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Abstract

Markov Switching models are a way to consider discrete changes in the economic en-

vironment, such as policy changes, and allow agents in the economy to form expectations

over these changes. This paper develops a methodology for constructing approximations

to the solution of Markov Switching dynamic stochastic general equilibrium (MS-DSGE)

models. The method allows for changes in parameters that both do and do not a¤ect the

economy�s steady state, and enables linear or higher-order approximations. In addition,

the paper proves that �rst-order approximations to a wide class of MS-DSGE models are

not certainty equivalent. The numerical procedure handles potentially large systems and

considers existence and uniqueness using the concept of mean square stability. Two exam-

ples, one Real Business Cycle and one New Keynesian, illustrate the procedure and issues

of certainty equivalence and mean square stability.
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1 Introduction

Following the introduction of vector autoregressions (VARs) to macroeconomics by ? it was

quickly realized that it is di¢ cult to �nd macroeconomic applications for which model para-

meters remain stable over long periods of time. This problem was not unique to reduced form

representations of the data, but was also an issue when more structural approaches were consid-

ered. One way to solve the problem, pursued by ? and followed up by ?, breaks the sample into

sub-periods and estimates the structural models in which one or more of the model�s parameters

di¤er across sub-samples. While this approach addresses the parameter instability problem, it

fails to consider that forward looking agents living in a world in which parameters are known

to change occasionally would be expected to take possible parameter change into account when

forming their expectations and, therefore, will a¤ect their optimal decisions.

An alternative approach to parameter instability, suggested by the work of ? and pursued

in ?, is to estimate a backward-looking vector autoregression (VAR) with regime dependent

parameters. This approach has its limitations since it does not allow for the presence of forward-

looking components that are present in a dynamic stochastic general equilibrium (DSGE) model.

A number of authors have recently studied forward looking Markov-switching linear rational

expectations (MSLRE) models. Work in this area includes papers by ?, ?, ?, ?, and ?. MSLRE

models are more complicated than linear rational expectations models since the agents of the

model must be allowed to take account of the possibility of future regime changes when forming

expectations. The MSLRE literature has made some headway in addressing questions like

setting necessary and su¢ cient conditions to determine if the parameters of a Markov-switching

rational expectations model lead to a determinate equilibrium (See ?).

There are two main shortcomings with the MSLRE approach. First, most of the analyzed

models do not begin from �rst principles. In other words, researchers consider linear rational

expectations (LRE) models where Markov-switching (MS) has been added after the model has

been linearized. Second, higher order solutions are not considered. Given that MS parameters

add a lot of uncertainty to the model, considering higher order approximations may be poten-

tially important. This paper solves these two shortcomings. In particular, it shows how to use
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perturbation methods to solve Markov-switching rational expectations (MSRE) models - note

the absence of the �linear�- starting from �rst principles, i.e. from the set of (non-linearized)

�rst order conditions that de�ne equilibrium.

Following ?, ?, and ?, this paper uses the concept of mean square stability (MSS) to char-

acterize stable solutions. The perturbation approach uses the theory of Gröbner Bases to �nd

solutions, and determines existence and uniqueness of MSS solutions. It also allows for a �ex-

ible regime-switching speci�cation, including in parameters that a¤ect the steady state of the

economy. In particular, the �rst order approximation of models where switching a¤ects the

steady state is not certainty equivalent.

After developing the methodology, the paper presents two example economies that illustrate

the methodology and highlight the issues of mean square stability and certainty equivalence.

In the �rst, a simple real business cycle model with stochastic drift shows how to use the

methodology and the importance of certainty equivalence. The second, a New Keynesian

model, adds sticky prices and a monetary authority with changes in the policy rule, and shows

how mean square stability determines existence and uniqueness.

The remainder of the paper is as follows: Section 2 describes a general class of MS-DSGE

models and the nature of Markov switching. Sections 3 and 4 discuss the �rst-order approxima-

tion, the former showing how to solve the model, and the latter highlighting the key quadratic

equations and how to use Gröbner Bases to solve them. Section 6.1 has an example RBC

economy, Section 6.6 has an example NK economy, and Section 7 concludes.

2 The Model

Consider a dynamic general equilibrium model in which some of the parameters follow a discrete

state Markov chain indexed by st with transition matrix P = (ps;s0). The element ps;s0 represents

the probability that st+1 = s0 given st = s for s; s0 2 f1; : : : ; nsg where ns is the number of

regimes and when st = s the model is said to be in regime s at time t. The vector of changing
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parameters �t has size n� � 1.1 Given any xt�1; "t; and �t, the set of equilibrium conditions of

a wide class of models can be written as

Etf (yt+1; yt; xt; xt�1; �"t+1; "t; �t+1; �t) = 0nx+ny (1)

where Et denotes the mathematical expectations operator conditional on information available at

time t, and 0m1�m2 denotes am1�m2 matrix of zeros . The vector xt�1 of predetermined variables

(endogenous and exogenous) is of size nx � 1, the vector yt of non-predetermined variables is of

size ny � 1, the vector "t of independent innovations to the exogenous predetermined variables

with mean equal to zero is of size n" � 1, and � is the perturbation parameter. The function

f maps R2(ny+nx+n"+n�) into Rny+nx is the number of equations in (1). Since the parameters,

�t, in (1) depend on the state of the Markov chain, there are ns sets of equilibrium conditions,

one for each value of the Markov chain, instead of the single set of equilibrium conditions in the

constant parameter case.

The solution to the model has the form

yt � g (xt�1; "t; �; st) ; (2)

yt+1 � g (xt; �"t+1; �; st+1) ; (3)

and

xt � h (xt�1; "t; �; st) (4)

where g maps Rnx+n"+1�f1; : : : ; nsg into Rny and h maps Rnx+n"+1�f1; : : : ; nsg into Rnx. The

goal is to �nd the Taylor expansion of the functions g and h around the steady state.

The parameters �t depend on the regime in the following way

�t � � (�; st) and �t+1 � � (�; st+1) (5)

where � maps R�f1; : : : ; nsg into Rn� . The vector of parameters �t has two subvectors �1t and

�2t

�t =
�
�01t �02t

�0
�
�
�1 (�; st)

0 �2 (�; st)
0
�0
; (6)

1There may also be a set of non-changing parameters not included in �t.
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where �1t and �2t have sizes n�1 and n�2, respectively, and

�1 (�; st) = �1 + �b�1 (st) (7)

and

�2 (�; st) = b�2 (st) : (8)

The parameters �t+1 have the same functional forms.2 Note two things about this speci�ca-

tion: �rst, b�1 (st) is the deviation of �1t from �1 in regime st and, second, �2t is not a function

of the perturbation parameter �. Hence, the perturbation parameter, �, only a¤ects a subset

of the parameters, �1t, while �2t is not a¤ected by the perturbation parameter. The choice of

which parameters to perturb, �1t, and which ones do not perturb, �2t, is not unique, but there

is one restriction. De�ne the steady state of the model as vectors xss and yss of size nx � 1 and

ny � 1 respectivelly such that

f

�
yss; yss; xss; xss; 0n" ; 0n" ;

�
�
0
1
b�2 (st+1)0 �0 ;� �

0
1
b�2 (st)0 �0� = 0nx+ny

for all st+1 and st. Thus, the partition should be such that neither �2 (0; st+1) = b�2 (st+1) nor
�2 (0; st) = b�2 (st) enter in the calculation of the steady state since the last expression has to
hold for all st+1 and st.

In other words, the partition should be such that the function f , once �1t and �2t have been

replaced by (7) and (8) and evaluated at "t = 0n" and � = 0, can be writen as another function

fss that only depends on yt+1; yt; xt; xt�1; and �1 but neither on b�2 (st+1) nor b�2 (st), i.e.
f

�
yt+1; yt; xt; xt�1; 0n" ; 0n" ;

�
�
0
1
b�2 (st+1)0 �0 ;� �

0
1
b�2 (st)0 �0� = fss

�
yt+1; yt; xt; xt�1; �1; �1

�
where 0m is a vector of zeros of size nm � 1.

In general, more than one partition of parameters accomplishes this objective. In any case,

included in �1t is the smallest set of parameters such that the steady state is de�ned as described

above. Since the steady state depends upon ��1, a natural choice for this point is the mean of

2These functional forms are not necessary but just convenient for the derivations; any other functional form

such that �1 (0; st) = �1 for all st holds may also work.
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the ergodic distribution across �1t, but again, this selection is not unique. Sections 6 provides

examples of partitions of �t and choices of ��1.

Given the de�nition of the steady state, it is the case that

yss = g (xss; 0n" ; 0; st) and xss = h (xss; 0n" ; 0; st)

for all st and

yss = g (xss; 0n" ; 0; st+1) and xss = h (xss; 0n" ; 0; st+1)

for all st+1.

Using equations (2), (3), (4), and (5) the function f can be written as

F (xt�1; "t+1; "t; st+1; �; st) = f

0@ g (h (xt�1; "t; �; st) ; �"t+1; �; st+1) ; g (xt�1; "t; �; st) ;

h (xt�1; "t; �; st) ; xt�1; �"t+1; "t; � (�; st+1) ; � (�; st)

1A
for all xt�1; "t+1; "t; st+1; and st. The function F maps Rnx+2n"+1�f1; : : : ; nsg�f1; : : : ; nsg into

Rny+nx.

Assuming that innovations to the exogenous predetermined variables, "t, are independent of

the Markov chain, st, write (1) as

Etf (yt+1; yt; xt; xt�1; �"t+1; "t; �t+1; �t) = (9)

G (xt�1; "t; �; st) =
nsX
s0=1

pst;s0

Z
F (xt�1; "0; "t; s0; �; st)� ("0) d"0 = 0ny+nx

for all xt�1; "t; and st where � is the density of the innovations. The function G maps Rnx+n"+1�

f1; : : : ; nsg into Rny+nx.

The remainder of the paper will use the following notation

DG (xt�1; "t; �; st) =
�
DjGi (xt�1; "t; �; st)

�
1�i�ny+nx;1�j�nx+n"+1

to refer the (ny + nx)�(nx + n" + 1)matrix of partial derivatives ofG with respect to (xt�1; "t; �)

evaluated at (xt�1; "t; �; st) for all xt�1; "t; and st. Note the absence of derivatives with respect

to st, since it is a discrete variable. Equivalently,

DG (xss; 0n" ; 0; st) =
�
DjGi (xss; 0n" ; 0; st)

�
1�i�ny+nx;1�j�nx+n"+1
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refers to the (ny + nx)�(nx + n" + 1)matrix of partial derivatives ofG with respect to (xt�1; "t; �)

evaluated at (xss; 0n" ; 0; st) for all st. To simplify notation de�ne

DGss (st) � DG (xss; 0n" ; 0; st) and DjGi
ss (st) � DjGi (xss; 0n" ; 0; st)

for all i, j, and st. Thus,

DGss (st) =
�
DjGi

ss (st)
�
1�i�ny+nx;1�j�nx+n"+1

for all st. In the same way,

Dfss (st+1; st) =�
Djf

i

�
yss; yss; xss; xss; 0n" ; 0n" ;

�
�
0
1
b�2 (st+1)0 �0 ;� �

0
1
b�2 (st)0 �0��

1�i�ny+nx;1�j�2(ny+nx+n"+n�)

is the (ny + nx) � (2 (ny + nx + n" + n�)) matrix of partial derivatives of f with respect to all

its components evaluated at
�
yss; yss; xss; xss; 0n" ; 0n" ;

�
�
0
1
b�2 (st+1)0 �0 ;� �

0
1
b�2 (st)0 �0� for

all st+1 and st,

Dg (xss; 0n" ; 0; st) =
�
Djg

i (xss; 0n" ; 0; st)
�
1�i�ny ;1�j�nx+n"+1

is the ny � (nx + n" + 1) matrix of partial derivatives of g with respect to (xt�1; "t; �) evaluated

at (xss; 0n" ; 0; st) for all st, and

Dh (xss; 0n" ; 0; st) =
�
Djh

i (xss; 0n" ; 0; st)
�
1�i�nx;1�j�nx+n"+1

is the nx� (nx + n" + 1) matrix of partial derivatives of h with respect to (xt�1; "t; �) evaluated

at (xss; 0n" ; 0; st) for all st. To simplify notation, de�ne

Dgss (st) � Dg (xss; 0n" ; 0; st) and Djg
i
ss (st) � Djg

i (xss; 0n" ; 0; st) ;

for all i, j, and st and

Dhss (st) � Dh (xss; 0n" ; 0; st) and Djh
i
ss (st) � Djh

i (xss; 0n" ; 0; st)

for all i, j, and st. Thus,

Dgss (st) =
�
Djg

i
ss (st)

�
1�i�ny+nx;1�j�nx+n"+1
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and

Dhss (st) =
�
Djh

i
ss (st)

�
1�i�ny+nx;1�j�nx+n"+1

for all st.

3 First Order Approximation

This section shows how to �nd the �rst order Taylor expansions to g and h around the point

(xss; 0n" ; 0; st) of the form

g (xt�1; "t; �; st)� yss ' [D1gss (st) ; : : : ;Dnxgss (st)] (xt�1 � xss)

+ [Dnx+1gss (st) ; : : : ;Dnx+n"gss (st)] "t +Dnx+n"+1gss (st)�

and

h (xt�1; "t; �; st)� xss ' [D1hss (st) ; : : : ;Dnxhss (st)] (xt�1 � xss)

+ [Dnx+1hss (st) ; : : : ;Dnx+n"hss (st)] "t +Dnx+n"+1hss (st)�

for all st where Djgss (st) is the jth column vector of Dgss (st) and Djhss (st) is the jth column

vector of Dhss (st). To simply notation, de�ne

Dn;mgss (st) � [Dngss (st) ; : : : ;Dmgss (st)] and Dn;mhss (st) � [Dnhss (st) ; : : : ;Dmhss (st)]

for all n and m and all st.

Hence, the above approximations are equivalent to

g (xt�1; "t; �; st)� yss ' D1;nxgss (st) (xt�1 � xss) +Dnx+1;nx+n"gss (st) "t +Dnx+n"+1gss (st)�

and

h (xt�1; "t; �; st)� xss ' D1;nxhss (st) (xt�1 � xss) +Dnx+1;nx+n"hss (st) "t +Dnx+n"+1hss (st)�

The objective is now to �nd the coe¢ cients

fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

; fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

;

and fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1
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of the above describe expansions, whereD1;nxgss (st) 2 Cny�nx, D1;nxhss (st) 2 Cnx�nx, Dnx+1;nx+n"gss (st) 2

Cny�n", Dnx+1;nx+n"hss (st) 2 Cnx�n", Dnx+n"+1gss (st) 2 Cny�1, and Dnx+n"+1hss (st) 2 Cnx�1

for all st and where we are using Cm1�m2 to denote m1�m2 matrices over the complex numbers.

The current setup requires �nding a set of ns policy functions, one for each possible value of the

Markov chain, instead of the single set of policy functions in the constant parameter case.

The coe¢ cients of these policy functions are going to be obtained by using the fact that

G (xt�1; "t; �; st) = 0ny+nx

for all xt�1; "t; �; and st and, therefore, it must be the case that

DG (xt�1; "t; �; st) = 0(ny+nx)�2(ny+nx+n"+n�)

for all xt�1; "t; �; and st and, in particular,

DGss (st) = 0(ny+nx)�(nx+n"+1)

for all st. Thus,

[D1Gss (st) ; : : : ;DnxGss (st)] = 0(ny+nx)�nx ; (10)

[Dnx+1Gss (st) ; : : : ;Dnx+n"Gss (st)] = 0(ny+nx)�n" ;

and Dnx+n"+1Gss (st) = 0ny+nx

for all st where DjGss (st) is the jth column vector of DGss (st). Again, note that there are a

set of ns derivatives of G, one for each possible value of st, instead of the single derivative in

the constant parameter case. To simply notation, again, de�ne

Dn;mGss (st) � [DnGss (st) ; : : : ;DmGss (st)]

for all st. Therefore, expression (10) can be written as

D1;nxGss (st) = 0(ny+nx)�nx ; Dnx+1;nx+n"Gss (st) = 0(ny+nx)�n" ; and Dnx+n"+1Gss (st) = 0ny+nx

(11)

for all st.
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The expressionD1;nxGss (st) = 0(ny+nx)�nx will be used to solve for fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

,

while expressionsDnx+1;nx+n"Gss (st) = 0(ny+nx)�n" andDnx+n"+1Gss (st) = 0ny+nx will be used to

solve for fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

and fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

.

In what follows, we show that D1;nxGss (st) = 0(ny+nx)�nx implies a quadratic system, while

Dnx+1;nx+n"Gss (st) = 0(ny+nx)�n" andDnx+n"+1Gss (st) = 0ny+nx (given fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

)

are linear systems.

3.1 Solving for the Derivatives of xt�1

Taking derivatives with respect to xt�1 in (9) produces the following expression

D1;nxGss (st) =
nsX
s0=1

pst;s0

Z
0BBBBBB@
D1;nyfss (s0; st)D1;nxgss (s0)D1;nxhss (st)

+Dny+1;2nyfss (s
0; st)D1;nxgss (st)

+D2ny+1;2ny+nxfss (s0; st)D1;nxhss (st)

+D2ny+nx+1;2(ny+nx)fss (s0; st)

1CCCCCCA� ("0) d"0

for all st. Next, taking into account that
R
� ("0) d"0 = 1, this expression simpli�es to

D1;nxGss (st) =
nsX
s0=1

pst;s0

0BBBBBB@
D1;nyfss (s0; st)D1;nxgss (s0)D1;nxhss (st)

+Dny+1;2nyfss (s
0; st)D1;nxgss (st)

+D2ny+1;2ny+nxfss (s0; st)D1;nxhss (st)

+D2ny+nx+1;2(ny+nx)fss (s0; st)

1CCCCCCA
for all st. Now, rearranging, for each st

D1;nxGss (st) = (12)

nsX
s0=1

pst;s0

0@ �
D1;nyfss (s0; st)D1;nxgss (s0) +D2ny+1;2ny+nxfss (s0; st)

�
D1;nxhss (st)

+Dny+1;2nyfss (s
0; st)D1;nxgss (st) +D2ny+nx+1;2(ny+nx)fss (s0; st)

1A .
Putting together the ns versions of (12), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)nxns quadratic equations in the same number

of unknowns fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

. Section 4 describes how to solve this system.
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3.2 Solving for the Derivatives of "t and �

This subsection shows that, after �nding fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

, obtaining

fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

and fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

is sim-

ply solving a system of linear equations. The �rst step is to solve for

fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

. Then, we solve for

fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

.

3.2.1 Solving for the Derivatives of "t

In order to solve for fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

, we obtain the expression for

Dnx+1;nx+n"Gss (st) by taking derivatives with respect to "t in (9)

Dnx+1;nx+n"Gss (st) =

nsX
s0=1

pst;s0

Z
0BBBBBB@
D1;nyfss (s0; st)D1;nxgss (s0)Dnx+1;nx+n"hss (st)+

Dny+1;2nyfss (s
0; st)Dnx+1;nx+n"gss (st)+

D2ny+1;2ny+nxfss (s0; st)Dnx+1;nx+n"hss (st)+

D2(ny+nx)+n"+1;2(ny+nx+n")fss (s0; st)

1CCCCCCA� ("0) d"0

for all st. Taking into account that
R
� ("0) d"0 = 1, this expression simpli�es to

Dnx+1;nx+n"Gss (st) =

nsX
s0=1

pst;s0

0BBB@
�
D1;nyfss (s0; st)D1;nxgss (s0) +D2ny+1;2ny+nxfss (s0; st)

�
Dnx+1;nx+n"hss (st)

Dny+1;2nyfss (s
0; st)Dnx+1;nx+n"gss (st)

D2(ny+nx)+n"+1;2(ny+nx+n")fss (s0; st)

1CCCA (13)

for all st.

Putting together the ns versions of (13), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)n"ns equations in the same number of unknowns

fDnx+1;nx+n"gss (st) ;Dnx+1;nx+n"hss (st)g
ns
st=1

. The system is linear.
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The linear system can be writen in matrix notation expression as

h
�" �"

i
26666666666664

Dnx+1;nx+n"gss (1)
...

Dnx+1;nx+n"gss (ns)

Dnx+1;nx+n"hss (1)
...

Dnx+1;nx+n"hss (ns)

37777777777775
= 	" (14)

where

�" =
nsX
s0=1

26664
p1;s0Dny+1;2nyfss (s

0; 1) � � � 0(nx+ny)�ny
...

. . .
...

0(nx+ny)�ny � � � pns;s0Dny+1;2nyfss (s
0; ns)

37775 ;

�" =
nsX
s0=1

26664
p1;s0D1;nyfss (s0; 1)D1;nxgss (s0) � � � 0(nx+ny)�nx

...
. . .

...

0(nx+ny)�nx � � � pns;s0D1;nyfss (s0; ns)D1;nxgss (s0)

37775

+
nsX
s0=1

26664
p1;s0D2ny+1;2ny+nxfss (s0; 1) � � � 0(nx+ny)�nx

...
. . .

...

0(nx+ny)�nx � � � pns;s0D2ny+1;2ny+nxfss (s0; ns)

37775 ;
and

	" = �
nsX
s0=1

26664
p1;s0D2(ny+nx)+n"+1;2(ny+nx+n")fss (s0; 1)

...

pns;s0D2(ny+nx)+n"+1;2(ny+nx+n")fss (s0; ns)

37775 :
Thus, given the solution for fD1;nxgss (st) ;D1;nxhss (st)g

ns
st=1

, expression (14) is a system of

(ny + nx)n"ns linear equations in the same number of unknowns given by

fDnx+1;nx+negss (st) ;Dnx+1;nx+nehss (st)g
ns
st=1

that can be solved by inverting
h
�" �"

i
.

12



3.2.2 Solving for the Derivatives of �

In order to solve for fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

, we obtain the expression forDnx+n"+1Gss (st)

by taking derivatives with respect to � in (9)

Dnx+n"+1Gss (st) =

nsX
s0=1

pst;s0

Z

0BBBBBBBBBBBBBBB@

D1;nyfss (s0; st)

24 D1;nxgss (s0)Dnx+n"+1hss (st)

+Dnx+1;nx+n"gss (s
0) "0 +Dnx+n"+1gss (s

0)

35+
Dny+1;2nyfss (s

0; st)Dnx+n"+1gss (st)+

D2ny+1;2ny+nxfss (s0; st)Dnx+n"+1hss (st)+

D2ny+nx+1;2ny+nx+n"fss (s0; st) "0+

D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; st)D�ss (s0)+

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; st)D�ss (st)

1CCCCCCCCCCCCCCCA
� ("0) d"0

for all st, where D�ss (st) is the derivative of � (�; st) with respect to � evaluated at � = 0

D�ss (st) = D� (0; st) =
�
Di
j� (0; st)

�
1�i�n�;j=1

for all st.

Taking into account that
R
� ("0) d"0 = 1 and

R
"0� ("0) d"0 = 0, the above simpli�es to

Dnx+n"+1Gss (st) = (15)

nsX
s0=1

pst;s0

0BBBBBB@
D1;nyfss (s0; st) fD1;nxgss (s0)Dnx+n"+1hss (st) +Dnx+n"+1gss (s

0)g+

Dny+1;2nyfss (s
0; st)Dnx+n"+1gss (st) +D2ny+1;2ny+nxfss (s0; st)Dnx+n"+1hss (st)

+D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; st)D�ss (s0)+

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; st)D�ss (st)

1CCCCCCA
for all st.

Putting together the ns versions of (15), one for each value of st, and equating them to zero,

as implied by (11), yields a system of (ny + nx)ns equations in the same number of unknowns

fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

. This system is also linear.

13



The linear system can be writen in matrix notation expression as

h
�� ��

i
26666666666664

Dnx+n"+1gss (1)
...

Dnx+n"+1gss (ns)

Dnx+n"+1hss (1)
...

Dnx+n"+1hss (ns)

37777777777775
= 	�; (16)

where

�� =
nsX
s0=1

26664
p1;s0Dny+1;2nyfss (s

0; 1) � � � 0(nx+ny)�ny
...

. . .
...

0(nx+ny)�ny � � � pns;s0Dny+1;2nyfss (s
0; ns)

37775

+

26664
p1;1D1;nyfss (1; 1) � � � p1;nsD1;nyfss (ns; 1)

...
. . .

...

pns;1D1;nyfss (1; ns) � � � pns;nsD1;nyfss (ns; ns)

37775 ;

�� =
nsX
s0=1

26664
p1;s0D1;nyfss (s0; 1)D1;nxgss (s0) � � � 0(nx+ny)�nx

...
. . .

...

0(nx+ny)�nx � � � pns;s0D1;nyfss (s0; ns)D1;nxgss (s0)

37775

+
nsX
s0=1

26664
p1;s0D2ny+1;2ny+nxfss (s0; 1) � � � 0(nx+ny)�nx

...
. . .

...

0(nx+ny)�nx � � � pns;s0D2ny+1;2ny+nxfss (s0; ns)

37775 ;
and

	� = �
nsX
s0=1

26666666664

p1;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; 1)D�ss (s0) + : : :

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; 1)D�ss (1)

1A
...

pns;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; ns)D�ss (s0) + : : :

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; ns)D�ss (ns)

1A

37777777775
:

14



Thus, given the solution for fD1;nxgss (st) ;D1;nxhss (st)g
ns
st=1

, expression (16) is a system of

(ny + nx)ns linear equations in the same number of unknowns given by fDnx+n"+1gss (st) ;Dnx+n"+1hss (st)g
ns
st=1

that can be solved by inverting
h
�� ��

i
.

3.3 Non-Certainty Equivalence of First-Order Approximation

As pointed out by ?, one important feature of constant parameter models is certainty equivalence

of the �rst-order approximation. This feature of constant parameter models implies that �rst-

order approximations are inadequate for analyzing interesting behavior such as responses to risk

because the approximated decision rules are invariant to changes in volatility. For example,

? and ? note that at least second-order approximations are needed to analyze certain asset

pricing implications, such as the yield curve, since second-order approximations are not certainty

equivalent, and hence react to changes in volatility. Second-order approximations also imply

a degree of di¢ culty in performing likelihood based estimation, such as ? who use the particle

�lter for estimation. These factors mean that addressing interesting questions with second-order

approximations may be necessary but di¢ cult in constant parameter models. As shown below,

�rst order approximations to Markov Switching models are not necessarily certainty equivalent.

This nice feature opens the door to analyze risk related behaviors using linearly approximated

models.

To see the certainty equivalence of the �rst-order approximation of constant parameter mod-

els, consider equation (16) with only one regime, so ns = 1. In this caseh
�� ��

i24 Dnx+n"+1gss (1)

Dnx+n"+1hss (1)

35 = 	� (17)

where h
�� ��

i
=h

D1;nyfss (1; 1)D1;nxgss (1) +D2ny+1;2ny+nxfss (1; 1) D1;nyfss (1; 1) +Dny+1;2nyfss (1; 1)
i

and

	� = �
h
D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (1; 1)Dss� (1)

i
.

15



Clearly, in constant parameter models it is the case that � (�; 1) = ��. Therefore, Dss� (1) =

0n� , which implies 	� = 0nx+ny . Consequently the system (17) is homogenous. If a unique

solution exists, then it is given by

Dnx+n"+1gss (1) = 0ny and Dnx+n"+1hss (1) = 0nx : (18)

Remenber that in constant parameter models the linear approximation to the policy rules

imply

yt � yss = D1;nxgss (1) (xt�1 � xss) +Dnx+1;nx+n"gss (1) "t +Dnx+n"+1gss (1)

and

xt � xss = D1;nxhss (1) (xt�1 � xss) +Dnx+1;nx+n"hss (1) "t +Dnx+n"+1hss (1) :

Using (18), evaluated at xt�1 = xss and "t = 0n" the above approximations imply that yt�yss =

0ny and xt � xss = 0nx, i.e. the linear approximation of constant parameter models is certaint

equivalent.

Let us now turn to the Markov switching case. From equation (16) is clear that a necessary

condition for the linear approximation not to be certaint equivalent is that 	� 6= 0ns(nx+ny). Let

us analize when it is the case that 	� 6= 0ns(nx+ny). Consider the expression for 	�

	� = �
nsX
s0=1

26666666664

p1;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; 1)D�ss (s0) + : : :

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; 1)D�ss (1)

1A
...

pns;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; ns)D�ss (s0) + : : :

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; ns)D�ss (ns)

1A

37777777775
:

Then, if D�ss (st) = 0n� for all st, it is the case that 	� = 0ns(nx+ny). So a necessary condition

for 	� 6= 0ns(nx+ny) is that D�ss (st) 6= 0n� for some st. Recalling the form of �t

�1 (�; st) = �1 + �b�1 (st)
and

�2 (�; st) = b�2 (st)
16



we conclude that

D�ss (st) =
h b�1 (st)0 00n�2

i0
.

Then D�ss (st) 6= 0n� for some st if and only if b�1 (st) 6= 0n�1 for some st. Hence, a necessary

condition for 	� 6= 0ns(nx+ny) is that b�1 (st) 6= 0n�1 for some st.
However, the condition that b�1 (st) 6= 0n�1 for some st is not su¢ cient for 	� 6= 0ns(nx+ny).

In addition, it must be the case that

nsX
s0=1

pst;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; st)D�ss (s0)+

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; st)D�ss (st)

1A 6= 0nx+ny

for some st, which will be true when �1t do not enter the equilibrium conditions multiplicatively

with a variable which expected value equals zero when evaluating f (�) in steady state. The

following Proposition summarizes these results.

Proposition 1 Let b�1 (st) = 0n�1 for all st. Then 	� = 0ns(nx+ny) and
Dnx+n"+1gss (st) = 0ny and Dnx+n"+1hss (st) = 0nx

for all st and the �rst order approximation is certainty equivalent. On the other hand, letb�1 (st) 6= 0n�1 for some st but let
nsX
s0=1

pst;s0

0@ D2(ny+nx+n")+1;2(ny+nx+n")+n�fss (s0; st)D�ss (s0)+

D2(ny+nx+n")+n�+1;2(ny+nx+n"+n�)fss (s0; st)D�ss (st)

1A = 0nx+ny

for all st. Then 	� = 0ns(nx+ny) and

Dnx+n"+1gss (st) = 0ny and Dnx+n"+1hss (st) = 0nx

for all st and the �rst order approximation is certainty equivalent.

Note that if the system is not certainty equivalent, it means that either

Dnx+n"+1gss (st) 6= 0ny

or

Dnx+n"+1hss (st) 6= 0nx

17



for some st and the linear approximation to the policy rules evaluated at xt�1 = xss and "t = 0n"

imply that either

yt � yss = Dnx+n"+1gss (st) 6= 0ny

or

xt � xss = Dnx+n"+1hss (st) 6= 0nx

for some st.

4 The Solution to the Quadratic System

As mentioned above, the ns versions of (12) form a system of (ny + nx)nsnx quadratic equations

in the elements of fD1;nxgss (s) ;D1;nxhss (s)g
ns
s=1. This section describes how to �nd the solution

to this system. Putting (12) into matrix form produces ns systems of the form

A (st)

26666664
I

D1;nxgss (1)
...

D1;nxgss (ns)

37777775D1;nxhss (st) = B (st)

24 I

D1;nxgss (st)

35 (19)

for all st, where

A (st) =
h Pns

s0=1 pst;s0D2ny+1;2ny+nxfss (s0; st) pst;1D1;nyfss (1; st) � � � pst;nsD1;nyfss (ns; st)
i

and

B (st) = �
nsX
s0=1

pst;s0
h
D2ny+nx+1;2(ny+nx)fss (s0; st) Dny+1;2nyfss (s

0; st)
i
:

This quadratic system is nothing else than an algebraic system of equations. In a constant

regime framework, ns = 1, mapping this system into a generalized eigenvalue problem allows

solving it by a singular value decomposition (SVD) type of algorithm. In the case of Markov

switching, the fact that fD1;nxgss (s)g
ns
s=1 appear in every of the ns equations described above

makes it impossible to map the algebraic systems of equations into a generalized eigenvalue

problem. Instead solutions are found using Gröbner Bases.

18



4.1 Gröbner Basis

What is a Gröbner basis? A Gröbner basis for a system of polynomials is a set of multivariate

polynomials that possesses desirable algorithmic properties. The most important of these fea-

tures for the current problem is that the system of polynomials in a Gröbner basis have the same

collection of roots as the original polynomials. Every set of polynomials can be transformed into

a Gröbner basis, although this transformation may not be unique. The transformation process

generalizes the familiar techniques of Gaussian elimination for solving linear systems of equa-

tions. In general, solving the problem in the system of polynomials in a Gröbner basis is much

simpler that in the original system. Also, a fundamental insight and contribution of Gröbner

bases theory is that every polynomial system, no matter how complicated, can be transformed

into Gröbner basis form (see Buchberger�s algorithm).

As an example, consider the following system of polynomials of four quadratic equations in

four unknowns:

xy + zw + 2 = 0;

xy + yz + 3 = 0;

xz + wx+ wy + 6 = 0; and

xz + 2xy + 3 = 0:

A Gröbner basis, with respect to the lexicographic ordering fx; y; z; wg, is

�49� 19w2 + 9w4 + 3w6;

2w + 9w3 + 3w5 + 14z;

�99w + 6w3 + 9w5 + 28y; and

15w � 6w3 � 9w5 + 28x:

Note that the �rst element of the basis is a polynomial in w only. Given a root w of the �rst

polynomial, the second polynomial is linear in z, the third is linear in y, and the last is linear

in x. Solving the �rst element of the basis produces the following six solutions

fw = �1:55461; w = �1:39592i; w = 1:39592i; w = 0:� 1:86232i; w = 1:86232i; w = 1:55461g
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Solving the other three basis, conditional on these solutions, gives the following roots

fz = 4:58328; z = �0:41342i; z = 0:41342i; z = 0:914097i; z = 0:914097i; z = �4:58328g ;

fy = �1:7728; y = �3:81477i; y = 3:81477i; y = �0:768342i; y = 0:768342i; y = 1:7728g

and

fx = �2:89104; x = �0:372997i; x = 0:372997i; x = �4:81861i; x = 4:81861i; x = 2:89104g .

These roots solve the original system of four quadratic equations in four unknowns.

4.2 Number of Solutions

In the previous example, there are six solutions to the set of quadratic equations. This result

follows from the fact that the �rst polynomial in the Gröbner basis is a sixth order polynomial

in w and the following three equations are linear in x, y, and z. In general, determining the

number of solutions from an arbitrary original set of polynomials may be di¢ cult. However,

given the structure of the quadratic system (19), it is possible to characterize the number of

solutions.

Consider the �xed regime case of equation (19), when ns = 1. The usual practice of solving

the model, as in ?, involves constructing a single stable solution that depends upon the general-

ized eigenvalues of the matrices A (1) and B (1). The full set of solutions (stable and unstable)

can be found by di¤erent selections of eigenvalues. The total combination of eigenvalues de-

pends upon the rank of the matrix A (1) and the number of exogenous predetermined variables

by the following.

Proposition 2 Fixed Regime Case. Let nexo denote the number of exogenous predetermined

variables, so 0 � nexo � nx. Then the total number of solutions to equation (19) when ns = 1

is given by 0@ rankA (1)� nexo

nx � nexo

1A =
(rankA (1)� nexo)!

(nx � nexo)! (rankA (1)� nx)!
.
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The matrix A (1) will not be of full rank when there exist redundant variables or identities

that can be eliminated from the system, and consequently are linearly dependent upon another

set of variables.3 The set of exogenous variables has set eigenvalues associated with their

coe¢ cients of autocorrelation, and consequently the number of solutions doesn�t depend upon

the number of exogenous variables.

Now consider the case with ns > 1. Given the previous proposition, the number of solutions

to each of the ns equations of (19) depends on the rank of A (st) and the number of exogenous

variables. Since there are ns quadratic equations of this form, the total number of solutions

depends on all possible combinations of solutions of the form in the previous proposition.

Proposition 3 Switching Case. Let nexo denote the number of exogenous predetermined vari-

ables, so 0 � nexo � nx. Then the total number of solutions to the ns equations (19) is given

by
nsY
s=1

0@ rankA (s)� nexo

nx � nexo

1A =
nsY
s=1

�
(rankA (s)� nexo)!

(nx � nexo)! (rankA (s)� nx)!

�

Consequently, the Gröbner basis method will return all the possible solutions to the quadratic

system (19). Given the full set of possible solutions, now it is possible to use a de�nition of

stability to determine how many solutions are stable.

4.3 Mean Square Stability

The Gröbner basis methodology will return all possible solutions of the ns systems (19) in the

unknowns fD1;nxhss (s) ;D1;nxgss (s)g
ns
s=1. The issue now is whether any of the solutions are

stable, and if so, how many.

In a typical model without Markov switching, determinacy is easily veri�ed by checking

whether the number of eigenvalues of the system (19) inside the unit circle equals to the number

of state variables. In a model with Markov switching, as the one described here, the problem

3A simple example of a system with A (1) of nonfull rank is the RBC model with capital, consumption, and

output. Often the output variable is eliminated, since it is redundant given a solution for consumption and

capital.
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is more subtle. As shown in ?, it is possible that the number of stable eigenvalues associated

with each of the regimes is equal to the number of states but the system, as a whole, does not

have a stable solution under several concepts of stability. The good news is that the Markov

switching model can be checked for mean-square stability (MSS), as de�ned in ?. In particular,

MSS requires checking if the following matrix has its eigenvalues inside the unit circle

T =
�
P 0 
 In2x

�
diag [D1;nxhss (s)
D1;nxhss (s)] (20)

where

diag [D1;nxhss (s)
D1;nxhss (s)] =

26666664
D1;nxhss (1)
D1;nxhss (1) 0n2x�n2x � � � 0n2x�n2x

0n2x�n2x D1;nxhss (2)
D1;nxhss (2) � � � 0n2x�n2x
...

...
. . .

...

0n2x�n2x 0n2x�n2x D1;nxhss (ns)
D1;nxhss (ns)

37777775 :
Thus, with Markov switching, the policy functions fD1;nxhss (i)g

ns
i=1 for all possible solutions

must be checked for stability under (20). If only one policy function is stable then the model only

has one stable solution. If more than one are stable, the model has multiple stable solutions. If

none are stable, the model has no stable solutions.

5 Second Order Approximation

Having constructed the �rst-order approximations, this Section shows how to �nd the second

order Taylor expansions to g and h around the point (xss; 0n" ; 0; st). These second order

expansions have the form, for each i = 1; : : : ; ny:

gi (xt�1; "t; �; st)� yss ' Dgiss (st)

26664
xt�1 � xss

"t

�

37775+
26664
xt�1 � xss

"t

�

37775
T

Hgiss (st)

26664
xt�1 � xss

"t

�

37775
and for each i = 1; : : : ; nx:

hi (xt�1; "t; �; st)� xss ' Dhiss (st)

26664
xt�1 � xss

"t

�

37775+
26664
xt�1 � xss

"t

�

37775
T

Hhiss (st)

26664
xt�1 � xss

"t

�

37775
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where

Hgiss (st) = Hgiss (xss; 0n" ; 0; st) =
�
DkDjg

i (xss; 0n" ; 0; st)
�
1�j;k�nx+n"+1

is the (nx + n" + 1) � (nx + n" + 1) Hessian matrix of gi with respect to (xt�1; "t; �) evaluated

at (xss; 0n" ; 0; st) for all st, and

Hhiss (st) = Hhiss (xss; 0n" ; 0; st) =
�
DkDjh

i (xss; 0n" ; 0; st)
�
1�j;k�nx+n"+1

is the (nx + n" + 1)� (nx + n" + 1) Hessian matrix of hi with respect to (xt�1; "t; �) evaluated

at (xss; 0n" ; 0; st) for all st.

The objective is now to �nd the coe¢ cients

��
Hgiss (s)

	ny
i=1

;
�
Hhiss (s)

	nx
i=1

	ns
s=1

=
n��

DkDjg
i (s)

	ny
i=1

;
�
DkDjh

i (s)
	nx
i=1

	nx+n"+1
j;k=1

ons
s=1

in the above described expansions.

6 Examples

6.1 Example 1: RBC Model

This section presents a simple exercise to illustrate the theoretical framework at hand. The

perfect vehicle for such pedagogical e¤ort is the real business cycle model. There are two reasons.

First, the stochastic neoclassical growth model is the foundation of modern macroeconomics.

Even the more complicated New Keynesian models, such as those in ? or ?, are built around

the core of the neoclassical growth model augmented with nominal and real rigidities. Thus,

after understanding how to deal with Markov switching in this prototype economy, it will be

rather straightforward to extend it to richer environments such as the ones commonly used

for policy analysis. Second, the model is so well known, its working so well understood, and

its computation so thoroughly explored that the role of time-varying volatility in it will be

staggeringly transparent.
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6.2 The RBC Model

Consider a real business cycle model where growth in total factor productivity follows a Markov

process with only two regimes. In particular, the TFP process will follow a random walk in

logs with drift that takes one of two levels, high and low, so the economy experiences high or

low growth. The random walk speci�cation helps simplify the number of variables considered

in a stationary equilibrium, and is hence the most parsimonious illustrative example. The spec-

i�cation of two regimes will allow a succinct discussion of the methodology, but, as mentioned

above, more regimes can be handled easily within the framework.

To get into the substantive questions as soon as possible, the description of the standard

features of the prototype economy will be limited to �x notation. There is a representative

household in the economy, whose preferences over stochastic sequences of consumption, ct; are

represented by a utility function:

maxE0
1X
t=0

�t log ct

where � 2 (0; 1). The resource constraint is

ct + kt = ztk
�
t�1 + (1� �) kt�1

where kt is capital and the technological change, zt, proceeds according to a random walk in

logs with drift where the Markov switching is in the drift, i.e.

log zt = �t + log zt�1 + �"t

where the drift takes two values

�t = � (st) , st 2 f1; 2g

and the transition matrix is P = [pi;j] where pi;j = Pr (st = jjst�1 = i) :

For this model it is natural to work with the solution to the social planner�s problem. The

optimality conditions are standard:

1

ct
= �Et

1

ct+1

�
�zt+1k

��1
t + 1� �

�
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and

ct + kt = ztk
�
t�1 + (1� �) kt�1:

Due to the unit root the economy is non-stationary. Thus, de�ne !t = z
1

1�a
t�1 , and let ~ct =

ct
!t
,

~kt�1 =
kt�1
!t
, ~zt = zt

zt�1
. Then the re-scaled equilibrium conditions are

1

~ct
= �Et

~z
1

��1
t

~ct+1

�
�~zt+1~k

��1
t + 1� �

�
;

~ct + ~kt~z
1

1�a
t = ~zt~k

�
t�1 + (1� �) ~kt�1;

and,

log ~zt = �t + �"t:

Substituting the expression for ~zt, the conditions are then

1

~ct
= �Et

1

~ct+1
e
�t+�"t
��1

�
�e�t+1+�"t+1~k��1t + 1� �

�
and

~ct + ~kte
�t+�"t
1�� = e�t+�"t~k�t�1 + (1� �) ~kt�1:

Using the notation in Section 2, xt�1 = ~kt�1, yt = ~ct, and �t = �1t = �t, so

f (yt+1; yt; xt; xt�1; �"t+1; "t; �t+1; �t) =24 1
~ct
� � 1

~ct+1
e
�t+�"t
��1

�
�e�t+1+��"t+1~k��1t + 1� �

�
~ct + ~kte

�t+�"t
1�� � e�t+�t"t~k�t�1 � (1� �) ~kt�1

35 :
Clearly,

~ct = g
�
~kt�1; "t; �; st

�
;

~ct+1 = g
�
~kt; �"t+1; �; st+1

�
;

~kt = h
�
~kt�1; "t; �; st

�
;

and the Markov Switching parameter is

�t+1 = � (�; st+1) = �+ �b� (st+1) .
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6.3 Solving the RBC Model

This subsection shows how to solve the model using a �rst order approximation. The �rst

step is to �nd the steady state, and the second is to de�ne the matrices in expression (19) that

are necessary to solve for the policy functions. Finally, after solving the model, simulations

demonstrate the decision rules.

6.3.1 Steady State

In order to calculate steady state, set � = 0. Therefore, ~ct = ~ct+1 = ~css, ~kt�1 = ~kt = ~kss, and

�t+1 = �t = ��. So the equilibrium conditions in steady state are24 1
css
� � 1

css
e

��
��1

�
�e��~k��1ss + 1� �

�
~css + ~ksse

��
1�� � e��~k�ss � (1� �) ~kss

35 = 02�1
and solve these produces the steady state values

~kss =

 
1

�e��

 
1

�e
��

��1
� 1 + �

!! 1
��1

and

~css = e��~k�ss + (1� �) ~kss � ~ksse
��

1�� :

6.3.2 The Matrices

The next step is to de�ne the matrices in expression (19), which depend on the derivatives of

the function f evaluated at the steady state. Recall in this example that ny = 1, nx = 1, n" = 1,

and n� = 1. The necessary matrices are

D1fss (s0; s) =

24 1
c2ss

0

35 ;D2fss (s0; s) =
24 � 1

c2ss

1

35 ;D3fss (s0; s) =
24 (1� �)��e

���
��1 k

��2
ss

css

e
��

1��

35

D4fss (s0; s) =

24 0

� e
��

1��
�

35 ;D5fss (s0; s) =
24 ���e ���

��1 k
��1
ss

css
�

0

35 ;
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D6fss (s0; s) =

264 �
(1��)css�

e
��

1�� kss
1�� � e��k�ss

�
�

375 ;
D7fss (s0; s) =

24 ���e ���
��1 k

��1
ss

css

0

35 ;D8fss (s0; s) =
24 1

css

�e��k�ss + 1
1��e

��
1��kss

35
Given these derivatives, constructing the necessary matrices for the solution is straightfor-

ward. The �rst sets of matrices are for the quadratic system, they are

A (1) =
h P2

s0=1 p1;s0D3fss (s0; 1) p1;1D1fss (1; 1) p1;2D1fss (2; 1)
i
;

A (2) =
h P2

s0=1 p2;s0D3fss (s0; 2) p2;1D1fss (1; 2) p2;2D1fss (2; 2)
i
;

and

B (1) = �
2X

s0=1

p1;s0
h
D4fss (s0; 1) D2fss (s0; 1)

i
,

B (2) = �
2X

s0=1

p2;s0
h
D4fss (s0; 2) D2fss (s0; 2)

i
The second set of matrices are used for the derivative with respect to "t, and they are

�" =
2X

s0=1

24 p1;s0D2fss (s0; 1) 0

0 p2;s0D2fss (s0; 2)

35 ;
�" =

2X
s0=1

24 p1;s0D1fss (s0; 1)D1gss (s0) +D3fss (s0; 1) 0

0 p2;s0D1fss (s0; 2)D1gss (s0) +D3fss (s0; 2)

35
and

	" = �
2X

s0=1

24 p1;s0D6fss (s0; 1)

p2;s0D6fss (s0; 2)

35 :
The third set of matrices are used for the derivative with respect to �, and they are

�� =

nsX
s0=1

24 p1;s0D2fss (s0; 1) + p1;1D1fss (1; 1) p1;2D1fss (2; 1)

p2;1D1fss (1; 2) p2;s0D2fss (s0; 2) + p2;2D1fss (2; 2)

35 ;
�� =

2X
s0=1

24 p1;s0D1fss (s0; 1)D1gss (s0) + p1;s0D3fss (s0; 1) 0

0 p2;s0D1fss (s0; 2)D1gss (s0) + p2;s0D3fss (s0; 2)

35 ;
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and

	� = �
2X

s0=1

24 p1;s0D7;8fss (s0; 1)D�ss (s0)

p2;s0D7;8fss (s0; 2)D�ss (s0)

35 :
6.4 RBC Solution

Now, to describe the solution, �rst consider the following parameters.

� � � � � (1) � (2) p1;1 p2;2

0.33 0.99 0.025 0.002 0.03 0.01 0.90 0.90

The transition matrix implies that regimes 1 and 2 occur with equal frequency in the ergodic

distribution, so the steady state depends upon �� = 0:02. The steady state values of capital and

consumption are kss = 11:4572 and css = 1:64771. Consequently the numerical values of the

derivatives are

D1fss (s0; s) =

24 0:3683
0

35 ; D2fss (s0; s) =
24 �0:3683

1

35 ; D3fss (s0; s) =
24 0:0022
1:0303

35

D4fss (s0; s) =

24 0

�1:04071

35 ; D5fss (s0; s) =
24 0
0

35 ; D6fss (s0; s) =
24 0:0018
0:0307

35
D7fss (s0; s) =

24 �0:0383
0

35 ; and D8fss (s0; s) =
24 0:905828
15:3372

35 :
Using the Gröbner basis with respect to the ordering fD1;nxhss (1) ;D1;nxhss (2) ;D1;nxgss (1) ;D1;nxgss (2)g

produces the following solutions

D1;nxhss (1) D1;nxgss (1) D1;nxhss (2) D1;nxgss (2)

1) 1:08526 �0:0774371 1:08526 �0:0774371

2) 0:930745 0:0817605 0:930745 0:0817605

3) 1:12� 0:091i �0:113 + 0:093i 1:12� 0:091i �0:113 + 0:093i

4) 1:12 + 0:091i �0:113� 0:093i 1:12 + 0:091i �0:113� 0:093i
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Now, checking these solutions for MSS, the only stable solution is (2). The full solution is then

st = 1 : ĉt = 0:0818k̂t�1 + 0:0021"t + 0:0375; k̂t = 0:9307k̂t�1 � 0:0318"t � 0:1852

st = 2 : ĉt = 0:0818k̂t�1 + 0:0021"t � 0:0375; kt = 0:9307k̂t�1 � 0:0318"t + 0:1852

As an alternative parameterization, consider the same parameters above, but with p1;1 = 0:5.

In the ergodic distribution across regimes for this case, regime 1 occurs with probability 1
6
and

regime 2 occurs with probability 5
6
. Then the steady state has �� = 0:0133, css = 1:7967, and

kss = 14:6326, and the �rst order solution is

st = 1 : ĉt = 0:0705k̂t�1 + 0:0023"t + 0:0293; k̂t = 0:9410k̂t�1 � 0:0411"t � 0:3526

st = 2 : ĉt = 0:0705k̂t�1 + 0:0023"t � 0:0058; k̂t = 0:9410k̂t�1 � 0:0411"t + 0:0705

There are two important properties of these �rst order solutions. First, for both the �rst

case with a symmetric transition matrix and the second case with a non-symmetric transition

matrix, the slope coe¢ cients of the solutions are identical across regimes. Second, the additional

constant term at the end of the solution is non-zero, which shows the non-certainty equivalence

of the �rst-order solution, and its magnitude depends upon the ergodic probabilities. Since the

only regime-switching parameter is the level of growth, the only change in the decision rules

is through the constant term, which represent deviations from the steady state due to Markov

switching. In the symmetric parameterization, each regime occurs with equal probability in the

ergodic distribution, so the steady state is exactly between each regime, and hence the deviations

are equally above and below. In the non-symmetric transition matrix parameterization, since

regime 2 occurs with a higher probability in the ergodic distribution, the additional constants

are much smaller for regime 2, demonstrating that the steady state is closer to regime 2.

Figure ?? shows the policy functions for each regime when the transition matrix is symmetric

if "t = 0, alongside the �xed regime case, which is no Markov switching but with TFP growth

always at ��. The plot shows how the policy functions with Markov switching have identical

slopes to those without switching, but the constant term associated with Markov switching

scales the functions up and down. In the case with a symmetric transition matrix and hence
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equal ergodic probabilities, the �xed regime case lies exactly between the two lines when there

is switching.

Figure ?? shows the policy functions for the non-symmetric transition matrix case. Again,

this �gure shows that the slopes are the same, but the Markov switching rules are scaled up and

down by a constant. Since regime 2 occurs with higher probability in the ergodic distribution,

the �xed regime policy function is very close to that for regime 2, while regime 1 is farther away.

6.5 RBC Simulations

To illustrate how Markov switching can play a role in growth dynamics, especially through the

non-certainty equivalence of the �rst-order approximation, Figures ?? and ?? show simulation

results of the models discussed above and their ergodic distributions. For both the symmetric

and non-symmetric transition matrices, there are 1000 simulations of the economy for a length

of 10000 periods, excluding the �rst 1000 to eliminate the e¤ects of initial conditions.

Figure ?? shows the simulated distributions of output and consumption growth for the

symmetric transition matrix economy. Recall that in this speci�cation, both regimes are equally

highly persistent, so in the ergodic distribution, both occur with equal probability. While

the �xed regime case has a single-peaked distribution, thereby exhibiting growth at close to a

constant rate, the switching case has a twin-peaked distribution for both variables, one peak

associated with each regime. The parameterization for the �xed regime case suggests that its

growth rate peak should be halfway between the growth rates of the two regimes, but simulations

show that growth is higher on average in the switching case than the �xed regime case. This

result follows from the non-certainty equivalence of the solution; when there is switching between

high and low growth regimes, agents understand that they will experience both regimes, and,

on average, this decision leads to higher consumption and output growth than if there was only

a single regime.

Figure ?? shows the simulated distributions of output and consumption growth for the case

of the non-symmetric transition matrix. In this case, regime 2 occurs much more often and

is more persistent than regime 1, so the ergodic distribution has higher probability on regime
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2. Again, the �xed regime case exhibits almost constant growth: the distribution is single-

peaked. The Markov switching case, on the other hand, is no longer twin-peaked. In this case,

there is one dominant peak of the distribution, which is associated with regime 2, but there are

also several other smaller peaks to the distribution that correspond to di¤erent histories of the

regimes. For example, the large peak is a result of regime 2 occurring approximately 5=6 of

the time, but there will be long periods where only regime 2 occurs, and the small left-most

peak is associated with these stretches. The other smaller peaks correspond to various lengths

of regime 1 occurring, which happens with lower probability. As in the symmetric case, the

ergodic mean of growth in the �xed case is lower than when there is switching, again this is

because of the lack of certainty equivalence in the two regimes.

6.6 Example 2: NK Model

This section presents a second example: a simple New Keynesian model to highlight the issue

of determinacy and mean square stability.

6.7 The NK Model

The model is a model with quadratic price adjustment costs where the monetary authority

follows a Taylor Rule that changes according to a Markov Process. The reaction coe¢ cient

of monetary policy switches with the regime, which ?, ?, and ?, among others, have argued

captures the changing stance of policy in the United States.

A representative consumer maximizes expected lifetime utility over consumption Ct and

hours worked Ht

E0
1X
t=0

�t (logCt �Ht)

subject to the budget constraint

Ct +
Bt

Pt
= WtHt +Rt�1

Bt�1

Pt
+ Tt +Dt

where Bt is next period�s nominal bonds, Wt is the real wage, Rt�1 is the nominal return on

bonds, Tt is lump-sum transfers, and Dt is pro�ts from �rms.
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A competitive �nal goods producer combines a continuum of intermediate goods Yj;t into a

�nal good Yt by a CES aggregator

Yt =

�Z 1

0

Y
��1
�

j;t dj

� �
��1

Intermediate goods �rms take the wage and their demand function

Yj;t =

�
Pj;t
Pt

���
Yt

as given and set their price Pj;t demand hours Hj;t to produce according to

Yj;t = AtHj;t

where total factor productivity follows

logAt = �t + logAt�1

where, similar to the RBC model in Section 6.1, the drift can take two values

�t = � (st) , st 2 f1; 2g :

These �rms face quadratic price adjustment costs according to

ACj;t =
�

2

�
Pj;t
Pj;t�1

� 1
�2

:

The monetary authority sets prices by a Taylor rule where the coe¢ cient varies over time

Rt

Rss

=

�
Rt�1

Rss

��
�
(1��) t
t exp (�"t)

In a symmetric equilibrium Pj;t = Pt, Yj;t = Yt, and Hj;t = Ht for all j, and market clearing

implies

Yt = Ct +
�

2
(�t � 1)2 Yt.

Using the notation in Section 2, yt = [�t; Yt]
0, xt�1 = Rt�1, �1t = �t, and �2t =  t. Then

the stationary equilibrium is expressed as

f (yt+1; yt; xt; xt�1; �"t+1; "t; �t+1; �t) =266664
1� �

(1��
2
(�t�1)2) ~Yt

(1��
2
(�t+1�1)2) ~Yt+1

1

exp(�t+1)
Rt
�t+1

(1� �) + �
�
1� �

2
(�t � 1)2

�
~Yt + ��

(1��
2
(�t�1)2)

(1��
2
(�t+1�1)2)

(�t+1 � 1)�t+1 � � (�t � 1)�t�
Rt�1
Rss

��
�
(1��) t
t exp (�"t)� Rt

Rss

377775
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6.8 Solving the NK Model

Similar to the RBC example, this subsection de�nes the steady state and matrices for the �rst

order approximation for the NK example

6.8.1 Steady State

In order to calculate steady state, set � = 0. Therefore, �t = �t+1 = �ss, ~Yt = ~Yt+1 = ~Yss,

Rt = Rt�1 = Rss, and �t+1 = �t = ��. So the equilibrium conditions in steady state are266664
1� �

(1��
2
(�ss�1)2) ~Yss

(1��
2
(�ss�1)2) ~Yss

1
exp(��)

Rss
�ss

(1� �) + �
�
1� �

2
(�ss � 1)2

�
~Yss + ��

(1��
2
(�ss�1)2)

(1��
2
(�ss�1)2)

(�ss � 1)�ss � � (�ss � 1)�ss�
Rss
Rss

��
�
(1��) t
ss � Rss

Rss

377775 = 03�1
Using the assumption �ss = 1,and solving these produces the steady state values

Rss =
exp (��)

�
;

and

~Yss =
� � 1
�
.

Note that �� a¤ects the steady state, but  (s) does not, demonstrating the partition of the

switching vector �t = [�1t; �2t].

6.8.2 The Matrices

The next step is to de�ne the matrices in expression (19), which depend on the derivatives of

the function f evaluated at the steady state. Recall in this example that ny = 2, nx = 1, n" = 1,

and n� = 2. The necessary matrices are

D1;2fss (s0; s) =

26664
�
��1 1

0 ��

0 0

37775 ;D3;4fss (s0; s) =
26664

�
1�� 0

� ��

0 (1� �) (s)

37775 ;D5fss (s0; s) =
26664
��e���

0

��e���

37775 ;
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D6fss (s0; s) =

26664
0

0

��e���

37775 ;D7fss (s0; s) =
26664
0

0

0

37775 ;D8fss (s0; s) =
26664
0

0

�

37775 ;

D9;10fss (s0; s) =

26664
1 0

0 0

0 0

37775 ;D11;12fss (s0; s) =
26664
0 0

0 0

0 0

37775
6.9 NK Solution

The calibration used is as follows

� � � � � p1;1 p2;2 �� � (1) � (2)  (1)  (2)

0.99 161 10 0.8 0.0025 0.90 0.90 0.02 0:03 0:01 3:1 0:9

The transition matrix implies that regimes 1 and 2 occur with equal frequency in the ergodic

distribution, so the steady state depends upon �� = 0:02. The steady state values of output

and consumption are Rss = 1:03051 and ~Yss = 0:90. Consequently the numerical values of the

derivatives are

D1;2fss (s0; s) =

26664
1:11111 1

0 159:39

0 0

37775 ;D3;4fss (s0; s) =
26664
�1:11111 0

10 �161:

0 0:2 (s)

37775 ;

D5fss (s0; s) =

26664
�0:970397

0

�0:970397

37775 ;D6fss (s0; s) =
26664

0

0

0:776317

37775 ;D7fss (s0; s) =
26664
0

0

0

37775 ;

D8fss (s0; s) =

26664
0

0

0:0025

37775 ;D9;10fss (s0; s) =
26664
1 0

0 0

0 0

37775 ;D11;12fss (s0; s) =
26664
0 0

0 0

0 0

37775
Using (19) and the described calibration produces a quadratic system to be solved to �nd

fD1;nxgss (s) ;D1;nxhss (s)g
ns
s=1. Using the Gröbner basis with respect to the ordering�

D1;nxhss (1) ;D1;nxhss (2) ;D1;nxgss (1)
0 ;D1;nxgss (2)

0	
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the solutions are

D1;nxhss (1) D1;nxgss (1)
0 D1;nxhss (2) D1;nxgss (2)

0

1) 0.596 -1.892 -0.318 0.700 -2.892 -0.537

2) 0.777 -3.575 -0.035 1.308 -7.266 2.743

3) 0.799 -1.757 -0.002 1.055 1.332 1.375

4) 1.096-0.438i -0.791+4.136i 0.463-0.685i 1.337+0.0569i -9.738-1.895i 2.897+0.307i

5) 1.096+0.438i -0.791-4.136i 0.463+0.685i 1.337-0.0569i -9.738+1.895i 2.897-0.307i

6) 1.098-0.208i -0.963+1.862i 0.467-0.325i 1.026-0.019i 0.962+0.738i 1.217-0.104i

7) 1.098+0.208i -0.963-1.862i 0.467+0.325i 1.026+0.019i 0.962-0.738i 1.217+0.104i

8) 1.240-0.250i 0.756+2.978i 0.688-0.392i 0.752+0.005i -2.212+0.615i -0.261+0.025i

9) 1.240+0.250i 0.756-2.978i 0.688+0.392i 0.752-0.005i -2.212-0.615i -0.261-0.025i

Checking these solutions for MSS, the �rst solution is the only stable one. Constructing the

full solution produces:

st = 1 :

26664
R̂tb~Y t

�̂t

37775 =
26664
0:5965

�1:8919

�0:3184

37775 R̂t�1 +

26664
0:0019

�0:0062

�0:0010

37775 "t +
26664
�0:0014

0:0250

�0:0022

37775

st = 2 :

26664
R̂tb~Y t

�̂t

37775 =
26664
0:7004

�2:8919

�0:5366

37775 R̂t�1 +

26664
0:0022

�0:0095

�0:0018

37775 "t +
26664
�0:0043

�0:0724

�0:0230

37775
wheredvart = var � varss where varss is the steady state of var for var 2

n
Rt; eYt;�to.

As an alternative, suppose now that  (2) = 0:7. There are still nine total solutions, but

now there are two stable solutions:

D1;nxhss (1) D1;nxgss (1)
0 D1;nxhss (2) D1;nxgss (2)

0

1) 0.592109 -1.90874 -0.325381 0.713454 -3.14857 -0.599885

2) 0.858767 -1.70451 0.0919787 1.01631 2.13138 1.49934

which shows that this parameterization does not produce a unique MSS solution.
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These two parameterizations demonstrate how MSS as a stability concept determines exis-

tence and uniqueness of the solution. In the parameterization with  (2) = 0:9, solving the

system produces 9 total solutions, and only satis�es mean square stability. In the case of

 (2) = 0:7, having two MSS solutions implies non-uniqueness of a stable solution. If, on the

other hand, there were no MSS solutions, then a stable solution does not exist.

6.10 NK Model with Habits

Now consider a slight variant of the previously discussed New Keynesian model, but with house-

holds that have habit formation. In this case, they maximize

E0
1X
t=0

�t (log (Ct � 'Ct�1)�Ht)

where ' denotes habit persistence. For simplicity, assume TFP is constant

At = 1

and that there is no interest rate smoothing, so � = 0:

Rt

Rss

= �
 t
t exp (�r"r;t) .

With habits, consumption appears dated as Ct�1, Ct, and Ct+1 in the equilibrium conditions,

which are

�t =
1

Ct � 'Ct�1
� �Et

'

Ct+1 � 'Ct

�t = �Et�t+1
Rt

�t+1

��t (�t � 1)�t = (1� �)�t + � + ��Et�t+1 (�t+1 � 1)�t+1
Yt+1
Yt

Rt

Rss

= �
 t
t exp (�r"r;t)

Yt = Ct +
�

2
(�t � 1)2 Yt
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Consequently, de�ne the auxiliary variable ~Ct = Ct, so ~Ct+1 = Ct+1. Substituting out Rt and

Yt to simplify the equilibrium conditions, now gives yt =
h
�t; ~Ct; �t

i0
, yt+1 =

h
�t+1; ~Ct+1; �t+1

i
,

xt = [Ct], xt�1 = [Ct�1]
0, and �2t =  t. Then the equilibrium is expressed as

f (yt+1; yt; xt; xt�1; �"t+1; "t; �t+1; �t) =26666664

1
Ct�'Ct�1 � �Et '

~Ct+1�'Ct
� �t

�Et�t+1Rss�
 t
t exp(�r"r;t)

�t+1
� �t

(1� �)�t + � + ��Et�t+1 (�t+1 � 1)�t+1Ct+1Ct

1��
2
(�t�1)2

1��
2
(�t+1�1)2

� ��t (�t � 1)�t
~Ct � Ct

37777775
Assuming �ss = 1, the steady state satis�es

�ss =
�

� � 1

Css =
1� �'

1� '

� � 1
�

~Css = Css

Taking derivatives with respect to the vector
h
�t+1; ~Ct+1; �t+1;�t; ~Ct; �t; Ct; Ct�1; "t+1; "t;  t+1;  t

i
and evaluating at the steady state produces

Dfss (s0; s) =26666664
0 '�

c2ss(1�')
0 0 0 �1 � 1+�'2

c2ss('�1)2
'

c2ss(1�')2
0 0 0 0

��ss 0 1 �ss (s) 0 �1 0 0 0 �ss� 0 0

���ss 0 0 ���ss 0 1� � 0 0 0 0 0 0

0 0 0 0 1 0 �1 0 0 0 0 0

37777775
The calibration used is as follows

� � � ' � p1;1 p2;2

0.99 161 10 0.7 0.0025 0.90 0.90
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and so the numerical value of the derivative matrix is

Dfss (s0; s) =

26666664
0 9:0776 0 0 0 �1 �19:453 9:1693 0 0 0 0

�1:1111 0 1 1:111 (s) 0 �1 0 0 0 0:0028 0 0

177:1 0 0 �178:89 0 �9:0 0 0 0 0 0 0

0 0 0 0 1 0 �1 0 0 0 0 0

37777775
Given that there are ny = 3 nonpredetermined variables, n0x = 1 endogenous predetermined

variable, and ns = 2 regimes, the there are0@ nendo

n0x

1Ans

=

�
4!

1!3!

�2
= 16

total solutions.

If  (1) = 1:1 and  (2) = 0:7, there are two MSS solutions. They are, in part

D1;nxhss (1) D1;nxhss (2)

1) 0:7 0:7

2) 0:76566 0:9810

If  (1) = 3:1 and  (2) = 0:7, there is one MSS solution, and it is, for st = 1

ŷt =

26664
0

0:7

0

37775 x̂t�1 +
26664
�0:00012

�0:00018

0:00239

37775 "t +
26664
0

0

0

37775

x̂t = 0:7x̂t�1 � 0:00018"t + 0

and for st = 2:

ŷt =

26664
0

0:7

0

37775 x̂t�1 +
26664
�0:00013

�0:00020

0:00264

37775 "t +
26664
0

0

0

37775
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7 Conclusion

This paper developed a perturbation method for constructing approximations to the solutions

to Markov switching DSGE models. The framework allows introducing switching from �rst

principles, including when switching a¤ects the steady state of the economy. While not pursued

here, second- or higher-order approximations are straightforward, and follow the single-regime

case studied by ?. Using Gröbner bases to solve the system and mean square stability to check

for existence and uniqueness of stable solutions, the method handles a wide variety of models,

and shows that switching in parameters that a¤ect the steady state implies that �rst order

approximations are not certainty equivalent.

8 Appendix: Second Order Derivatives

H1;nx;1;nxGi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[D1;nxgss (s0)D1;nxhss (st)]
T

26666664

24 H1;ny ;1;nyf
i
ss (s

0; st)D1;nxgss (s0)

+2H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)

35D1;nxhss (st)
+2H1;ny ;ny+1;2nyf

i
ss (s

0; st)D1;nxgss (st)

+2H1;ny ;2ny+nx+1;2nf
i
ss (s

0; st)

37777775

+D1;nxgss (st)
T

26664
Hny+1;2ny ;ny+1;2nyf

i
ss (s

0; st)D1;nxgss (st)

+2Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)D1;nxhss (st)

+2Hny+1;2ny ;2ny+nx+1;2nf
i
ss (s

0; st)

37775

+D1;nxhss (st)
T

26664
24 H2ny+1;2ny+nx;2ny+1;2ny+nxf

i
ss (s

0; st)

+D1;nyf iss (s0; st)H1;nx;1;nxgss (s
0)

35D1;nxhss (st)
+2H2ny+1;2ny+nx;2ny+nx+1;2nf

i
ss (s

0; st)

37775
+

24 D1;nyf iss (s0; st)D1;nxgss (s0)
+D2ny+1;2ny+nxf iss (s0; st)

35H1;nx;1;nxhss (st)

+Dny+1;2nyf
i
ss (s

0; st)H1;nx;1;nxgss (st) +H2ny+nx+1;2n;2ny+nx+1;2nf
i
ss (s

0; st)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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H1;nx;nx+1;nx+n"Gi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[D1;nxgss (s0)D1;nxhss (st)]
T

26666664

24 H1;ny ;1;nyf
i
ss (s

0; st)D1;nxgss (s0)

+2H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)

35Dnx+1;nx+n"hss (st)

+H1;ny ;ny+1;2nyf
i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+H1;ny ;2n+n"+1;2~n"f
i
ss (s

0; st)

37777775

+D1;nxgss (st)
T

26666664

24 Hny+1;2ny ;1;nyf
i
ss (s

0; st)D1;nxgss (s0)

+Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)

35Dnx+1;nx+n"hss (st)

+Hny+1;2ny ;ny+1;2nyf
i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+Hny+1;2ny ;2n+n"+1;2~n"f
i
ss (s

0; st)

37777775

+D1;nxhss (st)
T

26666664
H2ny+1;2ny+nx;ny+1;2nyf

i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+H2ny+1;2ny+nx;2n+n"+1;2~n"f
i
ss (s

0; st)

+

24 H2ny+1;2ny+nx;2ny+1;2ny+nxf
i
ss (s

0; st)

+D1;nyf iss (s0; st)H1;nx;1;nxgss (s
0)

35Dnx+1;nx+n"hss (st)

37777775
+

24 H2ny+nx+1;2~n;1;nyf
i
ss (s

0; st)D1;nxgss (s0)

+H2ny+nx+1;2n;2ny+1;2ny+nxf
i
ss (s

0; st)

35Dnx+1;nx+n"hss (st)

+
�
D1;nyf iss (s0; st)D1;nxgss (s0) +D2ny+1;2ny+nxf iss (s0; st)

�
H1;nx;nx+1;nx+n"hss (st)

+H2ny+nx+1;2n;ny+1;2nyf
i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+Dny+1;2nyf
i
ss (s

0; st)H1;nx;nx+1;nx+n"gss (st) +H2ny+nx+1;2~n;2~n+n"+1;2~n"f
i
ss (s

0; st)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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H1;nx;nx+n"+1Gi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[D1;nxgss (s0)D1;nxhss (st)]
T

26666666666664

H1;ny ;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35
+H1;ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H1;ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H1;ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777777777775

+D1;nxhss (st)
T

26666666666666664

H2ny+1;2ny+nx;1;nyf
i
ss (s

0; st) [Dnx+n"+1gss (s
0) +D1;nxgss (s0)Dnx+n"+1hss (st)]

+H2ny+1;2ny+nx;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H2ny+1;2ny+nx;ny+1;2nyf
i
ss (s

0; st)Dnx+n"+1gss (st)

+H2ny+1;2ny+nx;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H2ny+1;2ny+nx;2~n"+n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

D1;nyf iss (s0; st)

24 H1;nx;nx+n"+1gss (s
0)

+H1;nx;1;nxgss (s
0)Dnx+n"+1hss (st)

35

37777777777777775

+D1;nxgss (st)
T

26666666666664

Hny+1;2ny ;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35
+Hny+1;2ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+Hny+1;2ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+Hny+1;2ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777777777775
+H2ny+nx+1;2~n;1;nyf

i
ss (s

0; st) [Dnx+n"+1gss (s
0) +D1;nxgss (s0)Dnx+n"+1hss (st)]

+H2ny+nx+1;2n;ny+1;2nyf
i
ss (s

0; st)Dnx+n"+1gss (st)

+H2ny+nx+1;2n;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H2ny+nx+1;2~n;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H2ny+nx+1;2~n;2~n"+n�+1;2~n�f
i
ss (s

0; st) �� (s)

+
�
D1;nyf iss (s0; st)D1;nxgss (s0) +D2ny+1;2ny+nxf iss (s0; st)

�
H1;nx;nx+n"+2hss (st)

+Dny+1;2nyf
i
ss (s

0; st)H1;nx;nx+n"+1gss (st)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Hnx+1;nx+n";nx+1;nx+n"Gi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[D1;nxgss (s0)Dnx+1;nx+n"hss (st)]

26666664

24 H1;ny ;1;nyf
i
ss (s

0; st)D1;nxgss (s0)

+2H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)

35Dnx+1;nx+n"hss (st)

+2H1;ny ;ny+1;2nyf
i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+2H1;ny ;2n+n"+1;2~n"f
i
ss (s

0; st)

37777775

+Dnx+1;nx+n"hss (st)
T

26664
24 H2ny+1;2ny+nx;2ny+1;2ny+nxf

i
ss (s

0; st)

+D1;nyf iss (s0; st)H1;nx;1;nxgss (s
0)

35Dnx+1;nx+n"hss (st)

+2H2ny+1;2ny+nx;2~n+n"+1;2~n"f
i
ss (s

0; st)

37775

+Dnx+1;nx+n"gss (st)
T

26664
Hny+1;2ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+1;nx+n"gss (st)

+2Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+1;nx+n"hss (st)

+2Hny+1;2ny ;2n+n"+1;2~n"f
i
ss (s

0; st)

37775
+

24 D1;nyf iss (s0; st)D1;nxgss (s0)
+D2ny+1;2ny+nxf iss (s0; st)

35Hnx+1;nx+n";nx+1;nx+n"hss (st)

+Dny+1;2nyf
i
ss (s

0; st)Hnx+1;nx+n";nx+1;nx+n"gss (st) +H2n+n"+1;2~n";2n+n"+1;2~n"f
i
ss (s

0; st)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Hnx+1;nx+n";nx+n"+1Gi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[D1;nxgss (s0)Dnx+1;nx+n"hss (st)]
T

26666666666664

H1;ny ;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35
+H1;ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H1;ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H1;ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777777777775

+Dnx+1;nx+n"hss (st)
T

26666666666666664

H2ny+1;2ny+nx;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35
+H2ny+1;2ny+nx;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+H2ny+1;2ny+nx;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H2ny+1;2ny+nx;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H2ny+1;2ny+nx;2~n"+n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

D1;nyf iss (s0; st) [H1;nx;nx+n"+1gss (s
0) +H1;nx;1;nxgss (s

0)Dnx+n"+1hss (st)]

37777777777777775

+Dnx+1;nx+n"gss (st)
T

26666666666664

Hny+1;2ny ;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35
+Hny+1;2ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+Hny+1;2ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+Hny+1;2ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777777777775
+H2~n+n"+1;2~n";1;nyf

i
ss (s

0; st) [Dnx+n"+1gss (s
0) +D1;nxgss (s0)Dnx+n"+1hss (st)]

+H2~n+n"+1;2~n";ny+1;2nyf
i
ss (s

0; st)Dnx+n"+1gss (st)

+H2~n+n"+1;2~n";2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H2n+n"+1;2~n";2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H2n+n"+1;2~n";2~n"+n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

+

24 D1;nyf iss (s0; st)D1;nxgss (s0)
+D2ny+1;2ny+nxf iss (s0; st)

35Hnx+1;nx+n";nx+n"+1hss (st)

+Dny+1;2nyf
i
ss (s

0; st)Hnx+1;nx+n";nx+n"+1gss (st)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Hnx+n"+1;nx+n"+1Gi
ss (st) =

nsX
s0=1

pst;s0�0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35T H1;ny ;1;nyf
i
ss (s

0; st)

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35

+2

24 Dnx+n"+1gss (s
0)

+D1;nxgss (s0)Dnx+n"+1hss (st)

35T
26666664

H1;ny ;ny+1;2nyf
i
ss (s

0; st)Dnx+n"+1gss (st)

+H1;ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+H1;ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+H1;ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777775

+Dnx+n"+1gss (st)
T

26666664
Hny+1;2ny ;ny+1;2nyf

i
ss (s

0; st)Dnx+n"+1gss (st)

+2Hny+1;2ny ;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+2Hny+1;2ny ;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+2Hny+1;2ny ;2~n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

37777775

+Dnx+n"+1hss (st)
T

26666666664

H2ny+1;2ny+nx;2ny+1;2ny+nxf
i
ss (s

0; st)Dnx+n"+1hss (st)

+2H2ny+1;2ny+nx;2~n"+1;2~n"+n�f
i
ss (s

0; st)D�ss (s0)

+2H2ny+1;2ny+nx;2~n"+n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

+
�
D1;nyf iss (s0; st)H1;nx;1;nxgss (s

0)
�
Dnx+n"+1hss (st)

+2
�
D1;nyf iss (s0; st)H1;nx;nx+n"+1gss (s

0)
�

37777777775

+"0T

26666664
H2~n+1;2~n+n";2~n+1;2~n+n"f

i
ss (s

0; st)

+D1;nyf iss (s0; st)Hnx+1;nx+n";nx+1;nx+n"gss (s
0)

+Dnx+1;nx+n"gss (s
0)T H1;ny ;1;nyf

i
ss (s

0; st)Dnx+1;nx+n"gss (s
0)

+2Dnx+1;nx+n"gss (s
0)T H1;ny ;2n+1;2n+n"f

i
ss (s

0; st)

37777775 "
0

+D�ss (s0)T
24 H2~n"+1;2~n"+n�;2~n"+1;2~n"+n�f

i
ss (s

0; st)D�ss (s0)

+2H2~n"+1;2~n"+n�;2~n"+n�+1;2~n�f
i
ss (s

0; st)D�ss (st)

35
+D�ss (st)T H2~n"+n�+1;2~n�;2~n"+n�+1;2~n�f

i
ss (s

0; st)D�ss (st)

+

24 D1;nyf iss (s0; st)D1;nxgss (s0)
+D2ny+1;2ny+nxf iss (s0; st)

35Hnx+n"+1;nx+n"+1hss (st)

+D1;nyf iss (s0; st)Hnx+n"+1;nx+n"+1gss (s
0) +Dny+1;2nyf

i
ss (s

0; st)Hnx+n"+1;nx+n"+1gss (st)

+D2~n"+1;2~n"+n�f iss (s0; st)H�ss (s0) +D2~n"+n�+1;2~n�f iss (s0; st)H�ss (st)
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