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Abstract

We consider a matching model of employment with wages that are flexible for new
hires, but sticky within matches. We depart from standard treatments of sticky wages
by allowing worker effort to respond to the wage being too high or low, rendering
the effective wage (wage divided by output) more flexible. Shimer (2004), Pissarides
(2009), and others have illustrated that employment in the Mortensen-Pissarides model
does not depend on the degree of wage flexibility in existing matches. But this is not
true in our model. If wages of matched workers are stuck too high in a recession, then
firms will require they provide more effort. In turn, this lowers the value of additional
labor, reducing new hiring. We match estimates of wage flexibility by industry from
the SIPP to U.S. KLEMS data on wages and productivity for 60 industries for 1987
to 2010. We find that productivity is much more procyclical for industries with more
flexible wages, as anticipated by effort choice under sticky wages.
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1. Introduction

There is much evidence that wages are sticky within employment matches. For instance,

Barattieri, Basu, and Gottschalk (2010) estimate a quarterly frequency of nominal wage

change, based on the Survey of Income and Program Participation (SIPP), of less than

0.2, implying an expected duration for nominal wages greater than a year. On the other

hand, wages earned by new hires show considerably greater flexibility. Pissarides (2009,

Tables II and III) cites eleven studies that distinguish between wage cyclicality for workers in

continuing jobs versus those in new matches, seven based on U.S. data and four on European.

All these studies find that wages for workers in new matches are highly procyclical and more

cyclical than for those in continuing jobs. This greater wage cyclicality for new hires is

typically sizable, especially for the studies on U.S. data.

Reflecting such evidence, we consider a Mortensen-Pissarides matching model of employ-

ment with wages that are flexible for new hires, but are sticky–renegotiated infrequently–

within matches. But we depart from the sticky-wage literature by allowing that firms and

workers must, at least implicitly, bargain over worker effort more frequently than wage rates

are altered. Specifically, we treat firms and workers as bargaining each period on the output,

and hence effort, expected by the worker. To an extent, this renders wages flexible within

matches despite nominal rigidities. Suppose that after a negative shock a worker’s wage, if

flexible, would fall by 10 percent. If the wage is stuck in the short run, our model predicts

that the firm will require the worker to produce more. In fact, if worker preferences over

effort are sufficiently elastic, the worker will be expected to produce at nearly a 10 percent

higher effort and output, yielding an effective wage (per unit of labor productivity) that does

decline by 10 percent. For salaried workers this extra effort could be viewed as spending

more hours at work or taking work home. For hourly-paid workers it could be viewed as

increasing the pace of work. In both cases the key is that extra effort and production is not

directly accompanied by any wage compensation.

Shimer (2004) and Pissarides (2009), among others, illustrate that the behavior of em-

ployment in the Mortensen-Pissarides matching model does not depend on the degree of

wage flexibility in existing matches. We show below that this result does not hold in our

model with effort choice. Consider a negative shock to aggregate productivity. If existing
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jobs exhibit sticky wages, then firms will ask more of these workers. In turn this lowers the

marginal value of adding labor, lowering the rate of vacancy creation and new hires. Note

this impact on hiring does not reflect the price of new hires, but is instead entirely a general

equilibrium phenomenon. By moving the economy along a downward sloping aggregate labor

demand schedule, the increased effort of current workers reduces the demand for new hires.

Our model is particularly consistent with events during the great recession. Wage stick-

iness acts to raise productivity in a recession, relative to a flexible or standard sticky wage

model, assuming the sticky wage for current matches is held above its flexible counterpart.

Thus it helps to understand why from 2007 to 2009, the brunt of the great recession, the

economy exhibited a 10 percent decline in hours work, compared to only a 6 percent decline

in real output (from BLS data on multifactor productivity). It is also consistent with an

array of anecdotal evidence that firms have required more tasks from their workers since the

onset of the recession, rather than expanding their workforces.

We consider two versions of our model. We first allow firms to require different effort

levels across workers of all vintages, as dictated by Nash bargaining subject to the sticky

wages of past hires. This may require very different effort levels across workers. During

a recession the efficient contract for new hires may require low effort at a low wage, while

matched workers, whose wages have not adjusted downward, work at an elevated pace.

Alternatively, we impose a technological constraint that workers of differing vintages must

operate at a similar pace. For instance, it might not be plausible to have an assembly line

that operates at different speeds for new versus older hires. We find that the latter model

generates considerable wage inertia and greater employment volatility.

Again consider a negative shock to productivity, where the sticky wage prevents wage

declines for past hires. The firm has the ability and incentive to require higher effort from

its past hires, in lieu of any decline in their sticky wages. But, if new hires must work at that

same pace, this implies high effort for new hires as well. For reasonable parameter values we

find that firms will choose to distort the contract for new hires, rather than give rents (high

wages without high effort) to its current workers. This produces a great deal of aggregate

wage stickiness. The sticky wage for past hires drives up their effort and thereby the effort

of new hires. But, because high effort is required of new hires, their bargained wage, though

flexible, will be higher as well. In subsequent periods this dynamic will continue. High effort
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for new hires drives up their wage, driving up their effort in subsequent periods, driving up

effort and wages for the next cohort of new hires, and so forth. This model generates a great

deal of (counter)cyclicality in effort. As a result, it can make vacancies and new hires much

more cyclical.

There is only sparce evidence on cyclicality of worker effort. Schor (1987) reports on the

cyclicality of physical activity (effort) for a number of piece-rate workers in manufacturing

in the U.K. over years 1970 to 1986. These data show effort to be modestly procyclical. But,

for piece rate workers, higher effort does not reduce the effective wage rate. Thus these data

do not help us understand how effort of hourly or salaried paid workers will respond under

wage stickiness. More relevant to our model is Anger’s (2011) study of paid and unpaid

overtime hours in Gernmany for 1984 to 2004. She finds that unpaid overtime (extra) hours

are highly countercyclical.1 Lazear, Shaw, and Stanton (2013) examine data on productivity

of individual workers at a large (20,000 workers) services company for the period June 2006

to May 2010, bracketing the great recession. For this company a computer keeps track of

the productivity of the workers. They find that an increase in the local unemployment rate

of 5 percentage points is associated with an increase in effort of 3.75%.

Our paper proceeds as follows. In Section 2 we present our matching model of employment

under sticky wages and endogenous effort. We calibrate a version of the model in section

3. In section 4 we illustrate how our calibrated model responds to aggregate shocks that

affect labor demand (e.g., productivity). We show that sticky wages for current matches

exacerbates cyclicality of hiring when effort responds. In particular, for our benchmark

calibration with common effort, the effort response markedly increases the relative cyclical

response of unemployment to measured productivity (the basis of the Shimer, 2005, puzzle).

It does so by increasing the response of unemployment to productivity, but also by making

measured productivity less cyclical than the underlying shock.

Section 5 asks whether our model is consistent with wage productivity patterns across

industries, especially the cyclical behavior of productivity in industries with more versus less

flexible wages. We measure stickiness of wages by industry based on panels of workers from

the Survey of Income and Program Participation for 1990 to 2011. We find that productivity

1This is in sharp contrast to cyclicality in paid overtime hours. Quoting the paper: ”Unpaid hours show
behavior that is exactly the opposite of the movement of paid overtime.”
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(TFP) is much more procyclical in industries with more flexible wages; and this impact is

more important across industries where labor is more important as a factor of production.

These findings align with our model. However, we do not see that wages are more procyclical

for industries with flexible wages, suggesting that frequency of wage change may not capture

wage flexibility particularly well.

2. Model

Transitions between employment and unemployment are modeled with matching between

workers and firms, as in the standard Diamond-Mortensen-Pissarides (DMP) framework,

but allowing for an choice of labor effort at work.

2.1. Environment

• Worker: There is a contiuum of identical workers whose mass is normallized to one.

Each worker has preferences defined by:

E0

∞∑
t=0

βt
{
ct + ψ

(1− et)1−γ − 1

1− γ

}
,

where ct denotes consumption in period t and et the effort level at work. The time

discount factor is denoted by β. It is assumed that the market equates ( 1
1+r

), where

r is the rate of return on consumption loans, to this discount factor; so consumers

are indifferent to consuming or saving their wage earnings. Each period, an individual

worker is either employed or unemployed. When employed (or matched with a firm),

a worker is paid with wage wt and exerts the effort et. The parameter γ reflects the

worker’s willingness to substitue effort levels over time. When unemployed, a worker

engages in job search and is entitled to collect unemployment insurance benfits b.

Naturally, an unemployed worker’s labor effort is assumed to be zero.

• Firm: There is a continuum of identical firms. A firm maintains a single job, either

filled (or matched with a worker) or vacant. A matched fiim produces output according

to a constant-returns-to-scale Cobb-Douglas production technology:

yt = zte
α
t (ktet)

1−α,
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where zt denotes the aggregate productivity, kt capital per effort so that ktet is the total

amount of capital employed by a matched firm. The capital market is assumed to be

perfectly competitive. We treat capital as mobile across firms, with no adjustment

costs. At the optimum, given the constant-returns-to-scale production technology,

capital-labor ratio kt is common across all matches and satisfies:

rt + d = (1− α)ztk
−α
t ,

where d denotes the capital depreciation rate, hence rt + d is the rental rate of capital.

We treat adjustment costs as prohibitive at the aggregate level, with the aggregate

capital stock fixed with respect to cyclical fluctuations.

• Staggering Wage Contract: Wages for a match are determined through the Nash

bargaining between the worker and firm at the first period of employment and will

be fixed for T periods as long as the match survives the exogenous match separation

shocks. At any period, matches can be categorized into T cohorts according to the

age of contract (i.e., the number of periods since the wage contract is negotiated).

The number of workers whose contract is j period old is denoted by Nj,t, where j =

0, 1, 2, · · · , T − 1. Thus, there is a distribution of matches over the space of T distinct

wage contracts. A measure Nt = µ(wt) captures this distribution of matches, where

wt denotes a vector of wages (in the order of age) and Nt a vector of corresponding

matches.

• Choice of Labor Effort: The effort level by a cohort, ej, is also determined through

the Nash bargaining (to maximize the match surplus) between the worker and firm

given the contracted wage. We consider two versions of the model: (i) each worker-

firm pair chooses effort level individually and (ii) all workers choose a common level of

effort level (due to strong complementarity among labors in production).

• Aggregate Output: Thanks to the constant-returns-to-scale production technology,

aggregate ouput (Yt) also exhibits a constant returns to scale in aggregate capital, Kt

,and labor, Lt, (which is the sum of efforts of all workers):

Yt =
T−1∑
j=0

Nj,tyj,t = zt

T−1∑
τ=0

(Nj,tej,t)
α (Nj,tktej,t)

1−α = ztL
α
tK

1−α
t (1)
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For simplicity, we assume that aggregate capital is fixed in the short run at K̄ and

owned by workers with equal share.

• Matching Technology: Each period new matches are formed through a constant

returns to scale aggregate matching technology:

M(ut, vt) = χu
1/2
t v

1/2
t ,

where ut denotes the total number of unemployed workers and vt the total number of

vacancies. The elasticities for ut and vt are set equal at one half for convenience, though

this roughly consistent with empirical estimates (e.g., Rogerson and Shimer, 2010)

Thanks to the CRTS property of the matching function, the matching probabilities for

an unemployed worker, denoted by p, and for a vacancy, q, can be described as only a

function of the labor market tightness θ as follows:

p(θ) = χθ1/2, q(θ) = χθ−1/2.

Finally, we assume that each period existing matches break at the exogenous rate δ

and a firm posts vacancies with the unit cost κ to recruit workers.

2.2. Value functions and choices for labor effort and wages

For simplicity, time suscripts are omitted: variables are understood to refer to time period t,

unless marked with a prime (′) denoting period t+1. Let Wj denotes the value of a matched

worker whose wage contract is j-period old and U the value of unemployed worker.2 For the

matches whose contracts are already specifed, i.e., for j = 0, 1, · · · , T − 2 :

Wj(wj; z, µ) = wj + ψ
(1− e)1−γ − 1

1− γ
+ β

{
(1− δ)E

[
Wj+1(wj; z

′, µ′)|z
]

+ δE
[
U(z′, µ′)|z

]}
.

(2)

subject to

z′ ∼ F (z′|z) = Prob(zt+1 ≤ z′|zt = z) (3)

µ′ = T(µ, z) (4)

2In the definition of Wj , we explicitly include wj in the list of state variables to reflect the sticky wage
contract which was determined j periods earlier.
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where the transition operator T is characterized as:
w′0
w′1
...

w′T−1

 =


w∗(z′, µ′)

w0

...

wT−2

 , (5)


N ′0
N ′1
...

N ′T−1

 =


(1− δ)NT−1 +M(u, v)

(1− δ)N0

...

(1− δ)NT−2

 , (6)

where the newly-employed worker’s wage in the next period is denoted by w∗(z′, µ′).

For the match whose wage will be newly negotiated in the next period, i.e., j = T − 1:

W T−1(wT−1; z, µ) = wT−1 + ψ
(1− e)1−γ − 1

1− γ
+ β

{
(1− δ)E

[
W0(w

∗; z′, µ′)|z
]

+ δE
[
U(z′, µ′)|z

]}
.

(7)

The value to the unmatched (unemployed) worker is:

U(z, µ) = b+ β
{
p(θ)E

[
W0(w

∗; z′, µ′)|z
]

+
(
1− p(θ)

)
E
[
U(z′, µ′)|z

]}
. (8)

Analogously, let Jj for j = 0, 1, · · · , T − 1, denotes the value of the job matched with a

worker whose wage contract is j-period old. For j = 0, 1, · · · , T − 2:

Jj(wj; z, µ) = αy − wj + β(1− δ)E
[
Jj+1(wj; z

′, µ′)|z
]
. (9)

subject to (3) and (4).

For the job whose wage will be negotiated in the next period (i.e., j = T − 1)

JT−1(wT−1; z, µ) = αy − wT−1 + β(1− δ)E
[
J0(w

∗; z′, µ′)|z
]
, (10)

subject to (3) and (4).

Firms post vacancies (v) until the expected value of hiring a worker equals the cost of

vacancy (i.e., the value of vacancy V (z, µ) = 0) :

κ = q(θ)βE
[
J0(w

∗; z′, µ′)|z
]
. (11)
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The wage for new bargains w∗(z, µ) is determined through Nash bargaining between a

firm and a subset of newly hired workers:

w∗(z, µ) = argmax
w

(
J0(w; z, µ)

)1/2(
W0(w; z, µ)− U(z, µ)

)1/2
. (12)

We have imposed that the firm’s bargaining parameter coincides with the relative importance

of vacancies in the matching function; so the Hosios condition will hold. The first order

condition for w∗(z, µ) is

J0(w
∗; z, µ) =

(
W0(w

∗; z, µ)− U(z, µ)
)
. (13)

Given the wage contract wj which was determined j periods earlier, the effort level for the

jth cohort, ej(wj, z, µ), is also assumed to be determined through Nash bargaining between

the firm and a subset of the jth cohort workers:

e∗j(wj, z, µ) = argmax
ej

(
Jj(ej;wj, z, µ)

)1/2(
Wj(ej;wj, z, µ)− U(z, µ)

)1/2
(14)

for j = 0, 1, · · · , T − 1. This yields the following first order condition for e∗j(wj, z, µ):

Jj(e
∗
j ;wj, z, µ)ψ(1− e∗j)−γ =

(
Wj(e

∗
j ;wj, z, µ)− U(z, µ)

)
αzk1−α (15)

for j = 0, 1, · · · , T − 1. Notice that under the flexibly-chosen wage, w∗, from (13) this

reduces to ψ(1 − e∗j)
−γ = αzk1−α; so the marginal disutility of effort gets equated to its

marginal product. But under sticky wages this efficiency condition is broken. For instance,

if the wage is stuck above w∗, then the marginal disutility of effort will exceed its marginal

product. This inefficiency reflects that, under the sticky wage, effort choice must serve the

dual purposes of maximizing and dividing match surplus.

If we view workers as operating in the same organization, it may be unrealistic to operate

at such varying work rules across employees. For instance, consider workers hired at differing

dates operating on the same assembling line. It is impractical to have the assembly line speed

up and slow down as it passes workers of differing vintages. More generally, it is presumably

difficult for any employer engaging workers in team production to assign expectations of effort

and performance that differ so dramatically in level and in rates of change across coworkers.

For this reason, we also consider (our preferred benchmark) model with bargaining over a

common effort level.
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When workers must work a common effort level, we assume that the common effort

level, e(z, µ), is still determined through Nash bargaining between the firm and a subset

of its workers. But we now assume that these workers are a representative cross section

of the firm’s workers with respect to vintages. We assume the Nash bargain is over the

weighted average of surpluses from these workers. More specifically, the common effort level

is determined according to:

e∗(z, µ) = argmax
e

(
J
)1/2(

W − U
)1/2

, (16)

where JN denotes the weighted average of surpluses of jobs, J =
∑T−1

j=0

(
Nj∑T−1
j=0 Nj

)
Jj, and

W−U denotes the weighted average of surpluses of workers, W−U =
∑T−1

j=0

(
Nj∑T−1
j=0 Nj

)
(Wj−

U).3 This yields the following first order condition for e∗(z, µ):

J(e∗; z, µ)ψ(1− e∗)−γ =
(
W (e∗; z, µ)− U(z, µ)

)
αzk1−α. (19)

In this case of common effort, the bargaining of wages and effort can be viewed as a two stage

Nash bargaining. When a worker is matched with a job, the wage, fixed for the following

J periods, is negotiated according to (12). Once they are hired and engage in production,

workers negotiate the common effort level according to (16). The wage determined by first-

order condition (13) treats the bargaining parties to the wage as sufficiently small that they

ignore any impact of their bargained wage on the anticipated effort level, bargained according

to (19). That is, the negotiated wage anticipates the future negotiated effort levels, but

does not attempt to influence these choices.

3One could view the Nash bargaining over the weighted averages of surpluses as a Nash bargain between
a firm operating the aggregate production technology derived above and a representative household (e.g.,
a family made of workers). For example, when the values of firm and household are defined as follows,
respectively,

J(e; z, µ) = z

(
K̄

L

)1−α

e− w̄ + β(1− δ)E
[
J(e′; z′, µ′)|z

]
(17)

and

W (e; z, µ) = w̄ − b+ ψ

T−1∑
j=0

(
Nj∑T−1
j=0 Nj

)
(1− ej)1−γ − 1

1− γ
+ β

(
1− δ − p(θ)

)
E
[
W (e′; z′, µ′)|z

]
. (18)

where w̄ is aggregate wage. It is straightforward to show that J =
∑T−1
j=0

(
Nj∑T−1

j=0 Nj

)
Jj and W =∑T−1

j=0

(
Nj∑T−1

j=0 Nj

)
(Wj − U).
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We considered an alternative multi-party bargaining protocol for the common effort

choice, specifically, e∗(z, µ) chosen according to:

e∗(z, µ) = argmax
e

Π
(
Jj(e; z, µ)

1
2

(
Wj(e; z, µ)− U(z, µ)

)1− 1
2

)Nj
N
. (20)

This objective function is the geometric mean of the objective functions in individual Nash

bargainings for effort. The resulting first-order condition for effort closely resembles that

under our bargaining protocol, except that the arthmetric means for firm and worker sur-

pluses across jobs are replaced by their harmonic means. The two FOCs are only identical if

the ratio of the arithmetic mean of surpluses of workers to the arithmetic mean of surpluses

of jobs is equal to the ratio of the harmonic mean of surpluses of workers to the harmonic

mean of surpluses of jobs. Although these ratios will not be exactly equal in the economy

subject to fluctuations, our simulations suggest they do not diverge very far. For our com-

mon effort model from(16), simulated to generate time series of length 3,000 periods, the

difference between the two ratios clusters closely near zero, with 99.5% of observations less

than one-tenth of one percent in absolute size. In order to solve the multi-party bargaining

for effort choice, we need to know the fractions of each cohort out of the total employed

workers, i.e., Nj,t/Nt for j = 0, 1, . . . , T − 1 and for all t to compute the harmonic means.

This dramatically increases the dimension of the state space, making it impractical to com-

pute the equilibrium. For this reason we only obtain and present results for the bargaining

protocol (16).

3. Calibration: Benchmark

Imposed Parameters The period is a quarter. The discount factor, β is set to 0.99,

implying an annualized real interest rate of 4%. The real interest rate (1%), combined with

the capital depreciation rate, d = 2.5%, yields a steady-state quarterly rental rate of capital

(marginal product of capital), r + d, is 3.5%.

Key parameters for the impact of current-worker wage stickiness to affect hiring are the

duration of wage contracts, the labor share in production, and the Frisch elasticity of labor

effort. In our benchmark, the duration of a wage contract is one year (four quarters): T = 4;

but we also examine the effect of longer contracts. A lower labor share implies a less elastic
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aggregate labor demand schedule. In turn, this means higher effort from existing workers

in a recession will crowd out more hiring. For our benchmark, labor share parameter in

production is α = 0.64. This implies a very elastic aggregate labor demand, with elasticity

of 1
1−α = 2.78. We also consider lower values for α.

The Frisch elasticity of labor effort 1
γ
1−e
e

, reflects both the parameter γ and the level of

effort. We first normalize the average effort (by choosing ψ accordingly) to be 1/2 in the

steady state. This implies the Frisch elasticity is 1
γ
. This is a difficult elasticity to calibrate,

given that effort is typically not observed. For our benchmark simulations we set γ = 1 for a

Frisch elasticity for effort of one. If we compare this choice to estimates of the Frisch elasticity

for the workweek margin, it is in upper range of estimated values surveyed by Hall (2009). For

salaried workers we might antipate a larger elasticity for effort than the workweek, as effort

movements in our model would reflect movements in the weekweek as well as intensity per

hour for salaried workers. For hourly paid workers, we might anticipate a smaller elasticity

for effort than for the workweek. Schorr (1987) reports a time-series for physical activity

of 131,500 piece-rate workers in a standing panel of 171 British factories for years 1970 to

1986. The effort measure represents the ration between actual effort and a standard level of

intensity as defined by ”time and motion” men. Shor regresses effort on hours per week in

British manufacturing as well as additional variables. The estimated elasticity of effort with

respect to the workweek varies from 0.52 to 0.60 across five specifications (with standard

errors of about 0.14). Bils and Cho (1994) take this as an estimate of the relative Frisch

elasticities for the effort versus workweeks margins. This would suggest a smaller Frisch

elasticity for effort than for the workweek for hourly paid workers. For this reason, we

present results employing a smaller Frisch elasticity for effort of 0.5.

The exogenous aggregate productivity shock follows an AR(1) process in logs:

log zt+1 = (1− ρz) log z̄ + ρz log zt + εt+1, εt+1 ∼ N(0, σ2
z),

where ρz = 0.95 and σz = 0.007, following Kydland-Prescott. The unconditional mean of

the aggregate productivity (log z̄) is chosen to normalize the steady state output to one.

Targeted Parameters Other parameters are chosen to match the following targets in

the steady state. The labor-market tightness (θ = v/u) is normalized to one. The match
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efficiency (χ = 0.6) is chosen so that the job finding rate is p(θ) = χθη is 60% in steady

state. The job separation rate (δ = 4%) is chosen so that the unemployment rate is 6.25%

in the steady state. The utility parameter for leisure (ψ) is chosen to generate the steady

state effort level of 1/2. In steady state wages of all cohorts are the same and equation (12)

holds for all j = 0, 1, · · · , T − 1 and hence for j = N . From equation (16),

ψ = αk1−α(1− e)γ = α

(
1− α
r

)( 1−α
α )

(1− e)γ

The vacancy posting cost (κ) is chosen to satisfy the free entry condition in (11). Given

the steady-state wage wss = 0.6787, the unemployment benefit (b) is chosen to match the

replacement rate (in terms of utility) b
/(

wss + ψ (1−e)1−γ−1
1−γ

)
is 75%.

4. Results

We illustrate how our model responds to an aggregate shock that affects labor demand using

a negative productivity shock. In particular, we show that sticky wages for current matches

can exacerbate cyclicality of vacancy creation and hiring when effort can vary.

4.1. Impact of Sticky Wages with Fixed Effort

First, however, consider the impact of wage stckiness under fixed effort. Figure 1 shows

the response of the model (with both flexible and sticky wages) to a persistent decrease in

aggregate productivity, a one percent decrease with autocorrelation of 0.95 (shown in the

first panel). The second panel shows the responses of nominal wages, first for new matches

or those re-bargaining, then for all workers. Wages of new bargains respond similarly for

both the flexible (denoted by “−−”) and sticky wage (denoted by “−”) models, as wages

are flexible for new hires even under the sticky-wage scenario. The new hire wage responds

slightly less under sticky wages, however, reflecting that the new hire wage will be stuck

slightly lower for the next three quarters than its expected value under fully flexible wages.

But the expected present value of wages for new hires is the same under flexible and sticky

wages. The aggregate wage responds much less on impact under sticky wages since only those

one-fourth of workers whose wage contract expired, plus new hires, show any wage response.

After four quarters all wages will reflect wages bargained after the shock to productivity. So

we see the aggregate wage coincides under flexible or sticky wages at that point.
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The bottom panels of Figure 1 illustrate the responses of output, measured TFP, employ-

ment, and labor market tightness (vacancies relative to unemployment) to the productivity

shock. As anticipated by the literature, these responses are identical under flexible and

sticky wages–wage stickiness has no impact on the real economy. Note also that the model

generates little persistence in output beyond that directly built into the productivity shock

process.

4.2. Introducing Bargaining over Worker Output (Effort)

Figure 2 presents impulse responses allowing for bargaining over effort. We consider three

scenarios: (1) fully flexible wages, (2) sticky wages for four quarters, with effort a separate

choice variable across worker vintages, (3) sticky wages for four quarters, with a common

effort choice across workers. The panels in Figure 2 illustrate the responses of key vari-

ables, such as wage rates and effort, to a one percent decrease in productivity (again with

autocorrelation of 0.95) under each of the three scenarios.

Focus first on the case of completely flexible wage rates (denoted by “−.−”). The top

three panels depict the impulse responses in the newly-bargained wage, the average wage,

and average effort. Under flexible wages, of course, wages of new bargains and the average

wage decrease by the same amount. The decrease in wage reflects both the negative shock

to productivity as well as the negative effort response. For the assumed Frisch elasticity of

one, the effort response is nearly one-for-one to the productivity shock. Because the wage

reflects effort as well as exogenous productivity, the wage decreases nearly twice as much as

the underlying shock. Output, measured TFP, and the rental rate on capital (panels 4-6)

all show decreases of the same magnitude as in the flexible wage, as each also responds to

effort as well as the productivity shock. The next two panels (7 and 8) in Figure 2 give

the responses in employment and labor market tightness. Employment responds with a lag,

bottoming in the third period. This reflects not only the search friction, but also the short-

run decrease in the rental rate of capital driven by the decrease in worker effort. Thus the

cyclicality of the intensive effort margin acts to reduce the response in employment.

Next consider sticky wages with effort a separate choice across worker vintages (denoted

by dashed line “−−”). The first two panels of Figure 2 show that, while the average wage

responds initially only about one-third as much as under flexible wages, the new-hire wage
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actually responds more for new bargains when wages are sticky for past bargains. The reason

for this is apparent from the final panel in Figure 2, depicting the response in effort across

worker cohorts. The initial response for workers under sticky wages (i.e., old contracts) is

an effort increase of 0.8 percent. But that effort increase keeps the marginal product of

labor lower (along the downward-sloping marginal product of labor schedule) than it would

be under flexible wages. For this reason, workers under new bargains decrease effort more

under sticky wages and, as a result, the wage decreases more for new bargains.

Overall, however, as depicted in the third panel, average effort increases reflecting a sharp

increase in effort for the workers employed under sticky wages. As a result, the decrease in

output and measured TFP (panels 4 and 5) are each 40 percent less than under flexible

wages. This increase in effort, while reducing the impact on output, magnifies the initial

impact on employment. By increasing effort, the sticky wage increases effective labor relative

to capital. Thus, viewed from the aggregate economy it drives the marginal product of new

hires lower than it would be otherwise. From the perspective of an individual firm this is

manifested in a smaller decrease in the rental rate of capital than under flexible wages. As a

result, both employment and labor market tightness drop slightly more initially under sticky

wages (panels 7 and 8), though admittedly this effect is small and short lived.

After three quarters the relative impacts on average effort under flexible versus sticky

wages actually reverse, with average effort, output, and measured TFP all lower under sticky

than flexible wages. The reasoning is as follows. On impact the negative shock induces a

sharp rise in effort for workers who are under sticky wages. But this effect is gone by the

fourth period, when all wages have been renegotiated. At the same time, effort and wages are

particularly reduced for the bargains that occur during the first few periods after the shock.

But because these wage rates are locked in for four periods, it will also lock in reduced effort

levels for these workers for four periods. The total impact is a humped shaped response in

average effort, output, and measured TFP, despite the assumption of no such shape for the

underlying productivity shock.

Returning to the final panel of Figure 2, we see that the model yields dramatically differ-

ent responses in effort levels across the cohorts of workers. While the workers under sticky

bargains increase effort by nearly enough to keep their productivity constant, the newly hired

and newly negotiating workers adjust their effort by an even greater magnitude, but in the
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opposite direction. If we view these workers as operating in the same organization, then it

may be unrealistic to operate at such varying work rules across employees. For instance,

consider workers hired at differing dates operating on the same assembling line. More gen-

erally, it is presumably difficult for any employer engaging workers in team production to

assign expectations of effort and performance that differ so dramatically in level and in rates

of change across coworkers. For this reason, we now move to our preferred (benchmark)

model with bargaining over a common effort level (denoted by solid line “−”).

Looking at the first panel of Figure 2, under common effort we see that, even though the

wage in new bargains is flexible, it decreases much less than the magnitude of the productivity

shock; it does decrease by nearly as much as measured TFP. As a result, there is a good

deal of inertia in the average wage. It decreases very little for the first few quarters. It only

coincides with its fully flexible wage counterpart after sixteen quarters—twelve quarters after

all wages have been bargained anew. Thus the model provides considerable wage inertia.

The intuition is as follows. In bargaining over effort, firms face a tradeoff between what

is efficient for new wage bargains and what is most profitable for workers under sticky wages.

After a negative shock the efficient new-wage bargain asks for lower effort, combined with

deeper wage cuts. But, because workers with dated wage bargains are overly paid, the firm is

essentially throwing away profits if it foregoes asking more from these workers. The optimal

bargain over effort trades off these objectives–asking somewhat less than it could of sticky

wage workers and settling for a less than efficient bargaining for new wages, by asking for

more effort and paying higher wages. For our benchmark calibration, the effort choice is

dominated by the desire to obtain the possible effort level from the sticky-wage workers. We

see this from observing that average effort changes to nearly offset the shock to productivity.

Why does the wage inertia persist well after all wages are renegotiated? Consider new

hires in the first period after the shock. Because effort is increased for these workers, their

wage is higher than it would be otherwise. But then, over the next three quarters, the

wage for these workers is stuck higher, acting to generate a higher effort choice over those

three quarters. In turn, this acts to push all new bargains over those three quarters to

adopt higher effort and higher wages. But, in turn, those subsequent bargains will push up

effort and wages for workers hired in still later periods. Thus the wage rigidity pushes up

subsequent effort, which pushes up subsequent wages, pushing up subsequent effort, and so
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forth.

This strong countercyclical effort response considerably mutes the cyclicality of the rental

rate of capital (panel 6). In turn, this exacerbates the cyclicality of vacancy creation and

employment. Looking at the response of employment, we see that employment responds by

60 percent more to the shock in the first year relative to the model with flexible wages. Thus

the existence of sticky wages for workers in older contracts magnifies cyclicality of new hires,

even though wages are flexible for these workers. In fact it is worth stressing that wage rates

do respond considerably more for new hires, than for existing workers, but by less than the

negative shock to productivity.

4.3. Robustness to parameters

Here we explore robustness of our results to a few key parameters, the duration of the nominal

wage stickiness, the Frisch elasticity of substitution that dictates the willingness of workers

to vary their effort, and the short-run elasticity of the aggregate labor demand schedule.

Our benchmark calibration assumes wages are sticky in matches for four quarters. Several

studies of payrolls at large firms (Wilson, 1999, Altonji and Devereux, 1998, LeBow, Sachs,

and Wilson, 1999) find some set of workers, perhaps 20 percent, show no wage change even

over a year. More recently, employing SIPP data, Barrattieri, Basu, and Gottschalk (2010)

estimate a duration of wages of 6 quarters, or perhaps much more depending on sample

and other choices. Our analysis of the SIPP below suggests nominal wage durations on the

order of five or six quarters. Here we illustrate the role of the assumed wage stickiness by

extending the duration of wage contracts, generously, to 8 quarters. Figure 3 presents the

impulse response of three models (flexible wages and sticky wage with individual and common

effort choice) with a 8-quarter wage contract. The mechanism we discussed with 4-quarter

contracts is considerably strengthened. Compared to 4-quarter contracts, the average wage

is more sluggish, causing effort to remain elevated longer. For example, average effort now

remains 0.8% higher than the steady state after four quarters, compared to 0.4% in Figure

2. As a result, the newly bargained wage drops very little. The impact of the wage rigidity

on employment is larger–the drop in employment is nearly twice as large under sticky wages

with common effort as under flexible wages.

In Figure 4 we present results decreasing the Frisch elasticity from 1 to 0.5 (γ = 2.0).
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Wage durations are again four quarters. The willingness of workers to vary effort level is

directly related to this elasticity. Therefore, by cutting the Frisch elasticity to one-half, our

results move qualitatively toward a sticky-wage model with fixed effort. Because it is more

costly to ask for higher effort from workers under on-going sticky wage contracts, their effort

increases less. As a result, the wages of newly bargained workers fall more in response to

a negative productivity shock. The impact of wage stickiness on employment is lessened

modestly compared to the case of Frisch elasticity equal to one.

The impact of sticky wages for existing workers on the cyclicality of hiring of new workers

is directly linked to the short-run elasticity of the aggregate labor demand schedule. From

an aggregate perspective, increased effort by existing workers, by reducing labor’s marginal

product, discourages hiring. The impact of this effect is thus greater if the marginal product

of labor schedule is steeper. For our model, with Cobb-Douglas production, the elasticity

of marginal product of labor with respect to labor input is minus capital share. For our

benchmark calibration this equals -0.36. In turn, this implies a very elastic labor demand

curve, with elasticity of labor demand with respect to the wage, holding all else constant,

of -2.78. In Figure 5 we illustrate results doubling the capital share, so that the elasticity

falls to -1.39. For our preferred model with common effort, wage stickiness now more than

doubles the impact of the shock on employment; this impact of stickiness is 50 percent larger

than our benchmark calibration with very elastic labor demand.

4.4. Comparison to the U.S. Data

Can our model account for the observed movement of unemployment over the business

cycle? To answer this, we feed in a series of productivity shocks that resembles the cyclical

components of multifactor TFP from the BLS. The upper panel of Figure 6 shows the

benchmark (common effort with sticky wages) model’s unemployment rate and measured

TFP when we feed in the (H-P filtered) BLS-measured TFP (for 1987: 1Q - 2012: 4Q)

as productivity shocks. For comparison, we also plot the actual time series of BLS-TFP

and unemployment rate (in dotted lines). The unemployment rate from the model under-

predicts that in the data. According to our model, however, effort moves counter-cyclically

in response to exogenous productivity shocks. As Figure 6 shows, the measured TFP in

our model moves much less than that in the data. In order to obtain the similar degree of
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volatility of measured TFP between the model and data, the model requires a bigger shock.

When we multiply the (cyclical components of) BLS-TFP by 1.8 (keeping its auto-

correlation constant), the volatility of the model-generated TFP matches that in the data.

Under this adjusted productivity shocks, the model now generates a much larger responses in

unemployment rates. For example, in terms of standard deviation, the model now accounts

for about three-fourths of volatility (0.58% in the model vs. 0.75% in the data). Thus our

model has a fairly small Shimer (2005) puzzle, despite the replacement flow value of unem-

ployment being calibrated to only 75 percent. There are two reasons for this: (1) The effort

response in the model exaccerbates the response of unemployment to the productivity shock,

as outlined above. (2) The countercyclical effort response masks much of the cyclicality of

the underlying shock, so that unemployment fluctuations look larger relative to those in

productivity.

We repeat the same experiment with the Frisch elasticity of 0.5 (γ = 2) in Figure 7. As

the effort becomes less responsive, the model generates a smaller response in unemployment.

This, at the same time, implies a lesser counter-cyclical effort. To match the volatility of

TFP in the data, it requires us to multiply the productivity shock (based on BLS-TFP) by

1.42. Under this scenario, the model accounts for one-thirds of unemployment volatility in

the data as the model’s standard deviation becomes 0.24. So much of the Shimer puzzle

reemerges.

5. Empirical Results

The model provides a channel for wage stickiness to affect productivity (TFP), and through

that channel to inversely affect the number of workers hired. From data on the aggregate

economy it is difficult to decipher the predictions of our model from reasonable alternatives

without knowledge of the underlying shocks to the economy. For instance, our model predicts

that productivity is less procyclical than under flexible wages. But without knowing the true

underlying shocks to productivity, as well as their correlation with other shocks, it is hard

to evaluate the model based on the cyclicality of productivity. Measured TFP clearly does

not provide a measure of productivity shocks in a setting, such as ours, with variations in

unmeasured inputs.
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As an alternative, we examine cross-sectional patterns in wages and productivity. More

exactly, we examine TFP behavior in 60 industries for 1987 to 2010 drawn from the BLS

Multifactor Productivity measurement program (U.S. KLEMS). The first two subsections

describe the KLEMS data then show that there is a strong correlation between relative

industry wage movements and relative industry TFP movements that is only present to the

extent labor is important as a factor of production. The third subsection employs data from

the Survey of Income and Program Participation (SIPP) for 1996 to 2011 to measure wage

stickiness across our 60 sectors. We then examine how wages and TFP responds cyclically

for industries with more versus less sticky wages.

5.1. Cross-Industry Data

The U.S. KLEMS data (http://www.bls.gov/mfp/) provide nominal and real values for gross

output, inputs of intermediates, labor, and capital annually from 1987 to 2010 for 18 manu-

facturing and 42 non-manufacturing sectors. These industries are listed in Table 2, together

with their relative values added. The KLEMS data exclude the government, nonprofit, and

private household sectors, as production for these sectors is measured by inputs; so produc-

tivity is not measured. As a result, the shares of some sectors here, most notably Education

Services, are reduced compared to national income accounts.

The KLEMS data provide information on industry productivity, as measured by real

gross output relative to real inputs (gross output TFP). We also construct measures of value

added TFP measured by real value added relative to inputs of capital and labor. Industry

real value added and its deflator are constructed using the Divisia method from values and

prices for gross output and intermediate inputs, as described by Basu and Fernald (1997).

(In this construction we equate intermediate inputs cost shares with their revenue shares;

so, implicitly we assume a zero rate of profit.)

We adjust the KLEMS TFP measure for the impact of procyclical utilization of capital.

We adjust both the TFP and wage rate measures from the KLEMS for cyclical variations in

the composition of the workforce. To adust for capital utilization we follow Bils, Klenow, and

Malin’s (2012)–BKM for short–who employ data on utilization rates of capital constructed by

Gorodnichenko and Shapiro (2011) for two-digit manufacturing for 1974 to 2004. BKM find

that a one-percent increase in the labor to capital stock ratio is associated with a one-third
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percent increase in the utilization rate of capital. So we adjust TFP by subtracting capital

share in producing multiplied by one-third times movements in the labor-capital ratio. We

adjust both the industry wage and industry TFP for worker composition as follows. Using

the SIPP data panels for 1990 onward, we estimate the ratio of new-hire wages to the average

industry wage for each of the 60 industries. This ratio averages 0.85 across the industries,

varying from 0.67 in water transportation to 0.97 for computing services. We assume that

industry fluctuations in employment, relative to its HP trend, add or subtract workers that

differ from industry average wage and productivity according to these ratios. We adjust

industry wages to undo this composition impact by adding back to the industry wage the

percent difference between the average and new-hire wage multiplied times the industry

employment fluctuation. Similar, we adjust industry TFP by adding this same amount to

fluctuations in TFP, multiplied by labor’s share in production.4

These adjustments actually have little impact on the results below. Taken together, the

adjustments for capital utilization and worker composition make TFP on average slightly less

procyclical and wage rates modestly more procyclical. But the adjustments scarcely affect

the primary coefficients of interest, that is, how industry wage flexibility affects cyclicality

of TFP, inputs, and wages.

5.2. Cross-Industry Wage and Productivity Patterns

Our focus is on higher frequency, cyclical movements in wages and productivity. For this

reason, we remove an HP-filter for each series, with the HP-filter defined separately for

each industry, using the smoothing parameter of 6.25 suggested by Ravn and Uhlig (2001)

for annual data. The first column of Table 3 reports the result of projecting an industry’s

TFP fluctuations on its fluctuations in wage rate. The regression includes a full set of year

dummies; so all fluctuation reflect relative movements across industries. The regression

shows that the relative fluctuations in wages and TFP are extremely correlated, with a one-

percent wage movement associated with a 0.54 percent movement in value-added TFP in

the same direction.

4We do not have employment series, only total hours, for 9 of the 60 KLEMS. For these industries we
assume that 76% percent of industry hours fluctuations occur through the employment margin, where this
76% is estimated from regressing employment fluctuations on total hours fluctuations for those industries
with both series.
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Of course, a positive correlation between fluctuations in relative wage and TFP does not

establish that causality runs from wage to TFP, as suggested by our model. If industry

labor supply is highly industry-specific, then we might expect an increase in TFP to drive

up industry wage, even if TFP is not affected by the wage. For this reason, we focus for

much of the balance of the paper in stratifying industries by wage stickiness. But there are

several features of the industry data that suggest that relative TFP movements do not drive

relative wages.

For one, the relationship between industry wage and TFP only applies at cyclical fre-

quency. If we repeat the regression from Table 3, column 1, but instead relate the relative

industry HP trends to TFP to industry trends in wage there is no relationship. (The coeffi-

cient actually becomes slightly negative, at -0.02, with standard error 0.01.)

Second, the strong positive relationship between industry wage and TFP only holds to the

extent that labor is important for production in an industry. This is shown by the regression

in Column 2 of Table 3, which adds an interaction of an industry wage movement with the

industry’s labor share in value added. (Labor share is measured by the industry’s HP trend

in labor share.) The regression implies that for an industry with hypothetically 100 percent

labor share, TFP moves one for one with the wage movement (actual estimate 1.13 percent,

with standard error 0.15 percent); but as labor share goes to zero the impact of wage on TFP

is zero. Our model, with wage rates driving effort and TFP, clearly implies that the impact of

wage on TFP is proportional to labor’s share in production. The reverse channel, high TFP

driving up the wage, does not explain why the relation only holds proportionate to labor’s

importance in producing. The last two columns of Table 3 repeat the exercise, but for TFP

for gross output. Again we see fluctuations in the real wage, weighted by labor’s share in

producing gross output, are associated with fluctuations in TFP of the same magnitude.

A more direct problem for the channel from TFP to wages is that it is not apparent

that the industry movements in TFP generate movements in labor demand. When we

regress industry hours on industry TFP, we find that a one percent increase in TFP is

actually associated with a small decrease in hours of 0.05 percent (with standard error of

0.01 percent). So industry fluctuations in TFP, since they are not associated with an increase

in labor, should not act as a strong force to increase the industry relative wage.
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5.3. SIPP Data for Measuring Wage Flexibility

We construct measures of wage flexibility–frequency of wage change–for all workers as well

as for each of our 60 industries. We can then ask whether TFP responds differently cyclically

for industries with more versus less flexible wages.

Our estimates of wage flexibility are based on multiple panels of the Survey of Income

and Program Participation (SIPP) representing most of the period since 1990. The SIPP is

a longitudinal survey of households designed to be representative of the U.S. population. It

consists of a series of overlapping longitudinal panels. Each panel is three or more years in

duration. Each is large, containing samples of about 20,000 households. Households are in-

terviewed every four months. At each interview, information on work experience (employers,

hours, earnings) are collected. Each year from 1984 through 1993 a new panel was begun.

New, somewhat longer, panels were initiated in 1996, 2001, 2004, and 2008. In our analysis

we employ the 8 panels from 1990 onward. (The 1984-1989 panels contain less reliable infor-

mation on employer changes.) The SIPP interviews provide employment status and weeks

worked for each of the prior four months. But earnings information is only collected for the

interview month; so we restrict attention to the survey month observations.

For our purposes the SIPP has some distinct advantages. Compared to a matched CPS

sample, we are able to calculate workers’ wage changes across multiple surveys and at inter-

vals of four months, rather than 12. It also provides better information for defining employer

turnover. The SIPP has both a larger and more representative sample than the PSID or

NLS panels and, most importantly, individuals are interviewed every four months. Barat-

tieri, Basu, and Gottschalk (2010)’s–BBG henceforth–employ the 1996 panel of the SIPP in

their recent paper measuring frequency of wage change. (They cite these same advantages

in choosing the SIPP data.) We compare our results to BBG’s below.

We restrict our sample to persons of ages 20 to 60. Individuals must not be in the armed

forces, not disabled, and not be attending school full-time. We only consider wage rates

for workers who usually work more than 10 hours per week and report monthly earnings

of at least $100 and no more than $25,000 in December 2004 CPI dollars. Any reported

hourly wage rates that are top-coded or below $4 in December 2004 dollars are set equal

to missing. Although the SIPP panels draw representative samples, in constructing all
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reported statistics we employ SIPP sampling weights that account for sample attrition. We

also weight individuals by their relative earnings in the sample period, as this is consistent

with the influence of workers for aggregate labor statistics.

We calculate frequency of wage changes over the four month interval between interviews

for workers who remain with the same employer for their main job. For the 1990 to 1993

panels we define workers as stayers if the SIPP employer ID remains the same across the

surveys. We employ the 1990-1993 SIPP revised employer ID’s, which have been edited at

the Census to be consistent with information available in the non-public Census version of

the data. Such edits have not been undertaken for 1996 and later panels. For the later panels

we see a number of changes in employer ID that appear (based on wages, et cetera) to not

represent an employer change. For the later panels we define stayers based on responses to

when the reference job began. More exactly, we define the worker as a new hire (not stayer)

if at the current survey they report that the job began within the last four month, or if in

the prior survey they report that the reference job had ended by the survey. (This latter

case is relatively rare.) We additionally call the worker a new hire if the employer ID and the

industry of employment both changed across interviews. We similarly calculate frequency of

wage changes across eight-month intervals for those workers we classify as stayers over that

8-month interval.

There are multiple potential measures of wages in the SIPP. Employed respondents report

monthly earnings. In addition, a little over half of those working report an hourly rate of

pay. For each worker we also calculate a weekly wage by dividing monthly earnings by the

number of weeks worked in the month. We define a worker’s wage as not changing if any of

these three measures remains the same across the surveys.

We first report rates of wage change for all workers, then separately for our 60 KLEMS

industries. The SIPP provides a 3-digit industry code for employer, allowing us to make the

mapping of SIPP workers to KLEMS industries. For a few of the smaller KLEMS industries

there are so few SIPP workers that the SIPP rates for that industry would be unreliable. In

these few cases we use the rates for what we view as a similar industry. (For instance we use

rates for Construction for the Pipeline Transportation industry, and rates for Miscellaneous

Professional, Scientific, and Technical Services for the Management of Enterprises industry.

The total sample, combining observations from the 1990 to 2008 panels is large. For instance,
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for calculating 4-month frequency of wage changes for stayers it equals 780,328 persons; of

these, 653,615 are mapped to one of our 60 KLEMS industries.

5.4. Measuring Wage Flexibility

A concern with using micro data on wage changes is that measurement errors will contribute

to the reported frequency and volatility of wage changes. BBG (2010), for instance, deal with

measurement error by keeping only those wage changes that can be viewed as a time-series

structural shift for the individual’s wage series. This removes relatively brief wage episodes

or those that are followed by a subsequent change in the opposite direction. BBG report

that the procedure removes 63% of wage changes for hourly-paid workers. We estimate that

their procedure for salaried workers removes about 90% of reported wage changes. (BGG

put primary emphasis on hourly workers.)

We also allow for measurement error in the individual wages. But we adopt a simpler and,

at least ex post, more conservative representation for the measurement error. We make the

following assumptions regarding measurement error in the pay variables. (i) The probability

of measurement error is the same for all individuals within an industry within a particular

panel of the SIPP. This implies the probability is independent of the occurrence of a true

wage change or a prior measurement error. (ii) There is zero probability of a true wage

change that is followed an exactly opposite true wage change four months later, that leaves

the wage exactly unchanged after two subsequent changes. (iii) There is zero probability

that the change in measurement error across the wage change will exactly offset the true

wage change. Suppose we observe a change in wage that is exactly offset at the subsequent

interview. The latter two assumptions lead us to infer that there were no true wage changes.

We consider two models of the frequency of true wage changes: a Calvo assumption of

constant probability each four-month period of a wage change, and a Taylor assumption

that the nominal wage is fixed for a certain number of periods. We detail the procedure here

under the Calvo assumption. Implications under the Taylor assumption follow intuitively

from this case. Let αc be the Calvo probability of wage change over a 4-month period and φ

be the probability of measuring the wage with error at any interview. Then the probabilities

of observing a wage change over a 4-month or 8-month period, ∆1 and ∆2, are respectively:

24



• ∆1 = α + (1− αc)(2φ− φ2)

• ∆2 = (2αC − α2
C) + (1− 2αC − α2

C) ∗ (2φ− φ2)

We express ∆1 and ∆2 here as the probability of a true wage change plus one minus

that probability times the probability measurement error driving a wage change. For 4 or

8-month intervals, the probability of measurement error driving a wage change is (2φ− φ2).

But across 4 and 8 months the probabilities of a true chage are αC versus (2αC−α2
C). Given

measures for ∆1 and ∆2, we can calculate the two parameters αC and φ. With:

αC =
∆2 −∆1

1−∆1

. (21)

And φ solves the quadratic equation:

0 = φ2 − 2φ+
2∆1 −∆2

1 −∆2

1−∆1

. (22)

If, instead, we adopt the Taylor assumption then equations (21) and (22) remain intact,

except the probability of a change over two periods simply equals 2αT , where αT is the

4-month Taylor probability of a true wage chane. (This assumes αT < 1/2, which holds for

our estimates.) The implied relation between the Taylor calculated frequency and the Calvo

calculated frequency is αT = αC/(1 + αC).

Table 4 presents the frequencies of wage changes, over 4 and 8 months, the implied Calvo

and Taylor true 4-month frequencies, and the likelihood of measurement error under the

Calvo assumption. As discussed above, we weight observations in the SIPP by the worker’s

monthly earnings, as well as a SIPP sampling weight. In calculating the Calvo and Taylor

parameters we use 4-month frequencies calculated just for 8-month stayers so that the 4 and

8-month changes are calculated for the same sample. These 4-month frequencies differ only

slightly from those reported in the first column of Table 4. We present results separately for

the 1990-1993, 1996, 2001, 2004, and 2008 SIPP panels. When we aggregate, we give the

combined 1990-1993 panels 1.5 times as much weight as the others, as those panels combined

span about 6 years, while the others span about 4 years.

We focus initially on the first line, results for the 1990-93 panels, in order to illustrate

the approach. These panels show very high rates of wage changes, 68% over 4 months and

76% over eight. But, in the absence of substantial measurement error, the data are not
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consistent with either the Calvo or Taylor assumptions. For instance, under Calvo, a true

68% frequency over 4 months would imply we should see a 90% frequency over 8 months,

rather than 76%. Our approach rationalizes the observed rates under Calvo if the true 4-

month frequency is 0.26 and the probability of measurement error in wage at each survey

equals 0.34. Under the Taylor assumption, because it exhibits an increasing hazard of wage

change, the relative frequencies at 4 and 8 months would imply even greater measurement

error and a smaller 4-month true frequency of 0.20.

There are considerable differences in the observed frequencies of wage changes across the

alternative SIPP panels. The 1996 and 2001 panels show even higher frequencies than do

1990 to 1993. Our estimates interpret this as reflecting slightly higher measurement error for

these panels and somewhat more flexible wage rates. The Calvo parameters are calculated at

0.39 and 0.34 for the 1996 and 2001 panels. The last two panels, 2001 and 2004, show much

lower rates of wage changes. This is particularly true for the 2008 panel. Our calculations

explain the drop in frequencies primarily by a fall in the measurement error rate, from 0.38

in the 2001 panel down to 0.05 by the 2008. For the 2004 panel the implied Calvo and Taylor

parameters, 0.28 and 0.22, are actually slightly higher than for the 1990-93 panels; but for

2008 they are substantially lower at 0.19 and 0.16.

The bottom line of the table aggregates the panels. The calculated Calvo and Taylor

parameters are 0.29 versus 0.22. If we invert these 4-month frequencies and multiply by the

period’s length (4-month) we get implied durations of wages of 14 months under Calvo and

18 months under Taylor. Papers in the literature that calibrate wage stickiness typically

choose a value of 12 months; so these values are modestly above those. Table 4 also gives the

new-hire rate. This rate averages 7.5 weighting by earnings, 9.6 not weighting by earnings.

If we treat the new hire wage as flexible, and assume turnover is orthogonal to realization of

a wage change, that results in an overall new-wage rate of 0.34 under Calvo and 0.28 under

Taylor. If we invert these rates and multiply by 4 months, we get implied durations of 12

months under Calvo and 14 months under Taylor. So these are actually quite close to the

typical choice for calibrating of 12 months.

The results in Table 4 combine hourly-paid and salaried workers. But we find very similar

frequencies across the groups–a Calvo parameter of 0.30 for hourly versus 0.28 for salaried.

The observed frequency of wage change is higher for salaried workers, but our approach
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interprets this as primarily reflecting twice as common of measurement errors for salaried

workers as for hourly-paid workers.

BBG’s (2010) approach yields considerably stickier wage rates. This is despite the fact

that their work is based on the 1996 SIPP panel, which shows relatively high rates of wage

change. Our estimated rates for the 1996 panel are 40 to 50 percent higher than BGG’s

preferred estimate for hourly workers and close to ten times as high as their preferred estimate

for salaried workers.

Table 2, which list each KLEMS industry, reports the frequency of wage change and rate

of measurement error by industry. For convenience it just reports the Calvo case. The Calvo

rate varies from lows of 0.22 or 0.23, implying durations of 18 months, for mining industries

and passenger transit to highs of 0.33, implying durations of 12 months, for petroleum and

coal products, furniture, and other transportation (sightseeing and couriers). The frequency

of wage change is not particularly correlated with the other industry characteristics we

observe. For instance, its correlations with the durability of the industry good (measured as

described in BKM, 2012) and industry labor share are both about 0.1, and not significantly

different from zero. For 41 of the 60 industries we have estimates of the frequency of price

change from BKM. The correlation of wage flexibility with price flexibility is essentially zero,

at 0.05.

5.5. Industry Wage Flexibility and Cyclicality of TFP

We ask how an industry’s cyclical behavior depends on its wage flexibility. We measure the

cycle by the behavior of HP-filtered annual U.S. GDP. We regress fluctuations in the industry

inputs (real value added minus TFP), TFP, and relative wage on the aggregate cycle (GDP)

and the aggregate cycle interacted with stickiness of the wage. Industry TFP is corrected

for fluctuations in capital utilization. The relative wage equals the industry wage minus the

average wage across all 60 industries. The measure of stickiness is the expected duration

of wage in months, calculated under the Calvo assumption. In the interaction we subtract

the average expected durations across all industries (14.4 months) so that the coefficient on

GDP can be interpreted as holding for an industry with wage duration equal to that mean

value. The regressions weight each observation by the industry’s relative value added in that

year.
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The top panel of Table 5 gives results for all 60 industries. The coefficients for GDP imply

that, evaluated at mean stickiness, inputs for our 60 industries increase 1.2 percent for a one

percent expansion in GDP. TFP and the real wage are both only slightly procylical. The

interaction of GDP with wage stickiness shows that industries with stickier wages display

more cyclical inputs and less cyclical TFP. The standard deviation of wage duration equals

1.1 months; so the estimates imply that a one standard deviation increase in wage duration

would increase the response in inputs by about 0.2 percent and decrease the response in TFP

by about a third of a percent for a one percent increase in GDP. These results qualitatively

align with the predictions of the sticky-wage model with bargaining over effort. But we do

not see less cyclical wages for the stickier wage windows. In fact the sticky wage measure is

associated with more cyclical wages; a one standard deviation increase in stickiness implies a

0.25 percent bigger wage response for a one percent increase in GDP. So this makes the data

harder to interpret in light of the model. (We alternatively estimated using a full set of year

dummies, rather than just the regressor GDP; but the results for the stickiness interactions

were unaffected.)

The next two panels break the sample by labor’s share in value added. We split industries

by above and below a labor share of 71 percent, as this puts 30 industries into each group.

This break is above the mean labor share in our KLEMS data, weighting by industry value

added, of 67.2 percent. We find that the impact of wage stickiness on countercyclical TFP

is much more significant for the industries with higher labor share. This is consistent with a

channel from labor effort to TFP, as that channel should weight by labor’s importance. The

coefficient for the high labor share industries -0.45 (s.e. 0.14) is a little more than double

that for the low labor supply industries. This aligns with the fact that labor share is about

twice as high in the high-share industries (81 percent) as in low-share industries (44 percent).

Real output, and therefore TFP, are arguably better measured for goods industries than

services, as it is particularly difficult to measure output quality for services. For this rea-

son, in Table 6 we restrict attention to the 24 industries that produce goods (agriculture,

mining, construction, and manufacturing industries). Looking at the top panel, we see that

the impact of wage stickiness on cyclicality of TFP and inputs is much stronger for these

industries. A one standard deviation increase in wage duration would increase the response

in inputs by about one-third of a percent and decrease the response in TFP by more than
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two-thirds of a percent for a one percent increase in GDP. The middle two panels break

the sample by labor’s share in value added; splitting these industries at a labor share of 67

percent puts 12 industries into each panel. We again find that the impact of wage stickiness

on countercyclical TFP is driven in proportion to an industry’s labor share. The coefficient

for high labor share industries -1.13 (s.e. 0.16) is more than two times that for those with

lower labor input, -0.47 (s.e. 0.20).

The bottom panel of Table 6 restricts the sample to 14 industries that produce durable

goods. We anticipate much more procyclical labor demand for these industries, given the

cyclical shift in expenditures toward these goods. When we restrict to durables, we see a large

impact of wage stickiness on cyclicality of TFP. The estimates imply that a one standard

deviation increase in wage duration decreases the response in TFP by 1.1 percent for a one

percent increase in GDP. As anticipated by the model, output is less cyclical for the stickier

wage industries, while inputs are significantly more cyclical. Greater wage stickiness is now

associated with a less cyclical wage; but this effect is small and not statistically significant.

6. Conclusion

We start from what we view as a reasonable depiction of wage setting, with wages sticky

for most current workers, but flexible for new hires. We depart from standard treatments

of sticky wages by allowing worker effort to respond to the wage being too high or low.

We see this as consistent with firms making fairly frequent choices for production and work

assignments, more frequent than wages are rebargained. We show that if wages of matched

workers are stuck too high in a recession, then firms will require more effort. In turn, this

lowers the value of additional labor, reducing new hiring. If we further constrain choices for

effort to be common across worker vintages, we find that the model generates a great deal of

wage inertia–for our benchmark calibration, aggregate wages depart from its flexible wage

counterpart for 16 quarters, even though all wages have been renegotiated after 4 quarters.

For our preferred model, with common effort, the volatility of unemployment relative to

labor productivity is considerably increased. The countercyclical response in effort causes a

greater response in unemployment to a given sized shock to labor demand, while partially

masking the impact of that shock on labor productivity. Lastly, we construct measures of
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wage stickiness across 60 sectors of the economy. We find that sectors with stickier wages

do show more countercyclical TFP, together with more procyclical inputs. Though they fail

to show more countercyclical wage rates.

The acyclicality of productivity, compared to the size of fluctuations in employment and

hours, is especially notable for recent recessions. There have been several related changes

in the workplace that have arguably made it easier for firms to ask more of workers in

downturns. For one, a much greater share of workers are now paid by salary, rather than

hourly. This means the real pay of workers can be reduced by asking for more hours, at

a given pay, without expanding exertion per hour. Anger (2011) shows that extra unpaid

hours are highly countercyclical for salaried workers. Secondly, the share of union workers

has sharply declined, possibly providing greater flexibility for firms to adjust demands on

workers in response to economic conditions. Schmitz (2005) presents an example from ore

mining where relaxing terms in union contracts led to a dramatic change in work rules and

productivity.
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Table 1: Benchmark Parameter Values

Parameter Description

T = 4 Duration of wage contract
α = 0.64 Labor share in production function
β = 0.99 Discount factor
γ = 1.0 Reciprocal of labor supply elasticity
δ = 0.04 Job separation rate
χ = 0.6 Scale parameter in matching function

R = r + d = 0.035 User cost of capital
ρz = 0.95 Persistence of aggregate productivity
σz = 0.007 Std. dev. of innovation to aggregate productivity

log z̄ = −7.0821 Normalization of output to one
ψ = 0.6826 Scale parameter for utility from leisure
b = 0.154 Unemployment insurance benefits
κ = 0.04754 Vacancy posting cost



Table 2:  KLEMS Industries 
 

INDUSTRY  NAICS Code  VA Share  Calvo 
Frequency

Error 
Rate 

Crop and Animal Production  111,112  1.6  0.24  0.20 

Forestry and Fishing  113‐115  0.4  0.27  0.25 

Oil and Gas Extraction  211  1.1  0.28  0.25 

Mining, except Oil and Gas  212  0.4  0.23  0.25 

Support Activities for Mining  213  0.3  0.22  0.25 

Utilities  22  2.7  0.27  0.27 

Construction  23  6.2  0.25  0.21 

Food, Beverage, and Tobacco  311,312  2.16  0.32  0.21 

Textile Mills and Textile Products  313,314  0.4  0.24  0.19 

Apparel and Leather products  315,316  0.4  0.26  0.21 

Wood products  321  0.4  0.31  0.17 

Paper Products  322  0.9  0.32  0.21 

Printing and Related Activities  323  0.6  0.26  0.23 

Petroleum and Coal products  324  0.9  0.33  0.14 

Chemical products  325  2.4  0.31  0.27 

Plastics and Rubber products  326  0.9  0.29  0.20 

Nonmetallic Mineral Products  327  0.  0.31  0.24 

Primary Metals  331  0.7  0.24  0.23 

Fabricated Metal products  332  1.6  0.30  0.19 

Machinery  333  1.6  0.28  0.22 

Computer and Electronic products  334  2.2  0.30  0.24 

Electrical Equipment and Appliances  335  0.7  0.31  0.23 

Transportation Equipment  336  2.5  0.31  0.26 

Furniture and related products  337  0.4  0.33  0.20 

Miscellaneous Manufacturing  339  0.8  0.30  0.24 

Wholesale Trade  42  6.7  0.29  0.26 

Retail Trade  44,45  8.0  0.28  0.22 

Air Transportation  481  0.5  0.28  0.29 

Rail Transportation  482  0.4  0.28  0.26 



Water Transportation  483  0.1  0.25  0.27 

Truck Transportation  484  1.3  0.28  0.21 

Transit and Ground Passenger Transportation  485  0.2  0.23  0.27 

Pipeline Transportation  486  0.1  0.25  0.21 

Other Transportation  487,488,492  1.0  0.33  0.22 

Warehousing and Storage  493  0.4  0.30  0.17 

Publishing Industries  511,516  1.4  0.28  0.25 

Motion Picture and Recording Industries  512  0.5  0.27  0.30 

Broadcasting and Telecommunications  515,517  3.1  0.30  0.27 

Information and Data Processing Services  518,519  0.6  0.32  0.26 

 Credit Intermediation and Related Activities  521,522  3.7  0.28  0.28 

Securities, Commodities, and Investments  523  2.1  0.26  0.26 

Insurance Carriers and Related Activities  524  2.7  0.30  0.29 

Funds, Trusts, and other Financial Vehicles  525  0.9  0.26  0.26 

Real Estate  531  4.9  0.28  0.25 

Rental and Leasing Services  532,533  1.7  0.25  0.27 

Legal Services  5411  1.9  0.24  0.26 

Miscellaneous Professional, Scientific and 
Technical Services 

5412‐
5414,5416‐

5419 

5.6  0.28  0.26 

Computer System Design and Services  5415  1.2  0.27  0.28 

Management of Companies and Enterprises  55  2.3  0.28  0.26 

Administrative and Support Services  561  3.2  0.28  0.23 

Waste Management and Remediation Services  562  0.4  0.27  0.25 

Educational Services  61  0.2  0.31  0.25 

Ambulatory Health Care Services  621  3.9  0.27  0.21 

Hospitals, Nursing, Residential Care Facilities  622,623  1.4  0.32  0.22 

Social Assistance  624  0.3  0.32  0.23 

Performing Arts, Spectator Sports, Museums,  
and Related Activities 

711,712  0.4  0.29  0.26 

Amusements, Gambling, and Recreation  713  0.5  0.27  0.25 

Accommodation  721  0.9  0.30  0.19 

Food Services and Drinking Places  722  2.0  0.29  0.23 

Other Services, except Government  81  2.6  0.27  0.23 



 

Table 3:  Industry Wage and TFP Fluctuations 

  
Dependent Variable 

 
  

TFP for Value Added 
 

 
TFP for Gross Output 

 
 
 

 
 

0.54 
(0.04) 

 

  
 

0.28 
(0.02) 

 
 

 

Wage  −0.08 
(0.09) 

−0.05 
(0.04) 

 
Wage*Labor’s Share 
 

1.13 
(0.15) 

1.16 
(0.12) 

   
 

Notes:  Sample includes 1439 observations—60 industries by 24 years, with one invalid observation.  TFP measures 
are adjusted for estimated capital utilization.  TFP and real wage adjusted for compositional changes.  Regression 
includes a full set of year dummies, so wage and TFP measures capture relative industry wages and TFP.  Industry 
observations are weighted by its relative value added. 

 
  



 

Table 4:  Frequency of Wage Changes SIPP, 1990-2011 

 
 

4- month 
Freq 

8-month 
Freq 

Error 
Rate 

(Calvo)

Calvo  
4-mo 

Parameter

Taylor  
4-mo 

Parameters 

New Hire 
Rate 
 (%) 

       
1990-1993 Panels 
(Approx. 1990-1995) 
 

0.68 0.76 0.34 0.26 0.20 6.5 (9.1) 

1996 Panel 
(Approx. 1996-1999) 
 

0.75 0.85 0.36 0.39 0.28 7.6 (10.1) 

2001 Panel 
(Approx. 2001-2004) 
 

0.76 0.84 0.38 0.34 0.25 8.3 (10.4) 

2004 Panel 
(Approx. 2004-2007) 
 

0.39 0.55 0.07 0.28 0.22 8.4 (10.2) 

2008 Panel 
(Approx. 2008-2011) 
 

0.29 0.40 0.05 0.19 0.16 7.1 (8.7) 

 
Average over all Panels 
 

 
0.57 

 
0.69 

 
0.25 

 
0.29 

 
0.22 

 
7.5 (9.6) 

 
Notes:  Observation per panel for calculating 4-month frequency of wage change by panel are respectively, top to 
bottom, 347,249, 135,133, 82625, 109,743, and 105578 for a total of 780,328 persons.  The total sample for 
calculating 8-month changes is smaller at 575,314, while for calculating the new hire rate it is larger at 905,116.  
Observations are weighted both by the SIPP sampling weight and by the workers relative monthly earnings.  The 
exception is that for the new hire rate we also report, in parentheses, the rate only weighting by the SIPP weight. In 
calculating the Calvo and Taylor parameters we actually use the 4-month rate for 8-month stayers; but this makes 
little difference.  
 

 

 

  



Table 5: Industry Cyclicality by Wage Stickiness  

 
 

 
Dependent Variable 

 
 Inputs 

 
TFP Wage 

   
All 60 Industries 

 

    
GDP 
 
 

1.18 
(.05) 

0.18 
(.11) 

0.11 
(.07) 

GDP*Stickiness 
 
 

0.17 
(.04) 

−0.29 
(.10) 

0.22 
(.06) 

  
30 Industries With Lower Labor Share  

 
GDP 
 
 

 
0.78 
(.05) 

 
−0.14 
(.20) 

 
0.03 
(.13) 

 
GDP*Stickiness 
 

0.13 
(.04) 

−0.20 
(.15) 

 

0.22 
(.09) 

  
30 Industries With Higher Labor Share  

 
GDP 
 
 

 
1.41 
(.07) 

 
0.40 
(.13) 

 
0.15 
(.07) 

GDP*Stickiness 
 

0.15 
(.07) 

−0.45 
(.14) 

0.20 
(.08) 

    
 

Notes:  Standard errors are in parentheses.  GDP is the HP-filtered aggregate real GDP.  Stickiness is the Calvo 
implied duration of wages in the industry (in months) minus the mean across industries of 14.4 months.  TFP is 
value added TFP adjusted for capital utilization.  Inputs are labor and capital.  All regressions weight observations 
by industry value added share.  Durable industries are those with goods having expected life of at least one year. 

  



Table 6: Cyclicality by Stickiness for Goods Industries  

 
 

 
Dependent Variable 

 
 Inputs 

 
TFP Wage 

  
All 24 Goods Industries 

    
GDP 
 
 

1.75 
(.07) 

0.40 
(.20) 

0.01 
(.11) 

GDP*Stickiness 
 
 

0.30 
(.04) 

−0.64 
(.13) 

0.02 
(.07) 

  
12 Goods Industries With Lower Labor Share  

 
GDP 
 
 

 
0.83 
(.08) 

 
−0.45 
(.36) 

 
0.01 
(.20) 

 
GDP*Stickiness 
 

0.19 
(.04) 

−0.47 
(.20) 

 

0.19 
(.11) 

  
12 Goods Industries With Higher Labor Share  

 
GDP 
 
 

 
2.43 
(.10) 

 
1.24 
(.22) 

 
0.11 
(.12) 

GDP*Stickiness 
 

0.16 
(.07) 

−1.13 
(.16) 

−0.12 
(.09) 

    
  

14 Durable Goods Industries 
    
GDP 
 
 

2.37 
(.09) 

0.94 
(.21) 

0.05 
(.11) 

GDP*Stickiness 
 
 

0.21 
(.06) 

−1.00 
(.15) 

−0.10 
(.08) 

 
Notes:  GDP is the HP-filtered aggregate real GDP.  Stickiness is the Calvo implied duration of wages in the 
industry (in months) minus the mean across industries of 14.4 months.  TFP is value added TFP adjusted for capital 
utilization.  Inputs are labor and capital.  All regressions weight observations by industry value added share.  
Durable industries are those with goods having expected life of at least one year. 



Figure 1: Model with Fixed Effort
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Notes: Productivity decreases by 1% in period 1 with autocorrelation of 0.95. The dashed
line (−−) represents the model with flexible wages. The solid line represents the model with
sticky wages.



Figure 2: Model with Variable Effort
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Notes: Productivity decreases by 1% in period 1 autocorrelation of 0.95. The dash-dot line
(−.) represents the model with flexible wages. The dashed line (−−) represents the sticky
wage model with individual effort choice. The solid line represents the sticky wage model
with common effort choice. All models feature γ = 1.0, T = 4, and α = 0.64.



Figure 3: Model with a Longer Contract Length (T = 8)
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line (−.) represents the model with flexible wages. The dashed line (−−) represents the
sticky wage model with individual effort choice. The solid line represents the sticky wage
model with common effort choice. All models feature a longer contract length T = 8.



Figure 4: Model with a Smaller Frisch Elasticity of Effort (γ = 2)
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line (−.) represents the model with flexible wages. The dashed line (−−) represents the
sticky wage model with individual effort choice. The solid line represents the sticky wage
model with common effort choice. All models feature a smaller Frisch elasticity (0.5) of labor
effort supply: γ = 2.



Figure 5: Model with Smaller Labor Demand Elasticity (α = 0.28)
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Notes: Productivity decreases by 1% in period 1 with autocorrelation of 0.95. The dash-
dot line (−.) represents the model with flexible wages. The dashed line (−−) represents
the sticky wage model with individual effort choice. The solid line represents the sticky
wage model with common effort choice. All models feature a flatter short-run labor demand
schedule (α = 0.28).



Figure 6: TFP and Unemployment Rates: U.S. Data vs. Model (γ = 1)
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Sticky Wage Common Effort (Z=2TFP)
U.S. Data
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Notes: In the upper panel, we use the actual time series of (detrened) TFP from the U.S.
economy (1987 : 1Q− 2012 : 4) as a productivity shock. In the lower panel, for productivity
shock, we multiply the US TFP by 1.8 (i.e., zt = 1.8 × TFPUS

t ).



Figure 7: TFP and Unemployment: U.S. Data vs. Model (γ = 2)
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Sticky Wage Common Effort (Z=2TFP)
U.S. Data

Notes: In the upper panel, we use the actual time series of (detrened) TFP from the U.S.
economy (1987 : 1Q − 2012 : 4Q) as a productivity shock. In the lower panel, for the
productivity shock, we use the US TFP multiplied by 1.42 (i.e., zt = 1.42 × TFPUS

t ) to
match the volatility of the measured TFP in the data.
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