
Sovereign Risk Premia in the Eurozone ∗

Huixin Bi† and Nora Traum‡

PRELIMINARY, COMMENTS WELCOME

August 2, 2012

Abstract

This paper uses Bayesian methods to estimate the ‘fiscal limit’ distribution implied by
a rational expectations framework using the data for Greece. We build a real business
cycle model that allows interactions among fiscal policy instruments, stochastic ‘fiscal
limits,’ and sovereign default risks. The fiscal policy specification takes into account
government spending, lump-sum transfers, and distortionary taxation. A fiscal limit
measures the debt level beyond which the government is no longer willing to finance,
causing a partial default to occur. Using the particle filter to perform likelihood-based
inference, we estimate the full nonlinear model with post-EMU data until 2010Q4. We
find that Greek debt had a small, positive probability of default when Greece joined the
EMU in 2001, but it fell quickly and remained close to zero until 2009, when it began
to rise sharply to the range of 6% to 16% by the fourth quarter of 2010. The surge in
the real interest rate in 2011, however, is generally outside of forecast confidence bands
of our rational expectations model.
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1. Introduction

In the past five years, there has been tremendous concern over the fiscal positions in several

Eurozone nations. As seen in table 1, the long term interest rate spreads in the secondary

market between German government bonds and several European countries’ government

bonds have risen markedly. The spread between Greek bonds and German bonds rose from

2.35 percentage points in 2009 to 19.2 in 2011, and the same spread between Portuguese and

German bonds widened from 0.77 percentage points to 11.15 during the same period. Italy

and Spain had notable increases as well. The aim of this paper is to discern the extent to

which mounting interest rates and probabilities of default on sovereign debt in the Eurozone

countries can be explained by a rational expectations model.

Bi and Traum (2012) shows how to use Bayesian methods and likelihood-based inference

to estimate a real business cycle (RBC) model that allows for sovereign default. While

Bi and Traum (2012) provides a coherent framework for estimating forward-looking ‘fiscal

limits,’ their estimated model is unable to forecast the sharp rise in long term interest rates

in 2011 in Greece, in part because their model estimates imply low historical probabilities of

default. This paper extends the framework of Bi and Traum (2012) to a more realistic set-

up and estimates a full nonlinear model using post-EMU data for Italy, Greece, Spain, and

Belgium.1 Using the estimated model, we identify country-specific probabilities of default,

and discern the extent to which risk premia observed in European countries can be explained

by macroeconomics fundamentals.

We consider a closed economy in which the government finances transfers and expendi-

tures by collecting distortionary income taxes and issuing bonds. The bond contract is not

enforceable and depends on the maximum level of debt that the government is politically

able to service, a so-called ‘fiscal limit.’ We assume that the fiscal limit is stochastic and its

distribution follows a logistical function. At each period, an effective fiscal limit is drawn

from the distribution. If the level of government debt surpasses the effective limit, then the

government reneges on a fraction of its debt. Based on the fiscal limit distribution, house-

holds can decide the quantity of government debts that they are willing to purchase and the

price at which they are willing to pay.

The economy may switch between the default and no-default regimes endogenously, de-

pending upon the level of government debt and the fiscal limit distribution. Therefore, the

model cannot be solved using a first-order approximation; instead, it is solved using the

monotone mapping method and estimated using Bayesian inference methods and a sequen-

tial Monte Carlo approximation of the likelihood [similar estimation methods are used in

1The current draft provides results only for Greece.
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Fernandez-Villaverde and Rubio-Ramirez (2007), Doh (2011), and Armisano and Tristani

(2010)].

We estimate the model for Greece during the post-EMU period until 2010Q4. Using

the estimated structural parameters, we compute the model-implied default probabilities

for Greece’s historical debt-to-GDP ratios. We find that Greek debt had a small, positive

probability of default when Greece joined the EMU in 2001, but it fell quickly and remained

close to zero until 2009, when it began to rise sharply to the range of 6% to 16% by the fourth

quarter of 2010. Nevertheless, the surge in the real interest rate in Greece in 2011 is generally

outside of forecast confidence bands of our rational expectations model. This suggests that

the recent interest rate surge only can be explained by either a series of extremely bad

structural shocks or by a fundamental change in the underlying economic structure, such as

a change in investor sentiments.

In addition, after estimating the structural parameters we construct a model-implied

distribution for the fiscal limit that is defined as the sum of the discounted maximum fiscal

surplus in all future periods. This model-implied limit reflects the pure economic limit in

raising tax revenue: the maximum fiscal surplus is obtained at the peak of the Laffer curve,

beyond which a higher tax rate reduces the tax revenue. The estimated distribution for

the fiscal limit, however, reflects both the political and the economic limit in raising tax

revenue. By comparing the model-implied and the estimated distributions, we derive the

‘political factor,’ which measures the political willingness/ability to service its debt. We

find that the political factor in Greece has been historically low, suggesting that unmodeled

frictions have made the Greek government to be perceived as unable to sustain high levels

of debt through large fiscal surpluses.

This paper is related to the large empirical literature that studies the determinants of

sovereign default risk premia through reduced-form regressions.2 This literature has found

differences in sovereign risks across time and countries, suggesting the importance of country

specific macroeconomic fundamentals to explain sovereign risk premia. In addition, related

work by Ostry et al. (2010) estimate historical fiscal responses to construct ‘debt limits,’

although these limits are backward-looking by construction.

2Recent examples include Lonning (2000), Lemmen and Goodhart (1999), Codogno et al. (2003), Alesina
et al. (1992), Bernoth et al. (2006), Haugh et al. (2009), Bernoth and Erdogan (2011), Abmann and Hogrefe
(2009), Maltritz (2011).
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2. Model

Following Bi (2011), our model is a closed economy with linear production technology,

whereby output depends on the level of productivity (At) and the labor supply (nt).
3 House-

hold consumption (ct) and government purchases (gt) satisfy the aggregate resource con-

straint,

ct + gt = Atnt. (1)

Technological productivity At follows the AR(1) process

At −A = ρA(At−1 −A) + εAt εAt ∼ N (0, σ2
A). (2)

2.1 Government

The government finances lump-sum transfers to households (zt) and exogenous and unpro-

ductive purchases by levying a tax (τt) on labor income and issuing one-period bonds (bt).

Let qt be the price of the bond in units of consumption at time t. For each unit of the

bond, the government promises to pay the household one unit of consumption in the next

period. However, the bond contract is not enforceable. At each period, a stochastic fiscal

limit, which is specified in terms of debt-over-GDP ratio and denoted as s∗t , is drawn from

its distribution, s∗t ∼ S∗. We specify the cumulative density function of the fiscal limit

distribution as a logistical function with parameters η1 and η2 dictating its shape.

p∗ ≡ P (st−1 ≥ s∗t ) =
exp(η1 + η2st−1)

1 + exp(η1 + η2st−1)
(3)

where st is defined as bt/yt. If the debt surpasses the fiscal limit, then it partially defaults.

The default scheme can be summarized as,

∆t =

{

0 if st−1 < s∗t

δ if st−1 ≥ s∗t

3Ceteris paribus, in our model the assumption that the economy is open and all debt is held by foreigners
raises the observed risk premium relative to the closed economy environment,, as foreigners do not feel the
negative wealth effects of debt and, in turn, have less incentive to hold debt. Thus, the estimates from our
closed economy framework can be thought as the lower bound to estimates of the fiscal limit associated with
certain probabilities of default.
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The government’s budget constraint is given by

τtAtnt + btqt = (1−∆t)bt−1
︸ ︷︷ ︸

bdt

+gt + zt. (4)

The tax rate and government spending evolve according to the rules,

τt = (1− ρτ )τ + ρττt−1 + ετt
︸ ︷︷ ︸

uτ
t

+γτ
(

bdt − b
)

ετt ∼ N (0, σ2
τ) (5)

gt = (1− ρg)g + ρggt−1 + εgt
︸ ︷︷ ︸

ug
t

+γg
(

bdt − b
)

εgt ∼ N (0, σ2
g) (6)

with AR(1) components being denoted as uτt and ugt . The non-distortionary transfers are

modeled as a residual in the government budget constraint, exogenously determined by the

AR(1) process,

zt − z = ρz(zt−1 − z) + εzt εzt ∼ N (0, σ2
z). (7)

Since transfers are not an observable in our estimation, zt can be thought of as capturing all

movements in government debt that are not explained by the model.

2.2 Household

With access to the sovereign bond market, a representative household chooses consumption

(ct), labor supply (nt), and bond purchases (bt) by solving,

max E0

∞∑

t=0

βt (log (ct − hc̄t−1) + φ log(1− nt)) (8)

s.t. Atnt(1− τt) + zt − ct = btqt − (1−∆t)bt−1 (9)

The household’s first-order conditions are,

φ
ct − hc̄t−1

1− nt
= At(1− τt) (10)

qt = βEt

(

(1−∆t+1)
ct − hc̄t
ct+1 − hc̄t

)

(11)

The bond price reflects the household’s expectation about the probability and magnitude of

sovereign default in the next period. The optimal solution to the household’s maximization
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problem must also satisfy the following transversality condition,

lim
j→∞

Etβ
j+1uc(t+ j + 1)

uc(t)
(1−∆t+j+1)bt+j = 0. (12)

2.3 Model Solution

Other than the specifications for exogenous state variables, the core equilibrium equations

are,

qt =
bdt + zt + gt − τtAtnt

bt
(13)

qt = β(ct − hct−1)Et
1−∆t+1

ct+1 − hct
. (14)

The first equation is derived from the government budget constraint, while the second is from

the household’s first-order conditions. We use the monotone mapping method (Coleman

(1991), Davig (2004)) to solve the decision rule of the bond price in terms of the state

vector. At time t, the state vector is (bdt , ct−1, At, u
g
t , zt, u

τ
t ), and the decision rule of the bond

price can be written as qt = q(bdt , ct−1, At, u
g
t , zt, u

τ
t ).

In terms of computation, the most time-consuming part is the loop iterations of the

numerical integration in equation (14).

Et
1−∆t+1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

∫

s∗t+1

1−∆t+1

ct+1 − hct
(15)

=
(
1− Φ(st ≥ s∗t+1)

)
∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
|no default

+ Φ(st ≥ s∗t+1)

∫

εAt+1

∫

εgt+1

∫

ετt+1

1− δ

ct+1 − hct
|default

Given the utility function, consumption is determined by,

ct =
φhct−1 + (At − gt)(1− τt)

1 + φ− τt
. (16)

Thus, the integration in Equation (15) can be re-written as

∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

1 + φ− τt+1

(1− τt+1)(At+1 − gt+1 − hct)
(17)

=

∫

ετt+1

1 + φ− τt+1

1− τt+1

∫

εAt+1

∫

εgt+1

1

At+1 − gt+1 − hct
(18)
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The logarithmal utility function helps to reduce the 4-dimension integration into 1- and

2-dimension integrations. Appendix A discusses the solution procedure in details.

3. Estimation

The model is estimated for one countries at the moment: Greece (2001Q1-2010Q4). The start

date represents the quarter in which Greece officially adopted the Euro, because the interest

rates during the pre-Euro period are susceptible to exchange rate risk from which our model

abstracts. Five observables are used for the estimation, including real output, government

spending, tax revenue, government debt, and a 10-year real interest rate. Appendix B.1

provides a detailed description of the data.

3.1 Methodology

We estimate the model using Bayesian methods. The equilibrium system is written in the

nonlinear state-space form:

xt = f(xt−1, ǫt, θ) (19)

vt = Axt + ξt, (20)

where observables vt are linked with model variables xt via the matrix A, θ denotes model

parameters, and ξt is a vector of measurement error distributed N(0,Σ). We assume Σ is a

diagonal matrix and calibrate the standard deviation of each measurement error to be 20%

of the standard deviation of the corresponding observable variable.4

We use a particle filter to approximate the likelihood function. For a given sequence of ob-

servations up to time t, vt = [v1, ..., vt], the particle filter approximates the density p(xt|vt, θ)

with a swarm of particles xit (i = 1, ..., N), see appendix B.2 for more details. The parti-

cle filter is applicable for nonlinear and non-Gaussian distributions,5 and it is increasingly

used to estimate nonlinear DSGE models, to which class our model belongs. Recent exam-

ples include An and Schorfheide (2007), Fernandez-Villaverde and Rubio-Ramirez (2007),

Armisano and Tristani (2010), Fernandez-Villaverde et al. (2011), and Doh (2011). Doucet

et al. (2001) provide a textbook treatment.

We combine the likelihood L(θ|vT ) with a prior density p(θ) to obtain the posterior

4Estimating measurement errors provides complications in nonlinear models. See Doh (2011) for more
discussion on the role of measurement error in nonlinear DSGE model estimation.

5In addition, the particle filter is more robust than the unscented Kalman filter to sample initialization
date, as the particle filter assumes a distribution for the unobserved initial state.
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density kernel, which is proportional to the posterior density, p(θ|vT ) ∝ p(θ)L(θ|vT ). We

assume that parameters are independent a priori. However, we discard any prior draws that

do not deliver a unique rational expectations equilibrium, as we restrict the analysis to the

determinacy parameter subspace.6 We construct the posterior distribution of the parameters

using the random walk Metropolis-Hastings algorithm, see appendix B.3 for more details.

In each estimation, we sample 75,000 draws from the posterior distribution and discard the

first 15,000 draws.7 The sample is thinned by every 25 draws, and the likelihood is computed

using 60,000 particles.

3.2 Prior Distributions

We impose dogmatic priors over some parameters, which are listed in table C. The discount

rate is 0.99, so that the deterministic net interest rate is 1%.8 We calibrate the household’s

leisure preference parameter φ such that a household spends 25% of its time working at the

steady state. We calibrate the deterministic debt to GDP ratio, government spending to

GDP ratio, and tax rate to the mean values of the data sample.

The priors for the remaining parameters are listed in table C. The prior for habit per-

sistence h is similar to those in the linear DSGE estimation literature, for instance Smets

and Wouters (2007). For the remaining parameters, we first estimate using ordinary least

squares an AR(1) process for GDP and processes for government spending, the tax rate, and

transfers given by equations (5)-(7).9 The results are used as general guidance for the region

of the parameter space for the ρ, σ, and γ parameters.

For the responses of government spending and taxes to debt, we form priors for the long

run responses in terms of percentage deviations from steady state, that is

γg,L ≡
b̄γg

ḡ(1− ρg)
, γt,L ≡

b̄γτ

τ̄(1− ρτ )

These values are more comparable to estimates in the literature. Since determinacy is

sensitive to the combination of the γτ,L and γg,L parameters, we restrict the lower bound of

the γτ,L (γg,L) prior to a value that ensures determinacy when only γτ,L (γg,L) finances debt.

For the standard deviations of shocks, we form priors for the standard deviations relative

6A technical appendix of the authors provides more discussion on this point.
7We use Fortran MPI code compiled in Intel Visual Fortran for the estimation. We use the computer

server system at the Bank of Canada, each CPU of which uses Xeon CPU X5680 at 3.33GHz and has 23
processors with 64G RAM. One evaluation using the particle filter takes 10 seconds. These computational
constraints limit the number of draws from the Metropolis-Hastings algorithm.

8The mean of our data is 0.8% for Greece.
9We back out the model-consistent tax rate and transfers series implied by our observables.
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to relevant steady state variables: σk,p ≡ σk/J̄ for J = {A, g, τ, z} and k = {a, g, τ, z}. This

gives standard deviations as percentage deviations, which provides more intuitive compar-

isons across values.

3.2.1 Fiscal Limit

We estimate one parameter from the fiscal limit distribution, which is represented by equation

(3). Given two points on the distribution, (s̃, p̃) and (ŝ, p̂), the parameters η1 and η2 can be

uniquely determined by

η2 =
1

s̃− ŝ
log

(
p̃

p̂

1− p̂

1− p̃

)

, η1 = log
p̃

1− p̃
− η2s̃. (21)

Since (s̃, p̃) and (ŝ, p̂) provide a more intuitive description about the fiscal limit distribution

than η1 and η2, we can fix p̃ and p̂ at certain levels and estimate the corresponding s̃ and ŝ,

instead of estimating η1 and η2 directly. We choose p̃ = 0.3 and p̂ = 0.999. Unfortunately,

given that defaults are not observed in our data sample, the data is unlikely to be informative

about the upper bound of the distribution. Therefore, we estimate s̃ and fix the difference

between s̃ and ŝ to be 60% of steady-state output. This difference is chosen to capture

the observation that once risk premia begin to rise, they do so rapidly.10 Given the lack of

guidance for the parameter s̃, we adopt a diffuse uniform prior over the interval 1.4 to 1.8.

3.2.2 δ Identification

To our knowledge, this paper is the first attempt to estimate a DSGE model of sovereign

default. Thus, prior to estimating the model with real data, we performed several estimations

with simulated data.11 Unfortunately, the results revealed that we cannot jointly identify

the rate of partial default δ and the fiscal limit parameter s̃ when the data excludes observed

defaults. Parameters related to default affect observable variables through their influence on

the risk premium. Since various combinations of δ and s̃ are consistent with the same risk

premium, we cannot jointly identify the parameters. Given this limitation, we estimate our

model for two different calibrations of δ: 0.05 and 0.075. These calibrations imply annualized

rates of default δA of 20% and 30% respectively, which falls within the range of actual default

rates in emerging market economies over the period 1983 to 2005, as documented by Bi

(2011).

10The difference of 60% of output, albeit ad-hoc, should not change the key estimation results as the data
is unlikely to be informative about the upper bound of distribution.

11The results are available in a technical appendix from the authors.
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3.3 Posterior Estimates

Table 3 compares the medians and 90% credible intervals of the posterior distributions

estimated under the two specifications of partial default rate. The data are informative for

all of the parameters, as the 90% credible intervals are smaller than those from the prior

distributions.

The estimates of s̃ are very similar for the two specifications. If the rate of partial

default δA is 30%, the debt to GDP ratio that is associated with 30% probability of default

is between 1.43-1.54, with the median being 1.5. If the rate of partial default is 20%, on

the other hand, the debt to GDP ratio that is associated with 30% probability of default is

between 1.44-1.53, with the median being 1.48. Holding s̃ constant, a higher default rate

implies a larger risk premium in the model. The response of tax rate to debt γτ,L would

adjust to match the data. In the high δA calibration, the posterior for γτ,L has more values

concentrated at higher levels than the posterior for the mid δA calibration. Ceteris paribus,

a larger γτ,L implies a stronger response of tax rate to debt, which lowers the risk premium.

For comparison, we also list the estimates implied by a log-linearized version of our

model without default. We use the Kalman filter to calculate the likelihood function and

initialize the Metropolis-Hastings algorithm using the posterior mode and inverse Hessian

at the posterior mode. The system of equations for the log-linearized model are listed in

appendix C.

Interestingly, the estimates from the linear model suggest that the data is not informative

about γg,L, as the 90% credible interval from the posterior distribution mirrors that from

the prior distribution, shown in table (3). All the other parameters are comparable across

different model specifications, although the 90% credible intervals are slightly tighter in the

nonlinear models for parameters like ρg, ρz, and ρτ . The comparison suggests that allowing

default in the standard RBC model may help to identify the fiscal policy responses in Greece.

4. Analysis

4.1 Model Fit

To examine how well the model fits the data, we compute smoothed estimates of model

variables using the sequential monte carlo approximation of the forward-backward smoothing

recursion. Figures 1 compare the smoothed values from the various model specifications to

the observable variables. For each specification, the fitted values are computed using the

corresponding posterior mode. The fit for most variables is accurate, with output and tax
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revenue being the least precise.

We also compute smoothed estimates of the measurement errors E(ξt|vT , θ) and report

their mean absolute values and relative standard deviations in table 4. The standard de-

viation of each measurement error was fixed to be 20% of the standard deviation of the

respective observable variable. However, for most observables, the estimated relative stan-

dard deviation is less than 20%, which suggests that the measurement error did not introduce

many constraints for the model fit. The exception is the measurement error for output and

tax revenue, which is probably due to the reduced-form nature of the private sector in our

model. Table 4 also shows that mean absolute values of measurement error are close to zero.

4.2 Default Probability and Interest Rate Dynamics

4.2.1 Default Risk

Figure 2 shows model-implied sovereign default probabilities for Greece, based upon the

posterior estimates for the fiscal limit distribution when δA = 0.2. Solid lines show the

median and 90% confidence interval for historical debt-to-GDP ratios calculated from our

debt and output observables for the estimated sample period.12 Dashed lines denote the

median and 90% confidence interval default probability for the out-of-sample debt-to-GDP

ratio in 2011Q1.13

Figure 2 shows that initially when Greece joined the European Monetary Union in 2001,

its sovereign debt had a small positive probability of default (1-3%). However, this prob-

ability quickly fell and for most of the 2000s, Greek debt had virtually zero probability of

default. Starting in 2009 the probability of default rose steadily, with a sharp increase over

2010. The model-implied probability of default ranged from 6-16% in the end of the esti-

mated period 2010Q4, and ranging from 8-22% in 2011Q1. Estimates from the model’s fiscal

limit distribution thus suggest the unsustainability of the Greek fiscal position and reflect

large deterioration in confidence in Greek debt over 2010.

4.2.2 Out-of-Sample Interest Rate Forecasts

Over the course of 2011, the long term interest rate spread in the secondary market between

Greek government bonds and German bonds rose from 9.1 percentage points in December

12For the estimation we use data in terms of percentage deviations from the sample average. In contrast,
we need level variables to back out model-implied probabilities of default. For model consistency, we convert
the percentage deviations of the data to level variables using the steady state model variables.

13OECD government debt data for Greece is unavailable for later periods in 2011 and 2012, constraining
our out-of-sample forecast to 2011Q1.
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2010 to 19.21 in December 2011. Can the estimated model account for this sharp increase

in the Greek interest rate?

To examine this issue, we simulate four quarters of time series 10,000 times starting

from the fitted values for model variables in 2010Q4,14 which gives a distribution for the

forecasted path of the real interest rate in 2011. Figure 3 displays the median (blue, dotted

line) and 90% interval (blue, dashed lines) of these model-implied interest rate forecasts for

2011, calculated using the posterior median parameter estimates (top panel) and the five

percentile posterior estimates (bottom panel). The figure also plots the path of the real

interest rate implied from the data (black solid line).

Figure 3 shows that the surge in the real interest rate in Greece is generally outside of

forecast confidence bands of our rational expectations model. Using the posterior median

parameter estimates, only the interest rate value in the first quarter of 2011 falls within

the bands. The lower panel of the figure suggests that it is possible for model forecasts

to be consistent with the 2011 interest rate path at all horizons, conditional upon extreme

parameter values (note that this case is constructed based upon the posterior 5% estimates of

each parameter, implying low responses of fiscal instruments to debt and a low debt-to-GDP

ratio associated with a 30% probability of default). The model’s difficulty in forecasting the

interest rate path in 2011 suggest that the interest rate surge only can be explained by either

a series of extremely bad structural shocks or by a fundamental change in the underlying

economic structure, such as a change in investor preferences.

4.3 Laffer Curve and Fiscal Limit

In this section, we use the structural estimates to further explore how the market perceives

the political willingness/ability to service its debt in Greece.

The proportional tax on labor income distorts a household’s behavior as it lowers the

after-tax wage and may induce households to work less. An increase in the tax rate can raise

tax revenue when the existing tax rate is low, but it can reduce tax revenue when the existing

tax rate is high, producing a Laffer curve. Laffer curves are usually dynamic in the sense

that the shape of the Laffer curve depends on the state of the economy.15 In our model, for

given levels of productivity and government purchases (At, gt), the government can collect

the maximum level of tax revenue, denoted as Tmax(At, gt), at the peak of the dynamic

Laffer curve, denoted as τmax(At, gt). The maximum level of debt that the government can

14See section ?? for details on the construction of fitted values.
15Trabandt and Uhlig (2011) compute Laffer curves for the United States and 15 European countries using

a neoclassical model.
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possibly pay back is the sum of the discounted maximum fiscal surplus in all future periods.

Bmax =

∞∑

t=0

βt+1u
max
c (At+1, gt+1)

umax
c (A0, g0)

(Tmax(At, gt)− gt − zt) (22)

umax
c represents the marginal utility of consumption when the tax rate is at the peak of the

Laffer curve (τmax). Bmax is obtained, however, under the assumption that the government

is willing to raise the tax at the peak of the Laffer curve, while angry protesters on Athen’s

streets illustrate the powerful political obstacles to achieve higher tax rates in reality. A

reduced-form representation of the political economy perspective is to discount the fiscal

surplus not only by a pure rate of time preference (β), but also by an additional political

factor (βpol).

B∗ = E

∞∑

t=0

βt+1βpolu
max
c (At+1, gt+1)

umax
c (A0, g0)

(Tmax(At, gt)− gt − zt) (23)

Given a particular set of parameter draws (θi), we can compute the model-implied distri-

bution, Smax(θi) = Bmax(θi)/y
max
T0

(θi), and the corresponding s̃max(θi), at which the default

probability is 0.3. b̃i is the corresponding draw for the debt threshold from our estimated

fiscal distribution. Thus, the ratio between the estimated s̃i and the model-implied s̃max
i

gives the political factor βpol
i .

To compute the model-implied distribution, given the logarithm utility function, the tax

revenue (Tt) can be written as,

Tt = τt
At(1− τt) + φgt + φhct−1

1 + φ− τt

= (1 + 2φ)At − φ(gt + hct−1)−
(

At(1 + φ− τt) +
(1 + φ)φ(At − hct−1 − gt)

1 + φ− τt

)

.(24)

The tax revenue reaches to the maximum level (Tmax
t ) when the tax rate reaches the peak

point of the Laffer curve (τmax
t ).

τmax
t = 1 + φ−

√

(1 + φ)φ(At − gt − hct−1)

At

(25)

(26)

There exists a unique mapping between the exogenous state space (At, gt) to τ
max
t and Tmax

t .

For a given set of parameter draws (θi), the distribution of fiscal limit (Smax(θi)) can be

obtained using Markov Chain Monte Carlo simulation:
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1. First, for each simulation j, we randomly draw the shocks for productivity (Aj
t), gov-

ernment purchases (gjt ), and the transfers (zjt ) for T = 1500 periods with the first

T0 = 500 as burn-in period. Assuming that the tax rate is always at the peak of

the dynamic Laffer curves, we compute the paths of all other variables following the

household first-order conditions and the budget constraints, and the discounted sum

of maximum fiscal surplus is specified below.

Bmax
j (θi) =

t=T∑

t=T0

βt+1−T0
umax
c (Aj

t+1, g
j
t+1)

umax
c (Aj

T0
, gjT0

)

(
Tmax(Aj

t , g
j
t )− gjt − zjt

)
(27)

Smax
j (θi) =

Bmax
j (θi)

ymax,j
T0

(θi)
(28)

2. Second, we repeat the simulation for 10000 times and obtain the distribution Smax(θi)

using the simulated Smax
j (θi) (j = 1, ..., 10000).16

3. Finally, using Kernal estimation, we can derive the cumulative density function for

the model-implied distribution Smax(θi) for those particular parameter draws, and

therefore obtain the model-implied debt level s̃max(θi), at which the default probability

is 0.3.

By repeating the above procedure to the posterior parameter draws (θi), we obtain a set

of s̃max(θi). The top row in table (5) shows the median and the 90% credible intervals for

s̃max under various δA calibrations. The default rate specifications do not have much of an

impact. For comparison, the second row in table (5) lists the median and the 90% credible

confidence intervals for the estimated debt threshold s̃. The implied political factor βpol,

calculated as the ratio between the estimated s̃ and the model-implied s̃max, is quite low in

Greece, with the median of 0.3 under both δ cases. One interpretation is that the market

perceives the Greek government is willing to raise taxes to the peak of Laffer curve with a

probability of 30%.

5. Conclusion

This paper uses Bayesian methods to estimate the probability of sovereign default for Greece.

We build a real business cycle model that allows the interactions among fiscal policy instru-

ments, the stochastic fiscal limit, and sovereign default risks. The fiscal policy specification

takes into account government spending, lump-sum transfers, and distortionary taxation. We

16Increasing the number of simulations doesn’t change the simulated distribution much.
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model the fiscal limit distribution with a logistical function, which illustrates the market’s

belief about the government’s ability to service its debt at various debt levels.

Using the particle filter to perform likelihood-based inference, we estimate the full non-

linear model with post-EMU data. We find that Greek debt had a small, positive probability

of default when Greece joined the EMU in 2001, but it fell quickly and remained close to zero

until 2009, when it began to rise sharply to the range of 6% to 16% by the fourth quarter of

2010. Nevertheless, the surge in the real interest rate in Greece in 2011 is generally outside

of forecast confidence bands of our rational expectations model.

Finally, we compute the dynamic Laffer curve for Greece and calculate the pure economic

fiscal limit, that is the maximum level of debt that the government is able to service. We

compare the difference between the estimated fiscal limit distributions and the pure economic

fiscal limit and find that the Greek government has been perceived as willing to service its

maximum level of debt with only about a 30% probability.

In current ongoing research, we are estimating the model for other European countries,

so as to allow cross-country comparisons of default probabilities and political risk factors.

Although our nonlinear model allows complex interactions among fiscal policy instruments

and the fiscal limit, it is only a first step to understanding and estimating probabilities of

default for developed countries. To understand fully the complexities associated with default

risk, several other features are worthy of modeling attention, including the interaction of

monetary and fiscal policies; the interaction of the financial sector and the government; and

open economy issues including foreign holdings of debt and risks of contagion.

15



References

Abmann, C. and Hogrefe, J. (2009). Determinants of government bond spreads in the

Euro area in good times as in bad. Kiel Working Papers 1548, Kiel Institute for the World

Economy.

Alesina, A., De Broeck, M., Prati, A. and Tabellini, G. (1992). Default risk on

government debt in oecd countries. Economic Policy, 7 (15), 428–463.

An, S. and Schorfheide, F. (2007). Bayesian analysis of dsge models. Econometrics

Reviews, 26 (2-4), 113–172.

Armisano, G. and Tristani, O. (2010). Euro area inflation persistence in an estimated

nonlinear dsge model. Journal of Economic Dynamics and Control, 34 (10), 1837–1858.

Bernoth, K. and Erdogan, B. (2011). Sovereign bond yield spreads: A time-varying

coefficient approach. Journal of International Money and Finance, (forthcoming).

—, von Hagen, J. and Schuknecht, L. (2006). Sovereign risk premiums in the european

government bond market. GESY Discussion Paper No. 151.

Bi, H. (2011). Sovereign default risk premia, fiscal limits and fiscal policy. European Eco-

nomic Review, 56 (3), 389–410.

— and Traum, N. (2012). Estimating sovereign default risk. American Economic Review

Papers and Proceedings, (forthcoming).

Chow, G. C. and Lin, A.-l. (1971). Best linear unbiased interpolation, distribution, and

extrapolation of time series by related series. Review of Economics and Statistics, 53 (4),

372–75.

Codogno, L., Favero, C. and Missale, A. (2003). Yield spreads on emu government

bonds. Economic Policy, 18 (37), 503–532.

Coleman, I., Wilbur John (1991). Equilibrium in a production economy with an income

tax. Econometrica, 59, 1091–1104.

Davig, T. (2004). Regime-switching debt and taxation. Journal of Monetary Economics,

51 (4), 837–859.

Doh, T. (2011). Yield curve in an estimated nonlinear macro model. Journal of Economic

Dynamics and Control, 35 (8), 1229–1244.

16



Doucet, A., De Freitas, J. and Gordon, N. (2001). Sequential Monte Carlo Methods

in Practice. Springer Series in Statistics for Engineering and Information Science, New

York: Springer-Verlag.

Fernandez-Villaverde, J., Guerron-Quintana, P. A., Rubio-Ramirez, J. F. and

Uribe, M. (2011). Risk matters: The real effects of stochastic volatility shocks. American

Economic Review, 101 (6), 2530–2561.

— and Rubio-Ramirez, J. (2007). Estimating macroeconomic models: A likelihood ap-

proach. Review of Economic Studies, 74 (4), 1059–1087.

Forni, L., Monteforte, L. and Sessa, L. (2009). The general equilibrium effects of

fiscal policy: Estimates for the euro area. Journal of Public Economics, 93 (3-4), 559–585.

Haugh, D., Ollivaud, P. and Turner, D. (2009). What drives sovereign risk premiums?

an analysis of recent evidence from the euro area. OECD Economics Department Working

Papers, No. 718.

Kitagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state

space models. Journal of Computational and Graphical Statistics, 5, 1–25.

Lemmen, J. J. and Goodhart, C. A. (1999). Credit risks and european government bond

markets: A panel data econometric analysis. Eastern Economic Journal, 25, 77–107.

Lonning, I. M. (2000). Default premia on european government debt. Review of World

Economics, 136 (2), 259–283.

Maltritz, D. (2011). Determinants of sovereign yield spreads in the eurozone: A bayesian

approach. Journal of International Money and Finance, (forthcoming).

Ostry, J. D., Ghosh, A. R., Kim, J. I. and Qureshi, M. S. (2010). Fiscal space. IMF

Staff Position Note (SPN/10/11).

Smets, F. andWouters, R. (2007). Shocks and frictions in u.s. business cycles: A bayesian

dsge approach. American Economic Review, 97 (3), 586–606.

Trabandt, M. and Uhlig, H. (2011). The laffer curve revisited. Journal of Monetary

Economics, (forthcoming).

Upper, C. and Worms, A. (2003). Real long-term interest rates and monetary policy: A

cross-country perspective.

17



A Solving the Nonlinear Model

Other than the end-of-period government debt, all other variables are either exogenous or

can be computed in terms of the current state ψt = (bdt , ct−1, At, u
g
t , zt, u

τ
t ).

τt = uτt + γτ
(

bdt − b
)

(A.1)

gt = ugt + γg
(

bdt − b
)

(A.2)

zt = (1− ρz)z + ρzzt−1 + εzt (A.3)

At = (1− ρA)A+ ρAAt−1 + εAt (A.4)

ct =
φhct−1 + (At − gt)(1− τt)

1 + φ− τt
(A.5)

∆t =

{

0 if bt−1 < b∗t

δ if bt−1 ≥ b∗t

The decision rule for government debt, bt = f b(ψt), is solved in the following steps:

• Step 1: Define the grid points by discretize the state space ψt. Make an initial guess

of the decision rule f b
0 over the state space.

• Step 2: At each grid point, solve the following core equation and obtain the updated

rule f b
i using the given rule f b

t−1. The integral in the right-hand side is evaluated as

described in Section 2.3 using numerical quadrature.

bdt + zt + gt − τtAtn(ψt)

f b
i (ψt)

= β(1−∆t+1)Et
c(ψt)− hct−1

c(ψt+1)− hc(ψt)
(A.6)

where ψt+1 =




(f b

i−1(ψt),∆t+1)
︸ ︷︷ ︸

bdt

, ct, At+1, u
g
t+1, zt+1, u

τ
t+1




.

• Step 3: Check the convergence of the decision rule. If |f b
i − f b

i−1| is above the desired

tolerance (set to 1e− 5), go back to step 2; other wise, f b
i is the decision rule and used

to evaluate the particle filter as described below.
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B Estimation

B.1 Data Description

Data are for Italy and Greece. For each series, we transform the series into percentage

deviations from the mean value of the sample and detrend each time series with its own

linear trend.

Real GDP. Constructed by dividing the nominal quarterly gross domestic product from

the OECD quarterly National Accounts (using the expenditure approach, B1 GE) by the

gross domestic product deflator (constructed using the expenditure approach, B13).

Real Gov. Spending. Constructed using general government final consumption expen-

diture from the OECD quarterly National Accounts (P3S13) divided by the gross domestic

product deflator (constructed using the expenditure approach, B13).

Real Tax Revenue. Using the annual nominal tax revenue (tax revenue consisting

of indirect and direct taxes and social security contributions) from the OECD volume 90

(TIND + TY + SSRG), we interpolate the series to a quarterly frequency using the method

of Chow and Lin (1971). For the interpolation, we construct a measure of total tax revenue

by combining Eurostat quarterly series for tax receipts on income/wealth, production and

imports, capital taxes, and social contributions. We seasonal adjustment this series using

Demetra+ and the tramo-seat RSA4 specification. The seasonally adjusted quarterly Euro-

stat tax revenue series is then used for the interpolation to construct a quarterly real tax

revenue series by dividing by the gross domestic product deflator (constructed using the

expenditure approach, B13).

Real Gov. Debt. For Greece, using the annual nominal gross public debt series (under

the Maastricht criterion) from the OECD volume 90, we interpolate the series to a quarterly

frequency using the method of Chow and Lin (1971).17 For the interpolation, we use the

Eurostat quarterly series for nominal gross government consolidated debt. We seasonal

adjustment this series using Demetra+ and the RSA4 specification. The seasonally adjusted

quarterly Eurostat debt series is then used for the interpolation to construct a quarterly

real debt series by dividing by the gross domestic product deflator (constructed using the

expenditure approach, B13).

For Italy, we also interpolate a quarterly series. In this case, we use the annual nominal

gross public debt series (under the Maastricht criterion) from the OECD volume 90 divided

by the annual nominal gross domestic product (using the expenditure approach). We inter-

17We use the quarterly real GDP series as a relative measure for the interpolation. Forni et al. (2009) use
a similar approach.
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polate this series to a quarterly frequency using the method of Chow and Lin (1971). For

the interpolation, we use the Eurostat quarterly series for nominal gross government con-

solidated debt to GDP ratio. We seasonal adjustment this series using Demetra+ and the

tramo-seat RSA4 specification. The seasonally adjusted quarterly Eurostat debt-to-GDP

series is then used for the interpolation to construct a quarterly debt-to GDP series. We

then multiply this series by the real quarterly gross domestic product (using the expenditure

approach, B1 GE) from the OECD database to get a real quarterly government debt series.

Real Interest Rate. To construct a 10-year real interest rate measure, we use data

for the nominal interest rate (taken from the BIS) and the expected inflation rate. Our

measure of expected inflation for Italy comes from Consensus Economics, who ask a number

of professional forecasters based in a variety of countries about their expectations of a wide

range of economic variables. We use their long-term (five to ten year) forecast, which has

been published biannually in April and October since the autumn of 1989.18 For Greece, we

use the expected inflation series from the Survey of Professional Forecasts EU-area five year

ahead expected inflation series, which is a general euro-wide inflation series. The gross real

interest rate is constructed using the relation

Rt =
1 + it
1 + πe

t

B.2 Particle Filter Algorithm

Let vT denote {v̂t}
T
t=1, which evolves according to equations (19) and (20) in the text. To

evaluate the likelihood function L(θ|vT ), we use a sequential Monte Carlo filter (specifically,

the sequential importance resampling filter of Kitagawa (1996)). The algorithm is as follows:

• Step 1. Initialize the state variable x0 by generating 40,000 values from the uncondi-

tional distribution p(x0|θ). Denote these particles by xi0 for i = 1, ..., 40, 000. Draw

40, 000 values from standard normal distributions for each of the structural shocks (ǫA,

ǫg, ǫt, ǫz) and 40,000 values from a standard uniform distribution for fiscal limit prob-

abilities. Denote the vector of these particles by ui. By induction, in period t these

are particles ut|t−1,i.

• Step 2. Construct xt|t−1,i using equation (19) in the text. Assign to each draw (ut|t−1,i,

18This is the same method used in Upper and Worms (2003), and more details about the construction of
real long term interest rates can be found therein.

20



xt|t−1,i) a weight defined as:

wi
t =

1

(2π)5/2|Σ|1/2
exp

[

−
1

2

(
yt − Axt|t−1,i

)′
Σ
(
yt − Axt|t−1,i

)
]

(B.1)

• Step 3. Normalize the weights:

w̃i
t =

wi
t

∑N
i=1w

i
t

Update the values of xt|t−1,i by sampling with replacement 40,000 values of xt|t−1,i using

the relative weights w̃i
t and the residual resampling algorithm.

• Repeat steps 2-3 for t ≤ T .

The log-likelihood function is approximated by

L(θ|vT ) ≃
T∑

t=1

ln

(

1

40, 000

40,000
∑

i=1

wi
t

)

(B.2)

B.3 MCMC Algorithm

The random walk Metropolis-Hastings algorithm used for estimation works as follows:

• Step 1. Compute the posterior log-likelihood for 500 draws from the priors. Call the

draw with the highest posterior log-likelihood value θ∗.

• Step 2. Starting from θ∗, generate a MCMC chain using the following random-walk

proposal density

θpropj+1 = θpropj + cN (0,Λ), j = 1, ..., 100, 000

where Λ is the covariance matrix of 500 draws from the priors and c > 0 is a tuning

parameter set to determine the acceptance ratio.

• Step 3. Compute the acceptance ratio ϕ = min
{

p(θpropj+1
|vT )

p(θj |vT )
, 1
}

. Given a draw u from

the standard uniform distribution. Then θj+1 = θpropj+1 if u < ϕ and θj+1 = θj otherwise.

Repeat for j = 1, ..., 10, 000.

• Step 4. Update the random walk proposal density in the following way. Update Λ to

be the covariance matrix from the previous draws {θj}
10,000
1 . Update θ∗ to be the mean

of previous draws {θj}
10,000
1 . Starting from the new θ∗, proceed through steps 2 and 3

for 38,000 draws from the new MCMC chain.

We burn the first 15,000 draws from the final MCMC chain and thin every 25 draws.
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C Log-Linearized Model Equations

The log-linearized system of equations for the variant of the model without default are:

ĉt −
1

1 + h
Etĉt+1 +

1− h

1 + h
R̂t =

h

1 + h
ĉt−1

1

1− h
ĉt +

n

1− n
n̂t − Ât +

τ

1− τ
τ̂t =

h

1− h
ĉt−1

c

y
ĉt +

g

y
ĝt = Ât + n̂t

b

y
b̂t −

g

y
ĝt −

z

y
ẑt + τ(τ̂t + Ât + n̂t) = R ∗

b

y
(R̂t−1 + b̂t−1)

ĝt = (1− ρg)ĝt−1 − γg,L(1− ρg)bt−1 + σg,pǫ
g
t , ǫgt ∼ N(0, 1)

τ̂t = (1− ρτ )τ̂t−1 + γτ,L(1− ρτ )bt−1 + στ,pǫ
τ
t , ǫτt ∼ N(0, 1)

ẑt = (1− ρz)ẑt−1 + σz,pǫ
z
t , ǫzt ∼ N(0, 1)

Ât = (1− ρa)Ât−1 + σa,pǫ
a
t , ǫzt ∼ N(0, 1)
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Table 1: 10-yr Nominal Interest Rate Spread (against Germany)

2009 2010 2011
Greece 2.35 9.1 19.2
Portugal 0.77 3.62 11.15
Italy 0.87 1.69 4.88
Spain 0.67 2.47 3.6
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Table 2: Calibration and Priors
Calibration

Italy Greece
β 0.99 0.99
n̄ 0.75 0.75
ḡ/ȳ 0.196 0.181
b̄/ȳ 1.081*4 1.095*4
τ 0.413 0.333

Priors

Function Italy Greece
h Beta 0.5 0.5

(0.2) (0.2)

b̃∗ Uniform 1.6 1.6
(0.013) (0.013)

γτ,L Gamma 0.5 0.5
(0.2) (0.2)

γg,L Gamma 0.4 1.1
(0.2) (0.3)

ρa Beta 0.8 0.8
(0.1) (0.1)

ρg Beta 0.5 0.5
(0.2) (0.2)

ρτ Beta 0.5 0.5
(0.2) (0.2)

ρz Beta 0.5 0.5
(0.2) (0.2)

σa,p Gamma 0.005 0.005
(0.003) (0.003)

σg,p Gamma 0.005 0.005
(0.003) (0.003)

στ,p Gamma 0.005 0.005
(0.003) (0.003)

σz,p Gamma 0.2 0.2
(0.1) (0.1)
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Table 3: Greece Estimates.

Prior Posterior: δA = 0.3 Posterior: δA = 0.2 Posterior: Linear

mean [5, 95] median [5, 95] median [5, 95] median [5, 95]

h 0.5 [0.17, 0.83] 0.08 [0.02, 0.16] 0.12 [0.04, 0.26] 0.12 [0.03, 0.27]

b̃ 1.6 [1.42, 1.78] 1.5 [1.43, 1.54] 1.48 [1.44, 1.53] - -
γτ,L 0.4 [0.14, 0.78] 0.3 [0.2, 0.44] 0.2 [0.14, 0.3] 0.23 [0.11, 0.38]
γg,L 1.1 [0.66, 1.64] 1.26 [1.16, 1.44] 1.31 [0.97, 1.58] 1.09 [0.67, 1.65]
ρa 0.8 [0.61, 0.94] 0.92 [0.90, 0.93] 0.94 [0.93, 0.96] 0.92 [0.90, 0.94]
ρg 0.8 [0.61, 0.94] 0.92 [0.87, 0.95] 0.90 [0.87, 0.94] 0.92 [0.84, 0.97]
ρz 0.5 [0.17, 0.83] 0.5 [0.43, 0.62] 0.62 [0.35, 0.70] 0.57 [0.33, 0.79]
ρτ 0.5 [0.17, 0.83] 0.67 [0.61, 0.74] 0.71 [0.65, 0.78] 0.64 [0.53, 0.73]
σa,p 0.01 [0.003, 0.02] 0.018 [0.014, 0.021] 0.019 [0.014, 0.027] 0.017 [0.014, 0.022]
σg,p 0.02 [0.003, 0.05] 0.04 [0.034, 0.043] 0.04 [0.037, 0.046] 0.040 [0.033, 0.049]
σz,p 0.5 [0.35, 0.68] 0.44 [0.38, 0.49] 0.52 [0.48, 0.65] 0.51 [0.40, 0.65]
στ,p 0.01 [0.003, 0.02] 0.013 [0.010, 0.016] 0.012 [0.010, 0.015] 0.013 [0.009, 0.017]

Table 4: Smoothed estimates of measurement error.
Greece

bt gt Tt yt Rt

Nonlinear δA = 0.3
mean absolute value 0.0038 0.0029 0.0070 0.0077 0.0003
relative standard deviation 0.097 0.070 0.255 0.225 0.118

Nonlinear δA = 0.2
mean absolute value 0.0048 0.0033 0.0069 0.0082 0.0003
relative standard deviation 0.136 0.081 0.235 0.233 0.129

Linear
mean absolute value 0.0039 0.0034 0.0061 0.0082 0.0003
relative standard deviation 0.099 0.081 0.191 0.239 0.093

Table 5: Model-implied s̃max and estimated s̃∗

Greece δA = 0.3 Greece δA = 0.2
median [5, 95] median [5, 95]

s̃max 4.91 [4.78, 5.07] 4.97 [4.84, 5.09]
s̃∗ 1.47 [1.43, 1.52] 1.49 [1.43, 1.53]
βpol 0.30 [0.29, 0.31] 0.30 [0.29, 0.31]
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Figure 1: Fitted values for various estimations for Greece. Black, solid lines: data. Blue,
dashed lines: Nonlinear model with δA = 0.3. Red, dotted-dashed lines: Nonlinear model
with δA = 0.2. Green, dotted lines: Linear model.
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Figure 2: Model-implied sovereign default probabilities for Greece. Solid lines denote the
median and 90% confidence interval probabilities for in-sample debt-to-GDP ratios. Dashed
lines denote the median and 90% confidence interval probabilities for out-of-sample debt-to-
GDP ratios.
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Figure 3: Data (black, solid line) versus fitted and forecast values (blue, dotted and dashed
lines) for the Greek interest rate. The median (blue, dotted line) and 90% interval (blue,
dashed lines) of model-implied interest rate forecasts for 2011 are calculated based on the
posterior median parameter estimates (top panel) and 5 percentile parameter estimates (bot-
tom panel).
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