ABSTRACT

Micro data over the life cycle shows two different patterns of consumption of housing and non-housing goods: the consumption profile of non-housing goods is hump-shaped while the consumption profile for housing first increases monotonically and then flattens out. This paper develops a rich, quantitative, dynamic general equilibrium model of life cycle behavior, which generates consumption profiles consistent with the observed data. Borrowing constraints are essential in explaining the accumulation of housing assets early in life, while transaction costs are crucial in generating the slow downsizing of the housing later in life. The bequest motives play a role in determining total life time wealth, but not the housing profile.

Keywords: Consumption, Housing, Incomplete Market, Life Cycle

JEL Classification: E21, H31, J14, R21

*Yang, Federal Reserve Bank of Minneapolis and University of Minnesota. I would like to thank Michele Boldrin, John Boyd, Marco Cagetti, V. V. Chari, Mariacristina De Nardi, Zvi Eckstein, Larry Jones and seminar participants at 2004 CESifo Venice Summer Institute for helpful comments and suggestions. I am grateful to Michele Boldrin and Mariacristina De Nardi for numerous suggestions and continuous encouragement. All remaining errors are my own. The views expressed herein are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
1 INTRODUCTION

Micro data shows two different patterns of consumption of housing and non-housing goods over the life cycle. Consumption expenditure of non-housing goods is hump-shaped over the life cycle: it starts low early in life, rises considerably around middle age, and then falls at more advanced ages. On the contrary, household holdings of the housing stock are not hump-shaped: lifetime profile of housing stock is monotonically increasing and then rather flat. The different patterns of housing and non-housing consumption along the life cycle contradict a key prediction of the standard life cycle model without market frictions: the ratio of housing and non-housing consumption should not be age-dependent. That is to say, housing consumption should follow the same pattern as non-housing consumption.

These stylized facts of life cycle consumption motivate asking which modifications of the basic life cycle framework could produce the life cycle consumption profiles that more closely resemble the US life cycle consumption profiles. To answer this question, I construct a general equilibrium life cycle model of consumption and saving that explicitly models housing. Housing has a dual role: it directly provides utility, and it can be used as collateral. In my framework, households face several frictions: uninsurable labor income risk, uncertain lifetime, borrowing constraints, and transaction costs for trading houses. Thus households save to self-insure against labor earning shocks and life-span risk, for retirement, to enjoy services from housing, and possibly to leave bequests to their children.

I show that a plausibly parameterized version of my model can quantitatively explain the empirical findings. The interaction between housing (which can be used as collateral) and borrowing constraints leads to the accumulation of housing stock early in life, while transaction costs tend to slow the decline of the housing stock later in life. Households begin their economic lives without any housing stock. During the early part of their lives, because of the existence of borrowing constraints, they are forced to build housing stock and compromise on non-housing consumption. As households age, they start to decrease their non-housing consumption because their time preference is higher than the interest rate and mortality rates are increasing along the life cycle. The high transaction costs associated with trading houses prevent households from decreasing their housing stock quickly later in life.
I also investigate the quantitative relevance of transaction costs, borrowing constraints and bequest motives in determining this pattern. I find that while borrowing constraints are essential in explaining the accumulation of housing assets early in life, the existence of transaction costs is crucial in accounting for the slow downsizing of housing profile later in life. When choosing a new house, forward-looking households take into account future transaction costs. Thus consumption of housing service will be constant at a new level until it is worthwhile to incur the transaction costs again. Thus the home purchase decision is endogenously infrequent. The bequest motives play a role in determining total lifetime wealth, but not housing consumption.

Understanding the life cycle pattern of consumption and assets allocation behavior is crucial for policy analysis. Identifying a model capable of explaining the housing and non-housing consumption decisions allows a better understanding of the effect of policy reforms. The house is the single largest expenditure made by consumers over their life time. The median household has a house which is valued about twice their annual income. Thus the abstraction from housing may bias the study of life cycle consumption and assets accumulation behavior.

The paper is organized as follows. In Section 2, I present some empirical results from the Consumer Expenditure Survey (CEX) and Survey of Consumer Finances (SCF) documenting households’ consumption over the life cycle. In Section 3, I present my model and define the equilibrium. The calibration of the model is presented in Section 4. Section 5 presents the quantitative results of the benchmark model and investigates the quantitative importance of the transaction costs, borrowing constraints and bequest motives. Section 6 conducts sensitivity analysis. Brief concluding remarks are provided in Section 7. Technical discussions about the definition of invariant distribution and bequest distribution, the calibration of aggregate variables and the computational algorithm are provided in the Appendix.

1.1 CONTRIBUTIONS WITH RESPECT TO THE LITERATURE

Among the literature that studies housing and durable goods, Diaz-Gimenez, Prescott, Fitzgerald, and Alvarez [1992] study the effect of alternative monetary policy in a model with durables. Fernandez-Villaverde and Krueger [2002] document that consumption expenditure is hump-shaped over the life cycle and this pattern holds for consumption expenditures on both non-durables and
durables, even after controlling for the demographic characteristics of the households. Fernandez-Villaverde and Krueger [2001] show that a plausibly parameterized version of the life cycle model with endogenous borrowing constraints can explain the pattern of durable and nondurable consumption expenditure. However, their model cannot generate the slow decline of the housing stock. Heathcote [2002] incorporates home production in an otherwise standard model to account for the drop of consumption at retirement. Diaz and Luengo-Prado [2003] investigate the effects of illiquid durable goods and collateral credit on the level of precautionary saving, the shape of wealth distribution and on household wealth composition. Their framework assumes infinitely-lived households, and hence cannot be used to study the life cycle pattern of consumption. Gruber and Martin [2003] use a model similar to Diaz and Luengo-Prado [2003] and study the effect of changes in transaction costs on precautionary saving and on the wealth distribution.

Although my focus is on the life cycle patterns of consumption of housing and non-housing, my model also has implications for the optimal portfolio allocations between financial assets and housing at each point of life cycle. Along this dimension, this paper is related to the strands of optimal portfolio choice in the presence of consumer durables. Grossman and Laroque [1990] analyze optimal consumption and portfolio allocation in a context in which utility is derived only from an illiquid durable goods. They show that even modest transaction costs associated with adjusting the quantity of durable goods will prevent the household from equaling the marginal utility of consumption with the marginal utility of wealth and therefore cause the consumption based CAPM to fail. Flavin and Yamashita [2002] assume an exogenous housing consumption level and find that consumption demand for housing is likely to create a highly leveraged position for younger households. In contrast with most models of household portfolio choice that explicitly include the presence of housing, I model the life cycle in a general equilibrium setting.

Among the literature on life cycle general equilibrium models that incorporate bequest motives, De Nardi [2004] constructs a model in which parents and children are linked by accidental and voluntary bequests and by earning ability and shows that voluntary bequests can explain the emergence of large estates and the long upper tail of the wealth distribution. I generalize her framework by modeling housing and transaction costs. Ocampo and Yuki [2002] use a similar framework to investigate the quantitative importance of different saving motives on wealth inequality and ag-
aggregate capital accumulation. Laitner [2001] uses an overlapping generations model with both life cycle saving and altruistic bequest to match the high degree of wealth concentration and analyzes the impact of changes in national debt and social security on capital output ratio.

2 EMPIRICAL FINDINGS

This section presents my empirical findings on consumption of non-housing and housing over the life cycle. I first study the life cycle profile of consumption of non-housing goods using data from the CEX. I deal explicitly with the changes of household size along the life cycle. Then I look at the life cycle profile of the housing stock derived from the SCF, controlling for cohort and time effects.

The CEX is carried out by the Census Bureau, and is a random sample rotating panel that contains information on demographic characteristics, inventory of major housing and consumption expenditure. Each quarter about 5000 households participate in the survey. The survey consists of a quarterly Interview Survey in which each consumer unit in the sample is interviewed every three months over a 15-month period, and a Diary Survey completed by the sample consumer units for two consecutive one-week periods. The Interview Survey is designed to collect data on major items of expense, household characteristics, and income. The expenditures covered by the survey are those that respondents can recall fairly accurately for three months or longer. The Diary Survey records consumer units’ self-reported daily purchase over two consecutive one-week periods. The CEX is the only micro-level data set reporting comprehensive measures of consumption expenditure for a large cross-section of households in the US.

I use the 2001 CEX data to estimate life cycle profile of non-housing consumption expenditures. I take each household as one observation and use the age of the reference person regardless of the person’s gender. I define 10 cohorts with a length of 5 years, starting from age 20. Only households with positive consumption expenditure are selected. The data on “expenditure on non-housing consumption” include food, alcoholic beverages, tobacco, utilities, personal care, household operations, public transportation, gas and motor oil, vehicles, books and electronic equipment, apparel, out-of-pocket health and education expenditure, entertainment and miscellaneous expenditures.
Figure 2.1 plots total quarterly expenditure on non-housing goods against the head of the household’s age. Estimated quarterly consumption increases from around $16,500 to nearly $32,900, and then decreases to about $12,300. The peak is reached at age forty-five. The size of the hump, measured by the ratio of consumption expenditure between the peak and the beginning of the life cycle, is around 1.9. The consumption expenditure on non-housing goods declines dramatically later in life. The pattern of non-housing consumption is similar to the pattern of nondurable consumption reported in Fernandez-Villaverde and Krueger [2002].

Households of different size plausibly face different marginal utilities from the same consumption expenditure. Consequently, changes in household size might explain the hump in consumption (Attanasio and Weber [1995] and Attanasio et al. [1999]). Thus I adjust the data for the change in household size along the life cycle using equivalence scales, which quantify the change in consumption expenditure needed to keep the welfare of families constant, regardless of its size (see for example Zeldes [1989], Blundell, Browning and Meghir [1994]). I use the same equivalence scales as Fernandez-Villaverde and Krueger [2002], which are close to the equivalence scales of the Department of Health and Human Services (Federal Register [1991]), the estimates of Johnson and Garner [1995] and to the constant-elasticity equivalence scales used by Atkinson et al. [1995], Buhmann et al. [1988] and Johnson and Smeeding [1998], among others. Table 2.1 shows the equivalence scales I use.

I take non-housing consumption expenditure from the CEX and the demographic information of the household to obtain the equivalence scales and to adjust consumption. Figure 2.2 plots the estimated adjusted life cycle profile of quarterly expenditure on non-housing goods. The adjusted quarterly consumption increases from around $12,800 to nearly $21,000 and then decreases to about $10,800. The peak in adjusted consumption is postponed, close to the age of fifty-five. The size of the hump measured by the ratio of consumption expenditure between the peak and the beginning of the life cycle is around 1.6. The consumption expenditure on non-housing goods declines dramatically later in life. The results are robust to using different equivalence scales.

The CEX does not report a measure of consumption services from housing, except that the survey asks for an estimate of the present monthly rental value of the owned residence. Figure 2.3 plots the estimated life cycle profile of housing consumption for households that own houses,
controlling for cohort effects and time effects. This figure shows that, when controlling for time and cohort effects, the peak of (market valued) housing service does not occur until age fifty-five, then decreases slightly, and then flattens out until the end of the life cycle.

Figure 2.4 plots the estimated life cycle profile of housing service deflated by equivalence scales, which turns out to be very similar to the profile not adjusted for equivalence scales. The later increase in the adjusted rental value of the home is due to the reduction in household size when one spouse dies.

To test the robustness of the above findings, I use the SCF data to estimate the life cycle profile of housing stock, net worth and non-housing assets controlling for cohort and time effects. I construct synthetic cohorts by using six waves of the SCF (1983-1998). I use the age of the reference person to define 10 cohorts with a length of 5 years, starting from age 20, and follow them through the whole sample, generating a panel. For example, the households born between 1958-1963 were 20-25 years old in 1983. The pseudo panel approach treats the 23-28 year-old households in the 1986 wave as if they were the same people as the 20-25 year-old in the 1983 data. The grouping in cells is done to keep the number of observations relatively big, most of the cells I use have about 300 observations. Housing asset is the value of the primary residential house. I control for cohort, time, and age effects by employing a semi-nonparametric partially linear model. Details of the estimation are available in Yang [2004].

Figure 2.5 plots mean net worth, housing stock, financial assets against the head of the household’s age. Young agents tend to hold little wealth. Early in life households borrow to buy houses, and thus save in the form of housing. As time goes by, agents have built stocks of houses and start to increase their holding of financial assets. Their wealth holding peaks at age 70. However, we do not observe quick decumulation of wealth later in life. Instead, households continue to hold large amount of wealth. We observe that mean housing stock increases rapidly early in life. We do not find evidence of downsizing of housing stock later in life. This confirms with Fernandez-Villaverde and Krueger [2002] who estimate the equivalent housing rental value using CEX data.

The finding that elderly households do not decrease their housing consumption is consistent with the empirical findings from other literature. Feinstein and McFadden[1989] suggest that more than one-third of elderly households reside in dwellings with at least three more rooms than the
number of inhabitants, and are thus consuming large housing services.

The different patterns of housing and non-housing consumption along the life cycle thus contradict to a key prediction of the standard life cycle model without market frictions and age-dependent utility of consumption from housing and non-housing or home production: the ratio of housing and non-housing consumption should not be age-dependent. That is to say, consumption of housing should follow the same pattern as non-housing consumption. Appendix A describes the implication of this standard life cycle model in greater detail.

3 THE MODEL

The economy is a discrete-time, overlapping-generations world with income uncertainty and lifetime uncertainty. Housing has a dual role: it provides utility as consumption goods, and it can be used as collateral thus the borrowing limit of each household depends on the value of the house. Trading of houses incurs transaction costs. At age 20 each person enters the model and starts consuming and working. At age 30 the consumer procreates. After retirement the agent no longer works but receives interest from accumulated assets. There is no annuity markets. There is no government in this economy. Also for simplicity, I assume there is no housing rental market.

3.1 Demographics

During each model period, which is 5 years long, a continuum of people is born. Since there are no inter-vivos transfers, all agents start their economic life with no financial assets and no houses. I denote age $t = 1$ as 20 years old, age $t = 2$ as 25 years old, and so on. At the beginning of period 3, the agent’s children are born, and four periods later (when the agent is 50 years old) the children are 20 and start working. The agents are retired at $t = 10$ (i.e., when they are 65 years old) and die for sure by the end of age $T = 12$ (i.e., before turning 80 years old). From $t = 10$ (i.e., when they are 65 years old), each person faces a positive probability of dying given by $(1 - p_t)$. The probability of dying is exogenous and independent of other household characteristics. The population grows at rate n. Since the demographic patterns are stable, agents at age t make up a constant fraction of the population at any point in time. Figure 3.1 illustrates the demographics in the model.
3.2 Technology

There is one type of goods produced according to the aggregate production function $F(K; L)$ where K is the aggregate capital stock and L is the aggregate labor input. I assume a standard Cobb-Douglas functional form and a single representative firm. The final goods can be either consumed or invested into physical capital or transformed into housing. Let H denote the aggregate housing stock in the current period, C the aggregate consumption of non-housing, I_h the aggregate investment on housing, I the aggregate investment on physical capital goods, T_c the total transaction costs for trading housing, and δ and δ_h the depreciation rates on physical capital and housing, respectively. The aggregate resource constraints are:

$$K' = I + (1 - \delta) K$$
$$H' = I_h + \left(1 - \delta_h\right) H$$
$$C + I + I_h + T_c = F(K; L) = AK^\alpha L^{1-\alpha}$$

Households rent capital and efficient labor units to the representative firm each period and receive rental income at the interest rate r and wage income at the wage rate w.

3.3 Timing and Information

At the beginning of each period, households observe their idiosyncratic earning shocks and possibly receive some inheritance from their parents. Then labor and capital are supplied to firms and production takes place. Next, the households receive factor payments and make their consumption and asset allocation decisions. Housing stocks are not transferred until the end of the period. Thus the addition or subtraction to the stock will not influence the present period service flow. Finally uncertainty about early death is revealed.

The idiosyncratic labor productivity status is private information and the survival status is public information. I assume that children can observe their parent’s productivity when their parent is 50 and the children are 20.

There are no state contingent markets for the household specific shocks. The only insurance market is a one-period bonds market.
3.4 Consumer’s Maximization Problem

3.4.1 Preferences

Individuals derive utility from consumption of non-housing goods, \(c \), from the service flow of the housing, \(h \) and from bequests transferred to their children upon death. The service flow of housing is assumed to be proportional to the housing stock and by choice of units, the proportional factor is normalized to be 1. Thus the utility function is written as a function of the housing stock.

Preferences are assumed to be time separable, with a constant discount factor \(\beta \). The momentary utility function from consumption is of the constant relative-risk aversion class given by

\[
U(c, h) = \frac{g(c, h)^{1-\eta} - 1}{1 - \eta}.
\]

I choose \(g(c, h) = (\omega c^{\sigma} + (1 - \omega)h^{\sigma})^{\frac{1}{\sigma}} \), where \(h \) is the service flow from housing, which is assumed to be equal to the value of housing stock. When \(\sigma = 0 \), the function \(g \) takes a Cobb-Douglas form.

Following De Nardi [2004], the utility from bequest is denoted by

\[
\phi(b) = \phi_1(1 + b/\phi_2)^{1-\eta}.
\]

The term \(\phi_1 \) reflects the parent’s concern about leaving bequests to his/her children, while \(\phi_2 \) measures the extent to which bequests are luxury goods.

Note that this form of ‘impure’ bequest motives implies that an individual cares about the bequests left to his/her children, but not about consumption of his/her children. If an individual is assumed to care about utility of his/her children, and both parents and kids are maximizing utility as different units, the strategic interaction across generations complicates the analysis.

3.4.2 Transaction Costs

Due to the heterogeneity of housing and the spatial fixity of housing, both potential buyers and sellers in the housing market are forced to spend considerable amount of time and resource to acquire information about the value of a specific housing units. As a consequence, there are both implicit and explicit search costs associated with moving (Chinloy [1980]). These include
opportunity cost of time associated with market search, brokerage and agent fee, recording fee, legal fee, origination fee. Besides, households have to physically move to a new house, which entail moving costs and psychological costs of breaking neighborhood attachments (Smith, Rosen, Fallis [1988]).

I consider non-convex transaction costs in the housing stock. A household can buy a stock of any size, but once the stock has been bought, it is illiquid. I force the household to pay transaction costs every time the household sells and buys a new house. Right after consuming the services, the stock depreciates at the rate δ^h. The specification of the transaction costs is:

$$\tau(h, h') = \begin{cases}
0 & \text{if } h' \in [(1 - \mu_1)h, (1 + \mu_2)h] \\
\rho_1 h + \rho_2 h' & \text{otherwise.}
\end{cases}$$

This formulation of transaction costs allow households to change their level of housing consumption by undertaking housing renovation up to a fraction of μ_2 the value of house or by allowing depreciation up to a fraction of μ_1 the value of house as an alternative to moving. If the households let the housing depreciate by more that a fraction μ_1 of the value, or if the value of the stock increases by more that a fraction μ_2 of the value, I assume that the stock has been sold. In those cases, the household has to pay the transaction costs as a fraction ρ_1 of its selling value and ρ_2 of its buying value.

3.4.3 Borrowing Constraints

I assume that only collateralized credit is available and that the borrowing interest rate, mortgage interest rate and deposit interest rate are all equal. This implies that mortgages and deposits are perfect substitutes. I use a_t to denote the net asset position. To buy a house household must satisfy a minimum down payment requirement as a fraction θ of the value of houses. Housings also serves as collateral for loans (through home equity loans or refinancing) up to a fraction $(1 - \theta)$. At any given period household’s non-housing assets must hence satisfy:

$$a \geq -(1 - \theta)h,$$
and household’s net worth is thus always non-negative. Notice in this case, a household’s net worth is bounded below by the value of house. For a household without a house, the borrowing constraint reduces to the standard form \(a \geq 0 \).

3.4.4 Labor Productivity

In this economy all agents of the same age face the same exogenous age-efficiency profile \(\epsilon_t \). This profile is estimated from the data and recovers the fact that productive ability changes over the life cycle. Workers also face stochastic shocks to their productivity level. These shocks are represented by a Markov process defined on \((Y; \mathcal{B}(Y)) \) and characterized by a transition function \(Q_y \), where \(Y \subset R_{++} \) and \(\mathcal{B}(Y) \) is the Borel algebra on \(Y \). This Markov process is the same for all households. This implies that there is no aggregate uncertainty over the aggregate labor endowment although there is uncertainty at the individual level. The total productivity of a worker of age \(t \) is given by the product of the worker’s stochastic productivity in that period and the worker’s deterministic efficiency index at the same age: \(y_t \epsilon_t \).

The parent’s productivity shock at age 50 is transmitted to children at age 20 according to a transition function \(Q_{yh} \), defined on \((Y; \mathcal{B}(Y)) \). What the children inherit is only their first draw; from age 20 on, their productivity \(y_t \) evolves stochastically according to \(Q_y \).

For computational reasons, I assume that children cannot observe directly their parent’s assets, but only their parent’s productivity when their parent is 50 and the children are 20, that is, the period when they leave the house and start working. Based on this information, children infer the size of the bequests they are likely to receive.

3.4.5 The Household’s Recursive Problem

In the stationary equilibrium, the household’s state variables are given by \((t, a, h, y, yp) \), the first 4 variables of which denote the agent’s age, financial assets and housing stock carried from the previous period and the agent’s productivity, respectively. The last term \(yp \) denotes the value of the agent’s parent’s productivity at age 50 until the agent inherits and zero thereafter. When \(yp \) is positive, it is used to compute the probability distribution on bequests that the household expects from the parent. When the agents have already inherited, \(yp \) is set to be 0.
According to the demographic transitions, there are four cases depending on the possibility of inheritance and the possibility of dying.

(i) From $t = 1$ to $t = 3$ (from age 20 to 30), the agent works and survives with certainty until next period. Moreover, the agent does not expect to receive a bequest soon because his or her parent is younger than 65 and will survive at least one more period for sure. Since the law of motion of y_p is dictated by the death probability of the parent, for these sub periods $y_p' = y_p$.

$$V(t, a, h, y, y_p) = \max_{c, a', h'} \left\{ U(c, h) + \beta E(V(t + 1, a', h', y', y_p)) \right\}$$

subject to

$$c + a' + h' + \tau(h', h) = w\varepsilon y + (1 + r)a + (1 - \delta h)h,$$

$$c \geq 0, \ h' \geq 0.$$

and (7).

At any subperiod, the agent’s resources are derived from asset holdings, a, labor endowment, εy, housing stock holding, h. Asset holdings pay a risk-free rate r and labor receives a real wage w. Houses depreciate at rate δh. The evolution of y is described by the transition function Q_y.

(ii) From $t = 4$ to $t = 6$ (from age 35 to 45), the worker survives for sure until the next period. However, the agent’s parent is at least 65 years old and faces a positive probability of dying at any period; hence, a bequest might be received at the beginning of the next period. The conditional distribution of bequest a person of state x expects in case of parental death is denoted by $\mu_b(x;:\cdot)$.

In equilibrium this distribution must be consistent with the parent’s behavior. Since the evolution of the state variable y_p is dictated by the death process of the parent, y_p' jumps to zero with probability $1 - p_{t+6}$. Let $I_{y_p>0}$ be the indicator function for $y_p > 0$; it is one if $y_p > 0$ and zero otherwise.

$$V(t, a, h, y, y_p) = \max_{c, a', h'} \left\{ U(c, h) + \beta E(V(t + 1, a', h', y', y_p')) \right\}$$
subject to

\[c + a^+ + h' + \tau(h', h) = w\varepsilon y + (1 + r)a + (1 - \delta_h)h, \]

(12)

\[a' = a^+ + b'I_{y_p > 0}I_{y_p' = 0}, \]

and (7) and (10), where \(a^+ \) denotes the financial assets at the end of the period before receiving bequest.

(iii) The subperiods \(t = 7 \) to \(t = 9 \) (from age 50 to 60) is the periods before retirement, during which no more inheritances are expected because the agent’s parent is already dead by that time. Thus \(y_p \) is not in the state space any more. The agent does not face any survival uncertainty.

(13)

\[V(t, a, h, y) = \max_{c, a', h'} \{ U(c, h) + \beta E(V(t + 1, a', h', y')) \} \]

subject to (7), (9) and (10).

(iv) From \(t = 10 \) to \(t = 12 \) (from age 65 to 75), the agent does not work and does not inherit any more, but faces a positive probability of dying. In case of death, the agent derives utility from bequeathing his or her assets. When the agent dies, the house is sold automatically and transaction costs are incurred.

(14)

\[V(t, a, h) = \max_{c, a', h'} \{ U(c, h) + \beta p_t(V(t + 1, a', h')) + (1 - p_t)\phi(h) \} \]

subject to

\[c + a' + h' + \tau(h', h) = (1 + r)a + (1 - \delta_h)h, \]

and (7) and (10), where

(15)

\[b = a' + h' - \rho_1 h'. \]

The terminal value \(V(T + 1, a', h') \) is set to be 0 for every \(a', h' \).
3.4.6 Definition of the Stationary Equilibrium

In this economy, agents differ in term of their age \(t \), asset holdings \(a \), housing stock \(h \), idiosyncratic labor productivity \(y \) and also parent’s labor productivity at age 50 \(y_p \). Each agent’s state is denoted by \(x \).

I focus on an equilibrium concept where factor prices are constant over time and where capital and labor are constant in per capita terms. In addition, the age-wealth distribution is stationary over time. An equilibrium is described as follows.

Definition 1 A stationary equilibrium is given by an interest rate \(r \) and a wage rate \(w \); value functions \(V(x) \), allocations \(c(x) \), \(a'(x) \), \(h'(x) \); a family of probability distributions for bequests \(\mu_b(x;\cdot) \) for a person with state \(x \); and a constant distribution of people over the state variables \(x \): \(m^*(x) \), such that the following conditions hold:

(i) Given the interest rate, the wage, and the expected bequest distribution, the functions \(V(x) \), \(c(x) \), \(a'(x) \), and \(h'(x) \) solve the above described maximization problem for a household with state variables \(x \).

(ii) \(m^* \) is the invariant distribution of households over the state variables for this economy.

(iii) All markets clear.

\[
\begin{align*}
K &= \int am^*(dx) \\
H &= \int hm^*(dx) \\
C &= \int cm^*(dx) \\
L &= \int eym^*(dx) \\
Tc &= \int \tau(h',h)m^*(dx) \\
F(K;L) &= C + (1+n)K - (1-\delta)K + (1+n)H - ((1-\delta^h)H - Tc).
\end{align*}
\]

(iv) The price of each factor is equal to its marginal product.

\[
\begin{align*}
r &= F_1(K,L) - \delta \\
w &= F_2(K,L).
\end{align*}
\]
(v) The family of expected bequest distributions is consistent with the bequests that are actually left by the parents.\(^5\)

4 CALIBRATION

Some parameters used in the benchmark model are based on estimations by other studies. The remaining parameters are chosen so that the model generated data match a given set of targets. Since one period in my model corresponds to 5 years in real life, I adjust parameters accordingly.

The rate of population growth, \(n\), is set to the average population growth from 1950 to 1997 from Economic Report of the President [1998].

The \(p_t\)’s are the vectors of conditional survival probabilities for people older than 65. In the calibration of the US economy, I use the mortality probabilities of people born in 1965 provided by Bell, Wade, and Goss [1992].

I construct measures of output \(Y\), capital \(K\) and housing \(H\) and their investment counterparts according to my model. I use data from the National Income and Product Accounts and the Fixed Assets Tables both from the Bureau of Economic Analysis for the year 1954-1999. The aggregate ratios for US economy are calibrated to explicitly consider the existence of housing that comprises residential assets. Output is defined as measured GDP minus housing services to be consistent with the model. Capital is defined as the sum of nonresidential private and government fixed assets plus the stock of inventories. Investment in capital, \(I\) is defined accordingly. The housing stock is defined as the stock of private residential assets. Investment in housing, \(I^h\), is constructed accordingly. The term \(\alpha\) is the share of income that goes to capital, which I fix at 0.226. This capital share (non residential stock of capital) is much lower than that in other calibrations, which abstract from housing. I fix \(\delta^h\) to be 0.0700 and \(\delta\) to be 0.0294. Appendix D explains the rationale behind these choices in greater detail.

The deterministic age-profile of the unconditional mean of labor productivity \(\epsilon_t\) is taken from Hansen [1993]. Since I impose mandatory retirement at the age of 65, I take \(\epsilon_t = 0\) for \(t > 9\).

The logarithm of the productivity process is assumed to be an AR(1) process with persistence \(\rho_y\) and variance \(\sigma_y^2\).

\[
\ln y_t = \rho_y \ln y_{t-1} + \mu_t, \quad \mu_t \sim N(0, \sigma_y^2).
\]
These two parameters are estimated from Panel Study on Income Dynamics (PSID) data, aggregated over five years in order to be consistent with the model period (Altonji and Villanueva [2002]).

The logarithm of the productivity inheritance process is also assumed to be an AR(1) process with persistence ρ_{yh} and variance σ^2_{yh}. The parent’s productivity shock at age 50 is transmitted to children at age 20 according to the following transition function:

$$\ln y_t = \rho_{yh} \ln y_{h,t+6} + \nu_t \quad \nu_t \sim N(0, \sigma^2_{yh}).$$

I take ρ_{yh} from Zimmerman [1992], and take σ^2_{yh} to match the Gini coefficient of 0.44 for earnings.

The down payment ratio θ is set to be 0.2, which is commonly used in housing literature. Recently some households are allowed to purchase houses without much initial wealth. However, Caplin et al. [1997] argue that “it is almost impossible for a household to purchase a home without available liquid assets of at least 10% of the home’s value”. In addition, what is crucial for my model is the assumption that young and poor household can not borrow beyond the liquidation value of their collateral. Thus I choose a higher down payment ratio despite the recent decline of down payment ratio. I conduct sensitivity analysis on down payment ratio in Section 6.

Since one of my main interest is to look at how transaction costs affect consumption and saving decisions, one key calibration is the type of transaction costs that I choose. Smith, Rosen and Fallis [1988] estimate the transaction costs of changing houses, including searching, legal costs, cost of readjusting home, and psychological costs from disruption. Their estimation is approximately 8-10 percentage the unit being changed. Gruber and Martin [2003] estimate the reallocation cost of tax and agency costs from CEX and find the median household pays costs of the order of 7 percent to sell their houses and 2.5 percent to purchase. Martin [2002] finds that the monetary costs of buying a new home, which include agent fee, transfer fee, appraisal and inspection fee, range on average from 7 to 11 percent of purchase price of a home. In my simulation, I restrict myself to symmetric costs and choose transaction costs from sale to be $\rho_1 = 4\%$, and transaction costs from purchase to be $\rho_2 = 4\%$. These value are lower than the transaction costs reported above therefore it serve as a lower bound of the effect of transaction costs.

I take risk aversion parameter, η, to be 1.5, from Attanasio et al. [1999] and Gourinchas and
Parker [2002], who estimate it from consumption data. This value is in the commonly used range (1-5) in the literature.

σ governs the elasticity of substitution between housing and non-housing. Ogaki and Reinhart [1998] use aggregate data and a similar specification, and obtain an estimated σ = 0.145, not significantly different from zero. I thus choose σ to be 0 so that the momentary utility function \(g(c, h) \) takes the Cobb-Douglas form. I conduct sensitivity analysis and the results does not depend on the particular value of σ used.

I choose the discount factor, β, to match the capital-output ratio. The rate \(r \) is the interest rate on capital net of depreciation. Given the calibration for the US production function, this interest rate is endogenous, and turns out to be 3.17%.

The parameter \(\omega \) determines the share of consumption allocated to the non-housing consumption goods and is set to match the ratio of non-housing expenditure to housing stock.

I use \(\phi_1 \) to match bequest output ratio of 2.65% in the US simulation (Gale and Scholz [1994]). Since in my model output corresponds to GDP minus housing service, I adjust it accordingly. \(\phi_2 \) is chosen to match the ratio of average bequest left by single decedents at the lowest 80th percentile over GDP per capita. According to Hurd and Smith [1999], the average bequest left by single decedents at the lowest 80th percentile was $125,000 (Asset and Health Dynamics Among the Oldest Old (AHEAD) data sets, 1993-95).

5 NUMERICAL RESULTS

The benchmark economy allows for housing transaction costs and \(\mu_1 = \mu_2 = 0 \). That is to say, if the value of the housing stock increases or decreases, I assume that the house has been sold. In this case, the household has to pay the transaction costs as a fraction \(\rho_1 = 4\% \) of its selling value and \(\rho_2 = 4\% \) of its buying value. I then show the effect of transaction costs on the life cycle profiles of financial assets, total net worth, housing and non-housing consumption by changing parameters \(\rho_1, \rho_2, \mu_1, \mu_2 \). Some parameters are set so that the model-generated data match a given set of targets (see Section 4). Appendix E describes the computation algorithm in greater detail.
5.1 Benchmark

5.1.1 Wealth Distribution

Table 5.1 reports values for the wealth distribution for my benchmark economy. I present quintile shares, 90-95%, 95-99%, top 1% shares and Gini coefficient for net worth, housing stocks and financial assets. US wealth distribution is taken from Gruber and Martin [2004] who use 2001 SCF. In the data wealth is highly unevenly distributed with a Gini coefficient of 0.81. The top 1% households hold 32% of the total wealth and the 95-99% households hold 25% of the total wealth. Housing is more evenly distributed than net worth with a Gini coefficient of 0.64. The top 1% households hold 13% of the total housing wealth and the 95-99% households hold 18% of the total housing wealth. Financial asset is more unevenly distributed than net worth with a Gini coefficient of 1.18. The top 1% households hold 48% of the total financial wealth and the 95-99% households hold 32% of the total financial wealth. The Gini coefficient of financial wealth is bigger than 1 since there are large number of homeowners with mortgages and negative financial positions (Notice that the bottom 20% hold a fraction of -15% of the net financial wealth).

The benchmark model matches the distribution of wealth, housing and financial wealth quite well, with the exception of top 1%. It also replicates the empirical finding that inequality in financial assets is much higher than housing. This is because households are allowed to borrow against housing so financial assets can be negative but the housing stock can not be. Also for households that are not borrowing constrained, the return of housing, marginal utility of housing, is decreasing, while the return to financial assets, the interest rate, is constant. Thus housing as the fraction of net worth is decreasing.

Figure 5.1 compares the size distribution of estate among the whole economy at any given time implied by the model with the data. The size distribution of bequest is very concentrated both in the data and in the model. The U.S. data on the estate distribution are from Hurd and Smith [1999] who use the AHEAD data exit interview of 771 deceased between 1993-1995. 30% of the deceased AHEAD respondents had an estate of no value. The mean estate was $104,500 but the median was much lower ($62,200). Some respondents leave relatively large estates: 30% are $120,000 or more and 5% are in excess of $300,000. Only 3% of the estates were valued at $600,000 or more. One parameter of the model is chosen so that the two distributions match at
one point: the 80th percentile. The estate distribution generated by the model actually matches very well to the AHEAD data until the 80th percentile of the estate distribution. From that point on, the model predicts larger bequests than those observed in the AHEAD data. The discrepancy is partly due to the fact that AHEAD misses some large estates.

Figure 5.2 shows the bequest distribution for a 35-year-old person conditional on his/her parent’s observed productivity level. At that age, the probabilities of receiving bequests less than 2 times output per capita are, respectively, 71%, 19%, 1% and 0%, for people with parents in the lowest, second lowest, second highest and highest productivity levels. Even in the presence of bequest motives, most of the parents run down their assets after retirement. The fraction of people whose parents live up to the final age of the model economy and who do not receive a positive bequest are, respectively, 99%, 98%, 88% and 23%, for people with parents in the lowest, second lowest, second highest and highest productivity levels.

5.1.2 Life Cycle Profiles

Now I turn to the average life cycle profiles of financial assets, total net worth, non-housing consumption and housing consumption. All figures are normalized by the average household income. These averages are obtained by integrating the policy function with respect to the equilibrium measure of agents, holding age fixed. For example, the average housing consumption by an agent at age \(t \) is given by

\[
H = \frac{\int h(t, a, h, y, yp)m^*(\{t\} \times da \times dh \times dy \times dyp)}{\int m^*(\{t\} \times da \times dh \times dy \times dyp)}
\]

Figure 5.3 displays the evolution of wealth portfolio over the life cycle. Young agents tend to hold little wealth. They start with zero wealth and they expect to have much higher earnings in the future. Thus to smooth consumption, they do not hold much wealth. Early in life households borrow as much as possible to buy houses, and thus save in the form of housing. As time goes by, agents have built stocks of houses and start to increase their holding of financial assets. The wealth holding peaks at age 65, the year before retirement. After retirement, they start to dissave assets to finance consumption. Old agents discount their future consumption at a higher rate since the survival probabilities are declining in age. This implies that the consumption profile
is declining later in life and hence little wealth is needed to finance consumption later in life. Compared with data reported in Figure 2.5, the wealth profile and assets profile have humps that are more pronounced. There are several reasons to explain the discrepancy. First, in my model, agents do not receive social security benefits; therefore they have even stronger motives to save for retirement and the wealth holding at retirement age is higher relative to the data. Second, since I abstract from health uncertainty or other shocks that could motivate precautionary assets holding in old age, old agents do not have precautionary saving motives as they do in the data, therefore they run down their assets more quickly than in the data.

Figure 5.4 compares the average life cycle profiles of non-housing consumption and housing consumption in the model with those in the data. Non-housing consumption from the data refers to CEX non-housing consumption reported in Figure 2.1. I adjust the data so that non-housing consumption at age 50 is the same in the data as in the model, and housing stock at age 60 is the same in the data as in the model. From Figure 5.2, we see the hump shape of average non-housing consumption, which peaks around age 50. The non-housing consumption at peak is 60% more than that of age 20, which is similar to the pattern reported in the data in Section 2. After the peak, non-housing consumption decreases steadily with age. Facing an increasing future income profile, young agents would like to borrow to finance their current consumption but they are borrowing constrained. This explains why early in life consumption path increases as income path does. As households age, they start to decrease their non-housing consumption due to the fact that time preference is higher than the interest rate and mortality rates are increasing along the life cycle.

The housing consumption profile in the model reproduces the empirically observed increasing early in life and slow downsizing later in life. Agents build their housing stock early in life and compromise on non-housing consumption. Agents build up their highest housing stock at the age of 55, 5 years later than the peak of non-housing consumption. The elderly do not decrease their housing stock later in life. Instead, households choose to borrow against their houses to finance non-housing consumption.

The introduction of transaction costs forces agents to reduce the frequency of transactions in the housing market. Agents make no change to the stock of the housing unless their non-
housing assets and housing stocks are too unbalanced. Two retired agents with the same housing stock, age and different holding of non-housing assets may choose the same level of housing stock next period, as long as the difference of non-housing assets is not large. Figure 5.5 shows the policy function of housing next period as a function of current holding of non-housing and housing stock for a 70-year-old agent. Given current housing stock, there is a wide range of non-housing assets that households do not adjust for their housing stock. The size of the inactive region is different according to agents age and income and also is affected by parameters such as the size of the transaction costs. Even for relatively small transaction costs, the inactive region is quite large. The inactive region can be defined by two boundaries, \((a_l(h), a_h(h))\). If a household with a housing stock of \(h\) holds non-housing assets more than the upper boundary \(a_h(h)\), the household will move to a bigger house next period and hold a smaller fraction of non-housing assets in the wealth portfolio. If instead he/she holds non-housing assets less than the lower boundary \(a_l(h)\), the household will move to a smaller house next period and hold a larger fraction of non-housing assets in the wealth portfolio. Figure 5.6 shows the boundaries of the inactive region on the plane of current holding of non-housing and housing stock for a 70-year-old agent and a 65-year-old agent, respectively. One reason that the inactive region for a 65-year-old agent is smaller than a 70-year-old agent is because a 65-year-old agent has a longer life expectancy which increases the benefit of changing the housing stock. Since bequest is modeled as luxury goods, the utility function is not homothetic. Thus the policy functions are not necessarily homogeneous and the boundaries are not strict lines.

The existence of transaction costs affects young agents and old agents differently. Young households facing increasing income profiles would like to purchase large houses but they have to accumulate enough non-housing assets to pay the down payment. As a result, they have to increase their housing stock fairly often. As the households age and their income profile stabilize, households would keep their level of housing stock unchanged, giving that trading of housing stock would incur transaction costs. Old households are less likely to move than young household, since they could only consume the new house for a relatively short period of time. Figure 5.7 shows the fraction of households moving at the end of each period for each age group. Moving rates by age in the data is taken from Schachter [2001] and are aggregated to five years.
5.2 No Transaction Costs

Now I investigate the effects of transaction costs on household consumption and asset holding in this subsection by setting costs to 0. Other parameters are kept the same as in the benchmark except that I recalibrate β, ω, ϕ_1, ϕ_2 to match the aggregate variables in the data.

Figure 5.8 shows the average life cycle profiles of financial assets and total net worth. The evolution of wealth portfolio over the life cycle is similar to the one in the benchmark case.

In Figure 5.9, we see the hump shape of the average non-housing consumption, with peak around age 50, which is similar to the one reported in the data and in the benchmark model. Non-housing consumption decreases steadily with age after its peak. The ratio of housing consumption and non-housing consumption is almost constant after age 60, as is proved analytically in Appendix A.

Compared with the benchmark case, a model without transaction costs generates a hump-shaped non-housing consumption profile but the decrease of housing stock later in life is too fast. This contradicts the empirical findings reported in Section 2.

These results show that the transaction costs play an important role in explaining the slow decline of housing consumption later in life.

6 SENSITIVITY ANALYSIS

In this subsection we will check the robustness of the results to the changes of parameters. First I change parameters that govern the bequest motives. Then I check the effect of down payment ratio. Also I change the elasticity of substitution between the housing and the non-housing consumption. Finally I study the effect of introducing a pay-as-you-go social security system. Parameters β, ω, ϕ_1, ϕ_2 are adjusted accordingly to match the aggregate variables in the data.

6.1 Bequest Motives

First I present the results from a model without voluntary bequest motives by setting $\phi_1 = 0$. Figures 6.1 and 6.2 show the average life cycle profiles of financial assets and total net worth, non-housing consumption and housing consumption. After retirement, the drop of net worth and
non-housing assets is more dramatic, compared with the profiles in the benchmark case10. This finding is consistent with the ones in De Nardi [2004], who finds that when bequests are modeled as luxury goods, the voluntary bequest motives kick in for the richest 15-20% of the households, and therefore have some effect on the average household wealth profiles.

Figure 6.2 compares the average non-housing and housing consumption in the case of no bequest motives and in the benchmark case. Compared with the benchmark case, the consumption of non-housing goods is lower for the young agents but higher for the old agents. In the benchmark case when households have voluntary bequest motives, more inheritance relaxes borrowing constraints for agents age 35-50, therefore the consumption of non-housing is higher for young agents. Old agents with voluntary bequest motives would like to leave some resources to their offspring therefore they would like to consume less by themselves. The average elderly downsizes his/her housing a little faster without bequest motives but the effect is small. The bequest motives, therefore, are not the key factor explaining the slow downsizing of housing stock later in life for the average household. The intuition here is that the household faces transaction costs to downsize his/her housing stock, but can borrow against it (at the same rate of return as saving). Since the average household plans to leave little bequest, he/she chooses to run down his/her net worth completely by the time he/she expects to be dead for sure. Thus it is optimal to do so by borrowing against the stock of houses, rather than by trading the large house he/she lives in to a smaller one, and thus paying large transaction costs in the process.

Since the bequest-output ratio reported in Gale and Scholz [1994] is a low estimate of the magnitude of the bequest motives, I present the results from a model with stronger voluntary bequest motives by matching a bequest-GDP ratio of 0.043, the highest estimate in the literature (see Hendricks [2001]). Figures 6.3 and 6.4 show the average life cycle profiles of financial assets and total net worth, non-housing consumption and housing consumption. After retirement, the decline of net worth and non-housing assets is moderate. Compared with the profiles in the benchmark case, the net worth at age 70 increases by 30%. However, compared with the data, the decumulation of wealth is still too pronounced.
6.2 Down Payment

Now I check the effect of the down payment on consumption paths and wealth paths. The down payment ratio does affect the consumption of housing and non-housing when the households are young. When the down payment ratio is high, young households have to wait longer to accumulate more financial assets to pay higher down payments. Since the consumptions of housing and non-housing are non-separable, they would consume more non-housing service instead. Figure 6.5-6.6 show the average life cycle profiles of assets and consumption paths when the down payment ratio is 0.4. Compared with benchmark, the consumption of non-housing goods is higher and consumption of houses is lower at young age. Higher down payment ratio implies tighter borrowing constraints, therefore young households could not borrow as much as in the benchmark economy and have higher financial assets and higher net worth in this case. The profiles of wealth and consumption are similar to these in the benchmark economy for middle and old households.

On the contrary, if the down payment ratio is low, then young households are more likely to move into big houses, therefore the housing profile increases quickly. Since utility from housing and non-housing is not separable, households compromise more non-housing consumption in young age. Figure 6.7-6.8 show the average life cycle profiles of assets and consumption paths when the down payment ratio is 0. Compared with the benchmark, the consumption of non-housing goods is lower and consumption of housing goods is higher at young age. Households use houses as collateral and they have negative financial wealth until their forties, a point at which they begin to save for retirement. The profiles of wealth and consumption are similar to these in the benchmark economy for middle and old households.

6.3 Elasticity of Substitution between Housing and Non-housing Consumption

In this subsection we will check the robustness of the results to the changes in the elasticity of substitution between the housing and non-housing consumption. In the case of real business cycle models with household production (see Greenwood et al. [1995]), this elasticity governs the margin of substitution between the two sectors in the economy. In my model without endogenous labor choice it is quantitatively of minor importance. Figure 6.9 and Figure 6.10 compare the average life cycle profiles of assets and consumption paths when the elasticity of substitution between
housing and non-housing is $2 \ (\sigma = 0.5)$ with the benchmark case. For the average household, the evolution of net worth and financial assets over the life cycle is similar to the profiles in the benchmark case. So is the non-housing consumption. However, the housing stock is higher at the beginning of the life cycle, lower in the middle and higher at the end of the life cycle than in the benchmark. When the elasticity of substitution is high, households could substitute more easily between non-housing and housing goods, thus transaction costs of the same magnitude prevent households from downsizing houses more later in life.

Figure 6.11 and Figure 6.12 compare the average life cycle profiles of assets and consumption paths when the elasticity of substitution between the housing and non-housing consumption is $2 \ (\sigma = -0.5)$ with the benchmark case. For the average household, the evolution of net worth, financial assets and non-housing consumption over the life cycle is similar to the profiles in the benchmark case. However, the housing stock is higher in the middle and lower at the end of the life cycle than in the benchmark. When the elasticity of substitution is low, households could substitute less easily between non-housing and housing goods, thus transaction costs of the same magnitude have less effect in preventing households from downsizing houses later in life.

6.4 Pay-as-you-go Social Security System

I assume that the government plays no active role in the benchmark model. Now I compare an economy with a pay-as-you-go social security system. I set the pension replacement rate to be 40%, a number commonly used in the social security literature. I set social security tax to be 7.3% to balance the government budget. If I introduce a pay-as-you-go system in which the government taxes working agents and provides social security to retired agents, then young agents are more likely to be borrowing constrained, making the average non-housing and housing consumption increasing more slowly early in life. Also adding a pension system could decrease the hump of wealth profile. Figure 6.13 shows the average life cycle profiles of assets when there is a pay-as-you-go social security system. Introducing a social security system discourages private saving for retirement, thus the wealth at 65, the year before retirement, is much lower than in the benchmark case. However, compared with the data, the decumulation of wealth is still too fast. Figure 6.14 shows the average life cycle profiles of consumption paths. We observe that the non-housing
consumption reaches its hump at age 55, 5 years later than in the benchmark case. This is caused by the even tighter borrowing constraints with social security tax. On the other hand, the decline of non-housing consumption is slower. This is caused by the general equilibrium effect. A model with social security would discourage households to save for retirement, therefore a higher β is needed to provide stronger saving motives to match the capital-output ratio, which will lower the decline of the consumption path. Agents build up their highest housing stocks at the age of 60, 5 years later than the peak of non-housing consumption. The elderly do not downsize their housing stock later in life. When the calibrated β is higher, households have a lower tendency to decrease consumption of housing and non-housing goods, therefore transaction costs, even if small, completely prevent the elderly from downsizing their housing stock.

Next, I present the results from a model with stronger voluntary bequest motives by matching a bequest-GDP ratio of 0.043. Figure 6.15 shows the average life cycle profiles of financial assets and total net worth. After retirement, the decline of net worth and non-housing assets is slower compared with the profiles in the benchmark case. However, compared with the data, the decumulation of wealth is still too fast. This can be explained by the absence of health uncertainty or other shocks that could motivate precautionary assets holding later in life. Old agents do not have precautionary saving motives as they do in the data therefore they run down their assets more quickly than in the data. Figure 6.16 shows the average life cycle profiles of consumption paths. For the same reason as in the case with social security and with low bequest motives, a higher β leads to slower decline of non-housing consumption and no decline of housing consumption.

7 CONCLUSIONS

This paper investigates the degree to which several modifications of the basic life cycle model produce consumption profiles of housing and non-housing that more closely resemble features of the U.S.. To do this, I develop a quantitative and realistically calibrated model to solve numerically for the optimal housing and non-housing consumption decisions for a finitely-lived individual who faces several market frictions.

The model is able to match two basic patterns observed in the data: the hump-shaped non-housing consumption profile and non-hump-shaped housing consumption profile. Households begin
their economic lives without any housing stock. During the early part of their lives, they are forced to build housing stock and compromise on non-housing consumption. As households age, they start to decrease their non-housing consumption due to the fact that the time preference is higher than the interest rate and mortality rates are increasing along the life cycle. The high transaction costs for trading houses prevent households from decreasing their housing stock quickly later in life.

The model is also able to capture the life cycle wealth portfolio profiles. In the U.S., young households virtually own no liquid financial assets, but hold a major fraction of their wealth as housing. Later in life, households shift their portfolios to financial assets.

I also investigate the quantitative relevance of the transaction costs, borrowing constraints and bequest motives in determining this pattern. I find that while borrowing constraints are essential in explaining the accumulation of housing assets early in life, the existence of transaction costs is crucial in explaining the slow downsizing of housing profile later in life. The bequest motives play a role in determining total lifetime wealth, but not the housing profile.

In this paper I have abstracted from some important issues in order to make the model manageable and solvable. Now I discuss these simplifications and their likely quantitative implications.

One important assumption is that there are no inter-vivos transfers. In the data, parents tend to give children money when they need money the most, although data from Health and Retirement Study suggests that these transfers are fairly small (see Cardia and Ng [2000]). This assumption is probably relevant when agents are 20 to 35 years of age. Allowing for inter-vivos transfers would make young households have higher housing and non-housing consumption.

In order to simplify the computation, I do not adopt the literature using endogenous borrowing constraints. Fernandez-Villaverde and Krueger [2001] compare the life cycle profiles in a model with endogenous borrowing constraints with the exogenous constraints as in this model and they show that the life cycle profiles are identical across these two economies. The major difference between the two economies is that with endogenous borrowing constraints the net worth of the average young agents is slightly negative, indicating young agents are borrowing to finance the accumulation of housing and to smooth consumption over time and states. Since I focus on the consumption patterns later in life, I abstract from the endogeneity of borrowing constraints.
Another important assumption that I make is that there is no housing rental market. In the Survey of Income and Program Participation (SIPP), housing ownership for two-person households is low for young households and then increases to 75% at the age of 30, staying flat and declining only slightly after age 75 (Venti and Wise [2004]). They find that in the absence of a shock, death of a spouse or entry of a family member into a nursing home, families are unlikely to discontinue home ownership. And even when there is a precipitating shock, discontinuing ownership is the exception rather than the rule. Thus the rental market is probably relevant for young households but less relevant for middle and old age households. I could incorporate a rental market into the framework to see if the results presented in this paper are robust to the existence of a rental market.

I assume that there is no cost of borrowing using housing as collateral. The fixed closing costs associated with refinancing a mortgage or applying for a second mortgage are estimated at 1.5 to 2.5 percent of the household’s initial mortgage balance, although accessing home equity has become much easier in the 1990’s relative to the 1980’s (Bennett, Peach and Peristiani [2001]). Hurst and Stafford [2003] explore the use of equity as a mechanism by which households smooth their consumption over time and find that households with low income realizations are much more likely to refinance than households with medium or high income draws. Their analysis assumes households have fixed housing stock and focuses on the impact of temporary income shocks on refinancing decisions. It will be interesting to extend my model to look at the effect of income shocks on households moving decisions and refinancing decisions jointly.

I assume that the elderly do not face any health shocks. Even in the presence of social insurance (Medicare and Medicaid), households can face substantial out-of-pocket medical expenses (see French and Jones [2004], Palumbo[1999] and Feenberg and Skinner[1994]). Moreover nursing home expenses are potentially large and virtually uninsurable (Cohen, Tell and Wallack[1986]). The risk of incurring such medical expenses might generate precautionary savings and affect the wealth profile. The effect of medical costs on the life cycle consumption and saving in an environment with housing is left for future research.
A Consumption Ratio in a Standard Life Cycle Model

Given budget constraints, a household chooses c_t, a_{t+1}, h_{t+1} to maximize its expected lifetime utility,

$$\max_{c_t, a_{t+1}, h_{t+1}} \left\{ \sum_{t=1}^{T} \beta^t E(s_{t-1}U(c_t, h_t) + (1-s_t)V(h_{t+1} + a_{t+1})) \right\}$$

subject to

$$c_t + a_{t+1} + h_{t+1} = y_t + (1 + r)a_t + (1 - \delta^h)h_t \quad (17)$$

$$a_{t+1} \geq -(1 - \theta)h_{t+1} \quad (18)$$

$$c_t \geq 0, h_{t+1} \geq 0 \quad (19)$$

where c_t is consumption of non-housing assets at age t, a_{t+1} is non-housing assets at age $t+1$, h_{t+1} is housing stock at age $t+1$, y_t is labor income at age t, which is stochastic, s_t is the probability of surviving up to age t, where s_0 is 1, r is the interest rate, δ^h is depreciation rate of housing stock, V is the utility from leaving bequest to their kids, while $V = 0$ implies no bequest motives.

Theorem 1:

The ratio of consumption of housing to non-housing goods should be age-independent if households are not borrowing constrained.

Proof of Theorem 1: Utility maximization implies that when the borrowing constraints are not binding, we have the following first order conditions:

$[c_t]$:

$$\beta^t s_{t-1} U_1(c_t, h_t) = \lambda_t \quad (20)$$

$[a_{t+1}]$:

$$\beta^t (1 - s_t) V'(a_{t+1} + h_{t+1}) + (1 + r)\lambda_{t+1} = \lambda_t \quad (21)$$
\[[h_{t+1}] : \]

\[(22) \]
\[\beta^t (1 - s_t) V'(a_{t+1} + h_{t+1}) + \beta^{t+1} s_t EU_2(c_{t+1}, h_{t+1}) + (1 - \delta^h) \lambda_{t+1} = \lambda_t. \]

Therefore from equation (21) and (22), we get

\[(23) \]
\[\beta^{t+1} s_t EU_2(c_{t+1}, h_{t+1}) + (1 - \delta^h) \lambda_{t+1} = (1 + r) \lambda_{t+1}, \]

\[(24) \]
\[\beta^{t+1} s_t EU_2(c_{t+1}, h_{t+1}) = (r + \delta^h) \beta^{t+1} s_t U_1(c_{t+1}, h_{t+1}). \]

Which implies that

\[(25) \]
\[\frac{EU_2(c_{t+1}, h_{t+1})}{EU_1(c_{t+1}, h_{t+1})} = (r + \delta^h). \]

After retirement, households do not face income risk so equation (25) takes the deterministic form

\[(26) \]
\[\frac{U_2(c_{t+1}, h_{t+1})}{U_1(c_{t+1}, h_{t+1})} = (r + \delta^h). \]

If we assume

\[(27) \]
\[U(c, h) = \frac{g(c, h)^{1-\eta} - 1}{1 - \eta} \]

\[(28) \]
\[g(c, h) = (\omega(c)^\sigma + (1 - \omega) h^\sigma)^\frac{1}{\sigma}, \]

then the ratio of housing to non-housing consumption is independent of age \(t \),

\[(29) \]
\[\frac{(1 - \omega) h^{\sigma-1}}{\omega c^{\sigma-1}} = (r + \delta^h). \]

That is to say,

\[(30) \]
\[\frac{h}{c} = \frac{(r + \delta^h) \omega}{(1 - \omega)} \frac{1}{\sigma}. \]
The above model implies that the ratio of consumption of housing to non-housing goods should not be age-dependent if households are not borrowing constrained. Since in the U.S. later in life most households are not borrowing constrained, the implication of the above model is not consistent with the facts that later in life consumption of housing is flat while consumption of non-housing goods is declining.

B Transition Function

From the policy rules and the exogenous Markov process for productivity, we can derive a transition function \(\hat{M}(x;\cdot) \), which is the probability distribution of \(x' \) (the state in the next period), conditional on \(x \), for a person who behaves according to the policy rules \(c(x), a'(x) \) and \(h'(x) \). Let \(\mathcal{P} \) be the cardinal set of \{1, ..., T\} and \(D \) indicates that a person is dead, and \(\mathbb{W} = \{(a,h) \in \mathbb{R} \times \mathbb{R}_+: a \geq -(1-\theta)h\} \). The measurable space over which \(\hat{M} \) is defined is \((\tilde{X}, \mathfrak{B}(\tilde{X}))\), with

\[
X = \{1, ..., T\} \times \mathbb{W} \times Y \times (Y \cup \{0\})
\]

\[
\mathfrak{B}(X) = \mathcal{P}(\{1, ..., T\}) \times \mathfrak{B}(\mathbb{W}) \times \mathfrak{B}(Y) \times \mathfrak{B}(Y \cup \{0\})
\]

\[
\tilde{X} = X \cup D
\]

\[
\mathfrak{B}(\tilde{X}) = \{x : x = X \cup d, X \in \mathfrak{B}(X), d \in (\phi,D)\},
\]

To characterize \(\hat{M} \), it is enough to display it for the sets \(L(\overline{t}, \overline{a}, \overline{h}, \overline{y}, \overline{yp}) = \{(t', a', h', y', yp') \in X : t' \leq \overline{t}, a' \leq \overline{a}, h' \leq \overline{h}, y' \leq \overline{y}, yp' \leq \overline{yp}\} \). On such sets \(\hat{M} \) is defined by

\[
\hat{M}(x, L(\overline{t}, \overline{a}, \overline{h}, \overline{y}, \overline{yp}))
\]

\[
= \begin{cases}
 p_t I_{t+1 \leq \overline{t}} Q_y(y, [0, \overline{y}] \cap Y) I_{h'(x) \leq \overline{h}} I_{a'(x) \leq \overline{a}} (I_{yp=0} + I_{yp \leq \overline{yp}} p_{t+6}) \\
 + \mu_b(x : [0, \overline{a} - a'(x)](1 - p_{t+6})I_{yp>0}), \quad \text{if } x \neq D \\
 0, \quad \text{if } x = D,
\end{cases}
\]

where \(I \) is an indicator function, which equals one if the subscript property is true and zero otherwise.
In the above equation, \(p_t \) is the probability of surviving into the next period. The presence of \(I_{t+1 \leq T} \) shows that conditional on survival, a person currently of age \(t \) will be of age \(t + 1 \) next period. The person’s evolution of productivity is described by \(Q_y \). Note that the evolution of productivity, a person’s survival, and the survival of the person’s parent are independent of each other. If the person’s parent is already dead, that is, \(y_p = 0 \), the person cannot receive bequests anymore, and his or her assets next period are \(a'(x) \) for sure. (As discussed above, this is always the relevant case for people younger than 30 or older than 50.) If, instead, the parent is still alive, that is, \(y_p > 0 \), the parent can survive into the next period with probability \(p_{t+6} \). In that case, tomorrow’s assets for the person will be \(a'(x) \) and \(y_p' = y_p \). Alternatively, the parent may die, with probability \(1 - p_{t+6} \). In this case, the person inherits next period, \(y_p' = 0 \), and the probability that next period’s assets are no more than \(\pi \) is the probability of receiving a bequest between 0 and \(\pi - a'(x) \). The last line shows that death is an absorbing state.

In the economy as a whole, I am not interested in keeping track of dead people, so I will define an operator on measures on \((X, \mathcal{B}(X))\). Furthermore, I must take into account that new people enter the economy in each period. The transition function is defined as

\[
M(x, L(\bar{t}, \bar{u}, \bar{\bar{u}}, y, \bar{yp})) = \frac{\widetilde{M}(x, L(\bar{t}, \bar{u}, \bar{\bar{u}}, y, \bar{yp})) + n^6 I_t=6 Q_y (g, [0, y] \cap Y) I_y = y_p'}{n},
\]

The transition function \(M \) differs from \(\widetilde{M} \) in two ways. First, it accounts for population growth: when population grows at rate \(n \), a group that is 1% of the population becomes \(1/(1 + n) \)% in the subsequent period. Second, it accounts for births, which explains the second term in the numerator. If a person is 50 years old \((t = 7) \), that person’s children (there are \((1 + n)^6 \) of them) will enter the economy next period. All of those children have age \(t = 1 \) and zero assets and zero housing. Their stochastic productivity is inherited from their 50-year-old parents, according to the transition function \(Q_{yh} \). \(y \) is their parent’s productivity at 50.

Let \(\ast \) be the invariant distribution of earnings at age 20 and parent’s earnings at age 50. The invariant distribution is defined recursively as following:

\[
m^\ast(\{0\} \times \chi \times \{0\} \times \{0\}) = i^\ast(\chi) \quad \forall \chi \in \mathcal{B}(Y) \times \mathcal{B}(Y \cup \{0\}) \\\n\frac{m^\ast(\{0\} \times \chi \times \mathbb{W} \setminus \{\{0\} \times \{0\}\})}{\pi} = 0 \quad \forall \chi \in \mathcal{B}(Y) \times \mathcal{B}(Y \cup \{0\})
\]
C Consistency of Bequest Distribution

I want to calculate the distribution $l(\cdot|t, y)$ of parents at age 50-80, conditional on the parent’s productivity at age 50 and conditional on being alive. First I define $m^*_{t,y}$ as the marginal distribution of x given age t and productivity y as

$$(32) \quad m^*_{t,y}(\chi_{t,y}) = m^*(x \in X : (t, y) \in \chi_{t,y}) \quad \forall \chi_{t,y} \in \mathcal{P}([1,\ldots,T]) \times \mathcal{B}(Y).$$

Next I define $m^*(\cdot|t, y)$ as a probability distribution on $(X, \mathcal{B}(X))$ for any given (t, y). For any $\chi \in \mathcal{B}(X)$, $m^*(\cdot|t, y)$ is measurable with respect to $\mathcal{P}([1,\ldots,T]) \times \mathcal{B}(Y)$ and is such that

$$\int_{\chi_{t,y}} m^*(\cdot|t, y)m^*_{t,y}(dt, dy) = m^*(\chi) \quad \forall \chi \in \mathcal{B}(X) \forall \chi_{t,y} \in \mathcal{P}([1,\ldots,T]) \times \mathcal{B}(Y).$$

The children observe the parent’s productivity at age 50. Therefore the conditional distribution of the parent at age 50 at productivity level y_p is $m^*(\cdot|t = 7, y = y_p)$. Therefore $l(\chi|t = 7, y = y_p) = m^*(\chi|t = 7, y = y_p)$ and recursively using the transition function \widetilde{M} defined in the section above, we define

$$(33) \quad l(\chi|t + 1, y_p) = \frac{\int \widetilde{M}(x, \chi) l(dx|t, y_p)}{p_t}.$$

Since the bequest is evenly distributed among children, the probability distributions for bequests $\mu_b(x;\cdot)$ for a person with state $x = (t, a, h, y, y_p)$ is given by

$$\mu_b(x : \chi) = l(a \in \mathbb{R}_+, h \in \mathbb{R}_+: ((1 + n)^6 a + (1 + n)^6 (h(1 - \rho_1))) \in \chi|t + 6, y_p)$$

$$\forall \chi \in \mathcal{B}(\mathbb{R}_+), \forall a, h \in \mathbb{W} \forall y, y_p \in \mathcal{B}(Y).$$
D Calibration

I define measured GDP as the sum of each final expenditure:

\[GDP = (c + sh + i_{cd} + c_g) + (i_{prk} + i_{pnrk} + i_g) + nx + \Delta inv, \]

where \(c, sh, i_{cd} \) and \(c_g \) are expenditures on non-housing and service excluding housing, housing services, expenditures on consumer durables, government consumption expenditures, respectively. Thus \(c + sh + i_{cd} + c_g \) are total consumption expenditure. \(i_{prk}, i_{pnrk} \) and \(i_g \) are total private residential investment, nonresidential investment and government investment, respectively. Thus \(i_{prk} + i_{pnrk} + i_g \) are total investment.

I also write GDP as the sum of wages plus rents of residential and nonresidential stocks of capital:

\[GDP = we + prk \cdot r_{prk} + pnrk \cdot r_{pnrk}. \]

To explicitly consider the existence of residential housing I rearrange output as

\[GDP = (c + i_{cd} + c_g) + sh + i_{prk} + (i_{pnrk} + i_g + nx + \Delta inv). \]

Since there is no rental market in this model, I subtract rental income from residential housing from GDP.

\[
\begin{align*}
Y &= we + pnrk \cdot r_{pnrk} = GDP - sh \\
K &= pnrk + inv + g \\
H &= prk \\
i_h &= i_{prk},
\end{align*}
\]
where K includes private fixed non-residential assets and government fixed non-residential assets, H includes private fixed residential assets and government fixed residential assets. Both measures are taken from the Fixed Assets Tables.

Following Cooley and Prescott [1995], I define unambiguous capital income (UCI) as rental income, corporate profits and net interest, and define ambiguous capital income (ACI) as other income excluding wage and depreciation. Thus capital income Y_k is defined as $UCI + \alpha \cdot ACI + \text{depreciation} - \text{sh} = \alpha \cdot Y$. Subtracting housing from output, the share of capital is calibrated as

$$\alpha = (UCI + \text{dep} - \text{sh})/(Y - ACI).$$

I compute an average share of capital $\alpha = 0.2261$, an average capital-output ratio $\frac{K}{Y} = 1.9887$, an investment-capital ratio $\frac{i_k}{K} = 0.082$, a housing stock to output ratio $\frac{H}{Y} = 1.2141$, an investment-housing stock ratio $\frac{i_h}{H} = 0.041$ and a non-housing to housing investment ratio $\frac{C}{i_h} = 15.9443$. The implied interest rate net of depreciation in a steady state is $r = \alpha \frac{Y}{K} - \frac{i_k}{K} = 3.17\%$.

E Computation of the Model

Since I introduce the non-convex transaction costs on housing, I could not use Euler equation approximation or policy function iteration. Hence I solve the model using approximation of value functions.

To compute the steady state of my model, I first discretize income process and income inheritance process following Tauchen and Hussey[1991]. The state space for housing and asset holdings are discretized. The upper bounds on the grids are chosen large enough so that they do not constitute a constraint on the optimization problem. Using these grids I can store the value functions and the distribution of households as finite-dimensional arrays.

I solve the approximated optimal consumption and saving plans recursively. Households surviving to the last period T has an easy problem to solve. Based on the period T policy functions, I solve the consumption and saving decisions that maximize the period $T-1$ value function. The same procedure is carried back until decision rules in the first period are computed for a large number of states.

I solve for the steady state equilibrium as follows:
1. Given an initial guess of interest rate \(r \), use the equilibrium conditions in the factor markets to obtain the wage rate \(w \).

2. Set the interval for housing and assets.

3. Guess an initial bequest distribution.

4. Set value function after the last period to be 0 and solve the value function for the last period of life for each of the points of the grid. This yields policy functions and value function at the last period.

5. By backward induction, repeat step 4 until the first period in life.

6. Compute the associated stationary distribution of households by forward induction using the policy functions starting from the known distribution over types of age.

7. Given the stationary distribution and policy functions, compute the bequest distribution. If the bequest distributions converges, go to step 8; otherwise go to step 3.

8. Check if the distributions of housing and assets do not have a large mass at the maximum levels. If so, increase the maximum level and go back to step 2. If not, continue to step 9.

9. Given the stationary distribution and prices, compute factor input demands and supplies and check market clearing conditions hold. If all markets clear, an equilibrium is found. If not, go to step 1 and update interest rate \(r \).
References

Notes

1 Fernandez-Villaverde and Krueger [2002] use the CEX data to construct a pseudo panel. They find that the results from using pseudo panel and controlling for cohort and time effects is similar to results from using cross-section data. For simplicity I thus use only the 2001 CEX data.

2 I am grateful to Fernandez-Villaverde and Krueger for providing me with their estimation results of housing rental value along the life cycle.

3 In this case I add a positive number ε so that utility function is well defined at $h = 0$. The term ε is small enough that it does not affect the results. The utility function takes form $g(c, h) = c^\omega (h + \varepsilon)^{1-\omega}$.

4 I normalize m^* so that $m^*(X) = 1$, which implies that $m^*(\chi)$ is the fraction of people alive that are in a state χ. Appendix B describes the calculation of invariant distribution in greater detail.

5 Appendix C describes the consistency of bequest distribution in greater detail.

6 I use distribution for single decedents. Using the bequest left by singles rather than the one for all decedents (which turns out to be 1-2 times bigger) is a more sensible choice because typically a surviving spouse inherits a large share of the estate, which will be partly consumed before finally being left to the couple’s children.

7 30% households report leaving no bequest in AHEAD but 70% households report receiving no inheritance in SCF and PSID. One reason is that estates are often divided among several children.

8 In the model I match the aggregate consumption with this in the NIPA. Compared with NIPA, CEX underreports consumption by a fraction of 20-30% (see Attanasio, Battistin and Ichimura [2004] for detailed discussion). Thus I adjust for the difference accordingly.

9 Housing stock in the data refers to the estimated housing stock (Figure 2.5).

10 The net worth and financial assets level is higher for household aged 30-45 in the case without bequest motives. This comes from the general equilibrium effect as the aggregate capital-output ratio is matched with the data.
Family Size 1 2 3 4 5
Equivalence scales 1 1.34 1.65 1.97 2.27

Table 2.1: Equivalence scales

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>n population growth</td>
<td>1.2%</td>
</tr>
<tr>
<td>pt survival probability</td>
<td>see text</td>
</tr>
</tbody>
</table>

Technology

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>α capital share in National Income</td>
<td>0.226</td>
</tr>
<tr>
<td>δ depreciation rate of capital</td>
<td>0.0700</td>
</tr>
<tr>
<td>δ*h depreciation rate of housing</td>
<td>0.0294</td>
</tr>
</tbody>
</table>

Endowment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρy AR(1) coefficient of income process</td>
<td>0.85</td>
</tr>
<tr>
<td>ε²y innovation of income process</td>
<td>0.30</td>
</tr>
<tr>
<td>ρyh AR(1) coefficient of income inheritance process</td>
<td>0.677</td>
</tr>
<tr>
<td>ε²yh innovation of income inheritance process</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Housing market

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ down payment ratio</td>
<td>0.20</td>
</tr>
<tr>
<td>ρ₁ transaction costs of selling housing</td>
<td>0.04</td>
</tr>
<tr>
<td>ρ₂ transaction costs of buying housing</td>
<td>0.04</td>
</tr>
<tr>
<td>μ₁ Maximum depreciation</td>
<td>0</td>
</tr>
<tr>
<td>μ₂ Maximum renovation</td>
<td>0</td>
</tr>
</tbody>
</table>

Preference

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>η risk aversion coefficient</td>
<td>1.5</td>
</tr>
<tr>
<td>σ substitutability of housing and non-housing</td>
<td>0</td>
</tr>
<tr>
<td>ω weights of non-housing in utility function</td>
<td>0.859</td>
</tr>
<tr>
<td>β discount factor</td>
<td>0.929</td>
</tr>
<tr>
<td>φ₁ weight of bequest in utility function</td>
<td>−24</td>
</tr>
<tr>
<td>φ₂ shifter of bequest in utility function</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4.1: Parameters used in the benchmark model
<table>
<thead>
<tr>
<th></th>
<th>Gini</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>90-95</th>
<th>95-99</th>
<th>99-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total wealth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. data</td>
<td>0.81</td>
<td>-1.1</td>
<td>1.25</td>
<td>4.48</td>
<td>11.79</td>
<td>82.60</td>
<td>12.26</td>
<td>25.28</td>
<td>32.09</td>
</tr>
<tr>
<td>Model</td>
<td>0.72</td>
<td>0.13</td>
<td>0.77</td>
<td>5.40</td>
<td>18.91</td>
<td>74.78</td>
<td>18.99</td>
<td>24.21</td>
<td>9.72</td>
</tr>
<tr>
<td>Housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. data</td>
<td>0.64</td>
<td>0</td>
<td>1.52</td>
<td>12.24</td>
<td>22.56</td>
<td>63.69</td>
<td>13.89</td>
<td>9.53</td>
<td>12.68</td>
</tr>
<tr>
<td>Model</td>
<td>0.49</td>
<td>1.72</td>
<td>7.44</td>
<td>14.78</td>
<td>23.10</td>
<td>52.95</td>
<td>13.22</td>
<td>11.81</td>
<td>3.77</td>
</tr>
<tr>
<td>Financial wealth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. data</td>
<td>1.18</td>
<td>-14.48</td>
<td>-2.00</td>
<td>0.28</td>
<td>6.06</td>
<td>110.14</td>
<td>16.28</td>
<td>32.11</td>
<td>48.40</td>
</tr>
<tr>
<td>Model</td>
<td>0.93</td>
<td>-6.53</td>
<td>-2.42</td>
<td>1.35</td>
<td>16.46</td>
<td>91.14</td>
<td>22.61</td>
<td>30.38</td>
<td>13.24</td>
</tr>
</tbody>
</table>

Table 5.1: Wealth distribution
Figure 2.1: Non-housing expenditure

Figure 2.2: Non-housing expenditure (adult equivalent)

Figure 2.3: Equivalent rental value of housing

Figure 2.4: Equivalent rental value of housing (adult equivalent)
Figure 2.5: Age profile of wealth composition estimated from SCF

Figure 3.1: Demographics

Figure 5.1: Cumulative distribution of bequest

Figure 5.2: Expected bequest distribution at age 35, conditional on parent’s productivity
Figure 5.3: life cycle patterns of wealth composition (benchmark)

Figure 5.4: Life cycle patterns of consumption (benchmark)

Figure 5.5: Policy function of housing stock next period for a 70-year-old

Figure 5.6: Boundaries of inactive zones
Figure 5.7: Moving rates by age

Figure 5.8: Life cycle patterns of wealth composition (no transaction costs)

Figure 5.9: Life cycle patterns of consumption (no transaction costs)

Figure 6.1: Life cycle patterns of wealth composition (no bequest motives)
Figure 6.2: Life cycle patterns of consumption (no bequest motives)

Figure 6.3: Life cycle patterns of wealth composition (high bequest motives)

Figure 6.4: Life cycle patterns of consumption (high bequest motives)

Figure 6.5: Life cycle patterns of wealth composition (high down payment)
Figure 6.6: Life cycle patterns of consumption (high down payment)

Figure 6.7: Life cycle patterns of wealth composition (no down payment)

Figure 6.8: Life cycle patterns of consumption (no down payment)

Figure 6.9: Life cycle patterns of wealth composition (high elasticity)
Figure 6.10: Life cycle patterns of consumption (high elasticity)

Figure 6.11: Life cycle patterns of wealth composition (low elasticity)

Figure 6.12: Life cycle patterns of consumption (high elasticity)

Figure 6.13: Life cycle patterns of wealth composition (social security)
Figure 6.14: Life cycle patterns of consumption (social security)

Figure 6.15: Life cycle patterns of wealth composition (social security, high bequest motives)

Figure 6.16: Life cycle patterns of consumption (social security, high bequest motives)