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Abstract

We provide a theoretical description of a process that is capable of
generating growth and income convergence among economies, growth
that is accelerated by freer trade. In this model freer trade replaces
inefficient domestic producers with more efficient foreign producers.
We add to this static effect a theory of endogenous growth where the
engine of growth is the flow of ideas. Ideas are assumed to diffuse
by random meeting where people get new ideas by learning from the
people they do business or compete with. Trade then has a selection
effect of putting domestic producers in contact with the most efficient
foreign and domestic producers. We analyze the way that trade in
goods, and impediments to it, affect this diffusion, above and beyond
the standard effects of trade costs. We find that exclusion of a coun-
try from trade reduces the productivity growth, with large long term
effects. Smaller trade cost have moderate effects on productivity. The
theory also provides a new foundation for the Frechet distribution of
productivity that is frequently used in quantitative trade models.
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The progress of a society is all the more rapid in proportion
as it is more completely subjected to external influences.

— Henri Pirenne

1 Introduction

The free-trade institutions established after World War II initiated an era of
income convergence in the economies of Europe, North America, and East
Asia. Comparative studies by Ben-David (1993), Sachs and Warner (1995),
Lucas (2009), and others have documented the empirical connections be-
tween openness to trade and growth rates. The economics underlying these
connections, if there are any, are not well understood. Our basic theories
of international trade do not imply that trade liberalization should induce
sustained increases in economic growth rates. The gains from trade that
they capture are level effects, not growth effects. It is widely and reasonably
believed that trade serves as a vehicle for technology diffusion1 but we lack
an explicit description of how reductions in trade costs, say, might induce
higher growth rates.

In this paper we provide a theoretical description of a process that is capa-
ble of generating growth and income convergence among economies, growth
that is accelerated by freer trade. Our starting point is a static trade model
adapted from Eaton and Kortum (2002) and Alvarez and Lucas (2007). In
this model (as in many others) freer trade replaces inefficient domestic pro-
ducers with more efficient foreign producers. We add to this familiar, static
effect a theory of endogenous growth in which people get new, production-
related ideas by learning from the people they do business or compete with.
Trade then has a selection effect of putting domestic producers in contact
with the most efficient (subject to trade costs) foreign and domestic produc-
ers. The identification and analysis of these selection and learning effects is
the new contribution of the paper.

Though constructed from familiar components, our model has a compli-
cated, somewhat novel structure, and it will be helpful to introduce enough
notation to describe this structure before outlining the rest of the paper.
There are n countries, i = 1, ..., n, with given populations Li and given
iceberg trade costs, κij. There are many goods produced in each country.

1It is certainly not the only vehicle: Think of the diffusion of nuclear weapons capabil-
ities.
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Productivity of any good produced in i will be modeled as a draw from a
country-specific probability distribution, defined by its right cdf

Fi(z) = Pr{cost in i of good drawn at random ≥ z}.

We treat populations and trade costs as parameters and analyze the dynamics
of the technology profiles F = (F1, ..., Fn) that serve as the state variables of
the model. There are two steps in this analysis.

Given a profile F together with populations and trade costs we define
a static competitive equilibrium for the world economy. We use the static
model of international trade to determine the way a given technology profile
F defines a pattern of world trade, including listings of which sellers in any
country are domestic producers or exporters from abroad.

The second step in the analysis is based on a model of technology diffusion
that involves stochastic meetings of individual people—we call them product

managers— who exchange production-related ideas. We use a variation on
the Kortum (1997) model, as developed in Alvarez et al. (2008). In this
diffusion model, product managers in country i meet managers from some
source distribution Gi at a given rate αi and improve their own knowledge
whenever such meetings put them in contact with someone who knows more
than they do. In our application, this source distribution Gi is the technology
profile of the set of sellers who are active in country i, as determined by the
trade theory applied in step 1. Under autarchy, then, the source distribution
is simply the distribution Fi of domestic producers.2 Trade improves on this
source distribution by replacing some inefficient domestic sellers with more
efficient foreigners, replacing Fi with a distribution Gi that stochastically
dominates it. It is this selection effect that provides the link between trade
volumes and productivity growth that we are seeking.

Technically, trade theory provides a map from a technology profile F to a
profile G = (G1, ..., Gn) of source distributions. The diffusion model gives us
a map from each pair (Fi, Gi) into a rate of change ∂Fi(x, t)/∂t. Combining
these two steps yields a law of motion for the technology profile F of all n
countries together.

The organization of the rest of the paper is as follows. Section 2 intro-
duces our model of technological change in the context of a closed economy.
For this case we present a complete characterization of the dynamics of a

2Kortum (1997) calls this distribution the technology frontier.
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single economy that introduces many features that will be important in un-
derstanding the more general case. Section 3 develops the static trade theory
that maps a technology profile F into a pattern of world trade. Section 4 then
integrates the dynamics of technological change and static equilibrium im-
plied by trade theory. We characterize the balanced growth path for a world
economy under constant trade costs and populations, and obtain additional
results for the case of costless trade. As we could predict on the basis of the
static trade theory alone, a full analytical characterization of the dynamics
in the general case is not a possibility, so we continue with numerical results.

In Section 5 we carry out some quantitative explorations to illustrate the
effects of trade costs on income levels and growth rates. We calculate equilib-
rium paths for a symmetric world economy under different trade paths and
compare the static and dynamic effects of tariff reductions in this context.
We then consider catch-up growth when a small, poor, open economy is in-
troduced into the otherwise symmetric world. These results are illustrated
graphically. Section 6 provides a brief discussion of some substantive conclu-
sions suggested by these exercises and of directions for future work that they
suggest.

2 Technology Diffusion in a Closed Economy

We begin with a description of technology diffusion and growth in a closed
economy. Consumers have identical preferences over a [0, 1] continuum of
goods. We use c(s) to denote the consumption of an agent of each of the
s ∈ [0, 1] goods for each period t. There is no intertemporal technology to
transfer goods between periods. The period t utility function is given by

C =

[
∫ 1

0

c(s)1−1/ηds

]η/(η−1)

,

so goods enter in a symmetrical and exchangeable way. Each consumer is
endowed with one unit of labor, which it supplies inelastically.

Each good s is produced with a labor-only, linear technology

y(s) =
l(s)

z(s)
(1)

where l(s) is the labor input and z(s) is the cost (labor requirement) associ-
ated with good s.

4



Using the symmetry of the utility function, we group goods by their costs
z and write the time t utility as

C(t) =

[
∫

R+

c(z)1−1/η f(z, t) dz

]η/(η−1)

, (2)

where c(z) is the consumption of any good s that has cost z and f(·, t) is
the density of costs. We assume that f is continuous. We use F (z, t) for the
right cdf of cost, the fraction of goods with cost higher than z at time t, so
that the cost density is f(z, t) = −∂F (z, t)/∂z.

In a competitive equilibrium the price of any good z will be p(z) = wz
and the ideal price index for the economy at date t is

p(t) =

[
∫

R+

p(z)1−1/ηf(z, t)dz

]η/(η−1)

. (3)

Real per capita GDP y(t) equals the real wage w/p(t) or

y(t) =

[
∫

R+

z1−1/ηf(z, t)dz

]−η/(η−1)

. (4)

To ensure convergence of this integral, we require that the left tail of the dis-
tribution of cost z goes to zero at a fast enough rate relative to the elasticity
of substitution η. See Appendix A.1 for a discussion of this condition.

The study of the dynamics of the closed economy is thus reduced to the
study of the evolution of the cost distribution F (z, t): technological diffusion.

We model technological diffusion as a process of search and matching
involving product managers of the s ∈ [0, 1] goods, with one manager per
good. We can think of these managers as a negligible subset of agents or as
a function that some agents perform in addition to supplying labor. Either
way, it is an activity that requires no time and earns no private return. We
assume these managers interact with each other and exchange production-
related ideas. Meetings occur at a rate α per unit of time. Each meeting is a
random draw from the population of managers of all goods. When a manager
with cost z meets another with cost z′ < z he adopts z′ for the production
of his own good. We assume that the diffusion of technology is the same
across any two goods, no matter how different they are.3 While we refer to

3Perhaps a more descriptive, yet less tractable model will distinguish between goods
that are similar, in terms of how transferable is the technology.
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this process as technology diffusion, it might as well be called innovation,
since the more advanced technology used for one good has to be adapted
to a different good. The effect of indirect links, of the role of chance in our
diffusion process, is familiar to us from the history of technology.4 Next we
give a mathematical description of this process.

To motivate a law of motion for the cost distribution F (z, t), we describe
the discrete change between t and t+∆, and then derive its continuous-time
limit. For a given level of the cost z at date t, we assume that

F (z, t+∆) = Pr{cost > z at t +∆}
= Pr{cost > z at t} × Pr{no lower draw in (t, t +∆)}
= F (z, t)F (z, t)α∆.

The first term in the right hand side reflects the option, which managers
always have, to continue with their current cost. The second is the probability
that in α∆ randomly drawn meetings an agent with cost z does not meet
anyone with a lower cost. Given our assumption of independent draws, the
fraction of managers with cost above z at date t + h is given by product of
these two terms. Now we take the limit as ∆ → 0 to obtain:5

1

F (z, t)

∂F (z, t)

∂t
= α log (F (z, t)) . (5)

Then for any initial distribution (right cdf) F (z, 0) the path of F is given by

log(F (z, t)) = log(F (z, 0))eαt. (6)

It is evident from (6) that the law of motion (5) implies a non-decreasing,
level of real income y(t). For empirical reasons, our interest is in sustained
growth of economies that either grow at a fairly constant rate or will do
so asymptotically. A central construct in our analysis will therefore be a

4Here is a nice example, taken from chapter 13 of Diamond (1998): “[N]ew technologies
and materials make it possible to generate still other new technologies by recombination
... Gutenberg’s press was derived from screw presses in use for making wine and olive oil,
while his ink was an oil-based improvement on existing inks....”

5A similar, but not identical, differential equation could be based on the more familar
assumption of Poisson arrivals, as opposed to the continuous arrivals postulated here. The
formulation here has the convenient property of preserving distyributions in the Weibull
family. See Alvarez et al. (2008).
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balanced growth path (BGP), defined as a right cdf Φ(z) (with continuous
density φ = − Φ′(z)) and a growth rate ν > 0 such that

F (z, t) = Φ(evtz) for all t ≥ 0

is a solution to (5). Then on a BGP

f(z, t) = −∂F (z, t)

∂z
= φ(evtz)evt

holds. Real GDP is

y(t) =

[
∫

R+

z1−1/ηφ(evtz)evtdz

]−η/(η−1)

= evt
[
∫

R+

x1−1/ηφ(x)dx

]−η/(η−1)

(7)

provided the integral on the right converges. In the rest of this section we
(i) characterize all pairs (Φ, ν) that are balanced growth paths and (ii) char-
acterize the initial distributions F (z, 0) from which the solution F (e−vtz, t)
will converge asymptotically to Φ(z).

The possible balanced growth solutions to (5) are contained in the Weibull
family of distributions, a two-parameter family defined by the right cdfs:

F (z, 0) = exp(−λz1/θ), θ, λ > 0. (8)

A Weibull random variable z̃ is an exponentially distributed random variable
raised to the power θ, since

Pr{z̃ ≥ z} = Pr{z̃θ ≥ zθ}
= F (zθ, 0)

= exp(−λz).

We have

Proposition 1. The cdf/growth rate pair (Φ, ν) is a balanced growth path
of (5) if and only if Φ is a Weibull distribution with parameters λ > 0 and
θ = ν/α.
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Proof : It is immediate from (5) that if F (z, 0) has a Weibull distribution
with parameters λ and θ then

log (F (z, t)) = −λeαtz1/θ

which is Weibull with parameters λ(t) = λeαt and θ. Then if Φ(evtz) =
F (z, t),

log(Φ(z)) = log
(

F (e−νtz, t)
)

= −λeαt
(

e−νtz
)1/θ

= −λz1/θ

if and only if ν = αθ. Thus (Φ, αθ) is a BGP.
Conversely, suppose (Φ, ν) is a BGP, so that F (z, t) = Φ(evtz) solves (5).

Then
log(Φ(evtz)) = log(Φ(z))eαt

Differentiating both sides with respect to t :

1

Φ(evtz)
Φ′(evtz)νevtz = α log(Φ(z))eαt

Letting θ = ν/α and evaluating at t = 0 gives:

Φ′(z)

Φ(z)
θz = log(Φ(z)). (9)

For any constant λ > 0, the unique solution to (9) that satisfies the boundary
condition log(Φ(1)) = λ is

Φ(z) = exp
(

−λz1/θ
)

.

This proves that if (Φ, ν) is a BGP, Φ must be a Weibull distribution with
parameters θ = ν/α and any λ > 0.�

We next address the stability of balanced growth paths: Under what
conditions on the initial distribution F (z, 0) will it be the case that

lim
t→∞

log
[

F (e−αθtz, t)
]

= −λz1/θ for all z > 0 (10)
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for some λ > 0 and θ > 0? We seek an answer to this question for all pairs
(λ, θ) ∈ R

2
++ since all such pairs define a Weibull distribution and hence by

Proposition 1 a balanced growth path, and for all initial distributions F (·, 0)
on R++, since all define a path (6). We begin with

Proposition 2. Suppose that for some λ > 0 and θ > 0 the initial distribu-
tion F (., 0) satisfies

lim
x→0

θf(xθ, 0)xθ−1 = λ. (11)

Then the solution (6) to (5) satisfies (10). Conversely, for any λ > 0, condi-
tion (11) defines the value of θ such that (10) holds for the pair (λ, θ) .

Proof.
We can use (6) and the change of variable x = z1/θ to restate (10) as

lim
t→∞

log(F (e−αθtxθ), 0)eαt = −λx for all x > 0.

Defining y = e−αtx, we obtain the equivalente expression

lim
y→0

log(F (yθ, 0))

y
= −λ.

From fact that the left hand side is the definition of the derivative at zero of
the function log(F (yθ, 0)), and applying l’Hospital’s rule, it follows that

lim
y→0

θyθ−1f(yθ, 0)) = λ.

Then the result follows from (11). Since each step is an equivalence, the
converse holds as well. �

Proposition 2 and (6) imply an immediate
Corollary: Equation (11) holds for λ > 0 and θ > 0 if and only if

lim
x→0

θxθ−1f(xθ, t) = λeαt (12)

holds for all t ≥ 0.
It is sometimes useful to restate (11) in the equivalent form

lim
y→0

f(y, 0)

(λ/θ) y1/θ−1
= 1,

9



where y = zθ. We can say that in the left tail of the distribution, the density
f(y, 0) is equivalent to the power function (λ/θ) y1/θ−1.

The following result relates θ to the elasticity at 0 of the initial cdf
1− F (z, 0).

Proposition 3. Suppose that the density of the right cdf F (z, 0) satisfies
property (11) for some θ > 0 and λ > 0. Then

lim
z→0

f(z, 0)z

1− F (z, 0)
=

1

θ
. (13)

Proof. Rearranging equation (11) we obtain

λ = lim
z→0

θ
1− F (zθ, 0)

z

f(zθ, 0)zθ

1− F (zθ, 0)

= θ lim
z→0

1− F (zθ, 0)

z
lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)

= θ lim
z→0

θf(zθ, 0)zθ−1 lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)

= θλ lim
z→0

f(zθ, 0)zθ

1− F (zθ, 0)
.

The second but last equality follows from applying l’Hospital’s rule to the
first limit, and the last equality follows from condition (11). Thus, equation
(13) follows from the last line. �

We note that (12) and Proposition 3 imply that

lim
z→0

f(z, t)z

1− F (z, t)
=

1

θ

holds for all t ≥ 0.
In Proposition 1 we showed that every point (λ, θ) in the interior of R2

+

defines a Weibull distribution that in turn defines a balanced growth path
for the paths (6) and that all balanced paths of (6) can be defined by such a
point. In Propositions 2 and 3 we showed that all initial distributions F (., 0)
that satisfy (11) and (13) for some pair (λ, θ) in the interior of R2

+ define
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paths (6) that converge to a Weibull distribution with the parameters (λ, θ)
in the sense of (10). That is, we have characterized the basin of attraction
of all balanced growth paths.

There are, of course, initial distributions that generate paths that do
not converge in the sense of (10): any distribution with a support that is
bounded away from 0, for example. A log normal F (., 0) has an elasticity
of 1 − F (., 0) that converges to ∞ and so equation (13) implies θ = 0. In
this case, the economy does not have a balanced growth path with strictly
positive growth. In the opposite extreme, an example of a distribution with
an elasticity converging to zero is

1− F (z, 0) = exp [−
∞
∑

i=1

(
β

δ
)i(1− zδ

i

)], z ∈ [0, 1], 0 < δ < β < 1.

The elasticity of 1 − F (z, 0) equals
∑∞

i=1 β
izδ

i

, and therefore, it tends to 0
as z → 0. In this case the economy does not have a balanced growth path
since the growth rate will be increasing without bound as time passes.

Initial distributions that satisfy (4) but fail to satisfy (3) can also be
constructed. One example is

1− F (z, 0) = z exp [−
∞
∑

i=1

(
β

δ
)i(1− zδ

i

)], z ∈ [0, 1], 0 < δ < β < 1.

The elasticity of 1 − F (z, 0) equals 1 +
∑∞

i=1 β
izδ

i

, and therefore tends
to 1 as z → 0, but this cdf does satisfy condition (11). In this case,
limz→0(1−F (zθ, 0))/z = 0 (∞) for all θ ≤ (>)1, which implies that condition
(11) is not satisfied for any θ.

3 Static Trade Model

We consider a world economy consisting of n countries, indexed by i =
1, ..., n. Each country under autarky is idenical to the closed economy de-
scribed in Section 2. We use the same notation here, adding the country
subscript i to the variables ci(s), zi(s), yi(s), and ℓi. In this many coun-
try case we group goods by the profile z = (z1, ..., zn) of cost across the
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n locations, where zi is the labor required to produced this good in loca-
tion i, as in Alvarez and Lucas (2007). The function Fi(z, t) is the right
c.d.f. of cost in country i, and fi(z, t) = −∂Fi(z, t)/∂z is the associated den-
sity. We assume that production costs are independently distributed across
countries. We use unsubscripted F and f for the joint world distribution:
F (z, t) =

∏n
i=1 Fi(zi, t) and f(z, t) =

∏n
i=1 fi(zi, t). With this notation we

can write the time t utility as

Ci(t) =

[

∫

R
n
+

ci(z)
1−1/η f(z, t)dz

]η/(η−1)

,

where ci(z) is the consumption in country i of the good s that has cost profile
z.

We use wi(t) for the time t wages in i in units of time t numeraire. We
assume iceberg shipping costs: when a good is sent from country k a fraction
κik of the good arrives in i. The costs κik are the same for all goods, and the
κii = 1 for all i. Each good z = (z1, ..., zn) is available in i at the unit prices

z1w1(t)

κi1

, ...,
znwn(t)

κin

,

which reflect both production and transportation costs.
We let pi(z, t) be the prices paid for good z in i at t. Then

pi(z, t) = min
j

[

wj(t)

κij
zj

]

(14)

since agents in i buy the good at the lowest price. Given prices pi(z, t), the
ideal price index at t is the minimum cost of providing one unit of aggregate
consumption Ci(t):

pi(t) =

[

∫

R
n
+

pi(z, t)
1−η f(z, t)dz

]1/(1−η)

. (15)

We turn to the description of the equilibrium of the trade model for given
cdfs F (·, t). We assume that there is no borrowing and lending: trade balance
must hold in each period. Because of the static nature of the equilibrium we
omit the index t in its description.
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Define the sets Bij ⊂ R
n
+ by

Bij =

{

z ∈ R
n
+ : pi(z) =

wj

κij
zj

}

.

That is, Bij is the set of goods that people in i want to buy from producers
in j. For each i, ∪jBij = R

n
+. Note that the sets Bij are all cones, defined

equivalently by

Bij =

{

z ∈ R
n
+ :

zjwj

κij
≤ zkwk

κik
for all k

}

.

The price index pi must be calculated country by country. We have

Pr

{

zjwj

κij
≤ zkwk

κik
| zj
}

Pr {zj} = Pr

{

zk ≥ κikwj

κijwk
zj | zj

}

Pr {zj}

= Fk

(

κikwj

κijwk

zj

)

fj(zj)dzj

Then

p1−η
i =

∫

pi(z)
1−ηf(z)dz =

n
∑

j=1

∫

Bij

(

zjwj

κij

)1−η

f(z)dz

=

n
∑

j=1

∫ ∞

0

(

zjwj

κij

)1−η

fj(zj)
∏

k 6=j

Fk

(

κikwj

κijwk
zj

)

dzj

Letting

aijk =
wjκik

wkκij
.

we have

p1−η
i =

n
∑

j=1

(

wj

κij

)1−η ∫ ∞

0

z1−η
j fj(zj)

∏

k 6=j

Fk(aijk zj) dzj . (16)

Consumption of good z in country i equals

ci(z) =

(

pi
pi(z)

)η

Ci =

(

pi
pi(z)

)η
wiLi

pi
.
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where the first equality follows from individual maximization and the second
follows from the budget constraint piCi = wiLi since we have assumed that
trade is balanced in each period. The derived demand for labor in country i
is thus

n
∑

j=1

∫

Bji

cj(z)
zi
κji

f(z)dz =
n
∑

j=1

∫

Bji

(

pj
pj(z)

)η
wjLj

pj

zj
κji

f(z)dz

=

n
∑

j=1

∫ ∞

0

(

pj
pj(z)

)η
wjLj

pj

zi
κji

fi(zi)
∏

k 6=i

Fk

(

wiκjk

wkκji
zi

)

dzi

=
n
∑

j=1

∫ ∞

0

(

κjipj
wizi

)η
wjLj

pj

zi
κji

fi(zi)
∏

k 6=i

Fk

(

wiκjk

wkκji

zi

)

dzi.

Since labor is supplied inelastically, this implies

Li =
n
∑

j=1

(

pj
wi

)η
wjLj

pj
κη−1
ji

∫ ∞

0

z1−η
i fi(zi)

∏

k 6=i

Fk

(

wiκjk

wkκji

zi

)

dzi . (17)

For given trade costs, (16) expresses prices as a function p(w) of wages so we
can substitute into (17) to obtain the excess demand functions

Zi(w) =

n
∑

j=1

(

pj(w)

wi

)η
wjLj

pj(w)
κη−1
ji

∫ ∞

0

z1−η
i fi(zi)

∏

k 6=i

Fk

(

wiκjk

wkκji
zi

)

dzi − Li.

(18)
as n equations in w = (w1, ..., wn) , given populations L, trade costs K, and
the distributions F = (F1, ..., Fn). Unless otherwise stated, we assume that
Li > 0 and that 0 < κij ≤ 1.

Definition. A static equilibrium is a wage vector w = (w1, ..., wn) ∈ R
n
+

such that Zi(w) = 0.
The next proposition shows that a static equilibrium exists and that, pro-

vided that η ≥ 1, the excess demand Z has the gross substitute property.
This establishes that there is a unique static equilibrium, which is easily solv-
able by a tatonnement process, and satisfies the natural comparative statics
with respect to population sizes.

Proposition 4: We take as given trade costs K, populations L, and distri-
butions F . We assume that Li > 0 and that 0 < κij ≤ 1 and that the right
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cdfs F = (F1, ..., Fn) have continuous densities and satisfy

lim
z→0

fi(z)z

1− Fi(z)
=

1

θi
> η − 1

for all i = 1, ..., n. Then there exists a static equilibrium wage w. Moreover,
if η > 1, the excess demand system has the gross substitute property, and
hence (i) the static equilibrium wage w is unique, and (ii) equilibrium relative
wages are decreasing in population sizes:

∂(wj/wi)

∂Li
> 0

for all j 6= i.

Proof: To establish existence we show that the the excess demand system
satisfies i) Walras’ law, i.e.

∑n
i=1wiZi(w) = 0 for all w, ii) that the functions

Z are continuous and homogenous of degree zero in w, iii) that Z (w) are
bounded from below, and iv) that maxj Z(w) → ∞ as w → w0 where w0 is
on the boundary of the n dimensional simplex.

Part (i) follows from replacing pi in the expression for Zi, (ii) continuity
is immediate since the functions Fi are differentiable, and homogeneity is
immediate by inspection of (16) and (17). For (iii), we can take −maxj Lj

to be the lower bound. For (iv) we assume, without loss of generality, that
0 = w0

1 ≤ w0
2 ≤ · · · ≤ w0

n = 1, and show that Z1(w) → +∞. For any w we
have

Z1(w)− L1

≥
(

wn

w1

)η (
wn

pn(w)

)1−η

Ln κ
η−1
n1

∫ ∞

0

z1−η
1 f1(z1)

∏

k 6=1

Fk

(

w1κnk

wkκn1
z1

)

dz1

Note that for all i we have

pi ≤ (wn/κin)

[
∫ ∞

0

z1−ηfn(z) dz

]1/(1−η)

,

where the left hand side is the price that would be obtained by consumers in
country i if they restrict themselves to buy only from country n. Considering
w = wr we have that wn/pn(w) is uniformly bounded from above by the
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previous expression, setting i = n for all r large enough since w0
n = 1.

Finally, for any ǫ > 0, w1/wk ≤ 1 − ǫ for all r large enough, and hence

Fk

(

w1κnk

wkκn1
z1

)

> 0 for all finite z1. Using that η > 1 and taking limits

we obtain the desired result. Given (i)-(iv), existence of an static trade
equilibrium wage follows from Proposition 17.C.1 in Mas-Colell et al. (1995).

To establish the gross substitute property, since the excess demand sys-
tem satisfies Walras’ law, it suffices to show that ∂Zi(w)/∂wr > 0 for all
i, r = 1, ..., n and i 6= r. First notice that pj(w) is increasing in each of the
components of w and homogenous of degree one in w for all j. This implies
that wr/pr(w) is increasing in wr. We have:

∂Zi(w)

∂wr

=
n
∑

j=1,j 6=r

∂

∂wr

[

(

wi

pj(w)

)−η
wj

pj(w)
Lj

]

∫ ∞

0

(

zi
κji

)1−η

fi(zi)
∏

k 6=i

Fk

(

wi

wk

κik

κij

zi

)

dzi

+

n
∑

j=1,j 6=r

(

wi

pj(w)

)−η
wj

pj(w)
Lj

∫ ∞

0

(

zi
κji

)1−η

fi(zi)
∏

k 6=i

∂

∂wr

[

Fk

(

wi

wk

κik

κij
zi

)]

dzi

+
∂

∂wr

[

(

wi

pr(w)

)−η
wr

pr(w)
Lr

]

∫ ∞

0

(

zi
κri

)1−η

fi(zi)
∏

k 6=i

Fk

(

wi

wk

κik

κir
zi

)

dzi

+

(

wi

pr(w)

)−η
wr

pr(w)
Lr

∫ ∞

0

(

zi
κri

)1−η

fi(zi)
∏

k 6=i

∂

∂wr

[

Fk

(

wi

wk

κik

κir

zi

)]

dzi

For j 6= r, using that η > 1 and pj(w) in increasing, we get ∂
∂wr

[

(

wi

pj(w)

)−η
wj

pj(w)
Lj

]

>

0. For j = r, using that η > 0, that wr/p(w) is decreasing in wr we get that

∂
∂wr

[

(

wi

pr(w)

)−η
wr

pr(w)
Lr

]

> 0. For k = r 6= i we have that ∂
∂wr

[

Fk

(

wi

wk
zi

)]

> 0

since Fk is decreasing.
That wi/wj, relative wages of country i respect to any country j, are

decreasing in Li, follows from the strong gross substitute property. In par-
ticular, form an an application of the Hick’s law of demand, since the excess
demand of country i decreases with Li, while the excess demand for any other
country increases with Li, –see, for example, first corollary of Theorem 3 in
Quirk (1968). �

For future reference we analyze the correspondence between equilibrium
wages and population sizes. Under the conditions stated in Proposition 5
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there is a unique equilibrium wage w for any population size vector L. The
next propositions established the converse: for any given w ∈ R

n
++ > 0 there

is a unique vector of populations L for which w is a static trade equilibrium.

Proposition 5: For any trade costs K, distributions F , and wages w ∈ R
n
++,

there exists a vector populations L so that w is a static trade equilibrium.
The population sizes L are unique, up to scale.

Proof: Let w be an equilibrium for L. The excess demand system can we
written as

wi Li =
n
∑

j=1

wj Lj

(

wi

pj(w)

)1−η ∫ ∞

0

(

zi
κji

)1−η

fi(zi)
∏

k 6=i

Fk

(

wi

wk

κik

κij

zi

)

dzi

Let dij(w) be the strictly positive constant

dij(w) ≡
(

wi

pj(w)

)1−η ∫ ∞

0

(

zi
κji

)1−η

fi(zi)
∏

k 6=i

Fk

(

wi

wk

κik

κij
zi

)

dzi

which are independent of L. Thus letting li ≡ wiLi we can write the excess
demand system as:

li =
n
∑

j=1

lj dij(w)

Notice that the definition of pi(w) implies that:
∑n

i=1 dij = 1 for all j = 1, ..,.
By an application of the Perron-Frobenious theorem this linear set of equa-
tions has a unique strictly positive solution in the simplex. Let l(w) be the
unique solution. Setting Li = li(w)/wi we obtain the unique values of L that
rationalize w as a static trade equilibrium. �

The static multi-country economy that we analyze has constant returns
to scale in the production of all goods, which has several implications that
we will use in our analysis of technology diffusion. We present two lemmas,
which we state without proof. The first implication is that scaling up by a
constant the distribution of productivities in all countries in the world, there
is no change in any relative price.

Corollary 1: Let (w, p) be the equilibrium wages and prices for an economy
with K,L, F . Let ξ ∈ R++ and define F ξ

i as F ξ
i (z) = Fi(ξz), for all i. Then
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(w, p) are also the equilibrium wages and prices for an economy withK,L, F ξ.

The second implication of the constant returns to scale is that if we scale
both the distribution of the costs and population size of a particular country
i by ξi > 0, so that if ξi < 1 the country is more productive, but it has a
smaller size. In this case the equilibrium wages are scaled up by 1/ξi and the
prices of aggregate consumption are the same.

Corollary 2: Let (w, p) be the equilibrium wages and prices for an economy
with L,K and F . Let ξ ∈ R

n
++, and consider an economy with populations

Lξ
i = Li ξi and distributions F ξ

i (ξiz) = Fi(z) for all i. The economy with
(Lξ, K, F ξ) has equilibrium wages and prices given by wξ

i = wi / ξi and pξi = pi
for all i .

The next example illustrates the previous results:

Example: Assume Fi(z) = exp
(

−λi z
1/θ
)

for all i and κij = 1. Direct
computations -see Alvarez and Lucas (2007) - gives that equilibrium wages
are wi = λi/Li. Clearly, relative wages are decreasing in country sizes. Fur-
thermore, each vector L corresponds to an equilibrium vector w. Finally,
multiplying the cost distribution by ξi is equivalent to consider the value to
λξ
i = λi/ξ

1/θ
i for the definition of Fi, and since θ is common for all i, in the

case where ξi = ξj = ξ for all i, j all relative wages are independent of ξ.

4 Diffusion in a World Economy

We now turn to the analysis of the dynamics of a world economy, for given
fixed values of the trade costs K and equilibrium wage w(t), determined as
in Section 3. The state variables are the profile F = (F1, ..., Fn) of the right
cdfs of each of the n countries. The law of motion is

∂ log(Fi(z, t))

∂t
= αi log(Gi(z, t)) (19)

where the functions Gi(z, t) are the right cdfs of the sellers that are active in
i at date t:

Gi(z, t) =
n
∑

j=1

∫ ∞

z

fj(y, t)
∏

k 6=j

Fk

(

wjκik

wkκij

y, t

)

dy. (20)
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The densities corresponding to Fi and Gi are

fi(z, t) = −∂Fi(z, t)

∂z
and gi(z, t) = −∂Gi(z, t)

∂z
.

In Section 3 we defined a static equilibrium. We are now in a position to
define an equilibrium that describes the full dynamics a world economy given
parameters K,L and initial distributions F (·, 0) = (F1(·, 0), ..., Fn(·, 0)).

Definition. An equilibrium is a time path of wages w(t) = (w1(t), ..., wn(t))
and right cdfs F (·, t) for all t ≥ 0 such that

( i) w(t) is a static equilibrium as defined in Section 3, and
(ii) given w(t) the path F (·, t) satisfies (19) and (20).
In this section, we simply take a path of wages as given and study the dy-

namics for the distributions F and G implied by (19) and (20). We note that
given a wage path the evolution of these distributions will be independent of
the elasticity of substitution η and of the country sizes L = (L1, ..., Ln).

We begin with a proposition that derives properties of the cdfs G =
(G1, ..., Gn) from assumptions on the profile F. In particular, Proposition 6
derives some properties that the left tail (z near 0) of G must have from
assumptions on F that mirror assumptions we applied in the study of the
closed economy in Section 2, combined with very weak assumptions on trade.
Proposition 7 derives the common growth rate on a balanced growth path for
the n-country model and other properties that obtain near z = 0. Proposition
8 describes the full dynamics for the left tail.

The following condition on the tail behavior these distributions will be
used in deriving the various results in this section. It is a natural gener-
alization to case of n locations of the condition required in Section 2 for a
distribution to be in the basin of attraction of a balanced growth path, sup-
plemented with a condition on the nature of trade. Where it will not cause
confusion, we suppress the time arguments of F and G and their dependence
on w and K.
Condition C: We say that a profile F (z) = (F1(z), ..., Fn(z)) satisfies Con-
dition C if

(C1)

lim
z→0

zfi(z)

1− Fi(z)
≡ 1

θi
> 0 for all i,
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(C2) limz→0 θix
θi−1fi(x

θi) = λi ≥ 0 for all i, with λi > 0 if θi =
maxj θj ≡ θ, and

(C3) κij > 0 for all i, j.
We note that θxθ−1fj(x

θ) is the density function of the random variable
x̃ = z̃1/θ where z̃ has the density fj . Thus Condition C requires that the
initial cost distributions of the countries with largest tail parameter θ have
a strictly positive density at 0. If Condition C holds no country is capable
of ever-accelerating growth (C1), at least one country is capable of sustained
growth at a positive rate (C2), and all countries are connected in the sense
that it is possible for any country to trade with any other country (C3).

The next result shows that the distributions Gi share a common left tail,
with an elasticity at zero equal to 1/θ, where θ ≡ maxi θi.
Proposition 6: Assume that the profile F (z) satisfies Condition C. Then
for all i

lim
x→0

[

θxθ−1gi(x
θ)
]

=
n
∑

j=1

λj > 0, (21)

where θ = maxi θi, and

lim
x→0

xgi(x)

1−Gi(x)
=

1

θ
. (22)

Proof : Differentiating both sides of (20) with respect to z, evaluating at
z = xθ and multiplying by θxθ−1 we obtain

θxθ−1gi(x
θ) =

n
∑

j=1

θxθ−1fj(x
θ)
∏

k 6=j

Fk

(

wjκik

wkκij
xθ

)

for all i. Taking limits as x → 0 gives

lim
x→0

[

θxθ−1gi(x
θ)
]

= lim
x→0

n
∑

j=1

θxθ−1fj(x
θ)
∏

k 6=j

Fk(aijkx
θ)

= lim
x→0

n
∑

j=1

θxθ−1fj(x
θ)

where the second equality follows since C3 implies that limx→0 Fk(aijkx
θ) =

0).
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Now we use the change of variable y = xθ/θj on the term on the right, to
conclude that

lim
x→0

[

θxθ−1gi(x
θ)
]

= lim
y→0

n
∑

j=1

θ

θj
y1−θj/θθjy

θj−1fj(y
θj)

= lim
y→0

n
∑

j=1

θ

θj
y1−θj/θλj.

where the second equality follows from C2. Now for those countries j such
that θj = θ the j-th term in the sum on the right is λj > 0. For the terms
with θj = θ, the j-th term in the sum is (θ/θj) y

1−θj/θλj with converges to 0
as y → 0. Thus the limit on the right equals

lim
x→0

[

θxθ−1gi(x
θ)
]

=
∑

θj=θ

λj > 0.

Then (22) follows Proposition 3. Since (22) implies that θj = θ for all j, (21)
also follows. �

We now turn to the study of the basic dynamic system, equations (19)
and (20). We know that the distribution of cost z̃ is collapsing on zero as
time passes, so it is convenient to work with the distribution of the random
variable eνtz̃ , where ν is the common growth rate on a balanced growth
path. We refer to eνtz̃ as normalized cost. The right cdf of this normalized
cost is

Pr{eνtz̃ ≥ z at t} = Pr{z̃ ≥ e−νtz at t} = F (e−νtz, t}.
On a balanced growth path the distribution of normalized cost does not vary
with t so we define a balanced growth as a common growth rate ν and a
profile of cost distributions Φ = (Φ1...,Φn) such that

Φi(z) = Fi(e
−νtz, t)

for all t. Along a BGP we can substituting Φi(e
νtz) for Fi(z, t) in (19) and

φi(e
νtz)eνt for fi(z, t), and applying the homogeneity property in Lemma 1

of Section 3 we have that the BGP (Φ, ν) must satisfy

∂ log (Φi(e
νtz))

∂t
= αi log

(

n
∑

j=1

∫ ∞

eνtz

φj(y)
∏

k 6=j

Φk

(

wjκik

wkκij

y

)

dy

)

.
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Letting x = eνtz, we have

ν
xφi(x)

Φi(x)
= −αi log (Gi(x)) , (23)

where it is understood that Gi(x) is defined in term of the profile of Φ instead
of F .

The next result links the growth rate of the economy with the elasticity
of the distribution of sellers at zero, and establishes that the left tails of the
stationary cost distributions are identical in all locations.

Proposition 7. Assume that the profile of stationary distributions Φ =
(Φ1(z), ...,Φn(z)) satisfies Condition C, and let θ = maxi θi. Then the growth
rate on the balanced growth path equals

ν = θ

n
∑

i=1

αi (24)

and the limits

lim
x→0

θxθ−1φi(x
θ) =

1

n

n
∑

j=1

λj (25)

and

lim
x→0

xφi(x)

1− Φi(x)
=

1

θ
(26)

hold for all i.
Proof: Evaluating both sides of (23) at xθ, multiplying by θ, dividing by x,
and taking the limit as x → 0 yields

ν lim
x→0

θxθ−1φi(x
θ) = −θαi lim

x→0

logGi(x
θ)

x
.

Applying l’Hospital’s rule to the right side yields

lim
x→0

logGi(x
θ)

x
= − 1

Gi(xθ)
gi(x

θ)θxθ−1

= −
n
∑

j=1

λj
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using (21) and (22) in Proposition 7 and the fact that Gi(0) = 1. Thus

ν lim
x→0

θxθ−1φi(x
θ) = θαi

n
∑

j=1

λj. (27)

Applying Proposition 7 to the left side of (10) gives

νλi = θαi

n
∑

j=1

λj

and summing both sides over i gives

ν = θ
n
∑

i=1

αi.

This verifies (24) and then (25) follows from (27). Finally, (26) follows from
Proposition 3.�

As in Section 2, we are interested in conditions on the initial knowledge
distributions Fi(z, 0) that will imply convergence to a balanced growth path,
in the sense of

lim
t→∞

log[Fi(
(

e−(ν/θ)tz
)θ

, t)]

z
= −λi (28)

for all t. Here we assume profiles for initial distributions Fi(z, 0) and limiting
distributions Φi(x) that both satisfy Condition C. Proposition 8 then implies
that equations (24)-(26) hold for the common value θ > 0 and positive values
λ1, ..., λn. In this n country case, ν = θ

∑n
i=1 αi. It is certainly not the case

that these conditions will imply (28) for all values of z for all but the next
result shows that (28) holds in the limit as z → 0 and provides a characteri-
zation of the dynamics of the left-tail of the cost distributions Fi(z, t).

Proposition 8: Assume that F (z, 0) satisfies Condition C. Then if

λi(t) = − lim
z→0

log
[

Fi((e
−(ν/θ)tz)θ, t)

]

z
(29)

then
λi(t)− λ(0) = [λi(0)− λ(0)] e−(ν/θ)t (30)
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and

lim
z→0

zFi(z, t)

1− Fi(z, t)
=

1

θ
. (31)

Proof: Decomposing the time derivative of Fi((e
−αntz)θ, t) in the usual way,

we have

dFi(
(

e−(ν/θ)tz
)θ

, t)

dt
=

∂Fi(
(

e−(ν/θ)tz
)θ

, t)

∂z

d
(

e−(ν/θ)tz
)θ

dt
+

∂Fi(
(

e−(ν/θ)tz
)θ

, t)

∂t

= (ν/θ) fi(
(

e−(ν/θ)tz
)θ

, t)θ
(

e−(ν/θ)tz
)θ−1

e−(ν/θ)tz +
∂Fi(

(

e−(ν/θ)tz
)θ

, t)

∂t

and so, dividing by Fi(
(

e−(ν/θ)tz
)θ

, t) and applying (19) to the last term on
the right,

d logFi(
(

e−(ν/θ)tz
)θ

, t)

dt
= x

(ν/θ) fi(
(

e−(ν/θ)tz
)θ

, t)θ
(

e−(ν/θ)tz
)θ−1

e−(ν/θ)tz

Fi((e−(ν/θ)tz)
θ
, t)

+αi logGi(
(

e−(ν/θ)tz
)θ

, t).

Let x = e−(ν/θ)tz and divide through by x to obtain

d

dt

logFi(x
θ, t)

x
= (ν/θ)

fi(x
θ, t)θxθ−1x

Fi(xθ, t)x
+ αi

logGi(x
θ, t)

x
.

Now let x → 0

− d

dt
lim
x→0

fi(x
θ, t)θxθ−1 = (ν/θ) lim

x→0
fi(x

θ, t)θxθ−1 − αi lim
x→0

gi(x
θ, t)θxθ−1.

Reversing signs to conform to the definition of λi(t),

d

dt
λi(t) = − (ν/θ) λi(t) + αi

n
∑

i=1

λi(t).

Summing both sides over i we have

d

dt

n
∑

i=1

λi(t) = − (ν/θ)

n
∑

i=1

λi(t) +

n
∑

i=1

αi

n
∑

i=1

λi(t) = 0.
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Letting λ(t) = (1/n)
∑n

i=1 λi(t) we have then

d

dt
[λi(t)− λ(0)] = − (ν/θ) [λi(t)− λ(0)]

and (30) follows. Proposition 3 then implies (31). �
The next theorem establish the existence of balanced growth path distri-

butions.

Proposition 8.b: For any w , K, θ > 0, and λ > 0. There is at least one
non-degenerate balanced growth path (Φ, ν) = (Φ1, ...,Φn, ν) that satisfies

θ = lim
z→0

zφi

1− Φi
and λ = lim

z→0
θzθ−1φi(z

θ)

for all i. Moreover, any balanced growth path distributions consistent with
a pair (θ, λ) are bounded between the following two Weibull distributions:

exp (−λz1/θ) ≤ Φi(z) ≤ Ê exp (−λ(az)1/θ)

where a = mini,j,k
wjκi,k

wkκij
.

Proof: We will fix K and w(t) = w, for all t, and consider the law of motion
of the corresponding cost distribution. Let Fi(z, 0) be any distribution with
tails consistent with a pair (λ, θ). Given the diffussion process, the distribu-
tion of cost only gets lower and hence it converges. The only issue is whether
the limit distribution, after normalizing it by exp(−νt), is degenerate. To
show that it is not degenerate we bound its path by two alternative trajec-
tories of distributions generated with law of motions to be specified below,
each of them with a non-degenerate limit.

The first corresponds to K = In×n and w = 1n, the case of costless trade
and equal wages. The path of F is higher at each t by the monotonicity of G
established in Proposition 9. The limit distribution has lower cost and it is
not degenerate, since it can be verified that this law of motion is identical to
the one of the close economy case, and hence it converges to a Weibull with
parameters λ and θ.

The second corresponds to changing the starting distribution of cost by
F ∗
i (z, 0) = Fi(az, 0) and considering the law of motion that corresponds to

the case of costless trade and equal wages. By examining G with the true
initial distribution F (., 0) and G with F ∗(., 0) it can be seen that the resulting
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cost distribution are stochastically higher. The limit of this law of motion is
also Weibull with parameters λa1/θ and θ. �

Proposition 8b shows the existence of a balanced growth path for arbitrary
cost parameters K and a wage vector w. Using this result together with
Proposition 5 of Section 3, we can show that for any K and L there is a
balanced growth cost distribution, and associated wages w which displays
balanced trade.

4.1 The case of n symmetric countries

This section analyzes the case of n symmetric countries. First we show that
on a balanced growth path with costless trade, all countries share the same
stationary distribution of cost, which is of the Weibull family. The corre-
sponding stationary distribution of productivity is Frechet. Therefore this
case provides a benchmark, closely related to the distribution of productivi-
ties used in the trade theory of Eaton and Kortum (2002) and Alvarez and
Lucas (2007). This benchmark is also of interest as it provides a lower bound
on the distribution of cost in any balanced growth path.

The following result shows that all Gi are bounded from below by the
joint distribution of sellers that would be active in i in a hypothetical world
economy with no trade costs and a common labor market.

Proposition 9: Gi(z;K,w) ≥
∏n

j=1 Fj(z), with equality if K = I and
w = 1.

Proof : Define the sets

M(z) =
{

z ∈ R
n
+ : min{z1, ..., zn} ≥ z

}

and

Bi(z;w,K) =

{

z ∈ R
n
+ : zj∗ ≥ z, where j∗ = argmin

j∈{1,...,n}

{

wjzj
kij

}

}

.

It is easy to see that M(z) ⊆ Bi(z;w,K) since min{z1, ..., zn} ≥ z ⇒ zj ≥ z,
all j = 1, ..., n. Therefore,

Gi(z;K,w) =

∫

z∈Bi(z;w,K)

f(z, t)dz ≥
∫

z∈M(z)

f(z, t)dz =

n
∏

j=1

Fj(z, t).�
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The balanced growth path of a symmetric world with costless trade is
characterized by

Proposition 10: Assume that the n countries have the same size, Li = L,
and the same α = αi, and that trade is costless, κij = 1, all i, j. Then the
world economy is on a balanced growth path if and only if wages are the
same, wi = 1 all i, the right CDFs are given by

Φi(z) = exp(−λz
1
θ )

for some λ > 0 and θ > 0, and the growth rate of each of the economies is

ν = nαθ.

Proof: The distribution of sellers varies across countries only through its
dependence on country specific trade costs (see Equation 20). Therefore, in
the case of costless trade all countries share the same distribution of sellers,
Gi(z) = G(z). In this case, the stationary distribution of cost for every
country i solves

∂ log(Fi(z, t))

∂t
= α log(G(z, t)). (32)

In this symmetric case,

G(z, t) =

∫ ∞

z

nf(y, t) [F (y, t)]n−1 dy

= F (z, t)n

Iso we can drop the subscripts and write

∂ log(F (z, t))

∂t
= αn log(F (z, t)) (33)

for the common right cdf F . Along a BGP we can replace F (z, t) with Φ(eνtz)
and let x = eνtz to obtain

φ(x)x

Φ(x)
= −αn

ν
log(Φ(x))

The desired result then follows from applying Proposition 1 to this equation
after replacing α with nα. �
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If we start from a situation with costless trade and equal wages, a marginal
increase in trade cost or wages has a negligible effect in the distribution of
sellers.

Proposition 11:

∂Gi(z;K,w)

∂κij

∣

∣

∣

∣

K=I,w=1

=
∂Gi(z;K,w)

∂wj

∣

∣

∣

∣

K=I,w=1

= 0.

Proof: Differentiating (2) with respect to κij

∂Gi(z;K,w)

∂κij
=

∫ ∞

z

[

fj(y)
∑

k 6=j

(

−wjκik

wk

1

κ2
ij

y

)

fk

(

wjκik

wkκij
y

)

∏

l 6=j,k

Fl

(

wjκil

wlκij
y

)

+
∑

k 6=j

fk(y)
wk

wjκik
yfj

(

wkκij

wjκik
y

)

∏

l 6=j,k

Fl

(

wlκik

wkκil
y

)

]

dy.

Evaluating at K = I and w = 1

∂Gi(z;K,w)

∂κij

∣

∣

∣

∣

K=I,w=1

=

∫ ∞

z

[

fj(y)
∑

k 6=j

(−y) fk (y)
∏

l 6=j,k

Fl (y)

+
∑

k 6=j

fk(y)yfj(y)
∏

l 6=j,k

Fl(y)

]

dy

=

∫ ∞

z

[

−yfj(y)
∑

k 6=j

fk (y)
∏

l 6=j,k

Fl (y)

+yfj(y)
∑

k 6=j

fk(y)
∏

l 6=j,k

Fl(y)

]

dy

= 0.

Similarly, differentiating (2) with respect to wj

∂Gi(z;K,w)

∂wj
=

∫ ∞

z

[

fj(y)
∑

k 6=j

κik

wkκij
yfk
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wjκik
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)
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)

+
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−wkκij
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)
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y

)

∏
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wlκik
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y

)

]

dy.

28



Evaluating at K = I and w = 1 and rearranging terms

∂Gi(z;K,w)

∂wj

∣

∣

∣

∣

K=I,w=1

=

∫ ∞

z

[

−yfj(y)
∑

k 6=j

fk (y)
∏

l 6=j,k

Fl (y)

+yfj(y)
∑

k 6=j

fk(y)
∏

l 6=j,k

Fl(y)

]

dy

= 0.

�

Proposition 11 holds independently of the profile of F (z) of right cdfs, but
it takes as given the profile of wages w which we know is determined by
the profile F (z). The following result establishes that when starting from a
world with symmetric countries and costless trade, changes in trade cost or
in the size of an individual country have a negligible effect on the profile of
stationary distributions.

Let the parameters of a world economy be given by n, α, K and L. We
are interested in the comparative static of the profile of stationary distribu-
tions φ(x;K,L) with respect to K and L.

Mapping H: For fixed θ > 0 and λ > 0, the profile φ(x;K,L) is the solu-
tion to the functional equation H(φ,K,L) given by: equation (23) defining a
balance growth path, equation (20) defining the distribution of sellers, equa-
tion (17) giving the by the solution to the static trade equilibrium, ν = nαθ

defining the growth rate of a balance growth path, and limx→0
xφi(x)
Φi(x)

= θ and

limx→0 θx
θ−1φi(x

θ) = λ giving the boundary conditions for the densities.

The reason why θ and λ need to be given is that there are multiple
steady state, but these two parameters determine the basin of attraction, as
discussed in Proposition 8. In addition, note that for K = I and L = 1 the
solution of (6) is given by Proposition 10.

Proposition 12: Let φ be the solution to H(φ,K,L) = 0. Assume that
H(·,K,L) is differentiable, and that it is invertible. Then

∂φi(z;K,L)

∂κij

∣

∣

∣

∣

K=I,L=1

=
∂φi(z;K,L)

∂Lj

∣

∣

∣

∣

K=I,L=1

= 0.
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Proof: The result follows from totally differentiating H(φ,K,L) = 0 and
Proposition 11.

Remark E’. Before finishing this section we note specialize our remark
on the elasticity of substitution η for the case of n symmetrical countries.
Since in this case equilibrium wages are the same for all countries and con-
stant through time, the path of the distribution of cost is independent of the
elasticity of substitution η. While the distribution of cost is independent of
η, the value of real gdp and of trade to gdp, the volume of trade, both depend
on η.

4.2 From Locations to Countries

In order to clarify the role of scale effects and the interpretation of countries
of different sizes we introduce the notion of a location within a country. We
consider a world economy consisting of n countries, where each country i
contains mi locations. To simplify the analysis, we assume that a country is
defined by a set of locations satisfying the following conditions:6

• within each country there is a common labor market across the mi

locations;

• there are no trading cost between locations within a country;

• locations within a country face the same trading cost when trading
with locations in other countries.

Denoting by Li,l the labor force in location l of country i, we can write
the labor force of country i as

Li =

mi
∑

l=1

Li,l,

6It is straightforward to extend the analysis to the case where labor is not mobile
across location and there are arbitrary transportation costs across locations. In this case
an equilibrium is given by a wage vector of dimension

∑n

i=1
mi.

30



Denoting by Fi,l(z, t) the distribution of best practices in location l of
country i, we can write the distribution of best practices in country i as

Fi(z, t) =

mi
∏

l=1

Fi,l(z, t).

Notice that since there is no transportation cost between location within a
country, and that all locations within a country share the same transportation
cost vis-a-vis all other countries, the distribution Fi(z, t) of best practices of
a country is all we need to know to calculate a static trade equilibrium. In
particular, given the distribution of best practices in each country and the
size of the labor force of each country, Li, we can calculate a static trade
equilibrium as described in Section 3.

Finally, assuming that the arrival rate of ideas in location l of country i
equals αi,l, we can aggregate the evolution of best practices of all locations
in a country to obtain the law of motion of best practices in country i:

mi
∑

l=1

∂ log (Fi,l(z, t))

∂t
=

mi
∑

l=1

αi,l log [Gi(z, t)]

or

∂ log (Fi(z, t))

∂t
= αi log [Gi(z, t)]

where αi =
∑mi

l=1 αi,l.
Furthermore, assuming that countries are aggregates of different different

number of symmetric locations in terms of their population and number
of technology managers, Li,l = L and αi,l = α, we have that countries of
different size are obtained by scaling their population Li = miL and the
arrival rate of ideas αi = miα.

It should be also clear that, provided that the structure of transportation
cost and labor markets across locations is kept constant, an equilibrium of the
model is invariant to arbitrary splits of locations into countries. For instance,
a country with mi locations can be spliced into mi individual countries, each
of them with a population of size L, receiving α ideas per period, and having

a distribution of best practices Fi,l(z, t) = (Fi(z, t))
1

mi .
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5 Quantitative Exploration

In this section we present preliminary numerical examples to illustrate the
effect of trade costs on the stationary distribution of productivity, per-capita
income, trade patterns, and the transitional dynamics of these variables fol-
lowing a decline in trade costs. We consider two cases: (1) a world consisting
of n symmetric countries facing trade costs κij = κ, and (2) world con-
sisting of 1 asymmetric and n − 1 symmetric locations facing trade costs
κ1 = κ1j ≤ κji = 1, j = 2, ..., n, i 6= j.

5.1 Calibration

We can gain some understanding of the order of magnitude of the parameters
α and θ by using information of the long-run growth rate of the economy ν,
and information on θ which instead can be obtained either from the dispersion
of productivities, or the tail of the size distribution of firms/plants, or the
magnitude of trade elasticities. We turn to the description of each of these
approaches.

First, since we show above that asymptotically z is Weibull distributed,
then log(1/z), the log of productivity, has standard deviation equal to θπ/

√
6,

see chapter 3.3.4 of Rinne (2008). Hence we can take measures of dispersion
of (log) productivity to calibrate θ. The dispersion of (log) productivity
range from 0.6 − 0.75 when measured as the value-added per worker – see
Bernard et al. (2003) Table II – and around 0.8 when measures of physical
total factor productivity are obtained using data on value-added, capital and
labor inputs, and assumptions about the demand elasticities – see Hsieh and
Klenow (2009) Table I, dispersion of TFPQ.7 These numbers suggest a value
for θ in the range [0.5, 0.6].

Second, using that productivity is asymptotically distributed Frechet, and
that the tail of the Frechet behaves as that of a Pareto distribution with tail
coefficient 1/θ, we can use data on the tail of the distribution of productivity
to directly infer θ. Lacking direct information on physical productivities, we
can use information on the tail of the distribution of employment, together

7Using data for eleven products for which direct measures of physical output are avail-
able Haltiwanger et al. (2008) calculate true measures of physical total factor productivity.
They find that the dispersion of (log) true physical productivity is 20% higher than that
measured using just value-added information.
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with a value for the elasticity of demand.8 The tail of the size (employment)
distribution of firms is approximately equal to 1.06 – see Figure 1 in Luttmer
(2007). Therefore for the values of demand elasticities typically considered
in the literature, say η ∈ [3, 10], (see Broda and Weinstein (2006), Imbs and
Mejean (2010), or Hendel and Nevo (2006)) it would imply a value for θ in
the range [0.1, 0.5].

Third, as showed before, in the case of a model with several symmetrical
locations, θ is approximately the Armington trade elasticity, which will also
give us another way to measure it. This method would suggest a value for θ
in [0.1, 0.25] (Alvarez and Lucas, 2007).

Once we have an estimate of θ, whatever its source, together with an
estimate of long term growth of output ν, we can estimate the value of α,
using that ν = αθ. For instance, if we take the long-run growth to be 0.02,
α would be in the range [0.03, 0.2]. Note that with a value of α = 0.1, the
half-life to convergence will be approximately 5 years.

Based on this discussion, we set θ = 0.2 to be consistent with the available
evidence on the right tail of the distribution of productivity, and set α =
0.02θn, to match a growth rate 0.02. We consider a world consisting of
n = 50 economies symmetric in all dimensions, with the possible exception
of their trade cost. Given our choice of n, in a world with symmetric trade
cost each economy has a relative GDP similar to that of Canada or South
Korea.

5.2 Symmetric World

Figure 1 illustrates the long run effect on the distribution of productivities
1/z of introducing trade costs in a symmetric word of n countries. The
thought experiment is to go from costless trade to a case where κij takes
a common value κ < 1 for all j 6= i. ) On the x-axis we measure the
value of productivity, expressed as a ratio to the average productivity in the
economy with costless trade (κ = 1). On the y-axis we display the density
of relative productivities for different values of κ. The top panel shows the
densities of productivities of the potential producers, a transformation of the
common density of the cost φ (or of f). The bottom panel shows the density
of productivities of the sellers active in each country, a transformation of the

8The CES structure implies that employment at industry/firm with cost x satisfies
l(z) ∝ (1/z)η−1.
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common density g.
Note first that, due to the selection due of trade, the density of sellers

is stochastically larger than the one of potential producers, for each κ. The
difference between the two densities increases for larger trade cost (for lower
values of κ). Second, note that for κ = 1 the densities are Frechet, as we
showed in Proposition 10. Third, for larger trade cost (lower κ) both densities
have a thicker left tail, especially so for potential producers. Fourth, the
change in the distribution of potential producers as κ varies illustrates the
effect of trade costs on the diffusion of technologies, the main feature of the
model in this paper. Finally, we remind the reader that, as stated in Remark
E’, these distributions are independent of the value of η.

Figure 2 illustrates the effect of introducing symmetric trade costs in real
gdp C in the top panel and in the trade volume (the ratio of imports to gdp)
in the bottom panel in a symmetric word of n countries.9 On the x-axis we
measure trade cost. On the y-axis we measure real gdp, relative to gdp under
costless trade (top panel) or the trade share, relative to the costless trade
benchmark (bottom panel). In each panel the solid line displays the impact
effect of introducing the trade costs, calculated by holding the distribution
of productivity fixed at its distribution under of costless trade. As shown
above, this benchmark has a Frechet distribution. The other lines in each
panel show the effect on the balanced growth path of introducing trade cost.
Each line is for a different value of the elasticity of substitution η. Recall
that the growth rate of the world economy is unaffected by the introduction
of finite trade cost, as long as κ > 0, so the ratios on these panels should be
interpreted as level effects around the common balanced growth path.

The solid lines showing the impact effects correspond to the familiar ef-
fects of trade cost in the Ricardian trade theory of Eaton and Kortum (2002)
and Alvarez and Lucas (2007). In this case there is an analytical expression

9The value of imports to country j from i is given by:

Iji =

∫

Bji

pj(z)cj(z)f(z)dz =

∫ ∞

0

(

wi zi
κji pj

)1−η

wjLj fi(zi)
∏

k 6=i

Fk

(

wiκjk

wkκji

zi

)

dzi ,

so total imports in country j are Ij =
∑n

i=1,i6=j Iji and volume of trade, defined as imports
relative to GDP, is given by vj = 1/(1 + Ijj/Ij).
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for the GDP of an economy relative to case of costless trade:10

C(κ)

C(1)
=

[

1 + (n− 1)κ
1
θ

]θ

nθ
.

The output effects of trade cost depend only on θ, the country size, 1/n, and
the value of the trade cost κ. As it has been noted, this expression does
not depend on the value of the substitution elasticity η. In contrast, once
trade costs the value of η does matter, as showed by the dashed lines. These
effects of trade costs on gdp are larger the more difficult it is to substitute
domestic goods for imports. The long-run calculations include the effects
of the changes in the distribution of productivity due to the diffusion of
technology, which are the contribution of this paper. As trade cost increases,
individuals in each country meets relatively more worst sellers, and therefore,
the good technologies diffuse more slowly.

This panel shows that the difference between the effect on impact (solid
line) and the long-run effects (any of the other lines) are extremely small in
the neighborhood of costless trade. This is to be expected, since Proposition
12 shows that around the symmetric costless trade, trade cost have only
second order effects on productivity. Indeed, Figure 1 shows that the lesson
drawn from Proposition 12 applies for a large range of trade costs, say eve n
trade cost as large as κ ≥ 0.5.

The effect of trade cost on the volume of trade is shown in the bottom
panel of Figure 2. The impact effect and long-runs effects are defined as in
the top panel. Note that the impact effect of trade is the same as in Alvarez
and Lucas (2007), since the distribution of productivities is Frechet, and it
is given by11

v =
(n− 1)κ1/θ

1 + (n− 1)κ1/θ
(34)

The long run effect of trade cost on the volume of trade is smaller than its
effect on impact. This is due to the fact that a higher trade cost leads to
a distribution of productivity for potential producers with a thicker left tail
and the same right tail (see Figure 1), i.e. they lead to larger dispersion of
productivities. A larger dispersion of productivity is associated with larger

10This formula follows from specializing equation (6.10) in Alvarez and Lucas (2007) to
a world without intermediate goods, non-tradable goods, and tariffs.

11See Alvarez and Lucas (2007) expression (6.11) for the case of β = ω = 1 and α = 0.
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gains from trade. As discussed in Remark E’, this distribution of produc-
tivities are independent of the value of η. But the gains from trade are not
independent of η, and with larger elasticities of substitution for any given κ
there is more trade.

5.3 Asymmetric World and Catch-up Growth

In the previous exercises we illustrated the effect of symmetric trade barriers.
We now explore the impact of unilateral trade barriers by considering a world
economy consisting of n countries, n−1 of which face symmetric trade cost κ1

when trading among themselves, and a single country that faces a relatively
larger cost to trade from and to this country, κn ≤ κ1. We refer to the
first group as the n − 1 symmetric countries, and to the later as the small
open economy. We interpret the n−1 relatively open countries as developed
economies. Following Alvarez and Lucas (2007), we calibrate their trade cost
to κ1 = 0.75.12

In Figure 3 we illustrate how the balanced growth path of these economies
is affected by the cost of trade with the small open economy, κn. In the top
panel we show the effect on the per-capita income of the n − 1 symmetric
countries (solid line) and the small open economy (dashed line). Similarly,
in the bottom panel we show the effect on the volume of trade. Most of
the impact occurs in the small open economy, with the effect being more
pronounced than those reported in Figure 1 for the case of n symmetric
countries.

Figure 4 displays the dynamic effects of a once-and-for-all trade liberal-
ization in the small economy, taking the form of a reduction of its trade
costs to the level of the advanced economies. These dynamics are shown for
the three initial (pre-liberalizatiuon) trade costs κn(0) = 0.05, 0.30, 0.50.

The main message from Figure 4 is that a large part of the output gains
from a reduction in trade costs occur immediately. The distribution of pro-
ductivity of the small open economy is not affected on impact, but this econ-
omy is no longer forced to rely on its own producers for most of the goods it
consumed, and can therefore discontinue its most unproductive technologies.
In the model, this effect happens immediately. Thereafter, the distribution of
productivity continues to improve, but this effect tends to be less important:

12This value is a compromise between low values of κ obtained from indirect estimates
using gravity equations and higher ones using direct evidence of transportation costs, e.g.,
freight charges, imputed time costs on cargo in transit.
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As Figure 1 illustrates, the right tail of productivity is less affected by trade
barriers.

6 Conclusions

We have proposed and studied a new theory of cross-country technology dif-
fusion, constructed by integrating two existing models: a static model of
international trade based on the Ricardian framework introduced by Eaton
and Kortum (2002) and a stochastic-process model of knowledge growth in-
troduced in Kortum (1997) in which individuals get new ideas through their
interactions with others. The new feature that connects these two models is
a selection effect of international trade: Trade directly affects productivity
levels by replacing inefficient domestic producers with more efficient foreign-
ers and so increasing every country’s contacts with best-practice technologies
around the world.

The theory implies a long-run equilibrium in which all economies share
a common, constant, endogenously determined growth rate, provided they
are all connected in some degree through trade. Differences in trade cost
will induce differences in income levels but not, in the long run, in rates of
growth. This feature is shared with the von Neumann (1927) model and
with Parente and Prescott (1994) model of “barriers to riches.” The tran-
sition dynamics following changes in trade costs, both world wide and by
an individual country, are illustrated through stylized numerical examples.
These dynamics are a mixture of static gains from trade that occur instanta-
neously under the trade model we use and gradual change that results from
to changes in the intellectual environment that trade brings to individual
countries. Improvements in technology arise from interactions among people
who are brought together by the prospects of gains from trade and who get
new ideas by adapting better technologies currently used in other locations
and/or in the production of other goods.

The model of this paper is general enough to support a fairly realistic
calibration to the world economy (as in Alvarez and Lucas (2007)) but our
numerical illustrations here should not be viewed as an attempt to do this.
The trade shares in the figures are much larger than those we observe. Adding
a non-tradeables sector would remedy this, and would also reduce the size of
the jump in production that follows a trade liberalization, but we have not
done this. The model of technological change that we have adopted from Ko-
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rtum (1997) is one of many possibilities—see, for example, the ones explored
in Lucas and Moll (2011)—and we have not yet sought a parameterization
that matches up to observations on actual catch-up growth. These are but
two of the many directions that would be interesting to pursue further.
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A Additional Results: Closed Economy

A.1 Conditions for Bounded Consumption

We discuss a conditions so that the economy does not have unbounded gdp.
The expression for the price index p(t) is strictly positive, or equivalently
real gdp y(t) is finite only if the left tail of the distribution of the cost z
goes to zero at a fast enough rate relative to the elasticity of substitution η.
Economically, if the goods are too close of substitutes and the distribution
of cost near zero has too thick of a tail, then an economy can concentrate in
the production on these goods, and obtain any amount of the final good that
it desires, or equivalently p = 0. In what follow we will impose conditions on
η and the tail of F (·, t) so this does not occur. A sufficient condition that is
useful in our set-up, is that the elasticity of the c.d.f. of z evaluated at z = 0,
be larger than η − 1. This is the same condition as in Eaton and Kortum
(2002), but our requirement is only in a neighborhood of z = 0.

Lemma A.1: Let ǫ(t) > 0 be the elasticity of the cdf 1 − F (z, t) evaluated
at z = 0. If ǫ(t) > η − 1, then p(t) > 0 and y(t) < ∞.

proof: To simplify the notation of the proof let ǫ(t) = ǫ. The expression for
p(t) contains the integral of z1−η f(z, t) for z ∈ (0,∞). If 0 ≤ η ≤ 1 then
z1−η is increasing, so the integral is strictly positive provided that f(z, t) > 0
for z > 0. When η > 1, p(t) is strictly positive iff the integral of z1−ηf(z, t)
is finite. The function z1−η is decreasing so, the integral of this function
converges if and only if the integral between 0 and b > 0 converges for some
b > 0. Consider first the cdf 1− F̄ (z, t) = A zǫ in the interval [0, b] for some
constant A > 0, so that elasticity in (0, b] is constant and given by ǫ. Direct

computation gives
∫ b

a
z1−ηzǫ−1dz = (1/(1− η + ǫ)) z1−η+ǫ|ba. This integral is

finite when η > 1, provided that the limit as a goes to zero is finite. For
this we require ǫ > η − 1. Lemma A.1 shows that the ratio of two CDFs
with different elasticities at zero diverges as z goes to zero. From this lemma
we know that if the integral of z1−η converges when integrating with the cdf
1− F̄ (z, t), then it will also converge using the cdf 1− F (z, t). �
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A.2 Interpretation of θ

In Section 2 we show that there are two simple statistic that determine when
an initial distribution G(z) belong to the basin of attraction of a balance
growth: (i) the elasticity at zero of the cdf,

1

θ
= lim

z→0
ǫ(z) = lim

z→0

zg(z)

1−G(z)
,

and (ii) the density at zero of the transformation of the cost x1/θ,

λ = lim
x→0

θxθ−1g(xθ).

These two parameters, together with arrival rate of meetings, α, fully
characterize the growth rate and the stationary distribution of cost in a
balance growth path. Of the two parameters characterizing the initial dis-
tribution, θ is asymptotically more important as it governs the growth rate.
The following Lemma, which extensively used in the proofs of various results
in the paper, provides an interpretation of θ as a measure of the relative
concentration of arbitrarily low costs in two distributions.

Lemma A.2: Let 1 − F1(z) and 1 − F2(z) be two cdf with continuous and
strictly positive elasticity at 0, i.e., limz→0 ǫi(z) = ǫi(0) > 0, and ǫ1(0) < ǫ2(0)
(θ1 > θ2). Then

lim
z→0

1− F2(z)

1− F1(z)
= lim

z→0

f2(z)

f1(z)
= 0.

Proof: Using the definition of the elasticity we can write the cdf and density
functions as

1− Fi(z) = [1− Fi(z̄)] exp

[

−
∫ z̄

z

ǫi(y)

y
dy

]

.

and

fi(z) = [1− Fi(z̄)]
ǫi(z)

z
exp

[

−
∫ z̄

z

ǫi(y)

y
dy

]

.
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Therefore, we can express the ratio between the first and second density
functions as

f2(z)

f1(z)
=

1− F2(z̄)

1− F1(z)

ǫ2(z)

ǫ1(z)
exp

[

−
∫ z̄

z

ǫ2(y)− ǫ1(y)

y
dy

]

.

From the continuity of ǫi(z) and the fact that ǫ2(0) − ǫ1(0) > 0 we know
that for z̄ close to zero there exist ε, 0 < ε ≤ ǫ2(0) − ǫ1(0), such that
ǫ2(z)− ǫ1(z) ≥ ε for all 0 < z ≤ z̄. Therefore, for all z ≤ z̄

f2(z)

f1(z)
≤ 1− F2(z̄)

1− F1(z)

ǫ2(z)

ǫ1(z)
exp

[

−
∫ z̄

z

ε

y
dy

]

=
1− F2(z̄)

1− F1(z)

ǫ2(z)

ǫ1(z)

(z

z̄

)ε

,

and since fi(z) ≥ 0, i = 1, 2,

lim
z→0

f2(z)

f1(z)
= 0.

By l’Hopital rule, this also implies that

lim
z→0

1− F2(z)

1− F1(z)
= 0.

�

A.3 Partial Converse to Proposition 3

Can the conditions for an initial distribution to belong to the basin of at-
traction of a balance growth path be express solely in terms of the behavior
of the elasticity around zero? We restrict the set of initial conditions so that
if they have a bounded elasticity then they satisfy (11). Consider the class
of initial c.d.f. whose elasticity on the neighborhood of zero can be written
as a sum of power functions, i.e.,

ǫ(z) ≡ g(z)z

1−G(z)
= e0 +

∞
∑

i=1

ei z
ξi + o(z) (35)
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where ξi > 0 and limz↓0
o(z)
z

→ 0.13

The follow result provides a partial converse to Proposition 4, as it pro-
vides a sufficient condition for a initial distribution with strictly positive and
finite elasticity to converges to a balance growth path as defined in (10).

Proposition A.3 Assume that the initial c.d.f. G(z) has elasticity of the
form given by (35), with

∑∞
i=1 | eiξi | = A < ∞. Then, G(z) satisfies condition

(11).

Proof. Definite H(x) = G(xθ), where θ = 1/e0. Let 0 ≤ x < x̄ < 1 closed
enough to 0. Integrating the equation defining the elasticity of H(x) between
x and x̄ we obtain

H(x) = H(x̄) exp

[

−
∫ x̄

x

ǫ(t)/ǫ(0)

t
dt

]

= H(x̄) exp

[

−
∫ x̄

x

1 + 1
ǫ(0)

[
∑∞

i=1 ei t
ξi + o(t)

]

t
dt

]

= H(x̄)
x

x̄
exp

[

− 1

ǫ(0)

∫ x̄

x

∞
∑

i=1

ei t
ξi−1dt− 1

ǫ(0)

∫ x̄

x

o(t)

t
dt

]

.

where the second equality follows from the definition of a regular elasticity.
Rearrenging,

H(x)

x
=

H(x̄)

x̄
exp

[

− 1

ǫ(0)

∫ x̄

x

∞
∑

i=1

ei t
ξi−1dt

]

exp

[

− 1

ǫ(0)

∫ x̄

x

o(t)

t
dt

]

=
H(x̄)

x̄
exp

[

− 1

ǫ(0)

[

∫ x̄

x

∑

i∈pos

ei t
ξi−1dt−

∫ x̄

x

∑

i∈neg

|ei| tξi−1dt

]]

exp

[

− 1

ǫ(0)

∫ x̄

x

o(t)

t
dt

]

(36)

where pos = {i : ei ≥ 0} and neg = {i : ei < 0}. We notice that each
of the integrals inside the first exponential increase when we lower x, as we
are integrating a positive function over a larger range. Moreover, these two

13This class includes the cases in which ǫ(z) is differentiable at 0 (set ξi ≥ 1 for all i),
as well as many other cases where it is not differentiable, such as ǫ(z) = e0 +

√
z.
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integrals are bounded, i.e.,

∫ x̄

x

∑

i∈pos

ei t
ξi−1dt ≤

∫ x̄

x

∞
∑

i=1

|ei| tξi−1dt

≤ lim inf
n→∞

∫ x̄

x

n
∑

i=1

|ei| tξi−1dt

= lim inf
n→∞

n
∑

i=1

|ei
ξi
|
[

x̄ξi − xξi
]

≤
∞
∑

i=1

|ei
ξi
| = A < ∞

where the first inequality follows from Fatou’s Lemma, the second equal-
ity follows from integration, and the last inequality follows from the def-
inition of a regular elasticity and the fact that 0 < x < x̄ ≤ 1. Simi-
lar arguments can be applid to show that the second integral inside of the
first exponential is bounded. Finally, the absolute value of the argument
of the second exponential is uniformly bounded for x̄ small enough, i.e.,
|
∫ x̄

0
o(t)
t
dt| ≤ B < ∞. Since all the integrals in the right hand side of (36)

are monotone and bounded, they converge to a finite limit. This proves
that 0 < limx→0H

′(x) = limx→0H(x)/x = limx→0 θx
θ−1g(xθ) < ∞, which is

equivalent to (11) as Proposition 3 shows. �

A.4 Alternative Definition of a Balance Growth Path

For completeness, we characterize the asymptotic behavior of initial distri-
butions that do not satisfy the conditions of Proposition A.3. While these
initial distributions do not converge to a balance growth path as define in
(10), they converge to a balance growth path in a weaker sense as stated in
the following proposition.

Proposition A.4 Assume that the initial cdf 1−G(z) has an elasticity that
is continuous, strictly positive, and finite at zero equal 1/θ. Let the q(t) be
the qth quantile of the distribution F (z, t), i.e.,

F (d(t), t) = exp
[

log [G (q(t))] eαt
]

= 1− q. (37)
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Then, the distribution of cost normalized by the qth quantile converges to a
Weibull with parameters θ and λ = e1−q, i.e.,

lim
t→∞

F (z q(t), t) = exp
(

−λz1/θ
)

. (38)

and the qth quantile of the cost distribution decreases at an asymptotically
constant rate α/θ, i.e.,

lim
t→∞

1

q(t)

∂q(t)

∂t
= −α

θ
. (39)

The proof of this Proposition uses the following Lemma.

Lemma A.5: If the cdf 1−G(z) has an elasticity that is continuous, strictly
positive, and finite at zero equals to ǫ(0), then

lim
z→0

G′(kx)

G′(x)
= kǫ(0)−1, for all k > 0.

Proof: Using the definition of the elasticity and letting k < 1 (a similar
argument applies for the case k > 1)

G′(kz)

G′(z)
=

1

k

ǫ(kz)

ǫ(z)
e−

∫ z

kz

ǫ(u)
u

du.

From the continuity of the elasticity we know that for every ς there exist a
z such that ǫ(0)− ς ≤ ǫ(u) ≤ ǫ(0) + ς for all u < z. Therefore,

kǫ(0)+ς−1 ≤ G′(kz)

G′(z)
≤ kǫ(0)−ς−1.

Since ς can be made arbitrarily small, we obtain the desired result. �

Proof of Proposition A.4. Taking the limit as t → ∞ in both sides of
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equation (38)

lim
t→∞

F (z q(t), t) = lim
t→∞

exp
[

log(G(z q(t)))eαt
]

= exp

[

lim
t→∞

G′(z q(t))z q′(t)

−αe−αt

]

= exp

[

lim
t→∞

−e1−qG
′(z q(t))

G′(q(t))
z

]

= exp
(

−λz1/θ
)

,

where the third equality uses that q′(t) = α log [G(q(t)]G(q(t))/G′(q(t)),
which itself follows from applying the implicit function theorem to equa-
tion (37), and the last equality follows from the following Lemma. Finally,
we derive equation (39)

lim
t→∞

∂q(t)
∂t

q(t)
= lim

t→∞

α log(G(q(t))G(q(t))
G′(q(t))

q(t)

= −α lim
t→∞

log(G(q(t))

1−G(q(t))

(

1−G(q(t))

−G′(q(t))q(t)

)

= −α

θ
,

where the first equality follows from applying the Implicit Function Theorem
to equation (37), and the last equality following from L’Hopital rule to the
first term and the fact that the elasticity at zero of the c.d.f. equals 1/θ. �

This result describes the asymptotic behavior of economies whose initial
distribution of cost has a strictly positive and finite elasticity at zero but do
not satisfy the condition in Proposition A.3, e.g., the distribution in last ex-
ample described in Section 2. Proposition A.3 shows that in these economies
costs decrease asymptotically at a constant rate α/θ. Nevertheless, in these
economies the distribution of costs normalized by a constant growth factor,
e

α
θ
t, is asymptotically degenerate. What happens in this example is that

along most of the transition costs decrease a rate that is bounded away from
α/θ.

Notice that Proposition A.3 is very related to results in the mathematical
statistic literature on extreme distributions. In particular for the maximum
of an infinite sequence of iid variables with finite upper bound. In that case
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the conditions on the elasticity is essentially the same as the von Mises con-
dition, and the invariant distribution is Weibull. See, for example, Theorem
3.3.12 of Embrechts et al. (2003). Yet our result is different in an important
way from the standard results in extreme distributions. In our set-up we
obtain geometric growth, while, in the language of the extreme distributions,
the standard result is a linear norming constraint, or linear growth in term
of economics. Indeed the standard set-up in the mathematical statistical lit-
erature is closer to the set-up in economic models of diffusion of technologies
with an exogenous idea source, such as the one by Kortum (1997). In these
type of model there is no growth asymptotically. Furthermore, since in our
framework there is growth asymptotically we need to focus in a stronger no-
tion of convergence. This leads to a smaller set of initial distribution that
are stable, i.e., those satisfying condition (11).

A.5 Interpretation of the Continuous Time Limit

For some readers the continuous time law of motion of F (z, t) may seem
odd, since for small ∆ there are a “fractional” number of meetings. Here
we show that our limit as ∆ goes to zero can be regarded as simply an
“extrapolation” of the law of motion to all values of t, with no change on
the substance -provided the value of α is adjusted accordingly-, but with
a simpler mathematical formalization. To see this consider the following
discrete time law of motion for the right CDF of a close economy:

F (z, j + 1) = F (z, j)F (z, j) = F (z, j)2, for all j = 0, 1, 2, 3, ...

where we are measuring time in units so that there is exactly one meeting
per period. In this case j is also the number of meetings since time zero.
Continuing this way, and taking logs

logF (z, j + 1) = 2 logF (z, j) = 2j logF (z, 0)

If we now measure time t in natural units (say years) and we assume that
there are α′ meetings per unit of time, we can write that j periods correspond
to t = j/α′ (years) and replacing in the previous expression

logF (z, j) = 2α
′t logF (z, 0)

Compare this with the continuous time limit we obtain in Section 2:14

logF (z, t) = eαt logF (z, 0)

14To be more precise, log F̃ (z, t) = logF (z, t/α′αt) = eαt logF (z, 0) = eαt log F̃ (z, 0).
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Thus both expression for the law of motion give identical expression (on
integers values of t/α) if

log(2) = α/α′.

In other words, the continuous time value of α has to be smaller than the
discrete time value to take into account the ”compounding” effect of the
meetings, but otherwise they give the same answer.
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Figure 1: Long Run Effect of Trade Cost on the Distribution of Productivity
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The top panel displays the density of the stationary distribution of normalized productivity 1/z of po-
tential producers in a country. for different value of trade cost, κ = 1, 0.9, 0.6. The bottom panel displays
the stationary density of normalized productivities for the in each country. The productivities in the
x-axis are measured relative to the expected value of the stationary distribution of potential producers in
the case of costless trade. We consider a world economy with n = 50 symmetric locations with parameter
values θ = 0.20, α = 0.002.
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Figure 2: Impact and Long run effect of introducing trade cost
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The top panel shows the effect of trade cost on per-capita income on impact (solid), and the long-run
effect for various values of η = 2, 4, 5. The comparison, and the initial condition, is given by the model
with costless trade, i.e., κ = 1. The bottom panel shows the effect of trade cost on the volume of trade,
measured as import to GDP. The effect on impact is the same regardless of the value of η. We consider
a world economy with n = 50 symmetric locations with parameter values θ = 0.20, and α = 0.002.
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Figure 3: Long run effect of increasing trade costs in a small open economy
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The top panel shows the effect of increasing the trade cost of a small open economy, κn, on per-capita
income. The trade cost of the n − 1 remaining countries is fixed at κ1 = 0.75. The solid line shows the
effect on the remaining n − 1 symmetric countries. The dashed line shows the effect on the nth small
open economy. The per capita income are compared with the value they would have have if there trade
cost will be zero in all countries, i.e. κ1 = κn = 1. The bottom panel shows the effect of increasing the
trade cost of the small open economy on the volume of trade, measured as imports to GDP. We consider
a world economy with n = 50 countries. We use θ = 0.20, α = 0.002, η = 3.
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Figure 4: Transitional Dynamics Following a Reduction in Trade Cost of a
Small Open Economy
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The top panel shows the dynamics of per-capita GDP of the nth originally closed country following a
reduction in trade cost, κn(0) → κn = 0.75, for three initial levels of trade cost, κn(0) = 0.05, 0.30, 0.50.
The trade cost of the n−1 symmetric countries is fixed at κ1 = 0.75. Per-capita GDP is measured relative
to the value in a world with costless trade, i.e., κ1 = κn = 1. The bottom panel shows the corresponding
dynamics of the volume of trade, measured as imports to GDP. We consider a world economy with n = 50
countries. We use θ = 0.20, α = 0.002, η = 3.
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