F 0(0) < +1 and u0(0) = +1 then, for
(�0; y) admissible and y su¢ ciently small,

1
N
�0(1��0)[u(y)�y] > �0

R �!
0
!dF ,

demonstrating that any optimum must feature positive counterfeiting.
We now investigate the relationship between �! and (�0; y). Since

�̂a = �̂ � 1� �
1��
m0
+ 1

;
@a

@�0
< 0;

since

�̂b = 1� �̂ +
�
�
�
N
�m0

�
1� � +m0

;
@b

@�0
< 0;

since

�̂c =
1� �
N

(�0u (y) + (1� �0) y) ;
@c

@�0
> 0 and

@c

@y
> 0:

For a �xed (!; y) then @h
@�0

= @(!(aF+b))
@�0

< 0 and @g
@�0

= @(c+k)
@�0

> 0. For a

�xed (!; �0) then
@h
@y
= 0 and @g

@y
> 0. Now, if � is su¢ ciently high and

the participation constraint for producers can be ignored then optimality
requires that for a �xed (�0; y) the smallest solution (if there is more than
one) to h(!) = g(!) is chosen. For such �!, the function h cuts the function
g from below so that, given these derivatives, @�!

@�0
> 0 and @�!

@y
> 0: Since

�0(1��0)[u(y)�y] is maximized by (�0; y) = (12 ; y
�) and �0

R �!
0
!dF decreases

with reductions in (1
2
; y�), the proof follows.

A2 Degeneracy and the proof of Proposition 2

We now assume that all individuals draw the same ! = ~! > 0. There
are three kinds of candidates for the optimum. The �rst candidate optimum
has �! < ~!, so that �2 = 0 and (�0; y) solves a �relaxed problem,�which is
described in appendix A3, below. The second candidate optimum has �! = ~!
with �2 = 0. The (�0; y) from the second candidate will (probably) not solve
the relaxed problem; that is, the solution to the relaxed problem will generate
a �! > ~!, which implies that everyone without money will counterfeit. The
best way to think about the second candidate is that it solves the relaxed
problem subject to the additional constraint that �! � ~!.
The third candidate optimum has �! > ~! and F (�!) = 1. This is possible

provided that the nonnegativity constraints for � and (w; v) are satis�ed.
The former imposes an upper bound on �0 given by �0 � � to ensure a
nonnegative �, (e.g., it follows that if �0 = �, then �2 = 1 � � and �1 = 0,

25



and that �1 > 0 only if �0 < �). The latter imposes lower bounds on
the values for (�0; y) to ensure that �! > ~!. Although the allocations of
the third-candidate kind must satisfy additional constraints that the two
other kinds of candidates do not and there is a welfare loss associated with
counterfeiting, one would think that the planner would never choose this
kind of allocation. We are, however, unable to prove that the third candidate
optimum is dominated in welfare terms by either of the �rst two candidate
optima. The di¢ culty here is due to the fact that, as shown below, for a
�xed �, the right-hand side of the participation constraint for producers, (2),
increases by �~! when counterfeiting is introduced. An increase in �! beyond
~! has two e¤ects that cannot, in principle, be unambiguously ranked. Thus
it is possible that the constraint (2) changes from active to inactive as �! is
raised from ~!.
Using the characterization provided by the remark (on the relaxed prob-

lem) below, a su¢ cient condition for optimality of allocations of the �rst kind
is that the restriction �! � ~! is not binding, where �! is computed according
to the Bellman equations with �0 = �1 =

1
2
and u0(y) = 1. Due to continu-

ity, reductions in the value of ~! below a threshold imply that the optimum
becomes of the second kind.
The value for �! in equation (7) follows from the condition h (�!) = g (�!)

derived above, say equation (22), after f = 1 and k = ~! are imposed.
Likewise, the inequality for y results from (29).
The proof for the �rst part of Proposition 2 is straightforward. If � ! 1,

then from (7), �! ! 0, and, hence, ~! > �!, for � su¢ ciently high. Similarly,
if � ! 0, then, from (8), y ! �~! and from (7), �! ! �~!; hence, ~! > �!.
To complete the proof (for the second part of proposition 2), note that

the restrictions on � follows from (1) and (9). Provided that �! > ~! , the
necessity and su¢ ciency of the conditions for implementability follows from
Lemma 3.

A3 The relaxed planner�s problem

Claim 3 Assume that F (!) = 0 for ! � !L for a su¢ ciently large !L.
Then an implementable (�; y; �!) is optimal if and only if its margin (�0; y)
maximizes the relaxed problem

1

N
�0(1� �0)[u(y)� y] (30)
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subject to

y � u (y)

1 + 1��
�

N
�0

: (31)

If, in addition, � is su¢ ciently high, then the optimum features �0 =
1
2
and

u0(y) = 1.

The representation (30) of the planner�s objective function, as well as the
derivation of the constraint (31), have been derived elsewhere (see Cavalcanti
and Wallace (1999) and Cavalcanti and Nosal (forthcoming)) for the basic
case without counterfeiting. The derivation of inequality (31) for the basic
case follows by imposing �2 = 0, using the Bellman equations to solve for
w1 � w0 as a function of �0 and y, and then obtaining an expression for the
producer�s constraint (11) precisely as (31). The su¢ ciency of (31) for imple-
mentability follows because F (�!) = 0 is a necessary condition for optimality
when !L is large, as discussed below, and because (11) implies (2) and (3),
according to Lemma 3.
Since u0(+1) = 0 then u(y) < y and welfare falls below zero if y is suf-

�ciently large. Since the welfare associated to autarky is zero, the planner�s
problem can be restricted, without loss of generality, to bounded output and
bounded discounted utilities. As a result, if F (!L) = 0 for !L su¢ ciently
high, then an optimum must feature a �! such that F (�!) = 0. We now show
that (29) is equivalent to (31) when F (�!) = 0.
Imposing F (�!) = 0 in the condition h(�!) = g(�!) above provides a solu-

tion �! = c
b
, which can be substituted in (29), together with k = f = 0, yields

(31). The following algebra steps are useful for the task. With k = f = 0,
(29) reads

y � �� + (1� �) (1� � +m0)

(1� �)(1� � +m0)
�!.

Before substituting for �! = c
b
, it is useful to write
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�̂b = 1� �̂ +
1
N
�� (1� �0)
1� � +m0

=
1� � + �

N
�0 + �

�
N
(1� �0)

1� � +m0

� �̂

=
1� � + � �

N
+ (1� �) �

N
�0

1� � +m0

� �̂

=
� (1� �) + (1� �) (1� � +m0) +

��
N

1� � +m0

� �̂

so that

�̂b (1� � +m0) = � + (1� �) (1� � +m0)� ��
�
1� 1

N

�
�

(1� �) �
�
1� 1

N

�
(1� � +m0)

= � + (1� �) (1� � +m0)� �
�
1� 1

N

�
[� + (1� �) (1� � +m0)]

=

�
1� �

�
1� 1

N

��
[� + (1� �) (1� � +m0)]

and then proceed with the substitution in order to derive (31).
It remains to be shown a description of the optimum when � is su¢ ciently

large. It follows that (31) is slack when �0 =
1
2
, y is such that u0(y) = 1 and

� approaches one. The proof of the claim is now complete.

As a �nal remark, consider the relaxed problem together with the addi-
tional constraint �! � ~!. Consider also the solution �! for h (�!) = g (�!), i.e.,
equation (10), when F (�!) = 0, derived above,

�! =
c

b
=

1��
N
[�0u+ (1� �0) y]

1� �
�
1� 1

N

�
(1� �) + � (

�
N
�m0)

1��+m0

.

As � approaches zero the constraint �! � ~! approaches the form

1
N
[�0u+ (1� �0) y]
1� �

�
1� 1

N

� � ~!:
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Since � does not appear in the objective or in the participation constraint,
and since ~! > 0, it follows that the solution attains a welfare level that is
positive and bounded away from zero.
By contrast, by Proposition 2, implementable allocations with �! > ~!

and positive counterfeiting features �0 � �, and thus their extensive margins
are driven towards zero when � is reduced. Allocations of this kind either
fail to become implementable or yield welfare below the allocation without
counterfeiting (the relaxed problem with �! � ~!) when � is reduced.
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