Fiscal Policy Can Reduce Unemployment: But There is a Better Alternative

Federal Reserve Bank of Atlanta January 9th 2010

Roger E. A. Farmer

Department of Economics UCLA

The Goals of this Research

- To understand financial crises with a model of multiple steady state equilibria
- To understand the role of fiscal policy in restoring full employment

The Conclusions

- In response to a stock market crash of 20% unemployment is predicted to increase by 20%
- A balanced budget fiscal policy can restore full employment but labor income taxes would increase by 54% to 93%
- The multiplier is between 0.33 and 0.56

A Better Policy

- Direct intervention to support the value of the stock market
- Prevent both bubbles and crashes by stock market purchases financed with agency debt

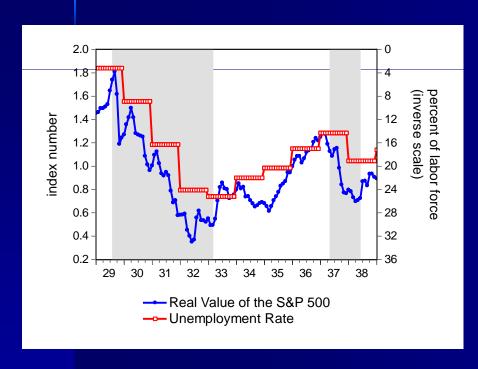
Connection with New-Keynesian Theory

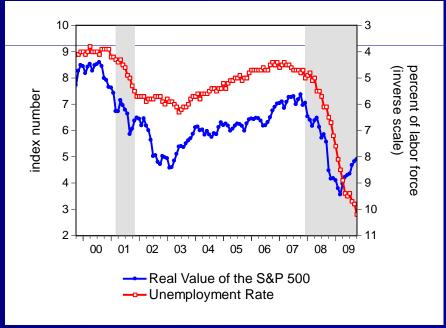
- New Keynesian economics assumes sticky prices. Deviations from the natural rate of unemployment are temporary.
- Old Keynesian economics assumes flexible prices. There is a continuum of steady state unemployment rates indexed by beliefs.

Connection with Search Theory

- Two kinds of multiplicity in search models
 - Finite multiplicities: Diamond 1982,1984
 - Steady state Continuum: Howitt and McAfee 1987
- Continuum follows from bilateral monopoly

Comparing 2008 with the Great Depression

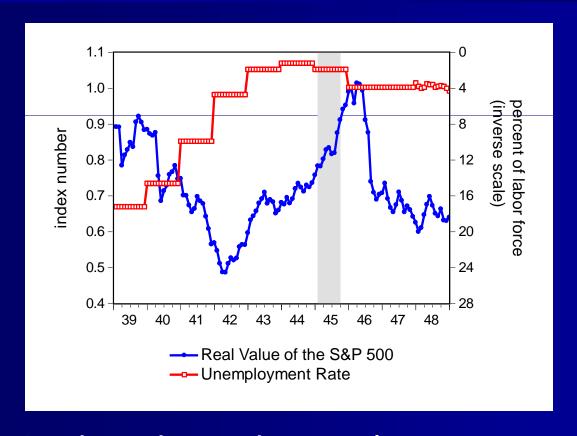




The Great Depression

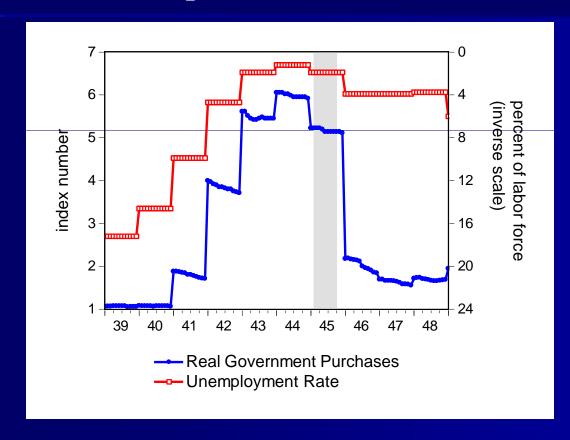
The 2008 Financial Crisis

The War-Time Recovery Doesn't Fit the Pattern



The Stock Market and Unemployment During WWII

Government Expenditure Was Important



Government Purchases and Unemployment During WWII

Structure of Talk

- I will explain the multiplicity in a representative agent version of the model
- I will explain how the model is altered to allow for overlapping generations
- I will present the results of a computational experiment

Main Idea

- Two Ideas in Keynes
- 1. Labor market is not a spot market
- 2. Animal Spirits
- This paper builds these two ideas into a micro-founded general equilibrium model

The Market Failure

- Labor market is a search market without the Nash Bargain
- Costly Search and Recruiting
- Externality supports different allocations as equilibria
- Animal spirits select an equilibrium

A Model

- 1 Lucas tree non reproducible
- 1 good produced by labor and capital
- No disutility of work everyone wants a job
- Everyone fired and rehired every period
- No uncertainty

The Labor Market

- Finding a job uses resources
- Two technologies
- Production technology
- Matching technology

Z Money value of GDP

Z. Physical goods produced

K Number of trees (Normalized to 1)

H Time endowment of household (Normalized to 1)

Money value of consumption

G Money value of government purchases

- W Money wage
 - Money rental rate
- p_k Relative price of a tree
 - p Money price of a commodity
- Q_t^s Date t value of a dollar delivered at date s

Employment

X Production workers

V Recruiters

$$L = X + V$$

Technologies

$$z = K^{1-\alpha} X^{\alpha}$$

Production technology

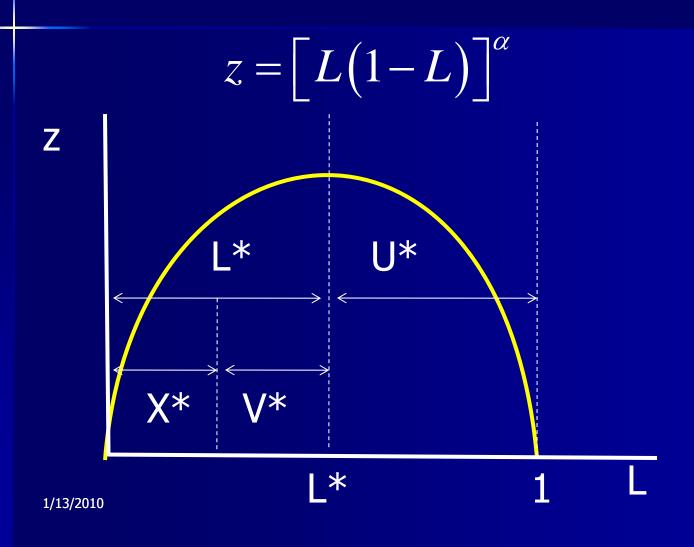
$$L = H^{1/2}V^{1/2}$$

Match technology

$$H \leq 1$$

$$K \leq 1$$

Planning Problem



20

Decentralization

- Agents take wages and prices as given
- Households take hiring probability as given
- Firms take hiring effectiveness as given
- All markets clear

More Terminology

 $ilde{q}$ Probability of a worker being hired

q One recruiter hires this many workers

$$L = \tilde{q}H$$

$$L = qV$$

Firm's Problem

$$\max p_t z_t - w_t L_t - r_t K_t$$

$$L_{t} = q_{t}V_{t}$$

$$L_t = X_t + V_t$$

$$z_t \leq K_t^{\alpha} X_t^{1-\alpha}$$

Firm's Problem

$$\max p_t K_t^{\alpha} \left[L_t \left(1 - \frac{1}{q_t} \right) \right]^{1-\alpha} - w_t L_t - r_t K_t$$

$$\alpha Z_{t} = r_{t} K_{t}$$

Firm acts like a firm in an auction market but takes *q* as given

$$(1-\alpha)Z_t = w_t L_t$$

q is an externality that represents market tightness. For any given q there is a zero profit equilibrium

Normalization

$$w_t = 1$$

$$Z_{t} = \frac{1}{1 - \alpha} L_{t}$$

Comparison with the Classical Model

Classical

$$(1-\alpha)Z = wL$$

$$L=1$$

$$w = \frac{(1 - \alpha)Z}{L}$$

Old Keynesian

$$(1-\alpha)Z = wL$$

$$w=1$$

$$L = (1 - \alpha)Z$$

Household's Problem

$$\max u = \sum_{t=0}^{\infty} \beta^t \log(c_t)$$

$$p_{k,t}K_{t+1} + p_t c_t \le (p_{k,t} + r_t)K_t + w_t \tilde{q}_t$$

Solution

$$H_t = 1$$

$$h_t = \sum_{s=t}^{\infty} Q_t^s w_t L_t$$

$$C_{t} = (1 - \beta) \left[p_{k,t} K_{t} + h_{t} \right]$$

No Arbitrage Implies

$$p_{k,t} = Q_t^{t+1} \left(p_{k,t+1} + \alpha C_{t+1} \right)$$

$$Q_t^{t+1} = \frac{\beta C_t}{C_{t+1}}$$

$$p_{k,t} = C_t \frac{\beta \alpha}{1 - \beta}$$

Proposition

■ There is a bound *b* such that for every bounded sequence of asset prices there is an equilibrium where

Equilibrium (No Government)

$$Z_{t} = C_{t} = \frac{1 - \beta}{\beta \alpha} p_{k,t}$$

$$Z_{t} = C_{t} = \frac{1 - \beta}{\beta \alpha} p_{k,t} \qquad z_{t} = c_{t} = \left[L_{t} \left(1 - \frac{1}{q_{t}} \right) \right]^{1 - \alpha}$$

$$L_{t} = \frac{C_{t}}{1 - \alpha}$$

$$p_t = \frac{C_t}{c_t}$$

$$\tilde{q}_t = L_t$$

$$U_t = 1 - L_t$$

$$q_t = \frac{1}{L_t}$$

$$V_t = L_t^2$$

What Determines Z?

- Z is aggregate demand
- Construct an infinite horizon model with a Blanchard-Weil population structure.
- Explore the role of fiscal policy.

Household's Problem

$$\max u = \sum_{t=0}^{\infty} (\beta \pi)^t \log(c_t)$$

$$p_{k,t}K_{t+1} + p_{t}c_{t} \leq (p_{k,t} + r_{t})K_{t} + w_{t}\tilde{q}_{t}(1 - \tau_{t})$$

Definition

$$\tilde{\beta} = \frac{1 - \pi \left(1 - \beta \pi\right)}{\pi}$$

$$\tilde{\alpha} = \frac{(1-\beta\pi)(1-\pi)}{1-\pi(1-\beta\pi)}$$

The Model

$$C_{t} = \frac{1}{R_{t}\tilde{\beta}}C_{t+1} + \tilde{\alpha}\left(Z_{t} + p_{k,t} + B_{t} - \tau_{t}\left(1 - \alpha\right)Z_{t}\right)$$

$$R_{t} = \frac{p_{k,t+1} + \alpha Z_{t+1}}{p_{k,t}}$$

The Model Continued

$$Z_{t} = C_{t} + G_{t}$$

$$L_{t} = (1 - \alpha) Z_{t}$$

$$\tau_{t} = \frac{1}{\left(1 - \alpha\right)Z_{t}} \left(\frac{R_{t}B_{t} - B_{t+1}}{R_{t}} + G_{t} \right)$$

Steady State

$$Z = H(R)\left(p_k + \frac{B}{R}\right) + G$$

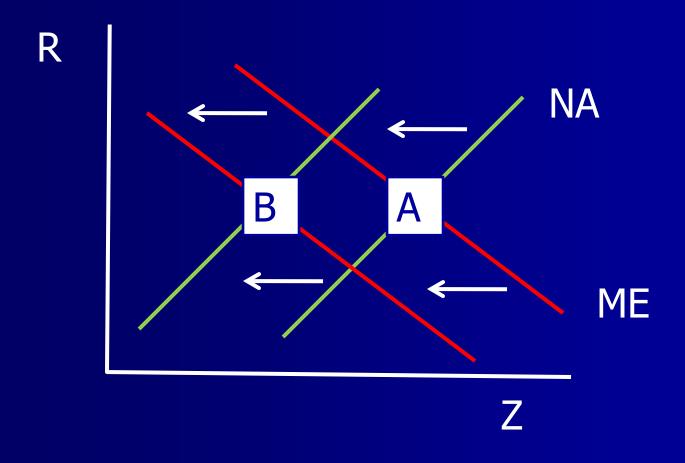
Market Equilibrium

$$R = 1 + \frac{\alpha Z}{p_k}$$

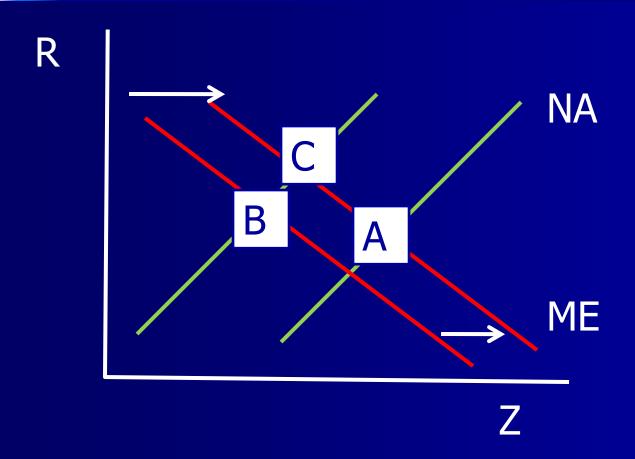
No Arbitrage

$$\tau = \frac{1}{(1-\alpha)Z} \left(\frac{(R-1)B}{R} + G \right)$$

A Market Crash



Fiscal Policy



Disc. Factor	Life Expect ancy	Stimul us % GDP	Tax incr. % Wage Inc	Cons Drop % GDP	Multipl ier	Opt Int. Rate % per yr.	New Int. Rate
β=0.97		67	100	-47	0.30	3.7	4.7
β=1	67	36	54	-16	0.56	0.09	1.1
β=0.97		61	93	-41	0.33	4.0	5.9
β=1	50	36	54	-16	0.56	1.2	1.5
β=0.97		47	72	-27	0.43	5.8	7.2
β=1	20	36	54	-16	0.56	3.0	3.8
β=0.97	12.5	43	65	-23	0.47	7.7	9.6
β=1		35	53	-15	0.57	5.0	6.2

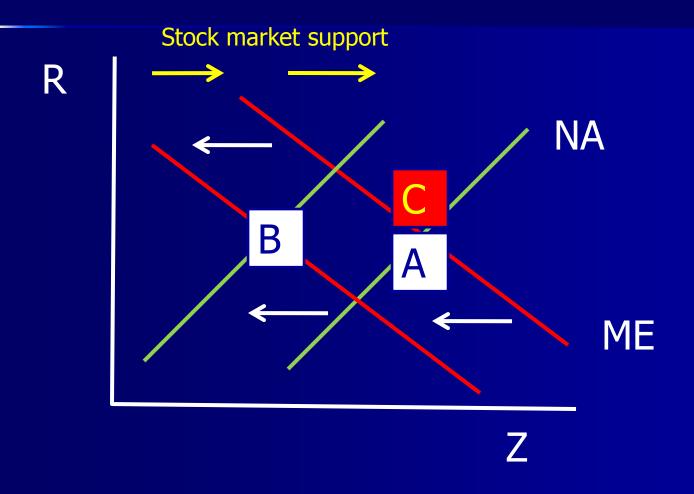
Welfare Cost

- Loss of confidence causes 20% drop in steady state consumption
- Restoring full employment reduces consumption by a further 41% of full employment GDP
- Welfare unambiguously falls

Welfare Cost if G yields Utility

- Assume Cobb Douglas Utility and C and G have equal weights
- Confidence drop of 20% reduces steady state consumption by 20%
- Restoring full employment with the wrong balance of G and C leads to a further 17% drop of utility in units of steady state consumption

Is there a Better Policy?



Summary

- Unemployment depends on selffulfilling beliefs
- The Great Depression and the 2008 Financial Crisis were caused by selffulfilling drops in confidence
- Fiscal policy may not be the best solution