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Christine De Mol, Université Libre de Bruxelles, ECARES
Domenico Giannone, Université Libre de Bruxelles, ECARES,

Lucrezia Reichlin, European Central Bank, ECARES and CEPR

This version: March 2006

Abstract

This paper considers Bayesian regression with normal and double-
exponential priors as forecasting methods based on large panels of time
series. We show that, empirically, these forecasts are highly correlated
with principal components forecasts and that they perform equally well
for a wide range of prior choices. Moreover, we study the asymptotic
properties of the Bayesian regression under Gaussian prior under an ap-
proximate factor structure to establish a criterion for setting parameters
in a large cross-section.

JEL Classification: C11,C13,C33,C53

Keywords: Bayesian VAR, ridge regressions, Lasso regression, principal
components, large cross-sections

∗ The paper has been prepared for the conference to honor the 25th anniversary of

Beveridge and Nelson’s JME paper, in Atlanta March 31st-April 1st, 2006. We would

like to thank Marta Banbura for useful comments. The opinions in this paper are

those of the authors and do not necessarily reflect the views of the European Central

Bank. Support by the grants “Action de Recherche Concertée” Nb 02/07-281 and IAP-

network in Statistics P5/24 is gratefully acknowledged. Please address any comments

to Christine De Mol demol@ulb.ac.be; Domenico Giannone dgiannon@ulb.ac.be; or

Lucrezia Reichlin lucrezia.reichlin@ecb.int

1



1 Introduction

Many problems in economics require the exploitation of large panels of time
series. Recent literature has shown the “value” of large information for signal
extraction and forecasting and new methods have been proposed to handle the
large dimensionality problem (Forni et al., 2003; Giannone et al., 2004; Stock
and Watson, 2002a,b). Surprisingly, the literature has not considered, amongst
these methods, Bayesian regression.

Bayesian methods are part of the traditional econometrician toolbox and
offer a natural solution to overcome the curse of dimensionality problem by
shrinking the parameters via the imposition of priors. In particular, Bayesian
VAR have been advocated as a device for forecasting macroeconomic data (Doan
et al., 1984; Litterman, 1986). These methods, however, have been applied to
relatively small systems.

This paper analyzes Bayesian regression methods under Gaussian and double
exponential prior and studies their forecasting performance on the standard
“large” macroeconomic dataset that has been used to establish properties of
principal components based forecast (Stock and Watson, 2002a,b).

Our two choices for the prior correspond to two interesting cases. The Gaus-
sian density prior generates coefficients’ posteriors implying that all variables
in the panel are given some weight. This is the same as principal components
regression, but while the Gaussian prior gives decreasing weight to the ordered
eigenvalues of the covariance matrix of the data, principal components give posi-
tive weight to the dominant ones and zero to the others. The double exponential,
on the other hand, puts more mass near zero and in the tails and this induces
a tendency of the coefficients’ posteriors to be either large or zero. As a result,
one favors the recovery of a few large coefficients instead of many fairly small
ones. Moreover, the double-exponential prior favors truly zero values instead of
small ones, i. e. it favors sparse regression coefficients. This case is interesting
because it results in variable selection rather than in variable aggregation as
in the other two cases and, in principle, should be more interpretable from the
economic point of view.

Under double exponential prior there is no analytical form for the maximizer
of the posterior distribution, but we can exploit the fact that, under the prior
of i.i.d. regression coefficients, the solution amounts to a Lasso (least absolute
shrinkage and selection operator) regression for which there are a number of
algorithms. Lasso regression is a method that combines variable selection and
parameters estimation. The estimator is nonlinear and data-adaptive which
may have advantages in some empirical situations.

Results based on an out-of-sample exercise show that, for a given grid of
parameters, the forecasts of the two Bayesian methods considered are strongly
correlated with that based on principal components and that mean squared
errors are roughly similar.

To understand this result one should consider that the Bayesian regression
with Gaussian i.i.d. prior on the coefficients is a ridge regression and the latter
has a strict relation with principal components regression. Ridge and Lasso are
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penalized regressions and, as principal components, they can be understood as
regularization methods when the problem of computing OLS estimates is ill-
conditioned by the presence of a cluster of eigenvalues of the covariance matrix
close to zero (near-collinearity).

Collinearity is a typical feature of large panels of data. This feature, in the
recent literature on large panels, is captured by assuming that, as the size of
the cross-section n increases, few eigenvalues increase with it while the others
are bounded. These assumptions define the approximate factor structure first
introduced by Chamberlain and Rothschild (1983) and generalized by Forni and
Lippi (2001) and Forni et al. (2000). Related assumptions have been introduced
by Bai and Ng (2002) and Bai (2003). These authors have used these assump-
tions to derive the n and T asymptotic properties of the principal components
forecast. It is then a natural starting point for our analysis to base the asymp-
totic of Bayesian regression in large panels on the same set of assumptions.

Under those assumptions, and for the Gaussian prior case, we derive condi-
tions on the prior under which the forecast converges to the efficient one (i.e.
the forecast under knowledge of the true parameters) as n, T go to infinity. The
intuition of the result is that, with appropriately chosen priors, the Bayesian
regression tends to give more weight to the dominant common factors. The
asymptotic result gives guidance for the setting of the prior in a large cross-
section framework.

Lasso forecasts are computed using the iterative algorithm proposed by
Daubechies et al. (2004) which is feasible for the large dimensional cases (also
n >> T ). Forecast accuracy comparable with principal components is achieved
by a regression on few variables. All forecasts – principal components, ridge
and Lasso – are very correlated and this is intriguing since, as mentioned, the
first two methods give positive weight to all variables while Lasso only weights
some. We interpret the result as evidence that our panel is characterized by
collinear rather than sparse covariance matrix and that few variables span the
space of the pervasive common factors. These variables must be correlated with
the principal components. Further work plans to analyze the n, T asymptotic
properties of the Lasso forecast under the approximate factor structure and
analyze the empirical potential of this method for economic applications.

The paper is organized as follows. The second Section introduces the prob-
lem of forecasting using large cross sections. The third Section reports the result
of the out-of sample exercise for the three methods considered: principal com-
ponents, Bayesian regression with normal prior and with double exponential.
The fourth Section reports asymptotic results for the Gaussian prior case under
approximate factor structure. The fifth Section concludes and outlines problems
for future research.
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2 Three solutions to the “curse of dimensional-
ity” problem

Consider the (n×1) vector of covariance stationary processes Zt = (z1t, ..., znt)′.
We will assume that they all have mean zero and unitary variance.

We are interested in forecasting linear transformations of some elements of
Zt using all the variables as predictors. Precisely, we are interested in estimating
the linear projection

yt+h|t = proj {yt+h|Ωt}
where Ωt = span {Zt−p, p = 0, 1, 2, ...} is a potentially large time t information
set and yt+h = zh

i,t+h = f(L)zi,t+h is a filtered version of zit, for a given i =
1, ..., n.

Traditional time series methods approximate the projection using only a fi-
nite number, p, of lags of Zt. In particular, they consider the following regression
model:

yt+h = Z ′tβ0 + ... + Z ′t−pβp + ut+h = X ′
tβ + ut+h

where β = (β′0, ..., β
′
p)′ and Xt = (Z ′t, ..., Z ′t−p)′.

Given a sample of size T , we will denote by X = (Xp+1, ..., XT−h)′ the
(T − h − p) × n(p + 1) matrix of observations for the predictors and by y =
(yp+1+h, ..., yT )′ the (T −h−p)×1 matrix of the observations on the dependent
variable. The regression coefficient are typically estimated by Ordinary Least
Square (OLS), β̂LS = (X ′X)−1X ′y, and the forecasts is given by ŷLS

T+h|T =

X ′
T β̂LS . When the size of the information set, n, is large, such projection

involves the estimation of a large number of parameters. This implies loss
of degrees of freedom and poor forecast (“curse of dimensionality problem”).
Moreover, if the number of regressors is larger that the sample size, n(p+1) > T ,
the OLS are not feasible.

To solve this problem, the method that has been considered in the literature
is to compute the forecast as a projection on the first few principal components
(Forni et al., 2003; Giannone et al., 2004, 2005; Stock and Watson, 2002a,b).

Consider the spectral decomposition of the sample covariance matrix of the
regressors:

SxV = V D (1)

where D = diag(d1, ..., dn(p+1)) is a diagonal matrix having on the diagonal
the eigenvalues of Sx = 1

T−h−pX ′X in decreasing order of magnitude and
V = (v1, ..., vn(p+1)) is the n(p + 1) × n(p + 1) matrix whose columns are the
corresponding eigenvectors1. The normalized principal components (PC) are
defined as:

1The eigenvalues and eigenvectors are typically computed on 1
T−p

∑T

t=p+1
XtX′

t (see

for example Stock and Watson, 2002a). We instead compute them on 1
T−h−p

X′X =

1
T−p−h

∑T−h

t=p+1
XtX′

t for comparability with the other estimators considered in the paper.
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f̂it =
1√
di

v′iXt (2)

for i = 1, · · · , N where N is the number of non zero eigenvalues2.
If most of the interactions among the variables in the information set is

due to few common underlying factors, while there is limited cross-correlation
among the variable specific components of the series, the information content
of the large number of predictors can indeed be summarized by few aggregates,
while the part not explained by the common factors can be predicted by means
of traditional univariate (or low-dimensional forecasting) methods and hence
just captured by projecting on the dependent variable itself (or on a small set
of predictors). In such situations, few principal components, F̂t = (f̂1t, ..., f̂rt)
with r << np, provide a good approximation of the underlying factors.

Assuming for simplicity that lags of the dependent variable are not needed
as additional regressors, the principal component forecast is defined as:

yt+h|t = proj {yt+h|Ωt} ≈ proj
{
yt+h|ΩF

t

}
(3)

where ΩF
t = span

{
F̂t, F̂t−1, · · · ,

}
is a parsimonious representation of the in-

formation set. The parsimonious approximation of the information set makes
the projection feasible, since it requires the estimation of a limited number of
parameters.

The literature has studied rates of convergence of the principal components
forecast to the efficient forecast under assumptions defining an approximate
factor structure (see next Section). Under those assumptions, once common
factors are estimated via principal components, the projection implied by the
forecast equation is computed by OLS treating the estimated factors as if they
were observables.

The Bayesian approach consists instead in shrinking parameters through
priors and in using the posterior of the parameters to compute the forecasts.
Here we consider two alternatives: Gaussian and double exponential prior.

Under Gaussian prior, ut ∼ i.i.d. N (0, σ2
u) and β ∼ N (β0,Φ0), and assum-

ing for simplicity that all parameters are shrank to zero, β0 = 0, we have:

β̂bay = E (β|X) =
(
X ′X + σ2

uΦ−1
0

)−1
X ′y.

The forecast is hence computed as:

ŷbay
T+h|T = X ′

T β̂bay.

In the case in which the parameters are independently and identically dis-
tributed, Φ0 = σ2

βI, this is equivalent to penalized, ridge regression with pa-

2Note that N ≤ min{n(p + 1), T}.
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rameter ν = σ2
u

σ2
β

3. Precisely4:

β̂bay = arg min
β

{‖y −Xβ‖2 + ν‖β‖2} .

If the priors on the regression coefficients are i.i.d. there is a very strict
relation between Bayesian regression and principal components. OLS, principal
component regression and Bayesian regressions can be represented as a weighted
sum over the projection on the principal components:

X ′
T β̂ =

N∑

i=1

wif̂iT α̂i (4)

where α̂i = 1√
di

v′iX
′y/(T − h − p) is the regression coefficient of y on the ith

principal component.
For OLS we have w = 1 for all i. For the Bayesian estimates wi = di

di+
ν

T−h−p
,

where ν = σ2
u

σ2
β

. For the principal components, we have wi = 1 if i ≤ r, and zero

otherwise.
Linear methods select the relevant (stable) components of the solution and

discard the others only on the basis of the signal-to-noise ratio and of the spec-
tral properties of the matrix Sx to be inverted. The selection is thus performed
independently of the specific observed data vector y (linear methods are not
data-adaptive). A look at (4) shows that such methods will perform well pro-
vided that no truly significant coefficients αi are observed for i > r, because
those will not be taken into account. Bad performances is to be expected if, for
example, we aim at forecasting a time series yt, which by bad luck is just equal
or close to a principal component f̂i with i > r.

This drawback of linear methods can be overcome when resorting to nonlin-
ear data-adaptive methods. A simple instance of a thresholding method can be
derived by using non-gaussian priors on the regression coefficients.

A well known case is the double exponential prior, which, when coupled with
a zero mean i.i.d. prior, is equivalent to the method that is sometimes called
Lasso regression (least absolute shrinkage and selection operator) although Lasso
is actually the name of an algorithm for finding the maximizer of the posterior
proposed in Tibshirani (1996). In this particular i.i.d. prior case the method can
also be seen as a penalized regression with a penalty in the coefficients involving
the L1 norm instead of the L2 norm. Precisely:

βlasso = arg min
β

{
‖y −Xβ‖2 + ν

n∑

i=1

|βi|
}

(5)

3Homogenous variance and mean zero are very naive assumptions. In our case, they are
justified by the fact that the variables in the panel we will consider for estimation are stan-
dardized and demeaned. This transformation is natural for allowing comparison with principal
components.

4In what follows we will denote by ‖ · ‖ the L2 matrix norm, i.e. for every matrix A,

‖A‖ =
√

λmax(A′A). For vectors it correspond to the Euclidean norm.
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where ν = 1
τ where τ is the scale parameter of the prior density (see e.g. Tib-

shirani, 1996). We recall here that the variance of the prior density is equal to
2τ2.

Compared with the Gaussian density, the double exponential puts more
mass near zero and in the tails and this induces a tendency of the coefficients’
posteriors to be either large or zero. As a result, one favors the recovery of a
few large coefficients instead of many fairly small ones. Moreover, as we shall
see, the double-exponential prior favors truly zero values instead of small ones,
i.e. it favors sparse regression coefficients (sparse posterior).

Unfortunately, the maximizer of the posterior distribution has no analytical
form and has to be computed using numerical methods. An efficient alterna-
tive to the Lasso algorithm has been developed more recently by Efron et al.
(2004) under the name LARS (Least Angle Regression) whereas quadratic pro-
gramming based on interior point methods are advocated in Chen et al. (2001).
We will use instead an Iterative Landweber scheme with soft thresholding at
each iteration proposed in De Mol and Defrise (2002) and further analyzed in
Daubechies et al. (2004) which works without limitations of dimensionality also
for sample size T smaller than the number of regressors n(p + 1) (see Appendix
B).

To gain intuition about Lasso regression, let us consider, as an example, the
case of orthogonal regressors where the posterior has known analytical form.
In particular, let us consider the case in which the regressors are the principal
components of X. In this case, Lasso has the same form of (4) with wiα̂i

replaced by Sν(α̂i) where Sν is the soft-thresholder defined by

Sν(α) =





α + ν/2 if α ≤ −ν/2
0 if |α| < ν/2

α− ν/2 if α ≥ ν/2.
(6)

As seen, this sparse solution is obtained by setting to zero all coefficients α̂i

which in absolute value lie below the threshold ν/2 and by shrinking the largest
ones by an amount equal to the threshold. Let us remark that it would also be
possible to leave the largest components untouched, as done in so-called hard-
thresholding, but we do not consider this variant here since the lack of continuity
of the function Sν(α) makes the theoretical framework more complicated.

In the general case, with not orthogonal regressors, the solution will enforce
sparsity on the variables themselves rather than on the principal components
and this is an interesting feature of the method since it implies a regression on
few observables rather than on few linear combinations of the observables. Note
that the non-Gaussian method is not invariant to orthogonal linear transforma-
tion of the data.

The next section will consider the empirical performance of the three meth-
ods discussed in an out-of-sample forecast exercise based on a large panel of
time series.
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3 Empirics

The data set employed for the out-of-sample forecasting analysis is the same as
the one used in Stock and Watson (2005), with the exception of a few series.
The panel includes real variables (sectoral industrial production, employment
and hours worked), nominal variables (consumer and producer price indices,
wages, money aggregates), asset prices (stock prices and exchange rates), the
yield curve and surveys. A full description is given in appendix 1.

Series are transformed to obtain stationarity. In general, for real variables,
such as employment, industrial production, sales, we take the monthly growth
rate. We take first differences for series already expressed in rates: unemploy-
ment rate, capacity utilization, interest rate and some surveys. Prices and wages
are transformed in first differences of annual inflation following Giannone et al.
(2004, 2005).

Let us define IP as the monthly industrial production index and CPI as the
consumer price index. The variables we forecast are

zh
IP,t+h = (ipt+h − ipt) = zIP,t+h + ... + zIP,t+1

and
zh
CPI,t+h = (πt+h − πt) = zCPI,t+h + ... + zCPI,t+1

where ipt = 100× logIPt is the (rescaled) log of IP and πt = 100× log CPIt

CPIt−12

is the annual CPI inflation (IP enters in the pre-transformed panel in first log
differences, while annual inflation in first differences).

The forecasts for the (log) IP and the level of inflation are recovered through
as:

îpT+h|T = zh
IP,T+h|T + ipT

and
π̂T+h|T = zh

CPI,T+h|T + πT

The predictions accuracy is evaluated using the mean squared forecast error
(MSFE) metric, given by:

MSFEh
π =

1
T1 − T0 − h + 1

T1−h∑

T=T0

(π̂T+h|T − πT+h)2

and

MSFEh
ip =

1
T1 − T0 − h + 1

T1−h∑

T=T0

(îpT+h|T − ipT+h)2

The sample has a monthly frequency and ranges from 1959:01 to 2003:12.
The evaluation period is 1970:01 to 2002:12. T1=2003:12 is the last available
point in time, T0= 1969:12 and h = 12. We consider rolling estimates with a
window of 10 years, i.e. parameters are estimated at each time T using the most
recent 10 years of data.
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All the procedures are applied to standardized data. Mean and variance are
re-attributed to the forecasts accordingly.

We report results for industrial production (IP) and the consumption price
index (CPI).

Let us start from principal components. We report results for the choice of
r = 1, 3, 6, 10, 25, 50, 75 principal components. The case r = 0 is the forecast
implied from a random walk with drift on the log of IP and the annual CPI
inflation, while r = n is the OLS solution. We only report results for p = 0
which is the one typically considered in macroeconomic applications and for
which the theory has been developed.

We report MSFE relative to the random walk, and the variance of the fore-
casts relative to the variance of the series of interest. The MSFE is also reported
for two sub-samples: the first half of the evaluation period 1970-1985, and the
second half 1985-2002. This would help us understand the relative performance
of the methods also in a case where the predictability of key macroeconomic
time series has dramatically decreased D’Agostino et al. (2005). Results are
reported in Table 1.

Table 1: Principal components forecasts

Consumer Price Index
Number of Principal Componennts

1 3 6 10 25 50 75
MFSE 1971-2002 0.89 0.64 0.54 0.54 0.66 1.10 1.54
MFSE 1971-1984 0.86 0.48 0.36 0.35 0.43 0.81 1.23
MFSE 1985-2002 0.99 1.12 1.10 1.12 1.33 1.96 2.50

Variance∗ 0.21 0.60 0.65 0.76 0.92 1.06 1.25

Consumer Price Index
Number of Principal Componennts

1 3 6 10 25 50 75
MFSE 1971-2002 0.61 0.56 0.59 0.69 0.83 1.09 1.47
MFSE 1971-1984 0.52 0.42 0.45 0.50 0.64 0.90 1.18
MFSE 1985-2002 1.01 1.22 1.29 1.56 1.69 2.02 2.81

Variance∗ 0.31 0.45 0.53 0.53 0.49 0.62 0.97

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

Let us start from the whole evaluation sample. Results show that principal
components improve a lot over the random walk both for IP and CPI. The
advantage is lost when taking too many PC, which implies loss of parsimony.
Notice that, as the number of PC increases, the variance of the forecasts becomes
larger to the point of becoming larger than the variance of the series itself. This
is explained by the large sample uncertainty of the regression coefficients when
there is a large number of regressors. Looking at the two sub-samples, we see
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that PCs perform very well in the first part of the sample, while in the most
recent period they perform very poorly, worse than the random walk.

For comparability, we focus on the case p = 0 also for the Bayesian regression
(no lags of the regressor). Note, that, for h = 1, this case corresponds to a row
of a VAR of order one. The exercise is for the i.i.d. Gaussian prior (ridge
regression). This prior works well for the p = 0 case considered here. However,
for the case p > 0, it might be useful to shrink more lagged regressors, as, for
example, with the Minnesota prior (Doan et al., 1984; Litterman, 1986). This
is beyond the scope of this empirical analysis here which is meant as a first
assessment of the general performance of the methods.

For the ridge case, we run the regression using the first estimation sample
1959-1969 for a grid of priors. We then choose the priors for which the in-
sample fit explains a given fraction 1 − κ of the variance of the variable to be
forecast. We report results for different values of κ (the associated ν are also
reported). Notice that κ = 1 corresponds to the random walk since, in this case,
all regressors are set to zero. The other extreme, κ close to 0, is associated with
a quite uninformative prior and hence will be very close to the OLS. Results are
reported in Table 2.

Table 2: Bayesian forecasts with Gaussian prior
Industrial Production

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 5 23 60 140 290 580 1150 2350 6000
MFSE 1971-2002 0.99 0.71 0.60 0.56 0.56 0.58 0.64 0.72 0.84
MFSE 1971-1984 0.75 0.49 0.41 0.38 0.39 0.44 0.52 0.63 0.78
MFSE 1985-2002 1.70 1.37 1.20 1.10 1.04 1.01 1.00 0.99 0.99

Variance∗ 0.74 0.64 0.58 0.49 0.39 0.29 0.19 0.12 0.07

Consumer Price Index

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 14 60 140 290 530 960 1750 3550 9250
MFSE 1971-2002 0.86 0.72 0.66 0.63 0.62 0.63 0.66 0.73 0.84
MFSE 1971-1984 0.70 0.57 0.52 0.51 0.51 0.54 0.59 0.68 0.82
MFSE 1985-2002 1.62 1.41 1.30 1.20 1.12 1.05 0.99 0.96 0.96

Variance∗ 0.41 0.35 0.32 0.28 0.24 0.19 0.13 0.08 0.05

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

The ridge forecast performs well for a range of κ between 30% and 70%
that are associated with shrinkage parameters between half and ten times the
cross-sectional dimension, n. For the whole sample, the MSFE are close to
that obtained with principal components regression. Moreover, the forecasts
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produced by ridge regressions are smoother than the PC forecasts, which is a
desirable property.

As for the two sub-samples, results are also qualitatively similar to PC fore-
casts. Ridge performs particularly well in the first sub-sample but loses all the
advantage in the second. We can note, however, more stability than in the PC
case. This is not surprising since ridge uses all eigenvalues in decreasing im-
portance instead of truncating after r as in the PC case. Notice also that, for
inflation, for intermediate range of ν, even in the most recent sample there is a
slight improvement over the random walk.

Finally, we analyze the case of double exponential priors. In this case, instead
of fixing the values of the parameter ν, we select the prior that deliver a given
number (k) of non zero coefficients in the initial sample 1960− 1970. We then
use the same prior for the whole exercise. We look at k ≈ 5, 10, 25, 50, 60 non
zero regressors case.

Results, reported in Table 3 show that good forecasts are obtained with a
limited number of predictors, between 5 and 10.

Table 3: Lasso forecasts
Industrial Production

Avg. Number of regressors
5 10 25 50 60

MSFE 1971-2002 0.62 0.60 0.67 0.71 0.80
MSFE 1971-1984 0.49 0.43 0.45 0.48 0.56
MSFE 1985-2002 1.02 1.10 1.32 1.40 1.52

Variance∗ 0.28 0.41 0.61 0.71 0.76

Consumer Price Index
Avg. Number of regressors
5 10 25 50 60

MSFE 1971-2002 0.66 0.61 0.69 0.80 0.89
MSFE 1971-1984 0.58 0.50 0.52 0.61 0.70
MSFE 1985-2002 1.04 1.15 1.47 1.68 1.75

Variance∗ 0.15 0.25 0.35 0.39 0.46

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

Finally, we look at the correlation among different forecasts. Results are
reported for r = 10 principal components and 10 predictors for the first 10
years of observations for Lasso. For the Gaussian Bayesian model we select
ν = 290 which is the best performing both for IP and CPI. From Table 3 we
can see the forecasts are highly correlated.

Comparable MSE for the three methods as well as the correlation of the fore-
cast suggest that the covariance of our data are characterized by few dominant
eigenvalues. In this case, both PC and ridge, by keeping the largest ones and
giving, respectively zero weight and small weight to the others, should perform
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Table 4: Correlation among forecasts
Industrial Production Consumer Price Index

PCA ridge Lasso PCA ridge Lasso
PCA 1.00 – – PCA 1.00 – –
Ridge 0.95 1.00 – Ridge 0.95 1.00 –
Lasso 0.88 0.93 1.00 Lasso 0.87 0.93 1.00

similarly. This point will emerge more clearly in next Section on the basis of
the asymptotic analysis.

The result for Lasso is less straightforward to interpret since this is a re-
gression on few variables rather than on few aggregates of the variables. The
high correlation of the Lasso forecast with the PC forecast implies two things.
First, the panel must be characterized by collinearity rather than sparsity and,
second, few variables must span the space of the pervasive common factors.

The variables selected for k ≈ 10 at the beginning and at the end of the
out-of-sample evaluation period are reported in the last two column of the table
describing the database in Appendix C. Two main results emerge. First, only
some of the variables selected are those typically included in small-medium size
models: the commodity price indexes, the spreads, money aggregates and stock
market variables. Some of the selected variables are sectoral (production, labor
market and price indicators) or regional (housing). Second, the selection is
different at different points in the sample. Only one variable selected at the
beginning of the 70s is also picked-up in the most recent period for both CPI
inflation and IP forecasts.

We have two conjectures about these results. The fact that variables are
not clearly interpretable probably indicates that the panel contain clusters of
correlated variables and the procedure select a particular one, not necessarily
the most meaningful from the economic point of view. This implies that variable
selection methods are not easily interpretable in this case. The fact that the
procedure selects different variables at different point of the sample, implies
temporal instability, but results imply that the latter does not affect the relative
performance of methods such as ridge and principal components. This suggests
that these methods, by aggregating all variables in the panel, stabilize results
providing a sort of insurance against temporal instability. These conjectures
will be explored in further work.

4 Theory

We have seen that the Bayesian regression and principal components can be
seen as regularization methods for near collinear data structures. Large panels
of macroeconomic time series are typically highly collinear (Giannone et al.,
2004) so that these methods are also appropriate to deal with the “curse of
dimensionality” problem.
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This observation motivates the assumptions that we will now introduce to
define the asymptotic analysis.

We suppose that Xt has the following representation5:

Xt = ΛFt + ξt

where Ft = (f1t, ..., frt)′, the common factors, is an r-dimensional stationary
process with covariance matrix EFtF

′
t = Ir and ξt, the idiosyncratic compo-

nents, is an n(p + 1)-dimensional stationary process with covariance matrix
Eξtξ

′
t = Ψ.

We will assume
yt+h = γFt + ut+h

where ut+h is unforecastable and orthogonal to Ft. Hence

yt+h|t = γFt

Following Forni et al. (2000, 2003, 2005), we will impose two sets of condi-
tions, conditions that ensure stationarity (see appendix A) and conditions on
the cross-sectional correlation as n increases6. These conditions are a general-
ization to the dynamic case of the conditions defining an approximate factor
structure given by Chamberlain and Rothschild (1983). Precisely:

CR1) 0 < lim infn→∞ 1
nλmin (Λ′Λ) < lim supn→∞

1
nλmax (Λ′Λ) < ∞

CR2) lim supn→∞ λmax (Ψ) < ∞ and lim infn→∞ λmin (Ψ) > 0

Note that CR1 implies that as the cross-sectional dimensional increases few
eigenvalues of Σx = ΛΛ′+Ψ remain pervasive while CR2 implies that the others
are asymptotically bounded.

Under these conditions, it has been shown that (Forni et al., 2003, 2005):

X ′
T β̂bay − γFT = op (1) as n, T →∞,

where F̂t are the PC estimates of the common factors and γ̂ is estimated by
OLS of yt+h on F̂t. Bai (2003) and Stock and Watson (2002a) have shown the
same result but under slightly different assumptions.

We study now the properties of the Bayesian estimates if the data are gener-
ated from an approximated factor structure. Let us first notice that under our
assumptions:

yt+h = X ′
tβ + ut+h

5Notice that here we define the factor model over Xt = (Z′t, ...Z
′
t−p)′ while the literature

typically defines it over Zt. It can be seen that if Zt follows an approximate factor structure
defined below, with k common factors, then also Xt follows an approximate factor structure
with r ≤ k(p + 1) common factors.

6Bai (2003), Bai and Ng (2002) and Stock and Watson (2002a) give similar conditions ....
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Under the assumptions CR1 and CR2 we have βi ∼ 1
n and ‖β‖ ∼ 1√

n
for n

large. In fact the population regression coefficients are given by

β = Σ−1
x Σxy = (ΛΛ′ + Ψ)−1Λγ′ = Ψ−1Λ(Λ′Ψ−1Λ + I)−1γ′

where Σx = E(XtX
′
t) and Σxy = E(Xtyt+h). Under assumptions CR1-2 we

have ‖(Λ′Ψ−1Λ+ I)−1‖ ∼ 1
n while ‖Ψ−1Λ(Λ′Ψ−1Λ+ I)−1‖ ∼ 1√

n
. This implies

that the magnitude of the regression coefficients decreases with the number of
regressors. The reason is that, if the factors are pervasive, then all variables are
informative for the common factors and we should give weight to all of them.
The result suggests that, under the factor structure assumption, the Bayesian
regression should use a prior that, as the cross-section dimension increases,
shrinks increasingly more regression coefficients to zero. The Proposition below
gives conditions for the shrinkage parameter that allow to obtain consistent
forecasts. We will need the additional Assumption A1 that insures that the
elements of the sample covariances of Xt and yt converge uniformly to their
population counterpart, see the Appendix A for details.

Proposition Under assumptions A1, CR1 and CR2, if lim infn→∞
λmin(Φ0)
‖Φ0‖ > 0

then:

X ′
T β̂bay = γFT + Op

(
1

nT‖Φ0‖
)

+ Op

(
1√
n

)
+ Op

(
n
√

T‖Φ0‖
)

as n, T →∞,

provided that 1
nT ‖Φ0‖−1 → 0 and 1

n
√

T
‖Φ0‖−1 →∞ as n, T →∞,

If coefficients are i.i.d. N (0, σ2
β), then the conditions are satisfied if σ2

β =
1

cnT 1/2+δ , where c is an arbitrary positive constant. Hence, we should shrink
the single regressors with an asymptotic rate faster than the 1

n . With non i.i.d.
prior, the condition lim infn→∞

λmin(Φ0)
‖Φ0‖ > 0 requires that all the regression

coefficients should be shrunk at the same asymptotic rate.
A suitable choice for the prior is ‖Φ0‖ = 1

cnT 1/2+δ . In this case we have:

∆nT

(
X ′

T β̂bay − γFT

)
= Op (1) as n, T →∞,

where ∆nT = min
{√

n, T δ, T ( 1
2−δ)

}
and 0 < δ < 1/2. These rates of consis-

tency are different from the ones derived for principal components in Forni et al.
(2005) and, using a different set of assumptions by Bai (2003), and probably
can be improved by imposing further assumptions.

The intuition of this result is very simple. The factor structure implies that
there are few r dominant eigenvalues that diverge faster then the remaining
smaller ones as the cross-section dimension increases. The parameter’s prior
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chosen as above insures that the effect of the factors associated with the dom-
inant eigenvalues is not distorted asymptotically while for the smaller ones it
is set to zero asymptotically. Clearly, as mentioned in the empirical Section, if
there are few dominant eigenvalues, both Bayesian regression under Gaussian-
ity and principal components regression will only give weight to the dominant
eigenvalues.

Recall that in the case studied here, Bayesian regression with Gaussian prior
is equivalent to ridge regression.

5 Conclusions and open questions

This paper has analysed the properties of Bayesian regression in large panels of
time series and compared them to principal components regression.

We have considered the Gaussian and the double exponential prior and show
that they offer a valid alternative to principal components. For the macroeco-
nomic panel considered, the forecast they provide is very correlated to that of
PC regression and implies similar mean squared errors.

This exercise should be understood as rather stylized. For the Bayesian case
there is room for improvement, in particular by using developments in BVAR
(Doan et al., 1984; Litterman, 1986) and related literature.

In the asymptotic analysis we have considered the Gaussian prior case. For
that case, we have shown n, T rates of convergence to the efficient forecast under
an approximate factor structure. This analysis guides us in the setting of the
prior, also interpreted as a ridge penalization parameter. The empirical analysis
reports result for the optimal parameter and for a larger range of parameter
choice. The setting of the parameters for the double-exponential case has been
exclusively empirical. The algorithm provides good results by selecting few
variables in the regression.

These results show that our data, which correspond to the typical macroeco-
nomic data-set analyzed for macroeconomic policy analysis, is characterized by
collinearity rather than sparsity. On the other hand, the result that few selected
variables are able to capture the space spanned by the common factors, suggests
that small models with accurately selected variables may do as well as methods
that use information on large panels and are based on regressions on linear com-
binations of all variables. This point calls for further research since our results
show that the variable selection provided by the Lasso regression is not clearly
interpretable and they are not the typical ones that a macroeconomist would
include in a VAR. Moreover, the selected variables change over time.
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6 Appendix A: proof of Proposition 1

Denote by yt the generic variable to be forecast, i.e. yt = zh
it

- the covariance matrix of the regressors as Σx = E(XtX
′
t). The sample equiv-

alent will be denoted by Sx = X ′X/(T − h − p). The estimation er-
ror will be denote by Ex = Sx − Σx. These matrices are of dimension
n(p + 1)× n(p + 1).

- the covariance matrix of the regressors and the variable to be predicted as
Σxy = E(Xtyt+h). The sample equivalent will be denoted by Sxy =
X ′y/(T −h−p). The estimation error will be denote by Exy = Sxy−Σxy.
These matrices are of dimension n(p + 1)× 1.

Assumption A1: There exists a positive constant K ≤ ∞, such that for all
T ∈ N and i, j ∈ N

TE[(ex,ij)
2] < K and TE[(exy,i)2] < K

as T → ∞, where ex,ij denote the i, jth entry of Ex and exy,i denote the ith
entry of Exy. Sufficient conditions can be found in Forni et al. (2005).

We can consider without loss of generality the case of iid prior on the coef-
ficients and denote by ν̃ = σ2

u

(T−h−p)‖Φ0‖ the rescaled associated penalization in
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the ridge regression. In fact, in the case of non-iid prior, we can redefine the re-
gression in terms of X̃t = 1√

‖Φ0‖
Φ1/2

0 Xt. The associated regression coefficients,

β̃ =
√
‖Φ0‖Φ−1/2

0 β have are now i.i.d. prior with variance ‖Φ0‖. In additions
the transformed regressors X̃t have the factor representation

X̃t = Λ̃Ft + ξ̃t

where Λ̃ = Φ
1/2
0 Λ√
‖Φ0‖

and ξ̃t = Φ
1/2
0 ξt√
‖Φ0‖

. The assumption lim infn→∞
λmin(Φ0)
‖Φ0‖ > 0

insures that the transformed model still satisfies conditions CR1 and CR2.

Define, Σx(ν̃) = Σx + ν̃In and the sample equivalent Sx(ν̃) = Sx + ν̃In.
We are interested in the properties of β(ν̃) and β̂(ν̃) which are solutions of the
following linear system of equations:

Σx(ν̃)β(ν̃) = Σxy

Sx(ν̃)β̂(ν̃) = Sxy
(7)

Notice that β(0) = β is the population regression coefficient and β̂(0) = β̂ is
the sample OLS regression coefficient. For ν̃ > 0 we have the Ridge regression
coefficients.

Lemma 1 Under assumptions CR1-2 we have ‖β(ν̃)‖ = O
(

1√
n

)
and

β(ν̃)′Xt = γFt + Op

(
ν̃

n

)
+ Op

(
1√
n

)
as n →∞,

Proof. We have:

β(ν̃) = (ΛΛ′ + Ψ + ν̃In)−1Λγ′ = (Ψ + ν̃In)−1Λ(Λ′(Ψ + ν̃In)−1Λ + Ir)−1γ′

hence

‖β(ν̃)‖ ≤
(√

λmax(Λ′Λ)
λmin(Ψ) + ν̃

)( ‖Ψ‖+ ν̃

λmin(Λ′Λ)

)
‖γ‖ = O

(
1√
n

)

this proves the first result. Turning to the second statement, we have

β(ν̃)′Xt = γ(Λ′(Ψ + ν̃In)−1Λ + Ir)−1Λ′(Ψ + ν̃In)−1ΛFt

+γ(Λ′(Ψ + ν̃In)−1Λ + Ir)−1Λ′(Ψ + ν̃In)−1ξt

First notice that

(Λ′(Ψ + ν̃In)−1Λ + Ir)−1Λ′(Ψ + ν̃In)−1Λ = Ir −
(
Λ′(Ψ + ν̃In)−1Λ + Ir

)−1
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consequently

γ(Λ′(Ψ+ν̃In)−1Λ+Ir)−1Λ′(Ψ+ν̃In)−1ΛFt = γFt−
(
Λ′(Ψ + ν̃In)−1Λ + Ir

)−1
γFt

where ‖ (
Λ′(Ψ + ν̃Ir)−1Λ + Ir

)−1 ‖ ≤ ‖Ψ‖+ν̃
λmin(Λ′Λ) = O

(
ν̃
n

)
as n →∞.

Turning to the second term :

E‖β(ν̃)′ξt‖2 = β(ν̃)′Ψβ(ν̃) ≤ ‖β(ν̃)‖2‖Ψ‖ = O

(
1
n

)
as n →∞

The desired result follows. Q.E.D.

For ν̃ = 0, we have that the optimal regression coefficient β provides con-
sistent forecasts. The regularization parameter ν̃ introduces a bias which tend
to zero for large cross-sectional dimensions provided is does not increases faster
than the cross-sectional dimension n. Let us move now to sample estimates and
investigate relations between β(ν̃) and β̂(ν̃). We first need the following lemma:

Lemma 2 Under Assumption A1, we have:

(i) ‖Ex‖ = Op

(
n√
T

)
, as n, T →∞

(i) ‖Exy‖ = Op

(√
n√
T

)
, as n, T →∞

Proof. We have:

‖Ex‖2 ≤ trace [E′
xEx] =

n∑

i=1

n∑

j=1

e2
x,ij

Taking expectations, we obtain:

E




n∑

i=1

n∑

j=1

e2
x,ij


 =

n∑

i=1

n∑

j=1

E
[
e2
x,ij

] ≤ n2K

T
= O

(
n2

T

)

We further have ‖Exy‖2 =
∑n

i=1 e2
xy,i. Taking expectations:

E

[
n∑

i=1

e2
xy,i

]
=

n∑

i=1

E
[
e2
xy,i

] ≤ nK

T
= O

( n

T

)

Results follow from the Markov inequality. Q.E.D.
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We can now prove the main result.

Lemma 3 Under assumptions A1 and CR1-2, if n
ν̃
√

T
= o(1) as n, T →∞, then

‖β̂(ν̃)‖ ≤ ‖β(ν̃)‖
(

1 + Op

(
n

ν̃
√

T

))

and

‖β̂(ν̃)− β(ν̃)‖ = ‖β(ν̃)‖Op

(
n

ν̃
√

T

)
as n, T →∞

Proof. From Lemma 1 and the CR1-2 assumptions, we have

‖Σxy‖−1 = ‖Λγ′‖−1 ≤
√

λmin(Λ′Λ)−1/‖γ‖2 = O

(
1√
n

)

Moreover,

‖Σx(ν̃)‖−1 ≤ 1
λmin(Λ′Λ)

= O

(
1
n

)
while ‖Σ−1

x (ν̃)‖ ≤ 1
ν̃

Using Lemma 2, this implies that:

‖Exy‖
‖Σxy‖ = Op

(
1√
T

)
,
‖Ex‖
‖Σx(ν̃)‖ = Op

(
1√
T

)
, and ‖Σx(ν̃)−1‖‖Ex‖ = Op

(
n

ν̃
√

T

)

For the normal equations, we obtain:

(
In + Σx(ν̃)−1Ex

)
β̂(ν̃) = β(ν̃) + Σx(ν̃)−1Exy

Hence,

β̂(ν̃) =
(
In + Σx(ν̃)−1Ex

)−1 (
β(ν̃) + Σx(ν̃)−1Exy

)

If n
ν̃
√

T
= o(1), then for n, T large, we have ‖Σx(ν̃)−1‖‖Ex‖ < 1. Conse-

quently,

‖β̂(ν̃)‖ ≤ ‖ (
In + Σx(ν̃)−1Ex

)−1 ‖ (‖β(ν̃)‖+ ‖Σx(ν̃)−1Exy‖
)

≤ 1
1+op(1)

(‖β(ν̃)‖+ ‖Σx(ν̃)−1Exy‖
)

≤ 1
1+op(1)

(‖β(ν̃)‖+ ‖Σx(ν̃)−1‖‖Exy‖
)

≤ 1
1+op(1)

(
‖β(ν̃)‖+ Op

(
1√
T

)
‖Σx(ν̃)−1‖‖Σxy‖

)

since ‖Σxy‖ = ‖Σx(ν̃)β(ν̃)‖ ≤ ‖Σx(ν̃)‖‖β(ν̃)‖, we get:
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‖β̂(ν̃)‖ = ‖β(ν̃)‖
(

1 + Op

(
n

ν̃
√

T

))

this proves the first statement. Turning to the second statement, we have:

β̂(ν̃)− β(ν̃) = Σx(ν̃)−1Exy − Σx(ν̃)−1Exβ̂(ν̃)

hence

‖β̂(ν̃)− β(ν̃)‖ ≤ ‖Exy‖‖Σxy‖−1‖Σx(ν̃)−1‖‖Σxy‖+ ‖Σx(ν̃)−1Ex‖‖β̂(ν̃)‖

= Op

(
1√
T

)
‖Σx(ν̃)−1‖‖Σx(ν̃)‖‖Σx(ν̃)‖−1‖Σxy‖+ ‖Σx(ν̃)−1Ex‖‖β̂(ν̃)‖

= Op

(
1√
T

)
O

(
n
ν̃

) ‖β(ν̃)‖+ Op

(
n

ν̃
√

T

)
‖β(ν̃)‖

(
1 + Op

(
n

ν̃
√

T

))

the desired result follows. Q.E.D.

Corollary 1 Under the assumptions of Lemma 3, we have:

ŷt := β̂(ν̃)′Xt = β(ν̃)′Xt + Op

(
n

ν̃
√

T

)

Proof. We have

‖(β(ν̃)− β̂(ν̃))′Xt‖ ≤ ‖Xt‖‖β(ν̃)− β̂(ν̃)‖ = Op

(√
n
) ‖β(ν̃)‖Op

(
n

ν̃
√

T

)

the result follows from the fact that ‖β(ν̃)‖ = O( 1√
n
), see Lemma 1. Q.E.D.

Summing up, Lemma 1 tells us that β(ν̃)Xt converges to the optimal projec-
tion if ν̃

n → 0 as n, T →∞. Lemma 3 tells us that β̂(ν̃)Xt converges to β(ν̃)Xt

if ν̃
n

√
T → ∞ as n, T → ∞. If ν̃ meets both conditions we hence have that we

obtain a consistent estimate from β̂(ν̃)′Xt. Precisely:

Lemma 4 Under the assumptions A1, CR1-2, if ν̃
n → 0 and ν̃

n

√
T → ∞ as

n, T →∞, then:

β̂(ν̃)′Xt = γFt + Op

(
ν̃

n

)
+ Op

(
1√
n

)
+ Op

(
n

ν̃
√

T

)
as n →∞,
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A suitable choice for the regularization parameter is ν̃ = αnT−( 1
2−δ), in this

case we have:

∆nT

(
β̂(ν̃)′Xt − γFt

)
= Op (1) as n →∞,

where ∆nT = min
{√

n, T δ, T ( 1
2−δ)

}
. Q.E.D

The desired result of Proposition 1 follows from the definition of ṽ.

7 Appendix B

An alternative to matrix inversion for computing regression estimates is provided
by iterative methods as, for example, the so-called Landweber iteration which
was initially developed for solving the normal equations in (7).

To insure convergence the algorithm is applied to regressors with norm
smaller than 1. Since our regressors are standardized, this is insured by us-
ing the rescaled regressors X̃ = 1√

nT
X, and hence estimate the corresponding

regression coefficients β̃ =
√

nTβ.
Starting from the normal equation of the ordinary least squares, we can

rewrite it as β̃ = β̃ + X̃ ′y − X̃ ′X̃β̃ and try to solve it through the successive
approximations scheme

β̃(j+1) = β̃(j) + X̃ ′y − X̃ ′X̃β̃(j); j = 0, 1, . . . (8)

A nice feature of the Landweber iteration is that it can be easily extended
to cope with additional constraints or penalties, and in particular those used in
ridge or Lasso regression. As concerns the Lasso functional (5) , it is been shown
recently in (Daubechies et al., 2004) that the following thresholded Landweber
iteration

β(j+1) = Sν(β̃(j) + X̃ ′y − X̃ ′X̃β̃(j)); j = 0, 1, . . . (9)

where the thresholding operator is acting on a vector componentwise by per-
forming the soft-thresholding operation defined by (6) and is thus given by

Sν(β̃) = Sν(β̃i); i = 1, . . . , n (10)

This operation enforces the sparsity of the regression coefficients in the sense
that all coefficients below the threshold ν/2 are set to zero. The scheme (9) has
been proved in Daubechies et al. (2004) to converge to a minimizer of the lasso
functional (5). Let us remark that this functional is not strictly convex when
the null-space of X̃ is not reduced to zero and therefore the minimizer of (5) is
not necessarily unique.
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8 Appendix C

Table A: Data Transformation

Definition Transformation

1 Xit = Zit no transformation
2 Xit = ∆Zit monthly difference
4 Xit = ln Zit log
5 Xit = ∆ ln Zit × 100 monthly growth rate

6 Xit = ∆ ln Zit
Zit−12

× 100 monthly difference of yearly growth rate

Lasso
Selection∗

Code Description Transf. IP CPI
A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) 5
A0M224R Real Consumption (AC) A0m224/gmdc 5
A0M057 Manufacturing and trade sales (mil. Chain 1996 $) 5
A0M059∗ Sales of retail stores (mil. Chain 2000 $) 5 II
IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 5
IPS11 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5
IPS299 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
IPS12 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
IPS13 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
IPS18 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
IPS25 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
IPS32∗ INDUSTRIAL PRODUCTION INDEX - MATERIALS 5 II
IPS34 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
IPS38 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
IPS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
IPS307 INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
IPS306 INDUSTRIAL PRODUCTION INDEX - FUELS 5
PMP NAPM PRODUCTION INDEX (PERCENT) 1
A0m082 Capacity Utilization (Mfg) 2
LHEL∗ INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2 I
LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2
LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
LHU5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
LHU14 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
LHU15 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
LHU26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
LHU27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
A0M005 Average weekly initial claims, unemploy. insurance (thous.) 5
CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5
CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5
CES006∗ EMPLOYEES ON NONFARM PAYROLLS - MINING 5 II
CES011 EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 5
CES015 EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 5
CES017 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5
CES033 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5
CES046 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5
CES048 EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 5
CES049∗ EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5 II
CES053 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5
CES088∗ EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 5 I I
CES140∗ EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT 5 II
A0M048 Employee hours in nonag. establishments (AR, bil. hours) 5
CES151 AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS 1
CES155 AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS 2
aom001 Average weekly hours, mfg. (hours) 1
PMEMP NAPM EMPLOYMENT INDEX (PERCENT) 1
HSFR HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA 4
HSNE∗ HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4 I
HSMW∗ HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4 II
HSSOU HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HSWST∗ HOUSING STARTS:WEST (THOUS.U.)S.A. 4 I
HSBR∗ HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4 I
HSBNE∗ HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A 4 II
HSBMW∗ HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. 4 I-II
HSBSOU∗ HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. 4 I
HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. 4
PMI PURCHASING MANAGERS’ INDEX (SA) 1
PMNO NAPM NEW ORDERS INDEX (PERCENT) 1
PMDEL∗ NAPM VENDOR DELIVERIES INDEX (PERCENT) 1 I
PMNV∗ NAPM INVENTORIES INDEX (PERCENT) 1 II II
A0M008 Mfrs’ new orders, consumer goods and materials (bil. chain 1982 $) 5
A0M007 Mfrs’ new orders, durable goods industries (bil. chain 2000 $) 5
A0M027 Mfrs’ new orders, nondefense capital goods (mil. chain 1982 $) 5
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Code Description Transf. IP CPI
A1M092∗ Mfrs’ unfilled orders, durable goods indus. (bil. chain 2000 $) 5 I-II II
A0M070∗ Manufacturing and trade inventories (bil. chain 2000 $) 5 I
A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $) 2
FM1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
FM2∗ MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$, 6 I I
FM3 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA) 6
FM2DQ MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) 5 I I
FMFBA∗ MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6 II II
FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
FCLNQ∗ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) 6 I
FCLBMC∗ WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR) 1 I
CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
A0M095 Ratio, consumer installment credit to personal income (pct.) 2
FSPCOM S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
FSPIN∗ S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5 II
FSDXP∗ S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2 I
FSPXE S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 5
FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 2
CP90 Cmmercial Paper Rate (AC) 2
FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
FYGT10 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
FYAAAC∗ BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2 II
FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
scp90 cp90-fyff 1
sfygm3∗ fygm3-fyff 1 I
sFYGM6 fygm6-fyff 1
sFYGT1 fygt1-fyff 1
sFYGT5 fygt5-fyff 1
sFYGT10∗ fygt10-fyff 1 II
sFYAAAC fyaaac-fyff 1
sFYBAAC fybaac-fyff 1
EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
PSM99Q∗ INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) 6 I
PMCP∗ NAPM COMMODITY PRICES INDEX (PERCENT) 1 II
PUNEW∗ CPI-U: ALL ITEMS (82-84=100,SA) 6 I
PU83 CPI-U: APPAREL & UPKEEP (82-84=100,SA) 6
PU84∗ CPI-U: TRANSPORTATION (82-84=100,SA) 6 I
PU85∗ CPI-U: MEDICAL CARE (82-84=100,SA) 6 II
PUC CPI-U: COMMODITIES (82-84=100,SA) 6
PUCD CPI-U: DURABLES (82-84=100,SA) 6
PUS∗ CPI-U: SERVICES (82-84=100,SA) 6 II
PUXF CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 6
PUXHS CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 6
PUXM CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 6
GMDC∗ PCE,IMPL PR DEFL:PCE (1987=100) 6 I
GMDCD PCE,IMPL PR DEFL:PCE; DURABLES (1987=100) 6
GMDCN PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100) 6
GMDCS PCE,IMPL PR DEFL:PCE; SERVICES (1987=100) 6
CES275∗ AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS 6 I
CES277 AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS 6
CES278 AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS 6
HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
∗We indicate when forecasting IP or CPI, the variable has been selected by Lasso regression
at the beginning (I), 1970 : 1, and/or and the end (II), 2001 : 12, of the out-of-sample evaluation period.
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