Firm Entry and Regional Growth Disparities: the Effect of SOEs in China

Loren Brandt
University of Toronto

Gueorgui Kambourov
University of Toronto

Kjetil Storesletten
University of Oslo

International Monetary Fund
Washington, D.C., April 28, 2016
Motivation

- 1992: Take-off for non-state firms in industry in China
- But huge initial dispersion in NSOE output per worker across localities
 - 334 prefectures (geographical administrative units)
 - Chinese Industrial Census Data
 - Output per worker in the Non-state sector, 1992
 - variance of logs is 0.35; 90/10 ratio is 4.2

![Output per Worker, 1992 NSOEs](image)
Motivation

- Solow model: low Y/N could be driven by either low initial capital stock or low TFP

- Low initial capital yields clear prediction: Prefectures with low output per worker should experience
 - investment should increase (mechanism: capital inflow or high savings)
 - new firms should be created
 - inflow of workers (increased employment)
There is no (negative) relationship between
 - creation of new NSOE firms (1994-1995), as a fraction of all 1992 firms
 - output per worker in 1992 for NSOE
There is no (negative) relationship between
- increased investment (flow of capital through new 1994-1995 NSOE firms), as a fraction of all capital in 1995
- output per worker in 1992 for NSOEs
1992-1995: No Convergence in Output per Worker

- There is little convergence in NSOE output per worker between 1992 and 1995
- slope: -0.12
1995 Cross Section
Chinese Industrial Census (CIC)

• Covers most of the manufacturing sector

• Large

• Data work (issues)
 - make prefectures consistent across years
 - define the SOE sector (especially in 2004 and 2008)
 - construct measures of real capital
1995 NSOE Ypw vs. TFP, Wages, and Kpw

- 1995 NSOE output per worker is positively correlated with 1995 NSOE
 - wages
 - TFP
 - capital per worker
The Importance of the SOE Share of Output

- The SOE share of output, s, is negatively correlated with NSOE
 - output per worker; s accounts for 39% of the variation
 - wages; s accounts for 12% of the variation
The Importance of the SOE Share of Output

- The SOE share of output, s, is negatively correlated with NSOE
 - capital per worker; s accounts for 9% of the variation
 - TFP (defined as Solow residual); s accounts for 40% of the variation
1995-2004 Convergence in the NSOE Sector
There is a 1995-2004 convergence in the NSOE sector in
- output per worker; rate of convergence is 8.5%
- wages; rate of convergence is 8.3%
There is a 1995-2004 convergence in the NSOE sector in
- capital per worker; rate of convergence is 13.5%
- TFP (calculated as Solow resid.); rate of convergence is 4.4%
There is a 1995-2004 divergence in total GDP

1995-2004 prefecture GDP growth is

- higher in prefectures with high 1995 NSOE Y/N

- higher in prefectures with lower SOE share of output
Fact 1: 1995 – large initial dispersion across prefectures in Y/N for NSOE:

- Low Y/N prefectures have low TFP, low wages, little capital
- ... nevertheless, low investment and few firms established

Fact 2: Low TFP is highly associated with high share of SOE firms

Fact 3: Strong convergence in Y/N, TFP, and wages in 1995-2004
Paper in a Nutshell

Claim 1: Standard capital and output wedges cannot explain this pattern

Model: Build Hopenhayn firm entry model with heterogeneous “entry wedges”

Claim 2: Initial dispersion and eventual convergence is driven by the entry wedge

Claim 3: Implied entry wedges are highly correlated with SOE share
 : Both in 1995 cross-section and in 1995-2004 changes
Framework for Wedges

\[y_i = z_i^{1-\eta} \left(k_i^{1-\alpha} n_i^\alpha \right)^\eta, \]

- Firms have a common production function
- \(0 < \eta < 1 \): decreasing returns to scale
- common rental rate of capital \((r + \delta)\)
- prefecture-specific wage rate \(w_i\)
- Distortions: output tax \(\tau_i^y\) and capital tax \(\tau_i^k\). Assume no labor wedge
Framework for Wedges

- The firm’s objective is

\[\max_{k_i, n_i} \left\{ (1 - \tau_i^y) y_i - w_i n_i - \left(1 + \tau_i^k \right) (r + \delta) k_i \right\}. \]

- Using the firm’s first-order conditions for \(k \) and \(n \) we obtain

\[
\begin{align*}
(1 - \tau_i^y) &= \frac{1}{\alpha \eta} \frac{w_i n_i}{y_i} \\
(1 + \tau_i^k) &= \frac{1 - \alpha}{\alpha} \cdot \frac{w_i n_i}{(r + \delta) k_i}
\end{align*}
\]
Framework for Wedges

- Gross output wedge, Δ_i^y
 \[
 \Delta_i^y = (1 - \tau_i^y) = \frac{1}{\alpha \eta} \frac{w_i n_i}{y_i}
 \]

- Gross capital wedge, Δ_i^k
 \[
 \Delta_i^k = (1 + \tau_i^k)(r + \delta) = \frac{1 - \alpha}{\alpha} \cdot \frac{w_i n_i}{k_i}
 \]

- Compute Δ_i^y and Δ_i^k for each prefecture in the dataset

- Use the 1995 Chinese Industrial Census
 - value added: y_i
 - wage bill: $w_i n_i$
 - impute real capital: k_i

- Labor share, $\alpha \eta$: Hsieh and Klenow (2009)

- Decreasing returns, η
 - Restuccia and Rogerson (2008): $\eta = 0.85$
Gross Capital Wedge: Δ^k

- Higher capital taxes in high s pref. for non-SOE firms
- No relationship between capital taxes and s for SOE firms
Lower output taxes (higher subsidies) in high \(s \) prefectures

For both non-SOE and SOE firms

output wedges negatively correlated with TFP (large output taxes associated with large TFP)
Needed: Entry Wedges

Fact 1 \((1 - \tau^y)\) increases sharply with \(s\)

Fact 2 \((1 + \tau^k)\) increases slightly with \(s\)

- If \(\tau^y\) dominates, then one should expect to see …
 - ↑ entry with \(s\)
 - ↑ wages \(w\) with \(s\)
 - ↑ output per worker \(\frac{Y}{N}\) with \(s\)

- Consider Hopenhayn model with heterogeneity in “entry wedges” \(\psi\)
 - only a fraction \((1 - \psi)\) of potential entrants can get a licence
 - randomly chosen
A Model of Heterogeneous Entrepreneurs with an Entry Wedge
Model

- There are two sectors in a prefecture: SOE and NSOE
- Large number of potential entrants in both sectors
- Only a fraction \((1 - \psi)\) of NSOE potential entrants do enter
- Firms heterogeneous in productivity \(z\)
- Capital freely mobile across prefectures
- Prefecture-sector specific \(\tau_i^y\) and \(\tau_i^k\)
- Same economy-wide wage rate \(\hat{w}\) in the SOE sectors
- Prefecture-specific wage rate \(w_i\) in NSOE sector
- Per-period sector-specific operating fixed cost \(\nu\)
Private firms, NSOE Sector

\[y_i = z_i^{1-\eta} \left(k_i^{1-\alpha} n_i^\alpha \right)^\eta, \]

- common production function: \(0 < \alpha < 1 \)
- heterogeneous productivity: \(z \)
- \(0 < \eta < 1 \): decreasing returns to scale
- common rental rate of capital \((r + \delta)\)
- prefecture-specific wage rate \(w_i \), output tax \(\tau_i^y \), capital tax \(\tau_i^k \)
NSOE Sector

- $f(z)$ is Pareto distributed

$$f(z) = z^{\xi} \xi z^{-\xi - 1},$$

: $\xi > 1$
: $z \geq 1, z \in [z, \infty)$

- The firm problem implies:

$$y = z ((1 - \tau^y) \eta)^{\frac{n}{1-\eta}} \left(\frac{1 - \alpha}{(1 + \tau^k)(r + \delta)} \right)^{\frac{(1-\alpha)\eta}{1-\eta}} \left(\frac{\alpha}{w} \right)^{\frac{\alpha\eta}{1-\eta}}$$

$$n = z \cdot \alpha \eta \left(\frac{1 - \tau^y}{w} \right) \cdot \bar{y}$$

$$k = z \cdot (1 - \alpha) \eta \frac{1 - \tau^y}{(1 + \tau^k)(r + \delta)} \cdot \bar{y}$$

$$\Pi = z \cdot (1 - \tau^y)(1 - \eta) \cdot \bar{y}.$$
NSOE Sector

- Only entrepreneurs with \(z \geq z^* \) will operate, where

\[
z^* = \frac{\nu}{(1 - \tau^y)(1 - \eta) \cdot \bar{y}}
\]

- The measure \(\Gamma \) of all operating entrepreneurs is

\[
\Gamma (z \geq z^*) = M(1 - \psi) \int_{z^*}^{\infty} z^\xi \xi z^{-\xi-1} \, dz = M(1 - \psi) z^\xi (z^*)^{-\xi}
\]

- The equilibrium wage \(w \) clears the labor market

\[
M(1 - \psi) \int_{z^*}^{\infty} n(z) f(z) \, dz = N
\]

- Normalize by the size of the labor force in the prefecture
Equilibrium mechanism

- Suppose \((1 - \psi)\) is small

- Low \((1 - \psi)\) implies that few firms enter

- Low entry implies low wages required to clear the labor market (since little competition for workers)

- Low wages implies low \(z^*\) (since labor is cheap)

- Low \(z^*\) implies low TFP and low \(Y/N\)
Equilibrium Wage: w

\[
\ln w = \frac{1 - \eta}{1 - \eta + \xi \alpha \eta} \ln \left(\frac{(1 - \psi)Z^\xi}{N} \right) - \frac{(1 - \eta)(\xi - 1)}{1 - \eta + \xi \alpha \eta} \ln(v)
\]

\[
+ \frac{\xi}{1 - \eta + \xi \alpha \eta} \ln(1 - \tau^Y)
\]

\[- \frac{(1 - \alpha) \xi \eta}{1 - \eta + \xi \alpha \eta} \ln \left((1 + \tau^k)(r + \delta) \right)
\]

\[+ \Omega(\alpha, \eta, \xi)\]

\[
\frac{\partial \ln w}{\partial \ln (1 + \tau^k)} = \frac{\partial \ln w}{\partial \ln (r + \delta)} = - \frac{(1 - \alpha) \xi \eta}{1 - \eta + \xi \alpha \eta} < 0
\]

\[
\frac{\partial \ln w}{\partial \ln (1 - \tau^Y)} = \frac{\xi}{1 - \eta + \xi \alpha \eta} > 0
\]

\[
\frac{\partial \ln w}{\partial \ln (1 - \psi)} = - \frac{\partial \ln w}{\partial \ln N} = \frac{1 - \eta}{1 - \eta + \xi \alpha \eta} > 0
\]
Equilibrium: Output per Worker

\[\ln \frac{Y}{N} = \ln w - \ln (1 - \tau^y) - \ln (\alpha \eta) \]

\[
\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 + \tau^k)} = \frac{\partial \ln \frac{w}{(r + \delta)}}{\partial \ln (r + \delta)} = -\frac{(1 - \alpha) \xi \eta}{1 - \eta + \xi \alpha \eta} < 0
\]

\[
\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 - \tau^y)} = \frac{\xi \eta (1 - \alpha) + (\xi - 1)(1 - \eta)}{1 - \eta + \xi \alpha \eta} > 0
\]

\[
\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 - \psi)} = -\frac{\partial \ln \frac{w}{N}}{\partial \ln N} = \frac{1 - \eta}{1 - \eta + \xi \alpha \eta} > 0
\]
Equilibrium: Entrants

\[\Gamma (z \geq z^*) = (1 - \psi)z^\left(\frac{(1 - \tau^y)(1 - \eta) \cdot \bar{y}}{v}\right)^\xi \]

\[
\frac{\partial \ln \Gamma}{\partial \ln (1 + \tau^k)} < 0 \\
\frac{\partial \ln \Gamma}{\partial \ln (1 - \tau^y)} > 0 \\
\frac{\partial \ln \Gamma}{\partial \ln (1 - \psi)} > 0
\]
Equilibrium: TFP Z

\[
\ln Z = \frac{\alpha \eta (1 - \eta)}{1 - \eta + \xi \alpha \eta} \ln \left(\frac{(1 - \psi)Z^\xi}{N} \right) - \frac{\alpha \eta (1 - \eta)(\xi - 1)}{1 - \eta + \xi \alpha \eta} \ln (\nu)
\]

\[
-\frac{1 - \eta}{1 - \eta + \xi \alpha \eta} \ln (1 - \tau^y)
\]

\[
+ \frac{(1 - \eta)(1 + (\xi - 1)\alpha \eta)}{1 - \eta + \xi \alpha \eta} \ln \left(\frac{(1 + \tau^k)(r + \delta)}{1 - \eta + \xi \alpha \eta} \right)
\]

\[+ \Omega(\alpha, \eta, \xi)\]

\[
\frac{\partial \ln Z}{\partial \ln (1 + \tau^k)} = \frac{\partial \ln Z}{\partial \ln (r + \delta)} = \frac{(1 - \eta)(1 + (\xi - 1)\alpha \eta)}{1 - \eta + \xi \alpha \eta} > 0
\]

\[
\frac{\partial \ln Z}{\partial \ln (1 - \tau^y)} = -\frac{1 - \eta}{1 - \eta + \xi \alpha \eta} < 0
\]

\[
\frac{\partial \ln Z}{\partial \ln (1 - \psi)} = -\frac{\partial \ln Z}{\partial \ln N} = \frac{\alpha \eta (1 - \eta)}{1 - \eta + \xi \alpha \eta} > 0
\]
SOE Sector

- Same production function as NSOE firms;
 \[\hat{y}_i = \hat{z}_i^{1-\eta} \left(\hat{k}_i^{1-\alpha} \hat{n}_i^\alpha \right)^{\eta}, \]
- measure one of potential SOE firms
- per-period operating fixed cost \(\hat{\nu} \)
- \(\hat{z} \) is Pareto distributed with parameter \(\hat{\xi} \) (\(\hat{\xi} > \xi \))
- common (exogenous) wage rate \(\hat{w} \) across prefectures
SOE Sector in Equilibrium: Output per Worker

\[
\ln \frac{\hat{Y}}{\hat{N}} = \ln \hat{w} - \ln (1 - \hat{\tau}^y) - \ln (\alpha \eta)
\]

\[
\frac{\partial \ln \frac{\hat{Y}}{\hat{N}}}{\partial \ln (1 + \hat{\tau}^k)} = 0
\]

\[
\frac{\partial \ln \frac{\hat{Y}}{\hat{N}}}{\partial \ln (1 - \hat{\tau}^y)} = -1
\]
SOE Sector in Equilibrium: TFP \hat{Z}

\[
\ln \hat{Z} = (1 - \alpha \eta) \ln \left[\left(1 + \hat{\tau}^k \right) (r + \delta) \right] \\
\ln \left(1 - \hat{\tau}^y \right) \\
+ \alpha \eta \ln \hat{w} \\
+ \Omega(\alpha, \eta)
\]

\[
\frac{\partial \ln \hat{Z}}{\partial \ln \left(1 + \hat{\tau}^k \right)} = 1 - \alpha \eta \\
\frac{\partial \ln \hat{Z}}{\partial \ln \left(1 - \hat{\tau}^y \right)} = -1
\]

- Note that \(\frac{\partial \ln Z}{\partial \ln (1 - \tau^y)} = -\frac{1-\eta}{1-\eta+\xi \alpha \eta} \in (-1, 0) \)

- The effect is stronger in the SOE sectors because \hat{w} does not change
Estimating the Gross Entry Wedge: \((1 - \psi)\)

- Calibrate some key parameters
 - labor share, \(\alpha \eta\): Hsieh and Klenow (2009)
 - \(\eta = 0.85\), Restuccia and Rogerson (2008): \(\xi = 1.05\), use 30% of the most productive firms

\[
E(z|z \geq z^*) = \frac{\xi}{\xi - 1}
\]

- calibrate \(\nu\) such that \(n^*(z^*) = 1\) in the lowest \(s\) prefectures
- calibrate \(z\) such that \(\psi = 0\) in the lowest \(s\) prefectures
Estimating the Gross Entry Wedge: \((1 - \psi)\)

- Estimate \(\psi_j\) in prefecture \(j\) from the equilibrium condition

\[
\ln(1 - \psi_j) = \ln N + \frac{1 - \eta + \xi \alpha \eta}{1 - \eta} \ln w_j \\
- \frac{\xi}{1 - \eta} \ln(1 - \tau_j^y) \\
+ \frac{\xi \eta (1 - \alpha)}{1 - \eta} \ln \left[(1 + \tau_j^k)(r + \delta) \right] \\
+ (\xi - 1) \ln \nu + \Omega(\alpha, \eta, \xi, \zeta)
\]
1995 Gross Entry Wedge in the NSOE Sector

- log gross entry wedge \(\ln(1 - \hat{\psi}) \)

- SOE share accounts for 52% of the variation in the entry wedge
Entry Wedges in the NSOE Sector

- Log gross entry wedge $\ln(1 - \psi)$
2008 Costs of Starting a Business in China

 - Provides various measures of the cost of starting a business in main provincial cities

- Measures
 - Rank: from easy (1) to hard (30) to start a business
 - Days it takes to start a business
 - Cost of starting a business: as a % of provincial GDP per capita
“Doing Business in China” and Entry Wedges, 2008
Neighborhood Social Economy (NSOE) firms in a prefecture have access to two technologies:

1. inefficient low z technology with a high labor share (labor intensive)
2. efficient high z technology with a low labor share

A larger fraction of the NSOE firms in the high s prefectures will use technology 1 \(\Rightarrow \) higher labor share.

Predictions of the theory:
- within prefectures: smaller firms have higher labor share
- across prefectures: conditional on size, firms have the same labor share
Alternative Theory I

- Predictions of the theory are not consistent with the data
- Within prefectures:
 - firms with different sizes have the same labor share
- Across prefectures:
 - conditional on size, firms have increasing in s labor share
Alternative Theory II

• The pool of potential entrants is worse in the high s prefectures:
 - lower TFP of entrants
 - less heavy right Pareto tail

• Predictions of the theory
 - consider a productivity cutoff z_0
 - consider the right tail of the Pareto distribution for firms with $z > z_0$
 - ξ should be higher in high s prefectures

• Predictions of the theory are not consistent with the data
 - pick z_0 as the 90th or 95th percentile of the overall TFP distrib.
 - in each case, ξ is the same in high and low s prefectures
 - for the 90th perc: $\xi_{s,low} = 1.044$, $\xi_{s,high} = 1.048$
Alternative Theory III

- The cost of operation, v, is higher in high s prefectures

- Predictions of the theory
 - less entry
 - lower wages

- Predictions of the theory that are not consistent with the data
 - entrants are positively selected on productivity
 - high TFP
Understanding Changes over Time
Wages in the NSOE sector have equalized by 2004.

Study the importance of the change in four margins in the NSOE sector:

- the employment share: n
- the gross output wedge: $(1 - \tau^Y)$
- the gross capital wedge: $(1 + \tau^k)$
- the gross entry wedge: $(1 - \psi)$
- Employment in the NSOE sector increased at approx. same rate
 - no effect on w (no convergence in w)
- The gross output wedge declined for the high s prefectures
 - decline in w in the high s prefectures (divergence in w)
Decomposition, 1995-2004: \(w \)

- **Blue line (dots):** 1995 log wages \(\text{-- slope -0.67} \)
- **Red line (dots):** log wages with 1995 parameters
 - 2004 employment shares (left panel) \(\text{-- slope -0.67} \)
 - 2004 gross output wedge (right panel) \(\text{-- slope -1.78} \)
- **Black line:** 2004 log wages \(\text{-- slope 0.00} \)
The gross capital wedge was equalized in the NSOE sectors:
- decline (increase) in \(w \) in the low (high) \(s \) pref. (converg. in \(w \))

The gross entry wedge declined for the high \(s \) prefectures:
- increase in \(w \) in the high \(s \) prefectures (convergence in \(w \))
Decomposition, 1995-2004: \(w \)

- Blue line (dots): 1995 log wages – slope -0.67
- Red line (dots): log wages with 1995 parameters
 - 2004 gross capital wedge (left panel) – slope -0.24
 - 2004 gross entry wedge (right panel) – slope 0.38
- Black line: 2004 log wages – slope 0.00
Decomposition, 1995-2004: NSOE $\frac{Y}{N}$

\[
\ln \frac{Y}{N} = \ln w - \ln(1 - \tau^Y) + \Omega(\alpha, \eta)
\]

- Margins affecting converg. in w: same effect on $\frac{Y}{N}$
- $\ln(1 - \tau^Y)$ still different by $s \Rightarrow$ no full converg. in $\frac{Y}{N}$
\[
\ln Y = \ln w - \ln(\alpha \eta) - \ln(1 - \tau^Y) - \ln N
\]

- Margins affecting converg. in \(w \): same effect on \(Y \)
- \(\ln(1 - \tau^Y) \) still different by \(s \) ⇒ no full converg. in \(Y \)
\[\ln Z = \alpha \eta \ln w + (1 - \alpha \eta) \ln [(1 + \tau^k)(r + \delta)] - \ln (1 - \tau^y) + \Omega(\alpha, \eta) \]

- Margins affecting converg. in \(w \): same effect on \(Z \)
- \(\ln [(1 + \tau^k)(r + \delta)] \) equalized by \(s \)
- \(\ln (1 - \tau^y) \) still different by \(s \) \(\Rightarrow \) no full converg. in \(Z \)
Experiment: SOE Reform

- **The SOE sector**
 - $\uparrow \hat{\nu}$: the worst SOEs exit
 - $\frac{\partial \ln \hat{Y}}{\partial \ln \hat{\nu}} = \frac{\partial \ln \hat{K}}{\partial \ln \hat{\nu}} = \frac{\partial \ln \hat{N}}{\partial \ln \hat{\nu}} = 1 - \hat{\xi} < 0$
 - $\frac{\partial \ln \left(\frac{\hat{Y}}{\hat{N}} \right)}{\partial \ln \hat{\nu}} = \frac{\partial \ln \hat{Z}}{\partial \ln \hat{\nu}} = 0$, but $\uparrow \hat{Z}$

- **NSOE sector**
 - suppose the change in s does not directly affect $(1 - \psi)$
 - $\uparrow N \Rightarrow \downarrow w, \downarrow z^*, \uparrow M, \uparrow Y, \downarrow (Y/N), \downarrow Z$
 - $(1 - \psi)$ remains a key wedge
 - Policy advice: eliminate the entry wedge
Conclusion

- Aim to understand the heterogeneous growth patterns across localities in China

- A snapshot of manufacturing in 1995 shows that
 - non-SOE firm entry is substantially smaller in high s prefectures
 - non-SOE firm entrants in high s prefectures pay lower wages and have lower TFP, value added per worker, and capital

- Output wedges are declining with s while the capital wedges are slightly increasing with s

- Output and capital wedges cannot account for 1995 NSOE patterns
Conclusion

• Build a two-sector model of heterogeneous firms
 - SOE and NSOE sectors
 - model entrants and incorporate entry wedges
 - infer the entry wedges in 1995
 - infer the entry wedges in 2004 and 2008
 - study the effect of capital, output, and entry wedges and labor mobility on changes at the prefecture level from 1995 to 2004

• Work in progress
 - study the effect of SOE reforms on changes at the prefecture level from 1995 to 2004
 - analyze the partial reversal observed in the 2004-2008 period
 - calibrate full dynamic model
Additional Slides
Introduction Wedges Model Experiments Conclusion

Provincial Economic Growth and SOE Share

- Negative relationship at the provincial level between
 - 1978-1995 output (annual) growth rate
 - 1978 output share of SOEs
Employment Growth: 1995-2004

- Negative relationship between
 - 1995-2004 employment growth rate
 - 1995 output share of SOEs
Framework for Wedges: The Labor Wedge

- Incorporating the gross labor wedge: \((1 + \tau^w)\)

- Gross output wedge, \(\Delta^y_i\)

\[
\Delta^y_i = \frac{(1 - \tau^y_i)}{(1 + \tau^w)} = \frac{1}{\alpha \eta} \frac{w_i n_i}{y_i}
\]

- Gross capital wedge, \(\Delta^k_i\)

\[
\Delta^k_i = \frac{(1 + \tau^k_i)(r + \delta)}{(1 + \tau^w)} = \frac{1 - \alpha}{\alpha} \cdot \frac{w_i n_i}{k_i}
\]

- If the labor wedge increases with \(s\), then in the NSOE sectors:
 - the output subsidies need to be even higher in the high \(s\) prefectures, and
 - the capital tax wedges need to be lower in the high \(s\) prefectures
Gross Output Wedge, Entrants: Δy

- Lower output taxes (higher subsidies) in high s prefectures
- For both non-SOE and SOE firms
Higher capital taxes in high s prefectures for non-SOE firms

No relationship between capital taxes and s for SOE firms
SOE and NSOE Wages in s Prefectures

- SOEs pay the same wage in all s prefectures
- SOE and NSOE wages are similar in low s prefectures
- SOE wages are higher than NSOE wages in high s prefectures