Simple Analytics of the Government Expenditure Multiplier
by Michael Woodford

Discussion by Marco Bassetto

Federal Reserve Bank of Chicago and NBER
Roadmap

- Review main argument is simple-simple model
- Implications
- Assumption that warrants further scrutiny
Setup

- Preferences:
 \[\sum_{t=0}^{\infty} \beta^t [u(C_t) - v(H_t)] \]

 \(C_t \): CES aggregator

- Technology for variety \(i \):
 \(y_{it} = f(h_{it}) \)

- Standard monopolistic competition setup

- \[G_t = \begin{cases}
 G_0 \\
 0 & \text{for } t > 0
\end{cases} \]

 \(G \) paid with lump-sum taxes.
Neoclassical (Flex Price) Equilibrium

- SS from period 1, independent of past (on real side)
- Euler equation: \(u'(C_0) = \beta(1 + r_0)u'(C^{SS}) \)
- Intratemporal (household and firm) optimization: \(\frac{\nu'(H_0)}{\mu f'(H_0)u'(C_0)} = 1 \)
- Market clearing: \(f(H_0) = C_0 + G_0 \)
- Some equations to determine nominal side
New Keynesian (Calvo Price) Equilibrium

- SS from period 1, independent of past (up to first order, on real side)
- Euler equation: \(u'(C_0) = \beta(1 + r_0)u'(C^{SS}) \)
- Intratemporal optimization: \(\frac{\nu'(H_0)}{\mu f'(H_0)u'(C_0)} = 1 \)
- Market clearing: \(f(H_0) = C_0 + G_0 \)
- Other equations to determine nominal side

\[
\pi_0 \approx \frac{(1-\alpha)(1-\alpha\beta)}{\alpha} \hat{s}_0
\]
Key insight

- In the NK model, CB can affect real rates (r_0);
Key insight

- In the NK model, CB can affect real rates (r_0);
- Given r_0, C_0 is pinned down by Euler equation:

 \[u'(C_0) = \beta(1 + r_0)u'(C^{SS}) \]

- Other equations only matter if they affect CB’s choice of r_0
Effect of G on C

\[u'(C_0) = \beta(1 + r_0)u'(C^{SS}) \]

- If $r_0 = r^{SS}$, $C_0 = C^{SS} \implies \Delta Y = \Delta G$
- If $r_0 > r^{SS}$, $C_0 < C^{SS} \implies \Delta Y < \Delta G$
- If $r_0 < r^{SS}$, $C_0 > C^{SS} \implies \Delta Y > \Delta G$
Fiscal and Monetary Policy

- Monetary policy rule:
 \[i_t = \bar{r}(G_t) + \phi_\pi \pi_t + \phi_y \hat{Y}_t \]

- Fiscal multiplier can be anything (1,000,000?)
Fiscal and Monetary Policy

- Monetary policy rule:

\[i_t = \bar{\ell}(G_t) + \phi_\pi \pi_t + \phi_y \hat{Y}_t \]

- Fiscal multiplier can be anything (1,000,000?)

- Caveats:
 1. Zero bound
 2. Nonlinearities
Robustness

- Effect of G on C does not depend on sticky prices vs. sticky wages, other sources of nonneutrality, ...
- Only depends on Euler equation
- Euler equation still central when capital is included
Where to Next: Euler Equation Residuals

- Euler equation fails (Hansen and Singleton, 1983);
- When using policy rate, Euler equation residuals are cyclical (Canzoneri, Cumby and Diba, 2007; Atkeson and Kehoe, 2008);
- Euler equation residuals explain a large fraction of consumption variation in DSGE models;
- Are Euler equation residuals fixed when G varies and monetary policy responds?