Trade and Synchronization in a Multi-Country Economy
Luciana Juvenal and Paulo Santos Monteiro

Discussion by
Roc Armenter, FRB Philadelphia

SCIEA, FRB Atlanta
April 28, 2011
Introduction

• Does trade lead to business cycle synchronization?
 • Empirical evidence says it does.
 • But trade models typically predict a tenuous relationship.

• This paper develops a model with
 • Ricardian trade a la Eaton-Kortum,
 • Pricing-to-market and variable markups,
 • Calibrated iceberg trade costs,
 • and 21 countries!

• The model doubles the effect from Kose and Yi (2006), although there still quite some way to go.
Transmission

- Standard IRBC will have two channels
 - Trade,
 - Finance.
- This paper assumes financial autarky and focuses on trade:
 - Although trade is not necessarily balanced for the intermediate manufactured goods.
 - Heathcote and Perri (2002)
- Let’s see how trade alone transmits shocks across countries.
Country 1 Productivity Shock

Output

Technology T

Real Ex. Rate P_2/P_1

Import share in Manufactures
Real exchange rate

- Output and RER are tightly connected:
 \[
 \frac{Y_{it}}{Y_{jt}} = A^{ij} \left(Q_{jt}^{ij} \right)^{\frac{\nu + 1}{\nu}}.
 \]

- We run into the Backus-Smith puzzle.
- Output correlation and RER volatility are the two sides of the same coin.
 - How does this relationship look in the data?
 - Note it bypasses trade intensities.
Trade costs decrease synchronization

![Graph showing the impact of trade costs on synchronization]

Country 2 Output

- Low Trade Costs
- High Trade Costs

% Deviations from s.s.

Time Horizon

- Blue line: Low Trade Costs
- Red line: High Trade Costs
Trade costs amplify shocks
Pricing to Market?

- Technology and the price level are given by

\[P_{it} = \kappa \Phi_{it}^{-\frac{1}{\theta}} \]

where

\[\Phi_{it} = \sum_j T_{jt} (\omega_j \tau_{ij})^{-\theta} . \]

- Pricing-to-market and variable markups determine the constant \(\kappa \).
Pricing to Market?

• Technology and the price level are given by

\[P_{it} = \kappa \Phi_{it}^{-\frac{1}{\theta}} \]

where

\[\Phi_{it} = \sum_j T_{jt} (\omega_j \tau_{ij})^{-\theta}. \]

• Pricing-to-market and variable markups determine the constant \(\kappa \).

• However, market competition seems irrelevant for correlations

\[Q_{ij}^{it} = \left(\frac{\Phi_{it}}{\Phi_{jt}} \right)^{\frac{1}{\theta}}. \]
Trade linkages

• Log-output is

\[y_{it} = S_i + \frac{\nu + 1}{\nu \theta} \log \left(\sum_{j} T_{jt} (\omega_j \tau_{ij})^{-\theta} \right) \]

• A first-order approximation around s.s. delivers

\[\hat{y}_{it} \propto \sum \lambda_{ij} \hat{T}_{jt} \]

where \(\lambda_{ij} \) is the import share from country \(j \) in s.s.

• What matters is the correlation of trade linkages

\[\rho (\hat{y}_{it}, \hat{y}_{kt}) = \frac{\sum_j \lambda_{ij} \lambda_{kj}}{\sqrt{\sum_j \lambda_{ij}^2} \sqrt{\sum_j \lambda_{kj}^2}} = \rho (\lambda_{ij}, \lambda_{kj}) \]
For synchronization what matters is whether countries have similar trade patterns, not whether they trade much with each other.
For synchronization what matters is whether countries have similar trade patterns, not whether they trade much with each other.

Consider two three-countries worlds:

- **Isosceles world**
 - Two core countries with bilateral trade cost τ_l,
 - A remote country with trade cost $\tau_h > \tau_l$ with core.

- **Linear world**
 - A core country with trade cost τ with periphery,
 - Two remote countries with no trade with each other.
Isosceles world

Shock at Core Country One

Shock at Remote Country

Core 1
Core 2
Remote
Linear world
Conclusions

- It is a great idea to apply the Eaton-Kortum framework to output synchronization.
- The model has many interesting predictions:
 - Trade blocks,
 - Trade patterns,
 - Importance of core (and large) countries,
 - Output volatility and remoteness...
- Applications go well past the trade - output correlation.
- The current version does not realize yet the full potential of the paper.