Fiscal Stimulus and Distortionary Taxation

Harald Uhlig¹ Thorsten Drautzburg²

¹University of Chicago Department of Economics huhlig@uchicago.edu

²tdrautzburg@uchicago.edu

January 8, 2010

Outline

Introduction

The model

The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Question and Answers

Question:

- What is the effect of a fiscal stimulus as the ARRA?
- What are the resulting fiscal multipliers?

Answers: ...

Introduction

Bernstein-Romer, Appendix: Multipliers

What I do:

 Build on: Cogan-Cwik-Taylor-Wieland (2009), using Smets-Wouters (CCTW-SW). Lump-sum taxes.

This paper:

- Medium-to-long term effects.
- Distortionary labor taxation ...
- ... plus: rule-of-thumb consumers.
- ... plus: binding zero lower bound.

Key insights

- Output response is modest. Fiscal multipliers are typically below 1.
- Consumption response is typically negative or, at most, feebly positive.
- In the medium-to-long term:
 - Pronounced output loss due to increased tax burden.
 - Output losses large relative to initial increase.

Note: No or only moderate inflation tax on initial bond holders, i.e. no "stealing from the Chinese".

Outline

Introduction

The model

3 The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Smets-Wouters (2007): overview

- Elaborate New Keynesian model.
- Continuum of households. They supply household-specific labor in monopolistic competition. They set wages. Wages are Calvo-sticky.
- Continuum of intermediate good firms. They supply intermediate goods in monopolistic competition. They set prices. Prices are Calvo-sticky.
- Final goods use intermediate goods. Perfect competition.
- Habit formation, adjustment costs to investment, variable capital utilization.
- Monetary authority: Taylor-type rule.

Application to ARRA

- CCWT: path for government spending. Government consumption. Perhaps additively separable in utility.
- CCWT: Fed-Funds = 0 for four quarters. "Jump" to "switched-off" Taylor rule.

• This paper:

- Distortionary labor taxation, consumption taxes, capital income taxes. Steady state levels: Trabandt-Uhlig (2009).
- Details. Eg: all of labor income or without "union profits"? The former.
- Speed to return to steady state debt level: $\psi_{\tau} \in [0, 1]$.
- ... plus: rule-of-thumb consumers: $\phi \in [0, 100\%]$.
- ... plus: binding zero lower bound per discount shock, causing recession.

Tax rule

- Remaining deficit, prior to new debt and labor taxes ...
 - $f_t = \text{gov.spend.+subs.+old debt repaym.-cons.tax rev.,cap.tax rev.}$
- ... needs to be financed:

lab.tax rev. + new debt = f_t

- Steady state debt level, steady state taxes: \overline{f} .
- Tax rule:

lab.tax rev.
$$_t$$
 – lab.tax rev. = $\psi_{ au}(f_t - \overline{f})$

Outline

Introduction

2 The model

The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Outline

Introduction

2 The model

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Extensions of Smets-Wouters (2007): Investment & Consumption

Shadow price of investment – original SW with $\tau^{k} = 0$:

$$\hat{Q}_{t} = -\hat{q}_{t}^{b} - (\hat{R}_{t} - \mathbb{E}_{t}[\pi_{t+1}]) + \frac{1}{r_{*}^{k}(1 - \tau^{k}) + \delta\tau^{k} + 1 - \delta} \times [r_{*}^{k}(1 - \tau^{k})\mathbb{E}_{t}(\hat{r}_{t+1}^{k}) + (1 - \delta)\mathbb{E}_{t}(\hat{Q}_{t+1})], \quad (1)$$

Consumption growth – SW with $\tau^{j} = 0, j = I, c$ and "ex-dividend" wage w_*^h instead of w_* :

$$\hat{c}_{t} = \frac{1}{1+h/\mu} \mathbb{E}_{t}[\hat{c}_{t+1}] + \frac{h/\mu}{1+h/\mu} \hat{c}_{t-1} - \frac{1-h/\mu}{\sigma[1+h/\mu]} (\hat{q}_{t}^{b} + \hat{R}_{t} - \mathbb{E}_{t}[\hat{\pi}_{t+1}]) \\ - \frac{[\sigma-1][w_{*}n_{*}/c_{*}]}{\sigma[1+h/\mu]} \frac{1-\tau'}{1+\tau^{c}} (\mathbb{E}_{t}[\hat{n}_{t+1}] - n_{t}), \quad (2)$$

Extensions of Smets-Wouters (2007): Wages

Evolution of wages:

$$(1 + \bar{\beta}\mu)\hat{w}_{t} - \hat{w}_{t-1} - \bar{\beta}\mu\mathbb{E}_{t}[\hat{w}_{t+1}] = \frac{(1 - \zeta_{w}\bar{\beta}\mu)(1 - \zeta_{w})}{\zeta_{w}} \left[\frac{1}{1 - h/\mu} [\hat{c}_{t} - (h/\mu)\hat{c}_{t-1}] + \nu\hat{n}_{t} - \hat{w}_{t} + \frac{d\tau_{t}^{l}}{1 - \tau_{l}}] \right] - (1 + \bar{\beta}\mu\iota_{w})\hat{\pi}_{t} + \iota_{w}\hat{\pi}_{t-1} + \bar{\mu}\mathbb{E}_{t}[\pi_{t+1}] + \hat{\lambda}_{w,t}, \quad (3)$$

In the flexible economy:

$$\hat{w}_{t} = \frac{1}{1 - h/\mu} [\hat{c}_{t} - (h/\mu)\hat{c}_{t-1}] + \nu \hat{n}_{t} + \frac{d\tau_{t}^{l}}{1 - \tau_{l}}.$$
 (4)

Extensions of Smets-Wouters (2007): Tax rate and gov't deficit

Financing the current deficit:

$$\tau^{l} \frac{\boldsymbol{w}_{*} \boldsymbol{n}_{*}}{\boldsymbol{c}_{*}} \frac{\boldsymbol{c}_{*}}{\bar{\boldsymbol{Y}}} \left[\frac{\boldsymbol{d}\tau_{t}^{l}}{\tau_{l}} + \hat{\boldsymbol{w}}_{t} + \hat{\boldsymbol{n}}_{t} \right] + \epsilon_{t}^{\tau}$$

$$= \frac{\psi_{\tau}}{\mu} \left[\mu [\hat{\boldsymbol{g}}_{t}^{a} + \hat{\boldsymbol{g}}^{s}] + \frac{\boldsymbol{b}_{*}}{\bar{\boldsymbol{Y}}} \frac{\hat{\boldsymbol{b}}_{t-1} - \hat{\boldsymbol{\pi}}_{t}}{\pi_{*}} - \mu \tau_{c} \frac{\boldsymbol{c}_{*}}{\bar{\boldsymbol{Y}}} \hat{\boldsymbol{c}}_{t} - \tau^{k} [\boldsymbol{r}_{*}^{k} \boldsymbol{r}_{t}^{k} + (\boldsymbol{r}_{t}^{k} - \delta) \hat{\boldsymbol{k}}_{t-1}^{p}] \frac{\boldsymbol{k}_{*}}{\bar{\boldsymbol{Y}}} \right]$$

Budget:

$$\hat{g}_{t} + \frac{1}{\mu\pi_{*}} \frac{b_{*}}{\bar{Y}} [\hat{b}_{t-1} - \hat{\pi}_{t}] = \frac{1}{R_{*}} \frac{b_{*}}{\bar{Y}} [\hat{b}_{t} - \hat{R}_{t} - \hat{q}_{t}^{b}] + \tau_{c} \frac{c_{*}}{\bar{Y}} \hat{c}_{t} + \tau^{\prime} \frac{w_{*} n_{*}}{c_{*}} \frac{c_{*}}{\bar{Y}} \left[\frac{d\tau_{t}^{\prime}}{\tau_{l}} + \hat{w}_{t} + \hat{n}_{t} \right] + \tau^{k} [r_{*}^{k} r_{t}^{k} + (r_{t}^{k} - \delta) \hat{k}_{t-1}^{p}] \frac{k_{*}}{\mu \bar{Y}}.$$
 (6)

Unchanged SW equations: Cost and pricing equations

$$\widehat{mc}_{t} = (1 - \alpha)\widehat{w}_{t} + \alpha\widehat{t}_{t}^{k} - \gamma_{t},$$

$$(1 + \overline{\beta}\mu\nu_{p})\widehat{\pi}_{t} = \iota_{p}\widehat{\pi}_{t-1} + \overline{\beta}\mu\mathbb{E}_{t}[\widehat{\pi}_{t+1}] + A\frac{[1 - \zeta_{p}\overline{\beta}\mu][1 - \zeta_{p}]}{\zeta_{p}}\widehat{mc}_{t} + \widehat{\lambda}_{p,t}.$$
(8)

 $1 - \zeta_p$ is the probability of (potential) price adjustment.

Equations

Unchanged SW equations: Capital services and Capital Stock

Cost minimization yields:

$$\hat{k}_t = \hat{w}_t - \hat{r}_t^k + \hat{n}_t. \tag{9}$$

From the FOC with respect to capacity utilization:

$$r_*^k \hat{r}_t^k = a''(1)\hat{u}_t \qquad \Rightarrow \hat{u}_t \equiv \frac{1-\psi_u}{\psi_u}\hat{r}_t^k.$$
 (10)

The law of motion for capital implies:

$$\hat{k}_{t}^{p} = \left[1 - \frac{x_{*}}{k_{*}^{p}}\right]\hat{k}_{t-1}^{p} + \frac{x_{*}}{k_{*}^{p}}\hat{q}_{t}^{x} + \frac{x_{*}}{k_{*}^{p}}\hat{x}_{t}.$$
(11)

Unchanged SW equations: Investment and FedFunds

The FOC for investment implies:

$$\hat{x}_{t} = \frac{1}{1 + \bar{\beta}\mu} \left[\hat{x}_{t-1} + \bar{\beta}\mu \mathbb{E}_{t}(\hat{x}_{t+1}) \right] + \frac{1}{\mu^{2}S''(\mu)} [\hat{Q}_{t}^{k} + \hat{q}_{t}^{x}], \quad (12)$$

The interest rate rule:

$$\hat{R}_{t} = \rho_{R}\hat{R}_{t-1} + [1 - \rho_{R}][\psi_{1}\hat{\pi}_{t} + \psi_{2}(\hat{y}_{t} - \hat{y}_{t}^{flex})] + \psi_{3}[\hat{y}_{t} - \hat{y}_{t-1} + (\hat{y}_{t}^{flex} - \hat{y}_{t-1}^{flex})] + ms_{t}, \quad (13)$$

Here: Introduce wedge between \hat{R}_t and the relevant interest rate for the private sector for first periods.

Equations

Unchanged SW equations: Production and Expenditure

The production technology for final goods:

$$\hat{\mathbf{y}}_t = \frac{\bar{\mathbf{Y}} + \Phi}{\bar{\mathbf{Y}}} [\alpha \hat{\mathbf{k}}_t + (1 - \alpha) \hat{\mathbf{n}}_t + \gamma_t], \tag{14}$$

Spending identity with costs of capacity utilization:

$$\hat{y}_t = \hat{g}_t + \frac{c_*}{\bar{Y}}\hat{c}_t + \frac{x_*}{\bar{Y}}\hat{x}_t + \frac{r_*^k k_*}{\bar{Y}}\hat{u}_t.$$
(15)

Outline

Introduction

2 The model

The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Parameters: Estimated SW parameters I

Parameter	Value	Description
δ	0.025	depreciation rate
λ_{W}	1.5	markup labor market
g	0.18	exogenous gov't spending/GDP
μ	$1 + \frac{0.4312}{100}$	trend growth rate
β	<u>100</u> 0.1657+100	discount factor
π_*	$1 + \frac{0.7869}{100}$	inflation rate
α	0.1901	capital share in production
σ	1.3808	1/intertemporal elasticity of substitution
$\frac{\bar{Y} + \Phi}{\bar{Y}} = \lambda_p$	1.6064	fixed cost and goods market markup
	0.5187	net exports/gov't exp. reaction to techn.
$\mathcal{S}^{\prime\prime}(\mu)$	5.7606	investment adjustment cost
h	0.7133	habit persistence
\equiv_w	0.7061	calvo parameter labor market

Parameters: Estimated SW parameters II

Parameter	Value	Description
ν	1.8383	labor supply elasticity
\equiv_{ρ}	0.6523	calvo parameter goods market
ι _w	0.5845	indexation labor market
lp	0.2432	indexation goods market
	0.5462	capital utilization elasticity
ψ_1	2.0443	Taylor rule reaction to inflation
$ ho_{R}$	0.8103	Taylor rule interest rate smoothing
ψ_2	0.0882	Taylor rule long run reaction to output gap
ψ_{3}	0.2247	Taylor rule short run reaction to output gap

Parameters: Calibration and Implications

Parameter	Value	Description
$\frac{b}{\overline{Y}}$	0.63	Debt to GDP ratio
$ au_{k}$	0.36	capital tax
$ au_l$	0.28	wage tax rate
$ au_{c}$	0.05	consumption tax rate
	0.1059	implied transfer payment
	0.0097	Interest payments relative to GDP
	0.2268	Labor tax revenue relative to GDP
	0.0335	Capital tax revenue relative to GDP
	0.0353	Consumption tax revenue relative to GDP

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

4 F

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

Results

• Comparison to neoclassical growth.

- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

A neoclassical growth model

Comparison to a neoclassical growth:

- standard, but ..
- ... add distortionary labor taxes, capital income taxes, consumption taxes.
- Frisch elasticity: 1.
- Calibration: Trabandt-Uhlig (2009).
- Consider an anticipated permanent increase in government spending.

Results

SW-DU

Neoclass. vs SW-DU: announced, $\psi_{\tau} = 0.03$.

Neoclass.

Impulse response to gov.spending announcement shock ,u_=0.03 government spending (% in 1.5 government spending(0.5 output 0.5 percent Dercent τ (wage tax rate, perc. points) (wage tax.perc. poir -0.5 consumption -0.5 -1 -1.5 consumption -1 2010 2011 2012 2013 2012 2013 2009 2009 2010 2011 2014 Year vear

Neoclass. vs SW-DU: perm., ann., $\psi_{\tau} =$ 0.03. Long run.

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Short-run. $\psi_{\tau} = .03$ vs lump-sum.

Medium-run. $\psi_{\tau} = .03$ vs lump-sum.

Fiscal stimulus: medium run. $\psi_{\tau} = 0.03$.

Spending increase, short-run output dynamics: various ψ_{τ} .

Spending increase, short-run fiscal multipliers

Spending increase, short-run tax dynamics: various $\psi_\tau.$

Spending increase, short-run debt dynamics: various ψ_{τ} .

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.

Including Rule-of-Thumb Consumers.

- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Consumption of the two agents

Modify consumption Euler equation to account for Rational Agents only:

$$\hat{c}_{t}^{RA} = \frac{1}{1+h/\mu} \mathbb{E}_{t}[\hat{c}_{t+1}] + \frac{h/\mu}{1+h/\mu} \hat{c}_{t-1} - \frac{1-h/\mu}{\sigma[1+h/\mu]} (\hat{q}_{t}^{b} + \hat{R}_{t} - \mathbb{E}_{t}[\hat{\pi}_{t+1}]) \\ - \frac{[\sigma-1][w_{*}n_{*}/c_{*}^{RA}]}{\sigma[1+h/\mu]} \frac{1-\tau'}{1+\tau^{c}} (\mathbb{E}_{t}[\hat{n}_{t+1}] - n_{t}), \quad (16)$$

The consumption of the Rule-of-Thumb consumer is determined from their budget constraint:

$$\hat{c}_{t}^{RoT} = (1 - \tau^{l}) \frac{w_{*} n_{*}}{c_{*}^{RoT}} \left[\hat{w}_{t} + \hat{n}_{t} - \frac{d\tau^{l}}{1 - \tau^{l}} \right],$$
(17)

using $\hat{n}_t = \hat{n}_t^{RoT} = \hat{n}_t^{RA}$ and $n_* = n_*^{RoT} = n_*^{RA}$.

Aggregating consumption

Aggregate consumption:

$$\hat{c}_{t} = \frac{c_{*}^{RA}}{c_{*}} (1 - \phi) \hat{c}_{t}^{RA} + \frac{c_{*}^{RoT}}{c_{*}} \phi \hat{c}_{t}^{RoT},$$
(18)

where

$$egin{aligned} & c_*^{RoT} = rac{w_* n_* (1 - au^l) + s_*}{1 + au^c}, \ & c_*^{RA} = rac{c_* - \phi c_*^{RoT}}{1 - \phi}. \end{aligned}$$

Distorting taxation and Rule-of-Thumb Consumers: $\psi_{\tau} = 0.03, \ \phi = 0.50.$

Medium run.

Comparing consumption patterns, $\psi_{\tau} = 0.03$.

Short run: $\psi_{\tau} = 0.03$, vary rules-of-thumb fraction ϕ .

Short run: $\phi = 0.75$, vary ψ_{τ} .

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

4 R

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Zero nominal interest rates

- Before (and following CCWT): for four quarters, "switch off" Taylor rule and set nominal interest rate to zero instead.
- SW/CCWT: steady state quarterly nominal interest rate is 1.55%
- Now: recession per bond-premium-shock *q*^b_t: Consumers want to save more at any given interest rate (Christiano, Eichenbaum and Rebelo (2009)). Increase half-life of shock to one period (SW: <0.5 periods).
- Zero lower bound becomes binding with a bond-premium shock of 0.165, implying a (quarterly) change in GDP of -5.46%.
- Assume shock of 0.20.

Results

- Extreme scenario.
- Examine differences between "with" and "without" stimulus.
- Results are practically the same as before.
- Erceg-Lindé, 2009.

Without stimulus, $\psi_{\tau} = 0.03$.

With stimulus, $\psi_{\tau} = 0.03$.

Difference between with and without stimulus.

SW-DU, Bondpremium-Shock with binding ZLB: Difference, compared to "switching off".

Rates: Difference between with and without stimulus.

Chemotherapy

Outline

- ۲
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound. ۲

Chemotherapy ۹

i = 0 for 0 quarters ($\psi_{\tau} = 0.03$).

i = 0 for 4 quarters ($\psi_{\tau} = 0.03$).

i = 0 for 8 quarters ($\psi_{\tau} = 0.03$).

i = 0 for 12 quarters ($\psi_{\tau} = 0.03$).


```
i = 0 for 16 quarters (\psi_{\tau} = 0.03).
```


i = 0 for 20 quarters ($\psi_{\tau} = 0.03$).

i = 0 for 16 quarters ($\psi_{\tau} = 0.03$). Long run

i = 0 for 12 quarters ($\psi_{\tau} = 0.03$). Long run

Comparing binding ZLB, "switching off" with proper ZLB. 12 quarters

($\psi_{\tau} = 0.03$, scaling the interest rate down to 2/3 of actual value in interest rate rule. High persistence, $\rho_b = 0.9$. Shocks: 2.38% for 16 qtrs, 2.02% for 12 qtrs, 1.57% for 8 qtrs, 1.43% for 5 qtrs.)

Comparing binding ZLB, "switching off" with proper ZLB. 16 quarters

($\psi_{\tau} = 0.03$, scaling the interest rate down to 2/3 of actual value in interest rate rule. High persistence, $\rho_b = 0.9$. Shocks: 2.38% for 16 qtrs, 2.02% for 12 qtrs, 1.57% for 8 qtrs, 1.43% for 5 qtrs.)

Evaluation

What does it take for the ZLB to bind?

Disclaimer: based on linear extrapolation of the case of a non-binding ZLB. This is a problem because it neglects the feedback – since the recession is stronger if the ZLB binds, a smaller shock is needed for a given decline in interest rates.

Necessary initial bond premium shock to make ZLB exactly binding at x quarters

With a maximal contraction of 50%, ZLB of x quarters obtains for ...

Generating a binding ZLB at x horizons leads to...

Outline

Introduction

2 The model

3 The model: Details

- Equations
- Parameters

Results

- Comparison to neoclassical growth.
- No rules-of-thumb, no binding zero lower bound.
- Including Rule-of-Thumb Consumers.
- A binding zero Lower Bound.
- Chemotherapy

Conclusions

Conclusions

In the context of this model, the impact of a government spending stimulus ...

- ... is very sensitive to assumptions about taxes.
- ... on output is rarely larger than the government spending increase
- ... is a comparatively larger output loss later on, due to the increased tax burden.

Furthermore,

- Consumption declines.
- Rules-of-thumb agents do not change the results much. Consumption may be feebly positive, the increase in output is somewhat larger.
- Binding zero lower bound: does not change the results much, if temporary, and is extreme and fragile, if longer.

Therefore: tax considerations and medium-term impacts merit much more attention!