Comment on Drautzburg and Uhlig, Fiscal Stimulus and Distortionary Taxation

Lars E.O. Svensson

Sveriges Riksbank

Atlanta Fed, January 2010
Some basic analytics of fiscal policy, monetary policy, the neutral real interest rate, and output determination in the simplest New Keynesian model

- Cf. Christiano-Eichenbaum-Rebelo 09, Erceg-Lindé 09, Eggertsson 09, Drautzberg-Uhlig 10, Woodford 10
- Necessary to get intuition behind Drautzberg-Uhlig

A few specific comments about Drautzberg-Uhlig
Some basic analytics of fiscal policy, monetary policy, the neutral real interest rate, and output determination in the simplest New Keynesian model

- Cf. Christiano-Eichenbaum-Rebelo 09, Erceg-Lindé 09, Eggertsson 09, Drautzberg-Uhlig 10, *Woodford 10*
 - Necessary to get intuition behind Drautzberg-Uhlig

A few specific comments about Drautzberg-Uhlig
Outline

- Some basic analytics of fiscal policy, monetary policy, the neutral real interest rate, and output determination in the simplest New Keynesian model
 - Cf. Christiano-Eichenbaum-Rebelo 09, Erceg-Lindé 09, Eggertsson 09, Drautzberg-Uhlig 10, **Woodford 10**
 - Necessary to get intuition behind Drautzberg-Uhlig

- A few specific comments about Drautzberg-Uhlig
Outline

- Some basic analytics of fiscal policy, monetary policy, the neutral real interest rate, and output determination in the simplest New Keynesian model
 - Cf. Christiano-Eichenbaum-Rebelo 09, Erceg-Lindé 09, Eggertsson 09, Drautzberg-Uhlig 10, **Woodford 10**
 - Necessary to get intuition behind Drautzberg-Uhlig
- A few specific comments about Drautzberg-Uhlig
Fiscal policy and the neutral interest rate

- Simplest New Keynesian model:

\[r_t \equiv i_t - \pi_{t+1|t} \]
\[c_t = c_{t+1|t} - \sigma(r_t - \rho_t) \]
\[\alpha \equiv C/Y \]
\[y_t = \alpha c_t + (1 - \alpha)g_t \]
\[c_t = \frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t \]

- Aggregate demand:

\[\frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t = \frac{1}{\alpha} y_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma(r_t - \rho_t) \]

- Potential (flexprice) output and neutral (real) interest rate:

\[\frac{1}{\alpha} \bar{y}_t - \frac{1 - \alpha}{\alpha} g_t \equiv \frac{1}{\alpha} \bar{y}_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma(\bar{r}_t - \rho_t) \]
Fiscal policy and the neutral interest rate

- Simplest New Keynesian model:

 \[r_t \equiv i_t - \pi_{t+1|t} \]
 \[c_t = c_{t+1|t} - \sigma (r_t - \rho_t) \]
 \[\alpha \equiv C/Y \]
 \[y_t = \alpha c_t + (1 - \alpha) g_t \]
 \[c_t = \frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t \]

- Aggregate demand:

 \[\frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t = \frac{1}{\alpha} y_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma (r_t - \rho_t) \]

- Potential (flexprice) output and neutral (real) interest rate:

 \[\frac{1}{\alpha} \bar{y}_t - \frac{1 - \alpha}{\alpha} g_t \equiv \frac{1}{\alpha} \bar{y}_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma (\bar{r}_t - \rho_t) \]
Fiscal policy and the neutral interest rate

- Simplest New Keynesian model:

\[r_t \equiv i_t - \pi_{t+1|t} \]

\[c_t = c_{t+1|t} - \sigma(r_t - \rho_t) \]

\[\alpha \equiv C/Y \]

\[y_t = \alpha c_t + (1 - \alpha)g_t \]

\[c_t = \frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t \]

- Aggregate demand:

\[\frac{1}{\alpha} y_t - \frac{1 - \alpha}{\alpha} g_t = \frac{1}{\alpha} y_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma(r_t - \rho_t) \]

- Potential (flexprice) output and neutral (real) interest rate:

\[\frac{1}{\alpha} \bar{y}_t - \frac{1 - \alpha}{\alpha} g_t \equiv \frac{1}{\alpha} \bar{y}_{t+1|t} - \frac{1 - \alpha}{\alpha} g_{t+1|t} - \sigma(\bar{r}_t - \rho_t) \]
Fiscal policy and the neutral interest rate

- Neutral (real) interest rate:

\[\tilde{r}_t \equiv \rho_t + \frac{1}{\sigma \alpha} E_t \Delta \tilde{y}_{t+1} - \frac{1 - \alpha}{\sigma \alpha} E_t \Delta g_{t+1} \]

- Potential output depends on fiscal expenditure

\[u'(\tilde{Y}_t - G_t) = \frac{\phi'(\tilde{H}_t)}{\tilde{W}_t / \tilde{P}_t} = \frac{\phi'(\tilde{H}_t)}{f'(\tilde{H}_t)} = \frac{\phi'(f^{-1}(\tilde{Y}_t))}{f'(f^{-1}(\tilde{Y}_t))} \equiv \tilde{\phi'}(\tilde{Y}_t) \]

\[\frac{d\tilde{Y}_t}{dG_t} = \frac{\tilde{\phi}''}{\tilde{\phi}'' - u''} \equiv m < 1 \]

\[\frac{e\tilde{Y}_t}{eG_t} = \frac{\tilde{y}_t}{\tilde{g}_t} = \frac{d\tilde{Y}_t}{dG_t} \frac{G}{\tilde{Y}} = m(1 - \alpha) \equiv \gamma < 1 \]

- Neutral (real) interest rate:

\[\tilde{r}_t = \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1} \]
Fiscal policy and the neutral interest rate

- Neutral (real) interest rate:

\[\bar{r}_t \equiv \rho_t + \frac{1}{\sigma \alpha} E_t \Delta \bar{y}_{t+1} - \frac{1 - \alpha}{\sigma \alpha} E_t \Delta g_{t+1} \]

- Potential output depends on fiscal expenditure:

\[u'(\bar{Y}_t - G_t) = \frac{v'(\bar{H}_t)}{\bar{W}_t / \bar{P}_t} = \frac{v'(\bar{H}_t)}{f'(\bar{H}_t)} = \frac{v'(f^{-1}(\bar{Y}_t))}{f'(f^{-1}(\bar{Y}_t))} \equiv \bar{v}'(\bar{Y}_t) \]

\[\frac{dY_t}{dG_t} = \frac{\bar{v}''}{\bar{v}'' - u''} \equiv m < 1 \]

\[\frac{e\bar{Y}_t}{eG_t} = \frac{\bar{y}_t}{g_t} = \frac{d\bar{Y}_t}{dG_t} \frac{G}{Y} = m(1 - \alpha) \equiv \gamma < 1 \]

- Neutral (real) interest rate:

\[\bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1} \]
Fiscal policy and the neutral interest rate

- Neutral (real) interest rate:
 \[\bar{r}_t \equiv \rho_t + \frac{1}{\sigma \alpha} E_t \Delta \bar{y}_{t+1} - \frac{1 - \alpha}{\sigma \alpha} E_t \Delta g_{t+1} \]

- Potential output depends on fiscal expenditure
 \[
 u'(\bar{Y}_t - G_t) = \frac{v'(\bar{H}_t)}{\bar{W}_t/\bar{P}_t} = \frac{v'(\bar{H}_t)}{f'(\bar{H}_t)} = \frac{v'(f^{-1}(\bar{Y}_t))}{f'(f^{-1}(\bar{Y}_t))} \equiv \bar{v}'(\bar{Y}_t)
 \]

 \[
 \frac{dY_t}{dG_t} = \frac{\bar{v}''}{\bar{v}'' - u''} \equiv m < 1
 \]

 \[
 \frac{e\bar{Y}_t}{eG_t} = \frac{\bar{y}_t}{\bar{g}_t} = \frac{d\bar{Y}_t}{dG_t} \frac{G}{\bar{Y}} = m(1 - \alpha) \equiv \gamma < 1
 \]

- Neutral (real) interest rate:
 \[\bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1} \]
Fiscal policy and the neutral interest rate:

\[\bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma\alpha} (m - 1) E_t \Delta g_{t+1} \]

\[E_t \Delta g_{t+1} \downarrow \implies \bar{r}_t \uparrow \]

Output gap:

\[y_t - \bar{y}_t = (y_{t+1|t} - \bar{y}_{t+1|t}) - \sigma\alpha (r_t - \bar{r}_t) \]

\[= y_{t+T|t} - \bar{y}_{t+T|t} - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \approx 0 \]

Output:

\[y_t \approx \bar{y}_t - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \gamma g_t - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \]

Monetary policy stance:

\[r_t - \bar{r}_t, \quad \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \]
Fiscal policy and the neutral interest rate

- Fiscal policy and the neutral interest rate:

\[\bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1} \]

\[E_t \Delta g_{t+1} \downarrow \Rightarrow \bar{r}_t \uparrow \]

- Output gap:

\[y_t - \bar{y}_t = (y_{t+1|t} - \bar{y}_{t+1|t}) - \sigma \alpha (r_t - \bar{r}_t) \]

\[= \underbrace{y_{t+T|t} - \bar{y}_{t+T|t} - \sigma \alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t})}_{\approx 0} \]

- Output:

\[y_t \approx \bar{y}_t - \sigma \alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \gamma g_t - \sigma \alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \]

- Monetary policy stance: \(r_t - \bar{r}_t, \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \)
Fiscal policy and the neutral interest rate

- Fiscal policy and the neutral interest rate:
 \[
 \bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1}
 \]
 \[E_t \Delta g_{t+1} \downarrow \implies \bar{r}_t \uparrow\]

- Output gap:
 \[
 y_t - \bar{y}_t = (y_{t+1|t} - \bar{y}_{t+1|t}) - \sigma \alpha (r_t - \bar{r}_t)
 \]
 \[
 \approx 0
 \]

- Output:
 \[
 y_t \approx \bar{y}_t - \sigma \alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \gamma g_t - \sigma \alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t})
 \]

- Monetary policy stance: \(r_t - \bar{r}_t, \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \)
Fiscal policy and the neutral interest rate

- Fiscal policy and the neutral interest rate:
 \[
 \bar{r}_t = \rho_t + \frac{1 - \alpha}{\sigma\alpha} (m - 1) E_t \Delta g_{t+1}
 \]
 \[
 E_t \Delta g_{t+1} \implies \bar{r}_t
 \]

- Output gap:
 \[
 y_t - \bar{y}_t = (y_{t+1|t} - \bar{y}_{t+1|t}) - \sigma\alpha (r_t - \bar{r}_t)
 \]
 \[
 = y_{t+T|t} - \bar{y}_{t+T|t} - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t})
 \]
 \[
 \approx 0
 \]

- Output:
 \[
 y_t \approx \bar{y}_t - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \gamma g_t - \sigma\alpha \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t})
 \]

- Monetary policy stance: \(r_t - \bar{r}_t, \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \)
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

\[
\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}
\]

- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!):
 $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing):
 $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up:
 $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate:
 $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

$$\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}$$

- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!): $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate \(i_t \), policy rate \(i^p_t \), spread \(\delta_t \): \(i_t = i^p_t + \delta_t \)
- Real (market) rate \(r_t \): \(r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t} \)
- Monetary policy stance:

\[
\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}
\]

- Increase output gap: \(\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow \)
 - Extend period of low policy rate (monetary policy, ZLB!):
 \(\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow \)
 - Keep spreads down (credit policy, credit easing):
 \(\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow \)
 - Keep inflation expectations up:
 \((p_{t+T|t} - p_t) \uparrow \)
 - Use fiscal policy to increase neutral rate:
 \(\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow \)
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

$$\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}$$

- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!): $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

$$\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}$$

- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!): $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

$$
\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}
$$

- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!): $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i^p_t, spread δ_t: $i_t = i^p_t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i^p_t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:
 \[
 \sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i^p_{t+\tau|t} + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}
 \]
- Increase output gap: $\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!):
 $\sum_{\tau=0}^{T-1} i^p_{t+\tau|t} \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Fiscal policy and the neutral interest rate

- Nominal (market) rate i_t, policy rate i_p^t, spread δ_t: $i_t = i_p^t + \delta_t$
- Real (market) rate r_t: $r_t \equiv i_t - \pi_{t+1|t} = i_p^t + \delta_t - \pi_{t+1|t}$
- Monetary policy stance:

$$\sum_{\tau=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) = \sum_{\tau=0}^{T-1} i_{t+\tau|t}^p + \sum_{\tau=0}^{T-1} \delta_{t+\tau|t} - (p_{t+T|t} - p_t) - \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t}$$

- Increase output gap: $\sum_{t=0}^{T-1} (r_{t+\tau|t} - \bar{r}_{t+\tau|t}) \downarrow$
 - Extend period of low policy rate (monetary policy, ZLB!): $\sum_{\tau=0}^{T-1} i_{t+\tau|t}^p \downarrow$
 - Keep spreads down (credit policy, credit easing): $\sum_{\tau=0}^{T-1} \delta_{t+\tau|t} \downarrow$
 - Keep inflation expectations up: $(p_{t+T|t} - p_t) \uparrow$
 - Use fiscal policy to increase neutral rate: $\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow$
Use fiscal policy to increase neutral rate

- Shift up neutral-rate path:

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow
\]

\[
\bar{r}_t \equiv \rho_t + \frac{1 - \alpha}{\sigma \alpha} (m - 1) E_t \Delta g_{t+1} \uparrow
\]

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1 - \alpha}{\sigma \alpha} (m - 1) (g_{t+T|t} - g_t) \uparrow
\]

- Reduce long-run government expenditure growth:

\[
g_{t+T|t} - g_t \downarrow
\]

- Increase current expenditure, lower future expenditure:

\[
g_t \uparrow, g_{t+T|t} \downarrow
\]
Use fiscal policy to increase neutral rate

- Shift up neutral-rate path:

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow
\]

\[
\bar{r}_t \equiv \rho_t + \frac{1-\alpha}{\sigma\alpha} (m-1) E_t \Delta g_{t+1} \uparrow
\]

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1-\alpha}{\sigma\alpha} (m-1) (g_{t+T|t} - g_t) \uparrow
\]

- Reduce long-run government expenditure growth:

\[g_{t+T|t} - g_t \downarrow \]

- Increase current expenditure, lower future expenditure:

\[g_t \uparrow, \quad g_{t+T|t} \downarrow \]
Use fiscal policy to increase neutral rate

- Shift up neutral-rate path:

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} \uparrow
\]

\[
\bar{r}_t \equiv \rho_t + \frac{1 - \alpha}{\sigma\alpha} (m - 1) E_t \Delta g_{t+1} \uparrow
\]

\[
\sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1 - \alpha}{\sigma\alpha} (m - 1) (g_{t+T|t} - g_t) \uparrow
\]

- Reduce long-run government expenditure growth:

\[g_{t+T|t} - g_t \downarrow\]

- Increase current expenditure, lower future expenditure:

\[g_t \uparrow, \ g_{t+T|t} \downarrow\]
Distortionary taxation and potential output

- Potential output decreasing in distortionary taxes:

\[
\tilde{y}_t(g_t) \rightarrow \tilde{y}_t(g_t, \tau_t)
\]

\[
\tau_t \uparrow \Rightarrow \tilde{y}_t \downarrow
\]

- Direct effect on output at given output gap:

\[
y_t = \tilde{y}_t(g_t, \tau_t) + \ldots
\]

- Effect on neutral rate through \(\tilde{y}_{t+T|t} - \tilde{y}_t\):

\[
\sum_{\tau=0}^{T-1} \tilde{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1}{\sigma\alpha} [\tilde{y}_{t+T|t}(g_{t+\tau|t}, \tau_{t+\tau|t}) - \tilde{y}_t(g_t, \tau_t)]
\]

\[- \frac{1 - \alpha}{\sigma\alpha} (g_{t+T|t} - g_t)
\]
Distortionary taxation and potential output

- Potential output decreasing in distortionary taxes:
 \[\bar{y}_t(g_t) \rightarrow \bar{y}_t(g_t, \tau_t) \]
 \[\tau_t \uparrow \Rightarrow \bar{y}_t \downarrow \]

- Direct effect on output at given output gap:
 \[y_t = \bar{y}_t(g_t, \tau_t) + \ldots \]

- Effect on neutral rate through \(\bar{y}_{t+T|t} - \bar{y}_t \):
 \[
 \sum_{\tau=0}^{T-1} \bar{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1}{\sigma\alpha} [\bar{y}_{t+T|t}(g_{t+\tau|t}, \tau_{t+\tau|t}) - \bar{y}_t(g_t, \tau_t)] \\
 - \frac{1 - \alpha}{\sigma\alpha} (g_{t+T|t} - g_t)
 \]
Distortionary taxation and potential output

- Potential output decreasing in distortionary taxes:

\[\tilde{y}_t(g_t) \rightarrow \tilde{y}_t(g_t, \tau_t) \]

\[\tau_t \uparrow \Rightarrow \tilde{y}_t \downarrow \]

- Direct effect on output at given output gap:

\[y_t = \tilde{y}_t(g_t, \tau_t) + ... \]

- Effect on neutral rate through \(\tilde{y}_{t+T|t} - \tilde{y}_t \):

\[\sum_{\tau=0}^{T-1} \tilde{r}_{t+\tau|t} = \sum_{\tau=0}^{T-1} \rho_{t+\tau|t} + \frac{1}{\sigma \alpha} [\tilde{y}_{t+T|t}(g_{t+\tau|t}, \tau_{t+\tau|t}) - \tilde{y}_t(g_t, \tau_t)] \]

\[- \frac{1 - \alpha}{\sigma \alpha} (g_{t+T|t} - g_t) \]
Specific comments on Drautzbureg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzburg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzburg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzbzurg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzburg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzburg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?
Specific comments on Drautzburg-Uhlig

- Explain intuition and differences from other papers!
- Intuition why ZLB doesn’t seem to matter?
- Model crisis other than bond premium shock?
- Pre-announced vs. immediate stimulus?
- Other taxes: Consumption, capital?
- Government spending and welfare?
- Public investment as in Baxter-King 93?