The Distributional Consequences of Government Spending

Santanu Chatterjee *University of Georgia*

Stephen J. Turnovsky *University of Washington*

 Government provision of public goods: mechanism to redistribute wealth across society

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like
 China and India to sustain growth rates of the last decade

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like
 China and India to sustain growth rates of the last decade
- What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like
 China and India to sustain growth rates of the last decade
- What effect might these *pro-growth* policies have on the *distributions* of wealth, income, and welfare?
- This is an important policy question:

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like
 China and India to sustain growth rates of the last decade
- What effect might these *pro-growth* policies have on the *distributions* of wealth, income, and welfare?
- This is an important policy question:
 - Inequality has been rising in both OECD and non-OECD countries (Atkinson, 2003, Smeeding, 2002)

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like
 China and India to sustain growth rates of the last decade
- What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?
- This is an important policy question:
 - Inequality has been rising in both OECD and non-OECD countries (Atkinson, 2003, Smeeding, 2002)
 - Reducing inequality may be a social objective for the government (Anand and Segal, 2008)

• Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)
- Link between public goods and inequality is ambiguous

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)
- Link between public goods and inequality is ambiguous
 - Ferranti (2004), Calderon and Serven (2004), Banerjee (2004), Khandker and Koolwal (2007)

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)
- Link between public goods and inequality is ambiguous
 - Ferranti (2004), Calderon and Serven (2004), Banerjee (2004), Khandker and Koolwal (2007)
- Growth and inequality are both endogenous outcomes in the development process

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)
- Link between public goods and inequality is ambiguous
 - Ferranti (2004), Calderon and Serven (2004), Banerjee (2004), Khandker and Koolwal (2007)
- Growth and inequality are both endogenous outcomes in the development process
 - Focus on underlying factors that drive both these processes

- Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits
 - Arrow and Kurz (1970), Barro (1990), Glomm and Ravikumar(1994),
 Gramlich (1994), Devarajan et al. (1996), Fisher and Turnovsky (1998)
- Link between public goods and inequality is ambiguous
 - Ferranti (2004), Calderon and Serven (2004), Banerjee (2004), Khandker and Koolwal (2007)
- Growth and inequality are both endogenous outcomes in the development process
 - Focus on underlying factors that drive both these processes
 - Need for an underlying mechanism that relates public policy, growth, and inequality

Objectives and Contributions

 Synthesizes two independent strands of research into a unified framework:

Objectives and Contributions

- Synthesizes two independent strands of research into a unified framework:
 - Growth-Inequality literature has not dealth with issues related to public investment and its financing

Objectives and Contributions

- Synthesizes two independent strands of research into a unified framework:
 - **Growth-Inequality literature** has not dealth with issues related to public investment and its financing
 - Public investment-Growth literature has generally ignored distributional questions

• The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)

- The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)
- Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is identical to that of a representative consumer

- The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)
- Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is identical to that of a representative consumer
- One can then study the evolution of a cross-section of consumers relative to the mean

- The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)
- Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is identical to that of a representative consumer
- One can then study the evolution of a cross-section of consumers relative to the mean
 - Caselli and Ventura (2000), Sorger (2000, 2002), Garcia-Penalosa and Turnovsky (2006, 2008), Kraay and Raddatz (2007), Carroll and Young (2009), Barnett et al. (2009)

• Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare
- Government-provided public capital:

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
 - Interacts with private capital to generate composite externalities for both labor (in production) and leisure (in utility)

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
 - Interacts with private capital to generate composite externalities for both labor (in production) and leisure (in utility)
 - financed by a range of distortionary taxes (on capital, labor, or consumption) or debt/lumpsum taxes

- Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
- Labor-leisure choice is endogenous
- Initial distribution of private capital ⇒ equilibrium distribution of labor supply ⇒ distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
 - Interacts with private capital to generate composite externalities for both labor (in production) and leisure (in utility)
 - financed by a range of distortionary taxes (on capital, labor, or consumption) or debt/lumpsum taxes
 - a determinant of growth and distributional dynamics: affects relative factor returns

Firms and Technology

• Firms (indexed by *j*) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha \left(X_{P} L_{j} \right)^{-\rho} + \left(1 - \alpha \right) K_{j}^{-\rho} \right]^{-1/\rho}$$

Firms and Technology

 Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha (X_{P}L_{j})^{-\rho} + (1-\alpha) K_{j}^{-\rho} \right]^{-1/\rho}$$

• L_j : employment of labor by firm j

Firms and Technology

 Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha (X_{P}L_{j})^{-\rho} + (1-\alpha) K_{j}^{-\rho} \right]^{-1/\rho}$$

- L_j : employment of labor by firm j
- K_j : employment of private capital by firm j

Firms and Technology

 Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha \left(X_{P} L_{j} \right)^{-\rho} + \left(1 - \alpha \right) K_{j}^{-\rho} \right]^{-1/\rho}$$

- L_j : employment of labor by firm j
- ullet K_j : employment of private capital by firm j
- ullet $X_P=K^{arepsilon}K_G^{1-arepsilon}$: composite "public-private" externality $(0\leq arepsilon \leq 1)$

Firms and Technology

ullet Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha (X_{P}L_{j})^{-\rho} + (1-\alpha) K_{j}^{-\rho} \right]^{-1/\rho}$$

- L_j : employment of labor by firm j
- ullet K_j : employment of private capital by firm j
- $X_P = K^{\varepsilon} K_G^{1-\varepsilon}$: composite "public-private" externality $(0 \le \varepsilon \le 1)$
 - \bullet K : aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)

Firms and Technology

• Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha (X_{P}L_{j})^{-\rho} + (1-\alpha) K_{j}^{-\rho} \right]^{-1/\rho}$$

- L_j : employment of labor by firm j
- ullet K_j : employment of private capital by firm j
- $X_P = K^{\varepsilon} K_G^{1-\varepsilon}$: composite "public-private" externality $(0 \le \varepsilon \le 1)$
 - K: aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)
 - K_G: aggregate stock of public capital (infrastructure), provided by the government

Firms and Technology

 Firms (indexed by j) are all identical and use the following CES production technology

$$Y_{j} = A \left[\alpha (X_{P}L_{j})^{-\rho} + (1-\alpha) K_{j}^{-\rho} \right]^{-1/\rho}$$

- L_i: employment of labor by firm j
- K_j : employment of private capital by firm j
- $X_P = K^{\varepsilon} K_G^{1-\varepsilon}$: composite "public-private" externality $(0 \le \varepsilon \le 1)$
 - K: aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)
 - $m{\epsilon}$ K_G : aggregate stock of public capital (infrastructure), provided by the government
- ullet s=1/(1+
 ho) : elasticity of substitution between private capital and "effective" labor in production

Firms and Technology

 Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

$$w = \omega(z, l)K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1 + \rho} z^{-\rho(1 - \varepsilon)}$$
$$r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1 + \rho}$$

Firms and Technology

 Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

$$w = \omega(z, l)K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1 + \rho} z^{-\rho(1 - \varepsilon)}$$
$$r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1 + \rho}$$

• $z = K_G/K$: economy-wide ratio of public to private capital

Firms and Technology

 Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

$$w = \omega(z, l)K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1 + \rho} z^{-\rho(1 - \varepsilon)}$$
$$r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1 + \rho}$$

- $z = K_G/K$: economy-wide ratio of public to private capital
- L = 1 I: average employment of labor

Firms and Technology

 Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

$$w = \omega(z, l)K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1 + \rho} z^{-\rho(1 - \varepsilon)}$$
$$r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1 + \rho}$$

- $z = K_G/K$: economy-wide ratio of public to private capital
- ullet L=1-I: average employment of labor
- $y(z, l) = A \left[\alpha \left\{ (1 l) z^{1 \varepsilon} \right\}^{-\rho} + (1 \alpha) \right]^{-1/\rho}$: average product of private capital (output-capital ratio)

Consumers

• Continuum of infinitely-lived consumers, indexed by i

Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, **except** for initial endowment of private capital (wealth), $K_{i,0}$

Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), K_{i,0}
- The *i*-th consumer's (cross section's) resource allocation problem:

Maximize
$$U_i = \int_0^\infty \frac{1}{\gamma} \left[C_i^{-v} + \theta \left(X_U I_i \right)^{-v} \right]^{-\gamma/v} e^{-\beta t} dt$$

subject to

$$\dot{K}_i = (1 - \tau_k) r K_i + (1 - \tau_w) w (1 - I_i) - (1 + \tau_c) C_i - T$$
 $K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}$

Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), K_{i,0}
- The i-th consumer's (cross section's) resource allocation problem:

$$\mathsf{Maximize} \ \textit{U}_{\textit{i}} = \int_{0}^{\infty} \frac{1}{\gamma} \left[\textit{C}_{\textit{i}}^{-\textit{v}} + \theta \left(\textit{X}_{\textit{U}}\textit{I}_{\textit{i}}\right)^{-\textit{v}}\right]^{-\gamma/\textit{v}} e^{-\beta t} dt$$

subject to

$$\dot{K}_i = (1 - au_k) r K_i + (1 - au_w) w (1 - I_i) - (1 + au_c) C_i - T$$
 $K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}$

• $X_U = K^{\varphi} K_G^{1-\varphi}$: composite "public-private" externality (creates units of "effective" leisure), $0 \le \varphi \le 1$

Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), K_{i,0}
- The i-th consumer's (cross section's) resource allocation problem:

Maximize
$$U_i = \int_0^\infty \frac{1}{\gamma} \left[C_i^{-v} + \theta \left(X_U I_i \right)^{-v} \right]^{-\gamma/v} e^{-\beta t} dt$$

subject to

$$\dot{K}_i = (1 - \tau_k) r K_i + (1 - \tau_w) w (1 - I_i) - (1 + \tau_c) C_i - T$$
 $K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}$

- $X_U = K^{\varphi} K_G^{1-\varphi}$: composite "public-private" externality (creates units of "effective" leisure), $0 \le \varphi \le 1$
- q = 1/(1+v): intratemporal elasticity of susbstitution between consumption and effective leisure

Government

• Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by

$$\dot{K}_g = G = gY$$
, $0 < g < 1$

Government

• Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by

$$\dot{K}_g = G = gY$$
, $0 < g < 1$

• Maintains a balanced budget

$$G = \tau_k r K + \tau_w w (1 - I) + \tau_c C + T$$

Government

 Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by

$$\dot{K}_g = G = gY$$
, $0 < g < 1$

Maintains a balanced budget

$$G = \tau_k r K + \tau_w w (1 - I) + \tau_c C + T$$

ullet Lumsum tax revenues, T, is a fraction of aggregate GDP:

$$T = \tau Y$$
, $0 < \tau < 1$

• Due to the Gorman (1953) properties, the aggregate equilibrium is independent of distributional characterisites:

$$\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]$$

$$\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}$$

• Due to the Gorman (1953) properties, the aggregate equilibrium is independent of distributional characterisites:

$$\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]$$

$$\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}$$

 Evolution of the aggregate economy represents the behavior of averages:

$$egin{aligned} z(t) &= ilde{z} + (z_0 - ilde{z}) \mathrm{e}^{\mu t} \ I(t) &= ilde{I} + rac{(\mu - a_{11})}{a_{12}} [z(t) - ilde{z}] \end{aligned}$$

• Due to the Gorman (1953) properties, the aggregate equilibrium is *independent* of distributional characterisitcs:

$$\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]$$

$$\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}$$

 Evolution of the aggregate economy represents the behavior of averages:

$$egin{align} z(t) &= ilde{z} + (z_0 - ilde{z}) \mathrm{e}^{\mu t} \ I(t) &= ilde{I} + rac{(\mu - a_{11})}{a_{12}} [z(t) - ilde{z}] \ \end{split}$$

• μ is the stable eigenvalue of the dynamic system, and a_{ij} are linearized coefficients

• Due to the Gorman (1953) properties, the aggregate equilibrium is *independent* of distributional characterisitcs:

$$\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]$$

$$\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}$$

 Evolution of the aggregate economy represents the behavior of averages:

$$z(t)= ilde{z}+(z_0- ilde{z})e^{\mu t}$$
 $I(t)= ilde{I}+rac{(\mu-a_{11})}{a_{12}}[z(t)- ilde{z}]$

- μ is the stable eigenvalue of the dynamic system, and a_{ij} are linearized coefficients
- Convergence to a balanced growth path in the steady-state

• Relative capital/wealth is defined as $k_i = K_i/K$

- Relative capital/wealth is defined as $k_i = K_i/K$
- Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + rac{\delta_1(ilde{z}, ilde{l})}{\mu - \delta_2(ilde{z}, ilde{l})} \left(z_0 - ilde{z}
ight) e^{\mu t}
ight] \left(ilde{k}_i - 1
ight)$$

- Relative capital/wealth is defined as $k_i = K_i/K$
- Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + rac{\delta_1(ilde{z}, ilde{l})}{\mu - \delta_2(ilde{z}, ilde{l})} \left(z_0 - ilde{z}
ight) e^{\mu t}
ight] \left(ilde{k}_i - 1
ight)$$

• Steady-state relationship between relative wealth and leisure:

$$ilde{J}_i - ilde{I} = \underbrace{\left[ilde{I} - rac{\Delta(ilde{z}, ilde{I})}{\Gamma(ilde{z}, ilde{I})}
ight]}_{+} \left(ilde{k}_i - 1
ight)$$

- Relative capital/wealth is defined as k_i = K_i/K
- Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + rac{\delta_1(ilde{z}, ilde{l})}{\mu - \delta_2(ilde{z}, ilde{l})} \left(z_0 - ilde{z}
ight) e^{\mu t}
ight] \left(ilde{k}_i - 1
ight)$$

• Steady-state relationship between relative wealth and leisure:

$$ilde{\mathcal{J}}_i - ilde{\mathcal{J}} = \underbrace{\left[ilde{\mathcal{I}} - rac{\Delta(ilde{oldsymbol{z}}, ilde{\mathcal{I}})}{\Gamma(ilde{oldsymbol{z}}, ilde{\mathcal{I}})}
ight]}_+ (ilde{k}_i - 1)$$

 Agents with above average wealth consume above average leisure (Holtz-Eakin et al., 1993, Algan et al., 2003)

- ullet Relative capital/wealth is defined as $k_i = K_i/K$
- Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + rac{\delta_1(ilde{z}, ilde{l})}{\mu - \delta_2(ilde{z}, ilde{l})} \left(z_0 - ilde{z}
ight) e^{\mu t}
ight] \left(ilde{k}_i - 1
ight)$$

• Steady-state relationship between relative wealth and leisure:

$$ilde{l}_i - ilde{l} = \underbrace{\left[ilde{l} - rac{\Delta(ilde{z}, ilde{l})}{\Gamma(ilde{z}, ilde{l})}
ight]}_+ \left(ilde{k}_i - 1
ight)$$

- Agents with above average wealth consume above average leisure (Holtz-Eakin et al., 1993, Algan et al., 2003)
- Dispersion of relative wealth:

$$\sigma_k(t) = \frac{\left[1 + \frac{\delta_1(\tilde{z},\tilde{l})}{\mu - \delta_2(\tilde{z},\tilde{l})} \left\{z(t) - \tilde{z}\right\}\right]}{\left[1 + \frac{\delta_1(\tilde{z},\tilde{l})}{\mu - \delta_2(\tilde{z},\tilde{l})} \left\{z_0 - \tilde{z}\right\}\right]} \sigma_{k,0}$$

• Relative income: $y_i = Y_i/Y$

- Relative income: $y_i = Y_i/Y$
 - Dispersion of **pre-tax** relative income:

$$\sigma_{y}(t) = \zeta(t)\sigma_{k}(t)$$

- Relative income: $y_i = Y_i/Y$
 - Dispersion of **pre-tax** relative income:

$$\sigma_{y}(t) = \zeta(t)\sigma_{k}(t)$$

Dispersion of post-tax relative income:

$$\sigma_{y}^{N}(t) = \left[\zeta(t) + \frac{s_{k}(t)(\tau_{w} - \tau_{k})(1 - \zeta(t))}{(1 - \tau_{w})(1 - s_{k}(t)) + (1 - \tau_{k})s_{k}(t)}\right]\sigma_{k}(t)$$

- Relative income: $y_i = Y_i/Y$
 - Dispersion of **pre-tax** relative income:

$$\sigma_{y}(t) = \zeta(t)\sigma_{k}(t)$$

Dispersion of post-tax relative income:

$$\sigma_{y}^{N}(t) = \left[\zeta(t) + \frac{s_{k}(t)(\tau_{w} - \tau_{k})(1 - \zeta(t))}{(1 - \tau_{w})(1 - s_{k}(t)) + (1 - \tau_{k})s_{k}(t)}\right]\sigma_{k}(t)$$

ullet $s_k(t)$: share of capital in total income

- Relative income: $y_i = Y_i/Y$
 - Dispersion of pre-tax relative income:

$$\sigma_{y}(t) = \zeta(t)\sigma_{k}(t)$$

Dispersion of post-tax relative income:

$$\sigma_{y}^{N}(t) = \left[\zeta(t) + \frac{s_{k}(t)(\tau_{w} - \tau_{k})(1 - \zeta(t))}{(1 - \tau_{w})(1 - s_{k}(t)) + (1 - \tau_{k})s_{k}(t)}\right]\sigma_{k}(t)$$

- $s_k(t)$: share of capital in total income
- $\zeta(t) =$

$$s_k(t) - \left[1 - s_k(t)\right] \frac{I(t)}{1 - I(t)} \left[1 - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})\tilde{l}}\right] \left[1 + \frac{\delta_1(\tilde{z}, \tilde{l})}{\mu - \delta_2(\tilde{z}, \tilde{l})} \left\{z(t) - \tilde{z}\right\}\right]^{-1}$$

Distributional Dynamics: Welfare

Relative welfare:

$$rac{U_i}{U} = \left[1 + \left(1 - rac{\Delta(ilde{z}, ilde{l})}{\Gamma(ilde{z}, ilde{l}) ilde{l}}
ight) \left(ilde{k}_i - 1
ight)
ight]^{\gamma}$$

Distributional Dynamics: Welfare

Relative welfare:

$$rac{U_i}{U} = \left[1 + \left(1 - rac{\Delta(ilde{z}, ilde{l})}{\Gamma(ilde{z}, ilde{l}) ilde{l}}
ight) \left(ilde{k}_i - 1
ight)
ight]^{\gamma}$$

• Dispersion of relative welfare

$$\sigma_u = \left[1 - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})\tilde{l}}\right] \tilde{\sigma}_k$$

• Increase in government spending on public capital, financed by an increase in

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - · capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - · capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - · capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - · capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion
- Robustness check:

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion
- Robustness check:
 - spillover effect (externality) of government spending

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion
- Robustness check:
 - spillover effect (externality) of government spending
 - intratemporal elasticity of substitution between

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion
- Robustness check:
 - spillover effect (externality) of government spending
 - intratemporal elasticity of substitution between
 - private capital and labor in production

- Increase in government spending on public capital, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax
- Effects on the distributional dynamics of wealth and income
- Nature of the growth-income inequality relationship along the transition path
- Relationship between average welfare and its dispersion
- Robustness check:
 - spillover effect (externality) of government spending
 - intratemporal elasticity of substitution between
 - private capital and labor in production
 - consumption and leisure in utility

Benchmark Specification of Structural Parameters

Preferences	$eta=$ 0.04, $\gamma=-$ 1.5, $ heta=$ 1.75, $v=$ 0
Production	$A = 0.6, \ \alpha = 0.6, \ \rho = 0$
Externalities	arepsilon = arphi = 0.6
Fiscal	$g = 0.05$, $\tau = 0.05$, $\tau_k = \tau_w = \tau_c = 0$

• Benchmark: Cobb-Douglas production and utility functions

• Benchmark equilibrium:

• Benchmark equilibrium:

•					
	Financing Policy	ž	Ĩ	$ ilde{y}$	$ ilde{\psi}(\%)$
	Lump-sum tax financing, $ au=0.05$	0.531	0.714	0.243	2.29

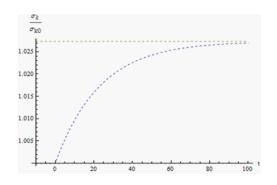
Benchmark equilibrium:

d

•					
	Financing Policy	ĩ	Ĩ	ỹ	$ ilde{\psi}(\%)$
ĺ	Lump-sum tax financing, $ au=0.05$	0.531	0.714	0.243	2.29

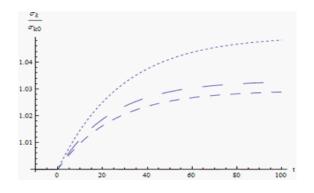
• An increase in government spending from 5% to 8% of GDP (dg = 0.03)

• Benchmark equilibrium:


•					
	Financing Policy	ž	Ĩ	ỹ	$ ilde{\psi}(\%)$
	Lump-sum tax financing, $ au=0.05$	0.531	0.714	0.243	2.29

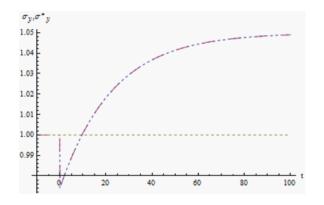
• An increase in government spending from 5% to 8% of GDP (dg = 0.03)

Delley Change (dr. 0.02)	.1~	-ĩĩ	-1.7.
Policy Change $(dg = 0.03)$	dž	aı	αψ
Lump-sum tax-financing $(d au=0.03)$	0.259	-0.01	0.206
Capital income tax-finaning $(d\tau_k = 0.075)$	0.353	-0.006	0.101
Labor income tax-financing $(d au_w=0.05)$	0.268	0.002	0.168
Consumption tax-financing $(d au_c=0.096)$	0.265	-0.001	0.179


Wealth Inequality

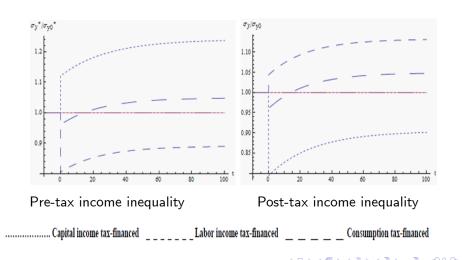
Effects of an Increase in Government Spending: Lumpsum Tax-financing

Wealth Inequality


Effects of an Increase in Government Spending: Distortionary Tax-financing

...... Capital income tax-financed Labor income tax-financed Consumption tax-financed

Income Inequality


Effects of an Increase in Government Spending: Lumpsum Tax-financing,

Pre- and Post-tax Income Inequality

Income Inequality

Effects of an Increase in Government Spending: Distortionary Tax-financing

 The distributional effects of an increase in government spending are robust to

- The distributional effects of an increase in government spending are robust to
 - ullet the intratemporal elasticity of substitution between private capital and labor in the production function, s=1/(1+
 ho) (Figure 3)

- The distributional effects of an increase in government spending are robust to
 - the intratemporal elasticity of substitution between private capital and labor in the production function, $s=1/(1+\rho)$ (Figure 3)
 - the intratemporal elasticity of substitution between consumption and leisure in the utility function, q=1/(1+v) (Figure 4)

- The distributional effects of an increase in government spending are robust to
 - the intratemporal elasticity of substitution between private capital and labor in the production function, $s=1/(1+\rho)$ (Figure 3)
 - the intratemporal elasticity of substitution between consumption and leisure in the utility function, q=1/(1+v) (Figure 4)
 - relative magnitude of the composite public-private externality in the utility and production functions, φ and ε (Table 4)

The Growth-Inequality Relationship

Generated by an Increase in Government Spending

A. Composite Externality in Utility and Production, $\varepsilon = \varphi = 0.6$ (Benchmark Case)

Policy Change	Short Run Change Long Run Change			nge		
	Growth	Post-tax		Growth	Post-tax	
		Income Ineq.	Relation		Income Ineq.	Relation
Lump-sum tax-financed increase in g	0.129	-2.602	-	0.206	4.996	+
Capital income tax-financed increase in g	0.044	-9.174	-	0.101	-0.149	-
Labor income tax-financed increase in g	0.096	-0.110	_	0.168	7.933	+
Consumption tax-financed increase in g	0.106	-3.117	_	0.179	4.955	+

B. Public Good Externality in Utility Function: $\varphi = 0$, $\varepsilon = 1$

Policy Change		Short Run Cha	nge	e Long Run Change		
	Growth	Post-tax Income Ineq.	Relation	Growth	Post-tax Income Ineq.	Relation
Lump-sum tax-financed increase in g	-0.107	-4.964	+	0.025	3.373	+
Capital income tax-financed increase in g	-0.215	-11.631	+	-0.102	-2.199	+
Labor income tax-financed increase in g	-0.136	-2.511	+	-0.010	6.210	_
Consumption tax-financed increase in g	-0.128	-5.468	+	-0.0002	3.315	_

C. Public Good Externality in Production Function: $\varphi = 1$, $\varepsilon = 0$

Policy Change		Short Run Char	Change Long Run Change			nge
	Growth	Post-tax		Growth	Post-tax	
		Income Ineq.	Relation		Income Ineq.	Relation
Lump-sum tax-financed increase in g	0.409	-2.287	_	0.446	8.392	+
Capital income tax-financed increase in g	0.377	-9.087	-	0.386	4.060	+
Labor income tax-financed increase in g	0.375	0.113	+	0.408	11.531	+
Consumption tax-financed increase in g	0.385	-2.938	_	0.419	8.479	+

Trade-off between Average Welfare and its Dispersion

Generated by an Increase in Government Spending

A. Composite Externality in Utility and Production, $\varepsilon = \varphi = 0.6$ (Benchmark Case)

Policy Change	$d\widetilde{W}(\%)$	$d\widetilde{\sigma}_{u}(\%)$
Lump-sum tax-financed increase in g	4.012	5.415
Capital income tax-financed increase in g	1.790	3.620
Labor income tax-financed increase in g	3.139	2.996
Consumption tax-financed increase in g	3.398	2.946

B. Public Good Externality in Utility Function: $\varphi = 0$, $\varepsilon = 1$

Policy Change	$d\widetilde{W}(\%)$	$d\widetilde{\sigma}_{u}(\%)$
Lump-sum tax-financed increase in g	6.830	5.773
Capital income tax-financed increase in g	5.041	3.872
Labor income tax-financed increase in g	5.930	3.312
Consumption tax-financed increase in g	6.198	3.299

C. Public Good Externality in Production Function: $\varphi = 1$, $\varepsilon = 0$

Policy Change	d₩(%)	$d\widetilde{\sigma}_{u}(\%)$
Lump-sum tax-financed increase in g	3.384	6.300
Capital income tax-financed increase in g	1.227	4.929
Labor income tax-financed increase in g	2.554	3.926
Consumption tax-financed increase in g	2.801	3.902

• Three issues:

- Three issues:
 - Effects of pro-growth fiscal policies on inequality

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies
- Summary of results:

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

 Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
- Government spending increases average welfare but also its dispersion

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
- Government spending increases average welfare but also its dispersion
- Results robust to variations in structural parameters

• This framework can be used to examine a number of public policy issues and their distributional consequences:

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting
 - foreign aid

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting
 - foreign aid
 - other sources of initial inequality

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting
 - foreign aid
 - other sources of initial inequality
 - skill differentials

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting
 - foreign aid
 - other sources of initial inequality
 - skill differentials
 - human capital endowments

- This framework can be used to examine a number of public policy issues and their distributional consequences:
 - privatization and pricing of public goods
 - modeling specific public good sectors such as health and education in a multi-sector setting
 - foreign aid
 - other sources of initial inequality
 - skill differentials
 - human capital endowments
 - preferences for public goods