How Inventory Holding Costs Affect Dealer Behavior in the US Corporate Bond Market

Oliver Randall ¹

¹Finance Department
Emory University

All-Georgia Finance Conference, 2013
Dealers reduced inventory in crisis: no "leaning against the wind".
October 2007: Citi, Merrill Lynch, and UBS reported significant asset write-downs.
March 2009: TARP
Dealers have time-varying aversion to holding inventory.
Trade Sizes Have Fallen
Customers and Dealers Bargain over Prices

1. "retail": < 100,000; 2. "odd lot": [100,000, 1 million); 3. "institutional": [1 million, 10 million]; 4. "mega": > 10 million] $ par. Most people don’t have data on category 4.
Theoretical Results for Over-The-Counter Markets

1. I solve a dynamic equilibrium model of trading in a hybrid market (customer-dealer & inter-dealer), where dealers are averse to holding inventory.
 - Nash bargaining between dealers and customers over price & quantity.
 - Competitive inter-dealer market.
 - Liquidity ("markup") is diff: customer-dealer and inter-dealer prices.

2. Structural equilibrium relationship for liquidity:
 - Related to dealers’ inventory holding costs, trade size, and customer bargaining power

3. Structural equilibrium relationship for dealers’ inventory holdings:
 - Not optimal to minimize inventory holding costs by holding zero inventory.
 - But scale position down by expected holding costs.
 - Long or short position? Trade off current price with discounted expected future prices.
Empirical Results for US Corporate Bond Market

When dealers’ inventory holding costs are high relative to customers’:

1. Dealers’ flight to quality:
 - Sell more high yield bonds
 - Buy more investment grade bonds

2. Liquidity is worse for customers.
 - Especially for high yield bonds & customers with lower bargaining power.
 - Conditioning on bargaining power, more pronounced for larger trades.

3. For high yield bonds, dealers more likely to act just as broker between customer and another dealer (greater incentive to risk-share).
Why Liquidity in the Corporate Bond Market is Important

1. Large market: $8.5 trillion (June 2012)
2. Feedback effect from liquidity in secondary market to the primary market
 - He and Milbradt (2012): amount of financing that can be raised
 - Dick-Nielsen, Feldhutter, Lando (2012): bonds have illiquidity discount
 - Worse liquidity in secondary market \Rightarrow higher cost of capital \Rightarrow
 under-investment in positive NPV projects \Rightarrow cost to the real economy.
3. Why is this important going forward?
 - Volcker Rule increases cost of holding inventory:
 - Restrictions on proprietary trading by commercial banks. Monitoring:
 (a) inventory turnover: positions too large or held too long = speculation
 (b) ratio of trades initiated by customers / bank
 - Limits banks’ ability to make a market in corporate bonds
 - Changing landscape: MarketAxess (Hendershott and Madhavan, 2012), Blackrock.
Need a New Model for the US Corporate Bond Market

1. Existing OTC literature doesn't explain why dealers reduced their inventory in the crisis.

2. Existing exchange-trading literature doesn’t explain why larger trades are generally associated with better prices.
 - Limit order markets: larger orders associated with worse liquidity as they walk up/down the limit order book, if insufficient depth at best bid/ask.
Key Features of my Model

1. Dealers’ time-varying aversion to holding inventory
 - Stylized fact #1: Dealers reduced inventory of corporate bonds in crises.
 - Stylized fact #2: Liquidity correlated with inventory holding costs.
 - Stylized fact #3: Trade size has decreased since onset of financial crisis.
 - Key feature 1: **Dealers are averse to holding costly inventory.**
 - Key feature 2: **Aversion and holding costs vary with the state.**

2. Customer-dealer bargaining
 - Stylized fact #4: Larger trades are generally associated with better liquidity, except for very large trades.
 - Key feature 3: **Dealers and customers bargain over price.**
 Smaller trades more likely done by smaller customers with less bargaining power: worse prices than larger trades.
Dealers’ Possible Trades Between Issuance and Maturity

Possible trade π_i leads to bargaining with customer j with probability π^c_j or to competitive inter-dealer trade. The probability of no trade is $1 - \pi_i - \sum_j \pi^c_j$. Probabilities are exogenous.
Dealers

- Continuum, mass 1.
- Infinitely-lived.
- "Effectively" risk averse as in Etula (2009): risk neutral in cash-flows, but pay holding cost \(f(s_t)(a^d_t)^2 \) per period on their risky asset position \(a^d_t \).
- Related to Value-at-Risk.
- Value function at time \(t \), \(V^d_t(s^d_t, \{a^d_t, k\}_k, s_t) \):

\[
= \max_{\{q^d_t, p^d_t, q^c_t, q^{issuer}_t\}} \infty \sum_{u=0}^{\infty} \delta^u E^d_t \left[\left(\frac{s^d_{t+u}(1 - R^{-1})}{\text{receive interest}} - \frac{p_{t+u}q_{t+u}}{\text{trade}} - f(s_{t+u})(a^d_{t+u})^2 \right) \right]
\]

where dealer arrives at time \(t \) with \(a^d_t \) units of risky asset, and \(s^d_t \) in cash which includes interest accrued for the period \((t - 1, t]\), which is paid at \(t \).
Customers

- Continuum.
- Risk neutral over wealth (cash + risky asset holdings).
- Live for one period: trade with dealer at birth, consume wealth at death.
- Type j defined by (bargaining power relative to dealer, expected asset valuation at death, interest rate) $= (\eta_j, V^c_j(s_t), R^c_j(s_t))$

\[
\text{Customer’s gain from trade} = \delta^c R^c_t q^c_t \left(p^c_t - \tilde{V}^c_t \right)
\]

where $\tilde{V}^c_t \equiv V^c_t / R^c_t$.
- Gain doesn’t depend on a^c_t or S^c_t because risk-neutral.
Customer-Dealer Price

- Nash bargaining between customers and dealers over price and quantity.

- Price is average of valuations, weighted by bargaining power:

\[p_t^c = \eta V_t^d + (1 - \eta) V_t^c \]

where \(V_t^d \) characterized as price such that dealer’s gain from trade is zero.

- \(p_t^c = \tilde{V}_t^c + \eta \delta q_t^c \sum_{u=0}^{T-t-1} \tilde{\pi}^u E_t[f_{t+u+1}] \)

where \(\tilde{\pi} = \delta \left(1 - \pi_i - \sum_j \pi_j^c (1 - \eta_j) \right) \)

- If customer’s bargaining power \(\eta = 0 \), price = \(\tilde{V}_t^c \), dealer gets all gain from trade.

- Higher customer bargaining power \(\Rightarrow \) better price for customer:
 higher if customer selling \((q_t^c > 0)\), and lower if customer buying \((q_t^c < 0)\).
Dealers’ Post-Trade Inventory

\[
a_{t+1}^d = \frac{\delta E^d_t \left[\sum_{u=0}^{T-t-2} \tilde{\pi}^u \left(\pi_i p^i_{t+u+1} + \sum_j \pi_j^c (1 - \eta_j) V^c_j {t+u+1} \right) + \tilde{\pi}^{T-t-1} V^\text{issuer} \right] - V_t}{2\delta \sum_{u=0}^{T-t-1} \tilde{\pi}^u E^d_t [f_{t+u+1}]}
\]

where \(V_t = \tilde{V}_t^c \) for a customer-dealer trade and \(V_t = p^i_t \) for an inter-dealer trade.

- Post-trade inventory does not depend on pre-trade inventory.
- Stylized fact #1: **Dealers’ inventory scaled down by expected holding costs.**
- Stylized fact #3: **Higher holding cost ⇒ smaller inventory and reluctance to change position ⇒ smaller trades.**
- Sign and magnitude: trade-off valuation of the current customer (or inter-dealer price) vs expected future valuations and inter-dealer prices.
- All dealers hold same inventory after inter-dealer trading, since they are identical.
Dealer Mark-up

- Decompose bid-ask spread into 2 pieces:

\[
\text{mark-up}_t \equiv \begin{cases}
 p^i_t - p^{c,bid}_t & \text{if dealer buys from a customer at time } t \\
 p^{c,ask}_t - p^i_t & \text{if dealer sells to a customer at time } t
\end{cases}
\]

- Mark-to-market profit of dealers.
- Theoretical counterpart to empirical measure of Feldhutter (2010) and Zitzewitz (2010), who compute it only for "paired" trades, when there is an inter-dealer and customer-dealer trade within a few minutes.
- I focus on unpaired trades, where inventory risk should matter.
- I can compare actual customer-dealer prices to hypothetical inter-dealer prices had there been inter-dealer trade at that time.
Dealer Mark-up

- Markup when dealer is buying from a customer:
 \[p_i^t - p_{c,bid}^t = \delta \left(2(a_{d,c}^t - \bar{a}_{d,i}^t) + (2 - \eta)|q_c^t| \right)^{T-t-1} \sum_{u=0}^{T-t-1} \tilde{\pi}^u E_t[f_{t+u+1}] \]

- Markup when dealer is selling to customer:
 \[p_{c,ask}^t - p_i^t = \delta \left(2(\bar{a}_{d,i}^t - a_{d,c}^t) + (2 - \eta)|q_c^t| \right)^{T-t-1} \sum_{u=0}^{T-t-1} \tilde{\pi}^u E_t[f_{t+u+1}] \]

- \(a_{d,c}^t \) = inventory of dealer trading with customer, \(\bar{a}_{d,i}^t \) = mean inventory of inter-dealer trade

- Stylized fact #2: If \(a_{d,c}^t > \bar{a}_{d,i}^t \), i.e. dealer’s inventory is above the mean, then markup is higher when dealer is buying than selling. More pronounced when expected holding costs are higher.
Enhanced TRACE data-set:

- Trade size not censored (18 month lag)
- Longer time series for counterparty type and trade direction
- October 2004 - December 2010
- 6,954,148 unpaired customer-dealer trades; 10,580 bonds; 1,045 issuers
- Total markup $2.2 billion / year.
- Total volume 67% higher than censored data.

Proxy bargaining power by trade size group (larger trades more likely done by larger customers, with more bargaining power): split into 11 groups.

Estimate trade intensity, bond-by-bond (run-by-run):

$$\pi_t = \frac{1}{E_t[wait]}$$, where $\log(wait) \sim hour + month$.
Proxying the Dealers’ Inventory Holding Cost

Dealers’ inventory holding cost is a product of aggregate and bond-specific components.

- **Aggregate component:**
 1. LIBOR-OIS spread
 2. Dealers’ risk appetite relative to customers:

\[
\frac{\text{conditional variance of dealers’ daily equity returns}}{\text{conditional variance of insurance sector’s daily equity returns}} \equiv \frac{\sigma_d^2}{\sigma_c^2}
\]

- When dealers were selling, insurance sector was buying.
- Estimate variances using GARCH(1,1).

- **Bond-specific component:**
 1. S&P credit rating: investment grade vs high yield
 2. \(\text{Var}_t[p_{t+1}]\)

 - Assume holding cost = \(f(s_t)(a_t^d)^2 = \text{Var}_t[wealth_{t+1}]\)
 - \(a_t^d = \text{units of the risky asset} \Rightarrow f(s_t) = \text{Var}_t[p_{t+1}]\).
Dealers’ Effective Risk Appetite (Relative to Customers)

Proxies for Dealers’ Inventory Holding Costs

- Ratio
- 3 month LOIS

Ratio of dealer/customer conditional equity variance

AGC 2013
Dealers’ Flight to Quality

The higher the dealers’ cost of holding inventory (relative to customers’):

1. For unpaired customer-dealer trades:
 - the more high yield bonds dealers sell to customers;
 - the more investment grade bonds dealers buy from customers.

2. For paired customer-dealer trades:
 - trade direction not affected, neither for high yield nor investment grade bonds.
Dealers’ Flight to Quality

Dependent variable: Signed Trade Size

<table>
<thead>
<tr>
<th></th>
<th>Unpaired Trades</th>
<th>Paired</th>
<th>All Trades</th>
<th>Unpaired Trades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Grade</td>
<td>-4,593.6**</td>
<td>-964.4</td>
<td>-2,419.5**</td>
<td>-4,899.5**</td>
</tr>
<tr>
<td></td>
<td>(-2.23)</td>
<td>(-0.70)</td>
<td>(-2.10)</td>
<td>(-2.35)</td>
</tr>
<tr>
<td>High Yield</td>
<td>-12,631.2***</td>
<td>7,342.0**</td>
<td>-3,147.9</td>
<td>-13,057.5***</td>
</tr>
<tr>
<td></td>
<td>(-3.95)</td>
<td>(2.23)</td>
<td>(-1.48)</td>
<td>(-3.98)</td>
</tr>
<tr>
<td>σ_d^2 / σ_c^2</td>
<td>-840.9*</td>
<td>205.8</td>
<td>-360.1</td>
<td>-868.3***</td>
</tr>
<tr>
<td></td>
<td>(-2.81)</td>
<td>(0.32)</td>
<td>(-1.10)</td>
<td>(-2.84)</td>
</tr>
<tr>
<td>$\sigma_d^2 / \sigma_c^2 \times \text{Investment Grade}$</td>
<td>1,055.8*</td>
<td>-578.5</td>
<td>180.3</td>
<td>1,164.9*</td>
</tr>
<tr>
<td></td>
<td>(2.88)</td>
<td>(-0.88)</td>
<td>(0.52)</td>
<td>(3.06)</td>
</tr>
<tr>
<td>π_t</td>
<td></td>
<td></td>
<td></td>
<td>175,399.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.77)</td>
</tr>
<tr>
<td>$\pi_t \times \sigma_d^2 / \sigma_c^2$</td>
<td></td>
<td></td>
<td></td>
<td>20,943.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.05)</td>
</tr>
<tr>
<td>$\pi_t \times \text{Investment Grade}$</td>
<td></td>
<td></td>
<td></td>
<td>-40,099.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-0.32)</td>
</tr>
<tr>
<td>$\pi_t \times \sigma_d^2 / \sigma_c^2 \times \text{Investment Grade}$</td>
<td></td>
<td></td>
<td></td>
<td>-46,588.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-1.88)</td>
</tr>
</tbody>
</table>

| **N** | 6,954,148 | 8,850,406 | 15,804,554 | 6,953,766 |

Oliver Randall (Emory University)
Interpolating Inter-dealer Price at Customer Trade Times

1. Regression, using approximation from model:

\[p_t^i = c + \phi p_{t-1}^i + \beta a_t^D f_t + \beta_i (\text{index}_t - \text{index}_{t-1}) + \varepsilon_t \]

- \(\text{index}_t \) = volume-weighted daily price index: helps mitigate the staleness in the last inter-dealer price.
- Since I don’t know the level of aggregate dealer inventory, I estimate:

\[p_t^i = c + \beta a_0^D f_t + \phi p_{t-1}^i + \beta (a_t^D - a_0^D) f_t + \beta_i (\text{index}_t - \text{index}_{t-1}) + \varepsilon_t \]

2. Kalman filter:

\[
\begin{bmatrix}
 p_{t}^{c,obs} \\
 p_{t}^{i,obs} \\
 p_{t}^{i,obs}
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix}
 \bar{p}_t^i \\
 \varepsilon_t^c \\
 \varepsilon_t^i
\end{bmatrix}
\]

\[\bar{p}_{t+1}^i = \bar{p}_t^i + \varepsilon_{t+1}^m \]
Empirical Results

Dependent variable: Dealer’s markup (difference between customer-dealer price and estimated inter-dealer price)

<table>
<thead>
<tr>
<th>Trade size bin</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. trade size</td>
<td>0</td>
<td>100,000</td>
<td>550,000</td>
<td>1,000,000</td>
<td>5,000,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>Max. trade size</td>
<td>50,000</td>
<td>325,000</td>
<td>775,000</td>
<td>3,000,000</td>
<td>7,000,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.189***</td>
<td>0.736***</td>
<td>0.350***</td>
<td>0.340***</td>
<td>0.095***</td>
<td>0.248***</td>
</tr>
<tr>
<td></td>
<td>(19.850)</td>
<td>(27.080)</td>
<td>(9.900)</td>
<td>(49.820)</td>
<td>(3.110)</td>
<td>(38.660)</td>
</tr>
<tr>
<td>$</td>
<td>q^C_t</td>
<td>\times\pi_t$</td>
<td>-42.162***</td>
<td>-14.795***</td>
<td>-0.291</td>
<td>-0.303***</td>
</tr>
<tr>
<td></td>
<td>(-2.880)</td>
<td>(-17.310)</td>
<td>(-0.560)</td>
<td>(-9.350)</td>
<td>(4.830)</td>
<td>(-1.280)</td>
</tr>
<tr>
<td>$</td>
<td>q^C_t</td>
<td>\times\pi_t$</td>
<td>-6878.270***</td>
<td>-50.409</td>
<td>8.035</td>
<td>-3.937</td>
</tr>
<tr>
<td></td>
<td>(-5.430)</td>
<td>(-0.930)</td>
<td>(0.380)</td>
<td>(-0.790)</td>
<td>(1.560)</td>
<td>(2.580)</td>
</tr>
</tbody>
</table>

IG:

$|q^C_t|\times\frac{\sigma^2_d}{\sigma^2_c}$

-0.717 0.279*** 0.093*** 0.027*** 0.010*** 0.002***

(-0.810) (7.590) (6.690) (10.070) (7.660) (2.990)

HY:

$|q^C_t|\times\frac{\sigma^2_d}{\sigma^2_c}$

0.608 0.338*** 0.111*** 0.028** 0.012*** 0.003***

(0.310) (5.780) (5.900) (9.690) (6.470) (4.220)

$|q^C_t|\times\pi_t$ 0.111*** 0.028** 0.012*** 0.003***

$IG:|q^C_t|\times\frac{\sigma^2_d}{\sigma^2_c}$

-169.773** -14.960*** -4.186 -0.597 0.141 0.039

(-2.190) (-3.220) (-1.200) (-1.200) (0.340) (0.290)

$HY:|q^C_t|\times\frac{\sigma^2_d}{\sigma^2_c}$

453.006** 18.386 -15.441 -5.193*** -3.745*** -0.640

(2.260) (0.800) (-1.220) (-3.080) (-2.980) (-1.290)

N

3,507,047 807,544 121,233 787,335 280,675 204,910
% of Customer Trades Paired With Inter-dealer Trades

Percentage of Customer-Dealer Trades which are Paired

- Paired in time (Buy)
- Paired in time (Sell)
- Paired in time and size (Buy)
- Paired in time and size (Sell)
% of Customer Trades Paired With Inter-dealer Trades

Some customer-dealer trades occur very close in time to an inter-dealer trade ("paired"), often for the same quantity.

- The smaller the quantity, the easier to pair.
- The higher the dealers’ cost of holding inventory (relative to customers’), the greater the incentive for dealers to risk-share, by pairing customer-dealer trades with inter-dealer ones, so:
 - The higher the proportion of customer-dealer trades are paired. *(Dealers more likely to only do trade if they can immediately lay it off.)*
 - This is much less pronounced for investment grade bonds. *(Less inventory risk.)*
 - This is more pronounced when a dealer is selling, than buying. *(When the cost is high, it is easier to find a dealer wanting to sell.)*
% of Customer Trades Paired With Inter-dealer Trades

Logit regression. Dependent variable: $1_{\text{paired trade}}$

<table>
<thead>
<tr>
<th></th>
<th>Dealer Buys</th>
<th>Dealer Sells</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.0484***</td>
<td>2.9373***</td>
<td>3.0033***</td>
</tr>
<tr>
<td></td>
<td>(0.00450)</td>
<td>(0.00414)</td>
<td>(0.00304)</td>
</tr>
<tr>
<td>log(trade_size)</td>
<td>-0.2727***</td>
<td>-0.2511***</td>
<td>-0.2619***</td>
</tr>
<tr>
<td></td>
<td>(0.000412)</td>
<td>(0.0000385)</td>
<td>(0.000281)</td>
</tr>
<tr>
<td>$\frac{\sigma^2_d}{\sigma^2_c}$</td>
<td>0.0360***</td>
<td>0.0729***</td>
<td>0.0524***</td>
</tr>
<tr>
<td></td>
<td>(0.00148)</td>
<td>(0.00174)</td>
<td>(0.00114)</td>
</tr>
<tr>
<td>$\frac{\sigma^2_d}{\sigma^2_c} \times \text{Investment Grade}$</td>
<td>-0.0299***</td>
<td>-0.0753***</td>
<td>-0.0467***</td>
</tr>
<tr>
<td></td>
<td>(0.00161)</td>
<td>(0.00180)</td>
<td>(0.00112)</td>
</tr>
<tr>
<td>log(trade_size) $\times \frac{\sigma^2_d}{\sigma^2_c}$</td>
<td>-0.00380***</td>
<td>-0.00794***</td>
<td>-0.00572***</td>
</tr>
<tr>
<td></td>
<td>(0.000135)</td>
<td>(0.000161)</td>
<td>(0.000105)</td>
</tr>
<tr>
<td>log(trade_size) $\times \frac{\sigma^2_d}{\sigma^2_c} \times \text{Investment Grade}$</td>
<td>0.00417***</td>
<td>0.00978***</td>
<td>0.00663***</td>
</tr>
<tr>
<td></td>
<td>(0.000145)</td>
<td>(0.000167)</td>
<td>(0.00011)</td>
</tr>
</tbody>
</table>
Future OTC Work

Test hypotheses on:

- liquidity
- changes in inventory holdings
- pairing

in:

- US corporate bond market, using individual dealer data.
- Other OTC markets: ABS, MBS, CMO, TBA, swaps, and municipal bond markets.
Thank you!
Inventory of Primary Government Bond Dealers

Aggregate Corporate Bond Positions of Primary Government Bond Dealers

Market Value ($m)

Corp
GSE
Gov
MBS
Who are the Dealers?

Primary Government bond dealers
- BNP Paribas Securities Corp.
- Barclays Capital Inc.
- Cantor Fitzgerald & Co.
- Citigroup Global Markets Inc.
- Credit Suisse Securities (USA) LLC
- Daiwa Capital Markets America Inc.
- Deutsche Bank Securities Inc.
- Goldman, Sachs & Co.
- HSBC Securities (USA) Inc.
- Jefferies & Company, Inc.
- J.P. Morgan Securities LLC
- Merrill Lynch, Pierce, Fenner & Smith Incorporated
- Mizuho Securities USA Inc.
- Morgan Stanley & Co. Incorporated
- Nomura Securities International, Inc.
- RBC Capital Markets, LLC
- RBS Securities Inc.
- UBS Securities LLC.

Major MarketAxess Dealers
- BNP Paribas Securities Corp.
- Barclays Capital Inc.
- CIBC World Markets
- Citigroup Global Markets Inc.
- Credit Suisse Securities (USA) LLC
- Deutsche Bank Securities Inc.
- FTN Financial
- Goldman, Sachs & Co.
- HSBC Securities (USA) Inc.
- Jefferies & Company, Inc.
- J.P. Morgan Securities LLC
- BofA Merrill Lynch
- Morgan Stanley & Co. Incorporated
- RBC Capital Markets, LLC
- RBS Securities Inc.
- UBS Securities LLC.
- Wells Fargo Securities
- Wall St Access
Corporate Bond Price Indices

Price Indices

- Investment Grade
- High Yield

Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 Sep-10 Sep-11
The reduced holdings may expose investors to wider price swings if sentiment turns negative, according to State Street Corp.’s William Cunningham in Boston.

"Liquidity is very scarce when you need it," said Cunningham, head of credit strategies and fixed-income research at the investment unit of State Street, which oversees almost $2 trillion. "While the markets are operating, the depth of bids and the depth of liquidity is so shallow that you cannot rely on this if conditions get worse."

Bloomberg.com (July 15, 2010)
Markup, by Trade Size
Concentration of Inter-dealer Market

Primary Government Bond Dealers’ Market Share (Inter-dealer Trades)
Dealers’ Budget Constraints

1. no trade at τ:

\[
\begin{align*}
\$^{d}_{\tau+1} &= R \left(\$^{d}_{\tau} - \$^{d}_{\tau}(1 - R^{-1}) - f_{\tau}(a^{d}_{\tau})^2 \right) \\
\text{interest} & \quad \text{holding cost} \\
\end{align*}
\]

\[
\begin{align*}
a^{d}_{\tau+1} &= a^{d}_{\tau}
\end{align*}
\]

2. trade at τ:

\[
\begin{align*}
\$^{d}_{\tau+1} &= R \left(\$^{d}_{\tau} - \$^{d}_{\tau}(1 - R^{-1}) - p_{\tau} q_{\tau} - f_{\tau}(a^{d}_{\tau})^2 \right) \\
\text{interest} & \quad \text{trade} \quad \text{holding cost} \\
\end{align*}
\]

\[
\begin{align*}
a^{d}_{\tau+1} &= a^{d}_{\tau} + q_{\tau}
\end{align*}
\]

3. maturity and reissuance at time τ:

\[
\begin{align*}
\$^{d}_{\tau+1} &= R \left(\$^{d}_{\tau} - \$^{d}_{\tau}(1 - R^{-1}) + a^{d}_{\tau} V_{\tau} - p^{\text{issuer}}_{\tau} q^{\text{issuer}}_{\tau} - f_{\tau}(a^{d}_{\tau})^2 \right) \\
\text{interest} & \quad \text{maturity} \quad \text{re-issuance} \quad \text{holding cost} \\
\end{align*}
\]

\[
\begin{align*}
a^{d}_{\tau+1} &= q_{\tau}
\end{align*}
\]
Dealer’s Gain from Trade with a Customer at time t

$$(1 + \delta R_\gamma^S) \begin{align*}
- p_t^C q_t^C
\text{buy } q_t^C \text{ units from time-} t \text{ customer} \\
\frac{(a_d^d + q_c^c)^2 - (a_d^d)^2}{-\delta \left(2a_d^d + q_t^c\right) q_t^c} \left(\sum_{s=0}^{T-t-1} \left(\delta(1 - \pi^i - \pi^c)\right)^s E_t[f_{t+s+1}^\delta]\right) \\
\text{discounted holding costs on } (a_d^d + q_c^c) \text{ units instead of } a_d^d, \text{ until next expected trade}
\end{align*}$$

$$+ \delta \sum_{s=0}^{T-t-2} \left(\delta(1 - \pi^i - \pi^c)\right)^s \times \left(\pi^i E_t[p_{t+s+1}^i] \left(-q_t^i + q_{t+s+1}^i - (-q_t^i + q_{t+s+1}^i)\right)\right)$$

$$+ \sum_j \pi_j^C E_t \left[a_d^d + q_t^c \left(q_{t+s+1}^c + a_d^d\right) - \left(q_t^c + q_{t+s+1}^c\right) \cdot p_{t+s+1}^c \left(a_d^d + a_d^c + q_{t+s+1}^c\right)\right]$$

$$\begin{align*}
\text{buy } q_{t+s+1}^c \text{ units from time-} (t + s + 1) \text{ counterparty, instead of } q_{t+s+1}^c + q_t^c. \text{ The counterparty is a dealer with probability } \pi^i, \text{ and customer } j \text{ with probability } \pi_j^c
\end{align*}$$

$$+ \left(\delta(1 - \pi^i - \pi^c)^{T-t-1} \delta \left(a_d^d - (-a_d^d + q_t^c)\right) E_t \left[V_T^{\text{issuer}}\right]\right)$$

$$\begin{align*}
cash in a_d^d \text{ units instead of } (a_d^d + q_t^c) \text{ from maturity at time } T, \text{ if dealer doesn’t meet a counterparty in the previous } T - t - 1 \text{ rounds of trading}
\end{align*}$$
Cleaning the Data

- Remove canceled/corrected trades as in Dick-Nielsen (2009)
- Only bonds with > 50 inter-dealer trades (biases against finding inventory holding cost effect, since excludes least liquid bonds)
- Winsorize markup at 1% level
- Add in missing commissions, median by trade size group
Trading Volume: Intra-day

Intraday Volume (normal day)
Inventory Holding Costs, Not Asymmetric Information

Asymmetric information in corporate bond market less plausible than in e.g. equity markets:

- Unclear that customer has more information than dealer.
- If customer has better information, would exploit in more information-sensitive, more liquid security?

Control for information asymmetry at issuer level:

- Companies have multiple bond issues.
- Use within-issuer variation.
- Aggregate holding cost, bargaining power, trade size effects: robust to inclusion of issuer fixed effects. 🔄Issuer FEs
- Lose IG vs HY differential. Not enough variation within issuer.
Within issue:

- Larger customer trades could be more informed, explaining worse prices.
- But if buys/sells equally informed, no buy/sell asymmetry in liquidity.
- If customer sales more likely for liquidity needs (uninformed) than customer buys, markup when dealer buys would be lower than when dealer sells. Opposite to plot.

<table>
<thead>
<tr>
<th>Dependent variable: average daily sell markup - average daily buy markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$\frac{\sigma_d^2}{\sigma_c^2}$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>
Robustness: Asymmetric Information

Dependent variable: Dealer’s markup (difference between customer-dealer price and estimated inter-dealer price)

<table>
<thead>
<tr>
<th>Trade size bin</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. trade size</td>
<td>0</td>
<td>100,000</td>
<td>550,000</td>
<td>1,000,000</td>
<td>5,000,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>Max. trade size</td>
<td>50,000</td>
<td>325,000</td>
<td>775,000</td>
<td>3,000,000</td>
<td>7,000,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>$</td>
<td>q_t^c</td>
<td>$</td>
<td>-38.615*** (-49.36)</td>
<td>-14.230*** (-72.64)</td>
<td>-0.402 (-0.84)</td>
<td>-0.303*** (-12.66)</td>
</tr>
<tr>
<td>$</td>
<td>q_t^c</td>
<td>\times \pi_t$</td>
<td>-4,849.200*** (-72.76)</td>
<td>-1.892 (-0.09)</td>
<td>45.722** (2.28)</td>
<td>9.195*** (2.72)</td>
</tr>
<tr>
<td>IG: $</td>
<td>q_t^c</td>
<td>\times \frac{\sigma_d^2}{\sigma_c^2}$</td>
<td>0.665*** (-8.14)</td>
<td>0.367*** (26.5)</td>
<td>0.097*** (9.60)</td>
<td>0.033*** (20.66)</td>
</tr>
<tr>
<td>HY: $</td>
<td>q_t^c</td>
<td>\times \frac{\sigma_d^2}{\sigma_c^2}$</td>
<td>-0.120 (-0.69)</td>
<td>0.182*** (7.43)</td>
<td>0.099*** (6.55)</td>
<td>0.023*** (12.92)</td>
</tr>
<tr>
<td>IG: $</td>
<td>q_t^c</td>
<td>\times \frac{\sigma_d^2}{\sigma_c^2} \times \pi_t$</td>
<td>-226.910*** (-18.66)</td>
<td>-17.770*** (-6.16)</td>
<td>-3.508 (-1.37)</td>
<td>-0.816*** (-2.99)</td>
</tr>
<tr>
<td>HY: $</td>
<td>q_t^c</td>
<td>\times \frac{\sigma_d^2}{\sigma_c^2} \times \pi_t$</td>
<td>557.032*** (26.28)</td>
<td>-20.139* (-1.69)</td>
<td>-29.567*** (-2.81)</td>
<td>-5.435*** (-4.25)</td>
</tr>
</tbody>
</table>

Issuer fixed effects: Y Y Y Y Y Y

N | 3,507,047 | 807,544 | 121,233 | 787,335 | 280,675 | 204,910
Dealers’ Flight to Quality

Dependent variable: Signed Trade Size

<table>
<thead>
<tr>
<th>Dep. Variable</th>
<th>Unpaired Trades</th>
<th>Paired Trades</th>
</tr>
</thead>
<tbody>
<tr>
<td>IG</td>
<td>-4,593.6**</td>
<td>-4,221.7</td>
</tr>
<tr>
<td></td>
<td>(-2.23)</td>
<td>(-1.17)</td>
</tr>
<tr>
<td>HY</td>
<td>-12,631.2***</td>
<td>1,379.3</td>
</tr>
<tr>
<td></td>
<td>(-3.95)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>σ^2_d/σ^2_c</td>
<td>-840.9*</td>
<td>205.8</td>
</tr>
<tr>
<td></td>
<td>(-2.81)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>$\sigma^2_d/\sigma^2_c \times IG$</td>
<td>1,055.8*</td>
<td>-578.5</td>
</tr>
<tr>
<td></td>
<td>(2.88)</td>
<td>(-0.88)</td>
</tr>
<tr>
<td>LOIS</td>
<td>-32,727.0***</td>
<td>-2,685.7</td>
</tr>
<tr>
<td></td>
<td>(-6.61)</td>
<td>(-0.23)</td>
</tr>
<tr>
<td>LOIS \times IG</td>
<td>29,691.2*</td>
<td>107.9</td>
</tr>
<tr>
<td></td>
<td>(4.13)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

| N | 6,954,148 | 8,850,406 |
Insurance Companies’ Position

Insurance Companies’ Position and Cumulative Net Buys from Dealers ($Par)

- Corporate Actions
- Net buys by insurance companies from dealer
- Net increase in insurance companies’ position
I make the following simplifying assumptions, in order to test markup expression empirically:

1. \(\delta \approx 1 \) but still \(\delta < 1 \);

2. \(T \gg t \), i.e. many possible trade times until bond matures, and time to maturity approximately same for all trades;

3. Expected holding cost linear in current holding cost: \(E_t[f_{t+u+1}] \approx \beta_u + \beta_{f,u}f_t \) for all \(u \), with \(\beta_u, \beta_{f,u} > 0 \).

4. \((1 - \pi_i - \sum_j \pi_j^c(1 - \eta_j))^u \approx c_u + \beta_{i,u}\pi_i + \sum_j \beta_{c,j,u}\pi_j^c \) for all \(u \), where \(\beta_{i,u}, \beta_{c,j,u} < 0 \) for all \(u \) and \(j \).

Then the regression specification for the markup becomes:

\[
\text{markup}_{t,r}^\eta \equiv (\hat{p}_t^i - p_t^c) \times 1_t^{\text{buy/sell}} \\
\approx |q_t^c|1_t^\eta (\beta_\eta + \beta_{\eta,f}f_t - \beta_\eta,\pi\pi_t - \beta_\eta,f,\pi\pi_t f_t) + \varepsilon_t^\eta
\]

where \(\beta \)'s positive & proportional to \(2 - \eta \); \(\eta \) = customer bargaining power.