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Abstract

We show that, for a class of linear and multivariate Markov-switching models, exact
calculation of the Beveridge-Nelson (BN) trend/cycle components is possible. The key
to exact BN trend/cycle decomposition is to recognize that the latent first-order Markov-
switching process in the model has an AR(1) representation, and that the model can be
cast into a state-space form. Given the state-space representation, we also show that
impulse-response analyses can be done with respect to an asymmetric discrete shock as
well as to a symmetric continuous shock. The methodologies developed are applied to
Kim, Morley, Piger’s (2005) univariate Markov-switching model of real GDP with a post-
recession ‘bounce-back’ effect and Cochrane’s (1994) vector error correction model of real
GDP and real consumption extended to incorporate Markov switching. Based on the
parameter estimates, the calculated BN trend/cycle components, and the impulse-response
analyses for each of these empirical models, we raise the possibility that the persistence of
real GDP might have increased since the mid-1980’s in the U.S.
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1. Introduction

The Beveridge-Nelson (BN) decomposition, first introduced by Beveridge and Nelson

(1981) within the linear univariate context and then generalized by Stock and Watson

(1987) to the multivariate case, is a way of decomposing an integrated economic time series

into the sum of unobservable trend and cyclical components. Since its first introduction,

it has proven its usefulness for both theoretical and empirical reasons. The BN trend

component is defined as the long-horizon forecast of the level of the time series (adjusted

for the drift term), 1 and various efficient computational methods for the BN trend/cycle

decomposition have been provided. [See, for examples, Cuddington and Winters (1987),

Miller (1988), Newbold (1990), and Arino and Newbold (1998).] In particular, Morley

(2002), by employing the state-space approach, provides a general unified framework for

exact calculation of the BN trend/cycle components for both univariate and multivariate

linear processes.

More recently, Clarida and Taylor (2003) provide an extension of the BN decomposition

to a particular class of univariate and multivariate nonlinear processes. In the nonlinear

case, generating long-horizon forecasts is non-trivial, and they suggest a tractable method

of doing this using Monte Carlo Integration.

In this paper, we further extend the BN decomposition to univariate and multivariate

Markov-switching processes first introduced by Hamilton (1989). We show that, for a

particular class of Markov-switching processes, exact calculation of the BN trend/cycle is

possible, based on a state-space representation of the processes under consideration. The

key to this BN decomposition is to note that the latent Markov-switching variable has

an autoregressive representation. We also provide illustrative applications of the proposed

methodology in both the univariate and multivariate processes, with particular attention

to a univariate model of real GDP with Markov-switching and to a version of Cochrane’s

(1994) vector error correction model (VECM) of real GDP and real consumption extended

to incorporate Markov-switching.

1 Morley, Nelson, and Zivot (2003) show that the BN decomposition is identical to the
decomposition based on unobserved components (UC) models introduced by Harvey (1985)
and Clark (1987), once the restrictions imposed in the UC models are relaxed.

[2]



The fact that a Markov-switching model has a state-space representation allows us

to perform interesting impulse-response analyses. Within the univariate Markov-switching

framework, for example, there exist two independent shocks: a symmetric continuous shock

and an asymmetric discrete shock to the latent Markov-switching variable in the model. We

examine how the responses of real GDP to these two different types of shocks has changed

since 1984Q2, which was identified by Kim and Nelson (1999) and McConnell and Quiros

(2000) as the quarter of structural break in the dynamics of real GDP. Major issues to

be investigated based on the impulse response analyses are: i) Has the long-run dynamics

of real GDP changed? ii) If so, what would be the source of the change in the long-run

dynamics of real GDP?

Section 2 provides a review of the BN decomposition for a linear process. Section 3

then provides a basic idea behind the BN decomposition of a Markov-switching process.

In Section 4, we present an application of the methodology introduced in Section 3 to

the univariate Markov-switching model of real GDP with a post-recession ‘bounce-back’

effect as proposed by Kim, Morley, and Piger (2005). In Section 5, the methodology is

extended to the case of a vector error-correction model of real GDP and real consumption

with Markov switching. Empirical results are discussed in Section 6, and, finally, a brief

summary and a suggestion for further research are provided in Section 7.

2. Beveridge-Nelson Decomposition and Impulse-Response Analysis in the Ab-
sence of Markov Switching: Review

Assume that yt ∼ I(1) and that its first difference follows a stationary AR(p) process
with an intercept term μ, we have :

(1− φ(L))∆yt = μ+ et, et ∼ i.i.d.N(0,σ2), (1)

where φ(L) = φ1L + φ2L
2 − ... + φkL

k and all the roots of 1 − φ(L) = 0 lie outside the

complex unit circle.

The minimum mean squared error predictor of yt+τ conditional on information up to

time t (It) is given by:

[3]



E[yt+τ |It] = yt +
τ

j=1

E[∆yt+j|It]

= yt +
τ

j=1

E[∆yt+j − E(∆yt+j)|It] + τE(∆yt+j)

= yt +
τ

j=1

E[∆y∗t+j|It] + τE(∆yt+j),

(2)

where ∆y∗t+j = ∆yt+j − E(∆yt+j) and where E(∆yt+j) = (1− φ(1))−1μ.

This suggests that the forecast profile is asymptotic to a linear function of the forecast

horizon τ with slope equal to μ and a level (yt+
τ
j=1E[∆y

∗
t+j|It]) which itself is a stochastic

process. Beveridge and Nelson (1981) interpret this level (when τ →∞) as the permanent
or trend component of yt:

yTRt = yt +
∞

j=1

E[∆y∗t+j|It]

= yt − yct ,
(3)

where yct is the cyclical component.

In practice, calculation of the yTRt term is complicated by the presence of infinite

sums of the forecasts. Various ways of evaluating the infinite sums of the forecasts have

been proposed by Cuddington and Winters (1987), Miller (1988), Newbold (1990), and

Arino and Newbold (1998). However, as shown in Morley (2001), the state-space approach

provides a general unified framework for calculating the yTRt term. By noting that ∆y∗t =

∆yt−E(∆yt) = ∆yt−(1−φ(1))−1μ, we can rewrite equation (1) in the following state-space
form:

⎡⎢⎢⎢⎢⎢⎢⎣
∆y∗t

∆y∗t−1
...

∆y∗t−p+1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
φ1 φ2 . . . φp

1 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
∆y∗t−1

∆y∗t−2
...

∆y∗t−p

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣
et

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (4)

(ỹ∗t = F ỹ
∗
t−1 + ẽt).

Given the above state-space form, as E[∆y∗t+j|It] is the (1, 1) element of F j ỹ∗t , the BN
trend component of yt in (3) has the following solution:

[4]



yTRt = yt +
∞

j=1

E[∆y∗t+j|It]

= yt + (1, 1) element of (F + F
2 + F 3 + . . .)ỹ∗t

= yt + (1, 1) element of F (Ip − F )−1ỹ∗t

(5)

Given the state-space representation in equation (4), the impulse-response coefficient

is given by:

∂yt+j
∂et

=
j

i=0

∂∆yt+j
∂et

= (1, 1) element of
j

i=0

F i. (6)

3. Beveridge-Nelson Decomposition and Impulse-Response Analysis in the
Presence of Markov Switching: Basic Framework

Consider the following version of Hamilton’s Markov-switching Model (1989), in which

we have an AR(k) process with a Markov-switching intercept term: 2

(1− φ(L))∆yt = μ0 + μ1St + et, et ∼ i.i.d.N(0, σ2) (7)

where St is a discrete, first-order Markov-switching process which evolves according to the

following transition probabilities:

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q. (8)

Taking unconditional expectations on both sides of equation (7), we have:

(1− φ(1))E(∆yt) = μ0 + μ1π, (9)

where π = E(St) =
(1−q)
2−p−q . Subtracting equation (9) from equation (7) results in:

∆y∗t = φ(L)∆y∗t + μ1(St − π) + et, (10)

where ∆y∗t = ∆yt − E(∆yt).
As in the case of linear AR(k) process, the BN trend is given by:

yTRt = yt +
∞

j=1

E[∆y∗t+j|It], (11)

2 It is straightforward to extend the model to incorporate a Markov-switching mean.

[5]



and the term ∞
j=1E[∆y

∗
t+j|It] is obtained from a state-space representation of equation

(10). Writing equation (10) in state space-form is straightforward once we recognize that the

latent Markov-switching process St has the following AR(1) representation as in Hamilton

(1989):

St = λ0 + λ1St−1 + vt, vt ∼ (0, (1− λ21)π(1− π)) (12)

where λ0 = 1 − q, λ1 = p + q − 1, E(vt) = 0 and var(vt) = (1 − λ21)π(1 − π), and where

π = E(St). Alternatively, it can be written as:

(St − π) = λ1(St−1 − π) + vt. (12 )

Using equation (12’), we have the following state-space representation of equation (10):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t

∆y∗t−1
...

∆y∗t−k+1

St+1 − π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 . . . φk μ1

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

0 0 . . . 0 λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t−1

∆y∗t−2
...

∆y∗t−k

St − π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

et

0
...

0

vt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

(X̃t = FX̃t−1 + ẽt)

Thus, the BN trend in the presence of Markov switching is given by:

yTRt = yt +
∞

j=1

E[∆y∗t+j|It]

= yt + (1, 1) element of (F + F
2 + F 3 + . . .)E[X̃t|It]

= yt + (1, 1) element of F (Ip − F )−1E[X̃t|It],

(14)

where E[X̃t|It] = [∆y∗t ∆y∗t−1 . . . ∆y∗t−k+1 (E[St+1|It]− π) ]

In a Markov-switching model, there exist two independent shocks: a symmetric con-

tinuous shock, et, and an asymmetric discrete shock, vt. Given the state space form in

(13), it is straightforward to perform impulse-response analysis with respect to these two

alternative shocks:

[6]



∂yt+j
∂et

=
j

i=0

∂∆yt+i
∂et

= (1, 1) element of
j

i=0

F i. (15)

∂yt+j
∂vt

=
j

i=0

∂∆yt+i
∂vt

= (1, k + 1) element of
j

i=0

F i. (16)

Lastly, we show that, as in Beveridge and Nelson (1981), the BN trend component

derived above can be reduced to a linear random walk process. To see this, we note that

equation (7) can be decomposed into two components: a linear component and a Markov-

switching component:

∆yt = ∆y1t +∆y2t, (17)

where

φ(L)∆y1t = et (18)

and

φ(L)∆y2t = μ0 + μ1St. (19)

Writing equation (19) in a deviation-from-mean form and by using (1− λ1L)(St − π) = vt
from equation (12’), equation (19) can be rewritten as:

φ(L)(1− λ1L)(∆y2t − π∗) = μ1vt, (19 )

where L is a lag operator and π∗ = E(∆y2t) = φ(1)−1(μ0 + μ1π), and where π = E(St).

Then, based on equations (18) and (19’), it is easy to show that the trend components

of y1t and y2t are given by the following random walks: 3

3 For example, the trend components of y2,t+1 and y2t are given by:

yTR2,t = y2t +
∞

j=2

(E(∆y2,t+j|It+1)− π∗) + (∆y2,t+1 − π∗) + π∗

yTR2,t = y2t +
∞

j=1

(E(∆y2,t+j|It)− π∗)

Subtracting yTR2t from yTR2,t+1, we have:

∆yTR2,t+1 =
∞

j=1

(E(∆y2,t+j − π∗|It+1)− E(∆y2,t+j − π∗|It)) + π∗

[7]



∆yTR1,t+1 =
∞

j=1

(E(∆y1,t+j|It+1)− E(∆y1,t+j|It))

= φ(1)−1et+1

(20)

∆yTR2,t+1 =
∞

j=1

(E(∆y2,t+j − π∗|It+1)− E(∆y2,t+j − π∗|It)) + π∗

= φ(1)−1(1− λ1)
−1μ1vt+1 + π∗

(21)

As the first difference of the BN trend component of yt is the sum the two terms in equations

(20) and (21), we have the following random walk representation for the trend component

of yt:

∆yTRt = π∗ + t+1, (22)

where t = φ(1)−1et+1 + φ(1)−1(1− λ1)
−1μ1vt+1 with E( t) = 0 and var( t) = φ(1)−2σ2 +

φ(1)−2(1− λ1)
−2(1− λ21)μ

2
1π(1− π).

4. Application #1: Kim, Morley, Piger’s (2005) Markov-Switching Model of

Real GDP Growth with a Post-Recession ‘Bounce Back’ Effect

While Hamilton’s (1989) model of asymmetric business cycles portrays the short, violent

nature of recessions relative to booms, it fails to capture a very important feature of the

post-war U.S. business cycles discussed in the literature: recessions typically are followed

by high-growth recovery phases that push output back to its pre-recession level [Sichel

(1994)]. That is, Hamilton’s model fails to account for the fact that recessions may be

As the Wold representation of equation (19’) can be written as:

∆y2t − π∗ = ψ∗(L)vt,

where ψ∗(L) = φ(L)−1(1− λ1L)
−1μ1 = ∞

j=0 ψ
∗
jL

j, we have:

∆yTR2,t+1 =
∞

j=1

(E(∆y2,t+j − π∗|It+1)− E(∆y2,t+j − π∗|It)) + π∗

=
∞

j=1

ψ∗j vt+1 + π∗ = ψ∗(1)vt+1 + π∗ = φ(1)−1(1− λ1)
−1μ1vt+1 + π∗

[8]



at least partially transitory. In order to capture such bounce back effects after recessions

within a linear ARMA model, Beaudry and Koop (1993) allow the growth dynamics of real

GDP to depend on an exogenous variable, named, ‘current depth of recession’: the gap

between the current level of real GDP and the economy’s historical maximum level.

Recently, Kim, Morley, and Piger (2005) extended Hamilton’s Markov-switching model

of asymmetric business cycles to allow for a post-recession bounce-back effect in the level of

real GDP, while maintaining endogenously estimated business cycle regimes. The following

describes their model:

(1− φ(L))∆yt = μ0 + μ1St + δ
m

j=1

St−j + t, t ∼ i.i.d.N(0,σ2), (23)

where ∆yt is the growth rate of real GDP and St is a latent, first-order Markov-switching

process as defined earlier. 4 In the above model, μ1 is constrained to be negative, so that

St = 1 corresponds to a recessionary regime. When δ = 0, the model collapses to the

original Markov-switching model of Hamilton (1989). When δ > 0, the summation term

m
j=1 St−j implies that real GDP growth would be above average for some period after a

recessionary regime, indicating the existence of a post-recession bounce-back effect. The

existence of a post-recession ‘bounce-back’ effect implies that a recessionary shock is much

less persistent, if not completely transitory, compared an expansionary shock.

A successful BN decomposition of yt relies on an appropriate state-space representation

of the above model in deviation from mean. In order to write equation (23) in deviation-

from-mean, we first consider taking expectations on both sides of equation (23) to get:

(1− φ(1))E(∆yt) = μ0 + μ1π + δ
m

j=1

π (24)

We then subtract equation (24) from equation (23) to get the model in deviation from

mean, and rearranging terms, we obtain:

4 For simplicity of exposition, we assume that the parameters of the model are constant.
However, in actual application, we are going to drop this assumption and we allow for
the possibility that they have changed since 1984Q4, the quarter identified by Kim and
Nelson (1999) and McConnell and Perez-Quiros (2000) as the date of structural break in
the dynamics of real GDP growth.

[9]



∆y∗t = φ(L)∆y∗t + μ1(St − π) + δ
m

j=1

(St−j − π) + t. (25)

As before, based on equation (12’), the state-space representation of the model is then

given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t

∆y∗t−1
...

∆y∗t−k+1

St+1 − π

St − π
...

St−m+1 − π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 . . . φk μ1 δ . . . δ

1 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

... . . .
...

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 λ1 0 . . . 0

0 0 . . . 0 1 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t−1

∆y∗t−2
...

∆y∗t−k+1

St − π

St−1 − π
...

St−m − π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

et

0
...

0

vt

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

(X̃t = FX̃t−1 + ẽt)

Thus, the BN trend for the process in equation (23) is given by:

yTRt = yt +
∞

j=1

E(∆y∗t+j|It)

= yt + (1, 1) element of (F + F
2 + F 3 + . . .)E(X̃t|It)

= yt + (1, 1) element of F (Ip − F )−1E(X̃t|It),

(27)

where E(X̃t|It) = [∆y∗t ∆y∗t−1 . . . ∆y∗t−k+1 (E[St+1|It]− π) . . . (E[St−m+1|It]− π) ]

The impulse-response analysis with respect to symmetric (continuous) and asymmetric

(discrete) shocks can be done using:

∂yt+j
∂et

=
j

i=0

∂∆yt+i
∂et

= (1, 1) element of
j

i=0

F i. (28)

∂yt+j
∂vt

=
j

i=0

∂∆yt+i
∂vt

= (1, k + 1) element of
j

i=0

F i. (29)

[10]



5. Application #2: Markov-Switching Vector Error Correction Model of Con-

sumption and Real GDP

Consider the following version of Cochrane’s (1994) vector error correction model of

real GDP and real consumption extended to incorporate Markov-switching intercept terms:

1− φyy(L) −φyc(L)
−φcy(L) 1− φcc(L)

∆yt

∆ct
=

μy,0 + μy,1St

μc,0 + μc,1St
+

αy

αc
(zt−1 − β) +

ey,t

ec,t
, (30)

ey,t

ec,t
∼ N

0

0
,

σ2y ρσyσc

ρσyσc σ2c
,

where yt is the log of real GDP; ct is the log of real consumption on nondurable goods

and services; zt = yt − ct; φij(L) = φij,1L − . . . + φij,kL
k, (i = c, y, j = c, y); and St is a

latent first-order Markov-switching process with the transition probabilities defined before.

Focusing on the real GDP equation (∆yt) in equation (30), if we assume that φyc(L) ≈ 0,
we can see that the last period’s log of GDP/consumption ratio (zt−1 = yt−1−ct−1) replaces
the term that captures the post-recession ‘bounce-back’ effect ( m

j=1 St) in equation (23).

Taking expectations on both sides of equation (30), we have:

1− φyy(1) −φyc(1)
−φcy(1) 1− φcc(1)

E[∆yt]

E[∆ct]
=

μy,0 + μy,1π

μc,0 + μc,1π
+

αy

αc
(E(zt−1)− β) (31)

Then, by subtracting equation (31) from equation (30), and by rearranging terms, we have

the following set of two equations:

∆y∗t = φyy(L)∆y
∗
t + φyc(L)∆c

∗
t + μy,1(St − π) + αyz

∗
t−1 + ey,t

∆c∗t = φcy(L)∆y
∗
t + φcc(L)∆c

∗
t + μc,1(St − π) + αcz

∗
t−1 + ec,t, (32)

where ∆c∗t = ∆ct − E(∆ct), ∆y∗t = ∆yt − E(∆yt) and z∗t−1 = zt−1 − E(zt−1).
By assuming k = 2, for example, the following describes a state-space representation

of the two equations in equation (32), which serves as the basis for exact calculation of the

BN trend/cycle decomposition for the two variables:

[11]



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t

∆y∗t−1

∆y∗t−2

∆y∗t−3

∆c∗t

∆c∗t−1

∆c∗t−2

∆c∗t−3

St+1 − π

z∗t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃yy Φ̃yc μy,1 αy

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

Φ̃cy Φ̃cc μc,1 αc

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 λ1 0

Ã1 Ã2 Ã3 Ã4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆y∗t−1

∆y∗t−2

∆y∗t−3

∆y∗t−4

∆c∗t−1

∆c∗t−2

∆c∗t−3

∆c∗t−4

St − π

z∗t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
ec,t

ey,t

vt

⎤⎥⎥⎥⎦ ,

(33)

X̃t = FX̃t−1 +Rẽt

where Φ̃ij = [φij,1 φij,2 φij,3 φij,4 ], i = c, y and j = c, y; Ã1 = Φ̃yy−Φ̃cy; Ã2 = Φ̃yc−Φ̃cc;
Ã3 = μy,1 − μc,1; and Ã4 = 1 + αy − αc. Thus, following the logic in the previous sections,

the BN trend components of the log of real GDP and that of the log of real consumption

are given by:

yTRt = yt +
∞

j=1

E(∆y∗t+j|It)

= yt + (1, 1) element of (F + F 2 + F 3 + . . .)E(X̃t|It)
= yt (1, 1) element of F (Ip − F )−1E(X̃t|It)

, (34)

cTRt = ct +
∞

j=1

E(∆c∗t+j|It)

= yt + (5, 1) element of (F + F 2 + F 3 + . . .)E(X̃t|It)
= yt + (5, 1) element of F (Ip − F )−1E(X̃t|It)

, (35)

where E(X̃t|It) = [∆y∗t . . . ∆y∗t−3 ∆c∗t . . . ∆c∗t−3 (E[St+1|It]− π) z∗t ) ] .

In order to perform impulse-response analysis, the VAR errors ect and eyt are orthogo-

nalized so that consumption does not respond contemporaneously to a GNP shock. Equiva-

lently, current consumption growth is included in the GNP growth regression. By denoting
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ect

eyt
∼ i.i.d.N(0,Ω), the Cholesky decomposition of the variance-covariance matrix Ω is

given by the lower trangular matrix B =
b11 0

b21 b22
. Then the state-space form in equation

(33) can be re-written as:

X̃t = FX̃t−1 +RB∗ẽ∗t , (33 )

where B∗ =

⎡⎢⎢⎢⎣
b11 0 0

b21 b22 0

0 0 1

⎤⎥⎥⎥⎦ and ẽ∗t =
⎡⎢⎢⎢⎣
e∗ct

e∗yt

vt

⎤⎥⎥⎥⎦, and where e∗ct and e∗yt are uncorrelated and
standardized symmetric shocks and vt is a discrete shock. Thus, for example, the responses

of real GDP to one-standard-deviation symmetric continuous shocks (e∗ct and e
∗
yt) and those

to one unit asymmetric discrete shock vt are given by:

∂yt+j
∂ect

=
j

i=0

∂∆yt+i
∂ect

= (1, 1) element of
j

i=0

F iRB∗ (36)

∂yt+j
∂ect

=
j

i=0

∂∆yt+i
∂ect

= (1, 2) element of
j

i=0

F iRB∗ (37)

∂yt+j
∂v

=
j

i=0

∂∆yt+i
∂vt

= (1, 3) element of
j

i=0

F iRB∗ (38)

6. Empirical Results

In this section, we first estimate three alternative empirical models: i) a univariate

linear model for the log of real GDP; ii) a univariate Markov-switching model for the

log of real GDP with a post-recession ‘bounce-back’ effect introduced in Section 4; and

iii) a Markov-switching vector error correction model of the logs of real GDP and real

consumption introduced in Section 5 (MS-VECM Model). For each of these three models,

we allow for a structural break in the parameters in 1984Q4, following Kim and Nelson

(1999) and McConnell and Quiros (2000). These empirical models are then used to perform

the BN trend/cycle decomposition and the impulse response analyses. The three models

estimated with structural breaks are given by:
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Univariate Linear Model

(1−
4

i=1

φi,DtL
i)∆y∗t = et, et ∼ N(0, σ2Dt), (1 )

Univariate MS model with ‘bounce-back’ effect

(1−
4

i=1

φi,DtL
i)∆y∗t = μ1,Dt(St − π) + δDt

m

j=1

(St−j − π) + et, et ∼ N(0,σ2Dt) (25 )

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q,

MS-VECM Model

∆y∗t = φyy,Dt(L)∆y
∗
t + φyc,Dt(L)∆c

∗
t + μy,1,Dt(St − π) + αy,Dtz

∗
t−1 + ey,t (32 )

∆c∗t = φcy,Dt(L)∆y
∗
t + φcc,Dt(L)∆c

∗
t + μy,1,Dt(St − π) + αc,Dtz

∗
t−1 + ec,t,

ey,t

ec,t
∼ N

0

0
,

σ2y,Dt ρσy,Dtσc,Dt

ρDtσy,Dtσc,Dt σ2c,Dt
Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q.

φij,Dt(L) = φij,1,DtL+ φij,2,DtL
2 + φij,3,DtL

3 + φij,4,DtL
4, (i = y, c; j = y, c),

where Dt = 0, before 1984Q4; Dt = 1 since 1984Q4; π = ([St) = (1 − q)/(2 − p − q);
∆y∗t , ∆c

∗
t and z

∗
t are demeaned real GDP growth, demeaned real consumption growth, and

demeaned log of GDP/consumption ratio, respectively. Data covers the sample period of

1948Q2 - 2005Q3. All the data are collected from the FRED at St. Louis Federal Reserve

Bank. Before estimating the models, all the data including the log of GDP/consumption

ratio are demeaned separately for the following sub-sample periods: 1948Q2 - 1973Q3,

1973Q4 - 1994Q4, and 1995Q1 - 2005Q3. 5

6.1. Empirical Results on Univariate Linear Model

5 The purpose is to consider potential structural breaks due to the productivity slowdown
since the first Oil shock and the surge of productivity due to the ‘new economy’ since the
mid-1990’s. See Cogley (2005), for example.
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Figure 1A depicts the log of real GDP and its BN trend component obtained from

the univariate linear model, and the resulting cyclical component is shown in Figure 1B.

The shaded areas represent the NBER recessions. The scale in all figures is log times

100 and so the cyclical component may be read as the percentage deviation from trend.

The estimated BN cycle is small in amplitude, and it is not easy to get very meaningful

business cycle implications from it. Table 1 reports the maximum likelihood estimates for

the parameters and their standard errors for the univariate linear model. Since 1984Q4,

the standard error the shock decreased considerably, and the sum of the AR coefficients

increased (from 0.1932 to 0.4471), suggesting that the persistence of the shock might have

increased. Figure 1C depicts the responses of real GDP over time to a unit shock (∂yt+j
∂et

,

j = 1, 2, ..., 50). Before 1984Q4, a 1% increase in the shock increases real GDP by about

1.2%, while, since 1984Q4, a 1% increase in the shock increases real GDP by as much as

1.8%. Based on these observations, we raise the possibility that real GDP has become more

persistent since the mid-1980’s.

6.2. Empirical Results on Univariate MS model with Post-Recession ‘Bounce-
Back’ Effect

Figures 2A and 2B depict the filtered and smoothed probabilities of a recession im-

plied by the univariate model with a post-recession ‘bounce-back’ effect. The recession

probabilities are largely in agreement of the NBER reference cycles. Figure 2C depicts the

log of real GDP and its BN trend component implied as by the model. The resulting BN

cycle depicted in Figure 2D is large in amplitude and persistent. Also, unlike the case of

the linear model, the asymmetric nature of the cyclical component of business cycles is

evident. The declines in the cycle agree very reasonably with the NBER dating of reces-

sions (shaded areas) until the mid-1980’s. In particular, the cyclical component is negative

during the recessions and is close to zero during expansions, a result which are consistent

with Friedman’s (1993) ‘plucking’ model of business cycles as estimated by Kim and Nelson

(1999).

Since the mid-1980’a, however, the BN cycle component is negative during expansions

and positive during recessions (the 1991 and 2000 recessions), suggesting a potential struc-
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tural change in the business cycle dynamics. The maximum likelihood estimates for the

parameters and their standard errors for the model explain the key nature of the structural

change. Focusing on the δ coefficient designed to capture the post-recession ‘bounce-back’

effect, we note that it is positive and significant before 1984Q4, while it is small and sta-

tistically insignificant since 1984Q4. The existence of a post-recession ‘bounce-back’ effect

before 1984Q4 suggests that output losses during recessions were to a large extent tem-

porary, creating negative cyclical components of output during the recessions. On the

contrary, the disappearance of such a ‘bounce-back’ effect since 1989Q4 indicates that out-

put losses during recessions became permanent. Note that our Markov-switching variable

St has an AR(1) dynamics with positive autocorrelation. Thus, in the absence of the

‘bounce-back’ effect, a recessionary positive shock to St in any given quarter results in a

further increase in the expectation of St+j, j > 1, in subsequent quarters. This implies

that, with a recessionary positive shock to St, the long-horizon forecast of real GDP (the

BN trend component) is even lower than the actual negative change in output, resulting in

a positive cyclical component of real GDP. 6

In this model we have two distinct types of shocks: a symmetric continouous shock

(et) and an asymmetric discrete shock (vt). Figure 2E shows the impulse-response analysis

for a symmetric continuous shock (∂yt+j
∂et

, j = 1, 2, ..., 50). Before 1984Q4, a 1% increase

in the shock increases real GDP by slightly more than 1% (1.05%) in the long run, while,

since 1984Q4, a 1% increase in the shock increases real GDP by less than 1% (0.86%),

suggesting that the symmetric continuous shock has become somewhat less persistent. This

observation is consistent with the change in the sum of the autoregressive parameters from

0.0504 to -0.1653 as in Table 2. However, the impulse-response analysis for an asymmetric

discrete shock (∂yt+j
∂vt

, j = 1, 2, ..., 50) depicted in Figure 2F suggests that the persistence

of the shock has become much higher. Before 1984Q4, a 1% increase in the asymmetric

discrete shock (vt) to the Markov-switching variable St, which endogenously determine the

business cycle regime, initially decreases real GDP by 1.63% and decreases real GDP by

-0.80% in the long run; since 1984Q4, the same increase in vt initially decreases real GDP

6 In this case, the variance of the change in the BN trend component is larger than that
of the log of actual real GDP.
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by 0.86% and decreases real GDP by as much as -2.43% in the long run. Such considerable

increase in the persistence of the asymmetric discrete shock to St explains a large increase

in the persistence of the shock observed in the univariate linear model. Clearly, we may

argue that the disappearance of the post-recession ‘bounce-back’ effect has increased the

persistence of real GDP considerably.

6.3. Empirical Results on Markov-Switching Vector Error Correction Model
(MS-VECM)

Figures 3A and 3B depict the filtered and smoothed probabilities of a recession es-

timated from the MS-VECM model. As in the case of the univariate MS model with a

post-recession ‘bounce-back’ effect, the recession probabilities are largely in agreement of

the NBER reference cycles. In this model, the lagged log of the GDP/consumption ratio

(zt−1) term in the real GDP growth equation plays the role of the ‘bounce-back’ effect in

the univariate MS model.

In Figures 3C and 3E, the log of real GDP and the log of real consumption are depicted

along with their BN trend components. Figures 3D and 3F show the resulting BN cyclical

components. As one might expect, the cyclical component of real consumption is much

smaller in amplitude than that of real GDP. Focusing our attention on the cyclical compo-

nent of real GDP, most of the down-turns are in close agreement with the shaded NBER

recessions. Besides, the variance of the cyclical component of real GDP has decreased con-

siderably since the mid-1980’s. Table 3 reports the maximum likelihood estimates for the

parameters and their standard errors for the MS-VECM model. However, with so many

parameter estimates, it would not be easy to gain insights into how the dynamics of real

GDP has changed. That is, it is hard to fathom whether or not real GDP has become more

persistent since the mid-1980’s based on the parameter estimates alone. We thus resort to

the impulse-response analysis in order to examine a potential change in the persistence of

real GDP.

In this model, we have two response variables (real GDP(yt) and real consumption (ct))

and three impulse shocks, two of which are symmetric continuous shocks (GDP shock (eyt)

and consumption shock (ect)) and one of which is an asymmetric discrete shock (vt) to
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the latent Markov-switching variable St that endogenously determines the business cycle

regime. One of the important features of the impulse response functions is that the eventual

response of the two variables (yt and ct) to each of the three shocks (eyt, ect, and vt) should

be the same, as in Cochrane’s (1994) linear VECM model without regime switching. If the

two responses did not end up at the same value in the long run, the GDP/consumption

ratio would not be restored following a shock. This feature results from the inclusion of the

GDP/consumption ratio on the right-hand sides of both the real GDP and real consumption

growth equations.

Figure 3G depicts the responses of real GDP and real consumption to one standard-

error consumption shock (ect) before and after the mid-1980. We see that the long run

responses of the two variables somewhat decreased (from 0.33 to 0.24). From Figure 3F, on

the contrary, we note that the long run responses of the two variables to one standard-error

GDP shock (eyt) has increased considerably from close to zero to 0.18, suggesting that the

GDP shock might have become more persistent since the mid-1980’s. Figure 3I depicts the

responses of the two variables to an asymmetric discrete shock (vt). It suggests that the

persistence of the asymmetric discrete shock (vt) has increased since the mid-1980’s: the

long-run responses to a unit discrete shock decreases from -1.39 to -1.77. In summary, while

the continuous consumption shock (ect) has a relatively smaller long-run impact on both

consumption and GDP since the mid-1980’s, both the continuous GDP shock (eyt)and the

discrete shock (vt) have a larger long-run impact on these variables since the mid-1980’s.

These observations lead us to raise the possibility that the dynamics of real GDP has

become more persistent.

7. Summary and Suggestion for Further Studies

The purpose of this paper is multi-fold. First, we present a method for exact calculation

of BN trend/cycle components for a class of linear and multivariate Markov-switching

models. The key to the solution is to recognize that the latent first-order Markov-switching

process has an AR(1) representation, and that we have a state-space representation of the

model. Second, we show that, using the state-space representation of the model, impulse-
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response analyses can be performed with respect to a symmetric continuous shock and to an

asymmetric discrete shock. Third, we apply the methodologies developed to i) univariate

linear model of real GDP; ii) Kim, Morley, Piger’s (2005) univariate Markov-switching

model of real GDP with a post-recession ‘bounce-back’ effect; and iii) Cochrane’s (1994)

vector error correction model of real GDP and real consumptions extended to incorporate

Markov-switching.

Based on the parameter estimates, the calculated BN trend/cycle components, and

the impulse-response analyses for each of these empirical model, we raise the possibility

that the persistence of real GDP might have increased since the mid-1980’s in the U.S. In

particular, we argue that the disappearance of the post-recession ‘bounce-back’ effect since

the mid-1980’s might have increased the persistence of real GDP considerably. Existing

literature reports a marked decline in the volatility of real activity and inflation since the

mid-1980’s and a reduction in the persistence of inflation over time. [See, Kim and Nelson

(1999), Blanchard and Simon (2000), McConnell and Perez Quiros (2001), and Sargent and

Cogley (2002), Kim, Piger, and Nelson (2004), for example.] However, little attention has

been paid to a potential structural change in the persistence of real economic activity in

the U.S. The preliminary empirical results in this paper would certainly warrant a careful

further investigation of this issue.
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Table 1. Estimates for Univariate Linear Model of Real GDP Growth

(1−
4

i=1

φi,DtL
i)∆y∗t = et, et ∼ N(0, σ2Dt), (1 )

Dt = 0, before 1984Q4; Dt = 1 since 1984Q4,

where ∆y∗t is de-meaned real GDP growth.

Parameters Estimates (S.E.)

Before 1984Q4

φ1,0 0.3004 (0.0820)
φ2,0 0.1026 (0.0852)
φ3,0 -0.0734 (0.0854)
φ4,0 -0.1364 (0.0820)
σ0 1.0953 (0.0641)

Since 1984Q4

φ1,1 0.2183 (0.1089)
φ2,1 0.3572 (0.1097)
φ3,1 -0.1616 (0.1070)
φ4,1 0.0308 (0.1044)
σ1 0.4391 (0.0339)

Log Likelihood -270.5193
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Table 2. Estimates for Univariate Markov-Switching Model of Real GDP
Growth with Post-Recession Bounce Back Effect

(1−
4

i=1

φi,DtL
i)∆y∗t = μ1,Dt(St − π) + δDt

m

j=1

(St−j − π) + et, et ∼ N(0,σ2Dt) (22 )

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q.
Dt = 0, before 1984Q4; Dt = 1 since 1984Q4,

where ∆y∗t is de-meaned real GDP growth and π = E[St] = (1− q)/(2− p− q).

Parameters Estimates (S.E.)

p 0.7921 (0.0720)
q 0.9328 (0.0247)

Before 1984Q4

φ1,0 0.1209 (0.0911)
φ2,0 0.0413 (0.0844)
φ3,0 -0.0445 (0.0786)
φ4,0 -0.0673 (0.0858)
μ1,0 -1.6329 (0.3210)
δ0 0.2375 (0.0989)
σ0 0.9143 (0.0773)

Since 1984Q4

φ1,1 -0.0519 (0.1127)
φ2,1 0.1670 (0.1067)
φ3,1 -0.2508 (0.1067)
φ4,1 -0.0296 (0.1076)
μ1,0 -0.8616 (0.1518)
δ0 0.0136 (0.0351)
σ1 0.3458 (0.0318)

Log Likelihood -263.0802
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Table 3. Estimates for Markov-Switching Error-Correction VAR(4) Model of
Real GDP Growth and Real Consumption Growth

∆y∗t = φyy,Dt(L)∆y
∗
t + φyc,Dt(L)∆c

∗
t + μy,1,Dt(St − π) + αy,Dtz

∗
t−1 + ey,t (27 )

∆c∗t = φcy,Dt(L)∆y
∗
t + φcc,Dt(L)∆c

∗
t + μy,1,Dt(St − π) + αc,Dtz

∗
t−1 + ec,t,

ey,t
ec,t

∼ N 0
0
,

σ2y,Dt ρσy,Dtσc,Dt
ρDtσy,Dtσc,Dt σ2c,Dt

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q.
Dt = 0, before 1984Q4; Dt = 1 since 1984Q4,

φij,Dt(L) = φij,1,DtL+ φij,2,DtL
2 + φij,3,DtL

3 + φij,4,DtL
4, (i = y, c; j = y, c)

where π = E[St] = (1− q)/(2− p− q); ∆y∗t , ∆c∗t and z∗t are demeaned real GDP growth,
demeaned real consumption growth, and demeaned equilibrium error, respectively.

[24]



Before 1984Q4 Since 1984Q4

Parameters Estimates (S.E.) Parameters Estimates (S.E.)

Real GDP Growth

φyy,1,0 0.1554 (0.0850) φyy,1,1 -0.1061 (0.1179)
φyy,2,0 0.1095 (0.0844) φyy,2,1 0.1869 (0.1127)
φyy,3,0 -0.0083 (0.1123) φyy,3,1 -0.2126 (0.1416)
φyy,4,0 -0.0834 (0.0796) φyy,4,1 -0.0433 (0.1059)
φyc,1,0 0.4775 (0.1937) φyc,1,1 0.3053 (0.1641)
φyc,2,0 0.1364 (0.1791) φyc,2,1 0.2860 (0.1582)
φyc,3,0 -0.1266 (0.1855) φyc,3,1 0.1655 (0.1787)
φyc,4,0 0.0713 (0.1803) φyc,4,1 -0.1783 (0.1599)

μy,1,0 -0.9543 (0.2685) μy,1,1 -0.7751 (0.1358)
αy,0 -0.1434 (0.0430) αy,1 -0.0958 (0.0888)
σy,0 0.9083 (0.0598) σy,1 0.3162 (0.0348)

Real Consumption Growth

φcy,1,0 0.0859 (0.0435) φcy,1,1 0.0552 (0.0843)
φcy,2,0 0.0420 (0.0458) φcy,2,1 0.0613 (0.0771)
φcy,3,0 0.0081 (0.0585) φcy,3,1 0.0004 (0.0984)
φcy,4,0 -0.0029 (0.0399) φcy,4,1 0.0514 (0.0762)
φcc,1,0 -0.1254 (0.0980) φcc,1,1 0.0510 (0.1128)
φcc,2,0 -0.0456 (0.0954) φcc,2,1 -0.1053 (0.1224)
φcc,3,0 -0.0602 (0.1043) φcc,3,1 0.1763 (0.1125)
φcc,4,0 -0.0905 (0.0953) φcc,4,1 -0.1690 (0.1087)

μc,1,0 -0.7794 (0.1661) μc,1,1 -0.2939 (0.1015)
αc,0 -0.0270 (0.0232) αc,1 0.0756 (0.0537)
σc,0 0.4217 (0.0378) σc,1 0.2521 (0.0209)

Other Parameters

ρ0 0.2657 (0.0922) ρ1 0.2961 (0.1187)

p 0.7076 (0.0891) – –
q 0.9125 (0.0280) – –

Log Likelihood -339.6898

[25]
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Figure 1A.  Lof of Real GDP and its BN Trend Compont from Univariate
                Linear Model
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Figure 1B.  Cyclical Component of Real GDP from Univariate
                Linear Model
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Figure 1C.  Response  of  Real  GDP  to  Its  Own  Shock:    Univariate
                 Linear Model



0.0

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95 00 05

Figure 2A.  Filtered Probability of Recession from Univariate Markov-
                Switching Model with Post-Recession Bounce Back Effect
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Figure 2B.  Smoothed Probability of Recession from Univariate Markov-
                Switching Model with Post-Recession Bounce Back Effect
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Figure 2C.  Real GDP and its BN Trend Compont from  Univariate Markov-
                 Switching Model with Post Recession Bounce Back Effect
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Figure 2D.  Cyclical Component of Real GDP from Univariate Markov
                Switching Model with Post-Recession Bounce Back Effect
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Figure 2E. Response of Real GDP to Continuous Shock: Univariate MS Model
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Figure 2F. Response of Real GDP to Discrete Shock: Univariate MS Model
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Figure 3A.  Filtered Probability of Recession from Markov-Switching
                Error-Correction VAR(4) Model
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Figure 3B.  Smoothed Probability of Recession from Markov-Switching
                 Error-Correction VAR(4) Model
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Figure 3C.  Real GDP its BN Trend Component from  Markov-
                 Switching  Error-Correction VAR(4)  Model

-6

-4

-2

0

2

4

6

50 55 60 65 70 75 80 85 90 95 00 05

Figure 3D.   BN Cyclical Component of Real GDP from Markov-Switching
                 Error-Correction VAR(4) Model
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Figure 3E.  Real Consumption Its BN Trend Component from  Markov-Switching
                 Error-Correction VAR(4)  Model
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Figure 3F.  Cyclical Component of Real Consumption from
                 Markov-Switching Error-Correction VAR(4) Model
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Figure 3G. Responses to Real Consumption Shock: MS-VECM Model
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Figure 3H. Responses to Real GDP Shock: MS-VECM Model
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                   Figure 3I.  Responses  to  Discrete  Shock:    MS-VECM Model




