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preliminary!

Cogley and Sargent provide us with a very useful tool for empirical macroeco-

nomics: a Gibbs sampler for the estimation of VARs with drifting coefficients and

volatilities. The authors apply the tool to a VAR with three variables - inflation,

unemployment, and the nominal interest rate - and two lags. This tool is a se-

rious competitor to the identified-VAR-cum-Markov-switching technology recently

developed by Sims (1999) and Sims and Zha (2002) for the study of economies that

are subject to regime changes. However, the Gibbs sampler suffers from a curse of

dimensionality: as more variables or more lags are added to the system, the compu-

tational burden of the estimation quickly grows out of proportion. My suggestions

here are mainly aimed at making the tool more flexible, and hence more widely

applicable.

Of the many variables that one may want to add to the three considered by

Cogley and Sargent, one in particular stands out: commodity prices. This is for two

∗I wish to thank Tim Cogley for providing the matlab programs and the data used in the

paper, and Dan Waggoner and Tao Zha for helpful conversations. The views expressed here do not

necessarily reflect those of the Federal Reserve Bank of Atlanta or the Federal Reserve System.
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reasons. First, in the identified VAR literature commodity prices play a key role

in the identification of policy shocks (see Sims and Zha 1998). Second, it may be

important to check the robustness of Cogley and Sargent’s results to the inclusion

of commodity prices. Sargent (1999) considers the evidence of parameter drift as

a smoking gun in favor of his vindication of econometric policy evaluation story.

Parameter drifts may be the outcome of learning-induced policy regime shifts, or of

changes in the environment. In many people’s mind the stagflation of the seventies

is associated with the oil shocks. Are the results in Cogley and Sargent robust to

the inclusion of commodity prices? Was the high inflation in the seventies due to

bad luck (oil shocks - changes in the environment) or bad policy (regime shifts)? In

the last section I present some results based on a VAR with commodity prices, and

try to address at least the first of the two questions.

1 The Gibbs Sampler

1.1 Equation by equation

The goal of this section is to rewrite the Gibbs sampler in Cogley and Sargent so

that it can be performed equation by equation, thereby reducing the computational

burden of the enterprise and making it possible to include more variables and more

lags. The notation is the same as in Cogley and Sargent, except where explicitly

mentioned, so that the reader can refer to their definitions.

Much of the Gibbs sampler in Cogley and Sargent can already be performed

equation by equation, the only exception being perhaps the most computationally

intensive part, the draws from the posterior of θT conditional on all other para-

meters. The key to improve this part of the Gibbs sampler is to work with the

structural form VAR parameters, as opposed to the reduced form parameters as

Cogley and Sargent do. The measurement and the transition equations in Cogley
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and Sargent, reported here for convenience, are:

yt = Xtθt + t (1)

θt = θt−1 + νt. (2)

where Xt = In ⊗ xt and xt includes all the regressors (i.e, the lags of yt as well as
the constant). The measurement equation can be equivalently rewritten as:

yt = Θt xt + t (3)

where the relationship between Θt and θt is given by θt = vec(Θt). The innovations

νt are normally distributed with covariance matrix Q. The innovations t are also

normally distributed, with variance that evolves over time:

t ∼ N(0, Rt), (4)

with

Rt = A
0 −1HtA0 −1 . (5)

where Ht is diagonal with elements that vary over time according to a driftless,

geometric random walk. As in Cogley and Sargent A0 is lower triangular with

ones on the diagonal (this matrix is called B in their paper), and Ht is diagonal

with elements that vary over time according to a driftless, geometric random walk.

The curse of dimensionality arises because θt is of dimension k × 1, where k =
(# of variables)2 × (# of lags).

Let us premultiply (3) by A0 and obtain:

A0yt = At xt + ut, (6)

where At = A0Θt are the so-called structural form coefficients and ut = A0 t is a

vector of uncorrelated errors. Let us define at ≡ vec(At) = (A0 ⊗ Ip)θt, where p is
the number of regressors in each equation. Premultiplying (2) by A0 ⊗ Ip delivers
the transition equation for the structural parameters which is also a random walk:

at = at−1 + ν̃t, ν̃t ∼ N(0, Q̃), (7)
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with Q̃ = (A0⊗ Ip) Q (A0⊗ Ip) (since Q is unrestricted in Cogley and Sargent this
transformation does not alter any assumption). If one could start from scratch and

assume that Q̃ is block diagonal (the innovations in 7 are correlated only within

each equation), one could already draw the ats equation by equation. The ut inno-

vations are now orthogonal to each other (while the t were not). Conditional on all

other parameters (including A0) the Kim-Nelson (1999)/Carter-Kohn (1994) Gibbs

sampler described in section C.2.1 of Cogley and Sargent can be applied equation by

equation (where each equation of (6) is the measurement equation) to obtain draws

of aT .1

Cogley and Sargent provide evidence that Q (and hence Q̃) is unlikely to be

block diagonal - evidence that is consistent with the theory in Sargent (1999). If

Q̃ is not block diagonal, one can proceed as follows. Let Ψ be a lower triangular

matrix with ones on the diagonal such that Q̃ = Ψ−1H̃Ψ−1 , where H̃ is diagonal.

Let us premultiply (7) by Ψ and obtain:

Ψ (at − at−1) = ũt, ũt ∼ N(0, H̃) (8)

Call aj,t the j
th element of at and a

T
j the whole history of aj,ts. Likewise, call a

j−1,T

the whole histories of ak,t for k = 1, .., j − 1. Since the ũt are now uncorrelated

across equations, we can draw aTj conditional on a
j−1,T and on all other parameters

(including Q and A0, from which Ψ and H̃ can be obtained).2 Given aj,T , we can

draw we can draw aTj+1, and so on. The transition equation for the parameter aj,t

is:

aj,t = aj,t−1 − ψj,1(a1,t − a1,t−1) .. − ψj,j−1(aj−1,t − aj−1,t−1) + ũj,t. (9)

The appendix shows how to change the procedure of section C.2.1 to take into ac-

count the time-varying constant in equation (9). Of course drawing each parameter

at the time is likely to be inefficient. The approach can be easily modified to draw

1Given the draws for the at, the draws for θt can be computed using Θt = A
0 −1At. Hence one

can just as easily impose the no-explosive-roots prior.
2Note that the random walk assumption is key for this approach to work: if aj,t depended on

aj+1,t−1, for instance, this would not work.
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the aj,ts block by block (where each block corresponds to the set of parameters be-

longing to a specific equation). This comes at the cost of more notation, so I will

not pursue it here. The Gibbs sampler for the other parameters, namely HT , σ, A0,

and Q, obtains as in Cogley and Sargent.

1.2 Time-varying Covariances

Primiceri (2002) first introduces time-varying covariances, that is, a time-varying

A0 matrix, into the model of Cogley and Sargent. However, Primiceri works with

the reduced form VAR parameters (the θts) and his Gibbs sampler to the best of

my knowledge still suffers from the same curse of dimensionality that affects the

one of Cogley and Sargent. In order to make A0 time-varying one has to take a

stand on whether the primitive in terms of law of motion for the VAR parameters

is equation (2) or equation (7). If the primitive is equation (2), then equation (7)

becomes:

at = Ftat−1 + ν̃t, ν̃t ∼ N(0, Q̃t),
Ft = (A

0
tA

0 −1
t−1 ⊗ Ip), Q̃t = (A0t ⊗ Ip) Q (A0t ⊗ Ip) .

(10)

Since the matrix Ft is not lower diagonal, the equation by equation approach of the

previous section cannot be applied.3 If the primitive is equation (7) however, then

Ft is the identity matrix. If A
0
t is still lower triangular, one can incorporate the

non-zero elements of A0t into the at vector, and use (7) as the transition equation

and:

A0t yt = At xt + ut

as the measurement equation. All can be done equation by equation again. An

advantage of assuming equation (7) as the primitive is that one can allow for the

shocks in A0t and in At to be correlated, whereas in Primiceri they are orthogonal.

One has to bear in mind that (7) coupled with a time-varying A0 matrix implies

that the reduced form parameters no longer follow a random walk.

3I wish to thank Tao Zha for pointing out a mistake in an earlier draft.
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1.3 Stochastic Volatility in the Parameters’ Law of Motion

The theory developed in Sargent (1999) postulates that the VAR coefficients vary

slowly for long periods of time, and then suddenly drift away escaping the Nash

equilibrium. During the escape phase innovations in the random walk process for

the parameters appear to be much larger than in other periods. This observation

suggests that the model in Cogley and Sargent may be missing an important feature:

drifts in volatilities of the νt innovations. This feature can be incorporated in the

Gibbs sampler described above.

Let us take equation (7) as the primitive law of motion for the structural para-

meters, with the difference that Q̃ is no longer constant over time:

at = at−1 + ν̃t, ν̃t ∼ N(0, Q̃t), (11)

where

Q̃t = Ψ
−1H̃tΨ−1 , (12)

and H̃t is diagonal with elements that vary over time according to a driftless, geo-

metric random walk. Conditional on the whole history of the stochastic volatilities,

H̃T , aT can be drawn as described above. Conditional on aT , H̃T can be drawn

as described in the section C.2.5 of Cogley and Sargent, or in Kim, Shephard, and

Chib (1998).

2 An Application: Adding Commodity Prices

In this section I apply the method described in section 1.1 and add commodity

prices to the three variables VAR of Cogley and Sargent.4 Aside from the inclusion

of commodity prices, this application differs from Cogley and Sargent’s in another

dimension: the prior on the initial state θ0 (in my case, a0). The rationale for this

4Commodity prices are measured as the FIBER Industrial Materials Index: All Items and enter

the VAR in log-differences. The data is obtained from Haver (mnemonic PZRJOC) for the same

time period as in Cogley and Sargent. All other data was obtained from the authors.
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change is as follows. Cogley and Sargent impose an implicit prior on their model

(see Sims 2001): they rule out explosive roots. From a computational point of view,

this implicit prior amounts to discarding those Gibbs sampler draws for which the

roots are explosive. From simulations that I ran, it turns out that in their three

variables VAR one throws out about one draw out of two, implying that the im-

plicit prior is very costly in terms of computations. The problem grows worse in

a four variable system, most likely because sampling variability increases with the

additional regressors. I follow Cogley and Sargent in imposing the implicit prior,

but I address the computational problem by choosing a different prior for the initial

state. In Cogley and Sargent the prior for the initial state θ0 is centered around

the OLS estimates obtained from the period 1948.3-1958.4, with variance equal to

its asymptotic variance. Since the pre-sample estimation period is relatively short,

this variance is large (hence the prior is loose). To address directly the problem of

sampling variability, I center around zero the prior for lags greater than one (and

correspondingly make the prior variance matrix twice as tight, and diagonal), as in

shrinkage estimators (James and Stein 1961).5 I find that this shrinkage prior, in

spite of being fairly loose, almost eliminates the need for the implicit prior in the

sense that for very few draws the roots are explosive.

Figure 7 in the Cogley and Sargent paper displays the normalized spectrum

for inflation. The figure makes two important points: i) The evidence in favor

of parameter drifts found in Cogley and Sargent (2001) is robust to the inclusion

of stochastic volatility in the VAR innovations; ii) Inflation persistence increased

dramatically in the late-seventies, and then dropped sharply following the Volcker

disinflation. Figure 7-A plots the normalized spectrum for inflation for the model

with commodity prices. The big picture is unchanged. The evidence in favor of

parameter drift is just as strong as in Cogley and Sargent and the pattern of inflation

5My prior is then similar to the Minnesota prior of Doan, Litterman, and Sims (1984), except

that I do not center around 1 the prior for the first lag. The prior for the first lag is centered

around the same value of Cogley and Sargent. I use the same number of Gibbs sampler draws as

the authors.

7



persistence is very similar.6 Most other results in their paper are also qualitatively

robust to the inclusion of commodity prices. A different picture than the ones

they present however presents a potential challenge to their story. Figure 7-B plots

the normalized spectra for the four series in the VAR. The figure shows that the

spectrum has changed over time for all four series, but most notably for inflation and

commodity prices. Strikingly, the increase in persistence in inflation coincides with

the increase in persistence in commodity prices. Is this evidence that the increase in

the inflation persistence in the late seventies was due to commodity prices (changes

in the environment) rather than bad policy (regime shifts)? This question deserves

more extensive research to be addressed - research that can be done using the tools

provided by Cogley and Sargent.
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A Appendix

The Carter-Kohn procedure of section C.2.1 in Cogley and Sargent can be modified

as follows to take into account the time-varying constant in equation (9), µj,t =

−ψj,1(a1,t − a1,t−1) .. − ψj,j−1(aj−1,t − aj−1,t−1).
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Pt|t−1 = Pt−1|t−1 + H̃jj,

Kt = (C + Pt|t−1Xt)(XtPt|t−1Xt +Rt)−1,

θt|t = µj,t + θt−1|t−1 +Kt(ỹt −Xt(µj,t + θt−1|t−1)),

Pt|t = Pt|t−1 −KtXtPt|t−1,
IE[θt|yt, θt+1, V ] = θt|t + Pt|t(Pt|t + H̃jj)−1(θt+1 − θt|t − µj,t+1),
var[θt|yt, θt+1, V ] = Pt|t − Pt|t(Pt|t + H̃jj)−1Pt|t.

where ỹt is the i
th row of A0yt.
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Figure 7-A: Normalized Spectrum for Inflation
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Figure 7-B: Normalized Spectra
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