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Abstract

The regulation of banks uses their internal risk estimates to compute finer capital

requirements. The underlying risk models have been blamed for their optimism, which

I link to a hidden information problem between a regulator and a bank better informed

about risk models. I first show that low incentives to use cautious models can seri-

ously cripple current reforms: a regulatory tightening to compensate for “model risk”

(switching to Basel III/increasing a floor on capital ratios) leads to a contraction of

credit, which favors a wider adoption of optimistic models, increases risk and can make

counter-cyclical buffers pro-cyclical. Second, giving proper incentives is difficult: as

model uncertainty relates to tail risk, over-optimism is typically revealed only when it

is too late to impose a penalty. The framework allows to derive predictions on the use

of internal models and to compare different regulatory solutions. More broadly, this

paper shows how incentives impact the development of applied economic models.
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1 Introduction

Many examples during the recent crisis revealed that many risk models used by financial

institutions were unable to take into account extreme risks. Dowd et al. (2008) illustrate

the extent to which some older models used in practice were flawed: “25-sigmas events”

happening several times in a row in August 2007 were supposed to occur once in every 10135

years! Surprisingly, new generations of more robust risk models were already available before

that time. It is crucial for regulatory purposes to understand why agents can choose internal

models too optimistic regarding extreme risks, and how this can be avoided.

The regulation of banks relies heavily on internal models to compute risk-sensitive capital

requirements1. Danielsson (2008), Rochet (2010) or Eichengreen (2011) argue that this gives

banks incentives to use optimistic models to increase leverage. A recent study by Barclays

Equity Research shows that investors share this concern2. More than half of the investors

surveyed do not trust risk weightings, 80% think the way the banks’ risk models work is a

significant driver of major differences between European banks’ risk weightings, and even

more think model discretion should be removed (Samuels, Harrison, and Rajkotia (2012)).

This paper offers a tractable analytical framework to reflect on these issues. I consider

financial intermediaries (or banks) with limited liability, competing both to attract investors

and to lend to final borrowers. Banks have some freedom to choose an internal model, report

a risk estimate to the regulator, who chooses a capital constraint depending on the report.

The capital constraint thus depends on the model chosen.

In the first part of the paper I analyze the regulation in its current and near future form,

where banks face few penalties for reporting over-optimistic models for some types of risk.

The regulatory response to fears of over-optimism has been to tighten capital requirements

and set aside provisions for “model risk”. But model risk arises when wrong models are

chosen because of unbiased mistakes, not bad incentives. I show to what extents things

can go wrong if “hidden model” is mistaken for model risk: a regulatory tightening, e.g.

1“Because the most accurate information regarding risks is likely to reside within a bank’s own internal risk
measurement and management systems, supervisors should utilize this information to the extent possible.”
(FED Task Force on Internal Credit Risk Models (1998)).

2For other examples see “Investors lose faith in risk measures” by B. Masters ““Whale” makes a big splash
on risk models” by P. Triana, both in the Financial Times, 24.05.12 and 28.05.12.
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switching to Basel III, can increase the risk that a bank defaults (Proposition 2). When the

regulation tightens, the supply of bank loans decreases and the interest rate on loans goes up.

Due to this macroeconomic effect, using optimistic models to bypass the regulation becomes

more profitable, and the wider adoption of over-optimistic models can lead to an increase

in the average risk of banks. In the U.S., the rules recently proposed by the regulatory

agencies3 would make a bank’s capital ratio the lower of an internally measured ratio and a

standardized measure, which thus acts as a floor. Increasing this floor has the same unwanted

effects. As a corollary, counter-cyclical capital ratios can turn out to be pro-cyclical. The

analysis also delivers new testable predictions about the choice of risk models.

Regulators are currently looking for ways to restore investors’ confidence in risk weight-

ings, but they cannot substitute a “naive” regulatory tightening for a solution to a hidden

information problem. In the second part of the paper, I study a backtesting mechanism (as

the one used for market risk models) where penalties punish banks using optimistic models

when unlikely levels of losses occur. I give sufficient conditions for implementing the first-best

outcome (Proposition 3), and study a difficulty specific to these internal models: they typi-

cally differ in their predictions about extreme levels of losses, thus revelation of information

relies on penalties after high losses. But if the regulation is very sensitive to the model re-

ported, a bank with a very optimistic model is allowed a leverage so high that it may already

be in default when it should be punished. I give conditions under which this prevents the

regulator from implementing the first-best (Proposition 4), in which case a trade-off appears

between the cost and the risk-sensitiveness of the regulation, so that an incentive-compatible

regulation may make little use of the information conveyed by internal models.

The framework developed in this paper is very flexible and allows for a number of exten-

sions, which I make available in a separate Internet Appendix4. I discuss in particular the

possibilities to rely more on the ex ante auditing of internal models or on a benchmarking

mechanism, which are both possible avenues for future regulatory reforms.

Background. Let me illustrate the issue with the following example. To compute the

capital requirement k to be held for a corporate/sovereign or bank exposure, a bank under

3See http://www.federalreserve.gov/newsevents/press/bcreg/20120607a.htm.
4Available at http://sites.google.com/site/jecolliardengl/RB-Appendix.pdf.
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the Basel framework can opt for the “advanced-internal ratings based approach”, in which

case k is computed as follows:

k =

(
LGD ×N

(
N−1(PD)√

1−R
+

√
R

1−R
×N−1(0.999)

)
− PD × LGD

)
1 + (M − 2.5)b

1− 1.5b

(1)

where PD is the probability of default, LGD the loss given default, R a correlation coefficient,

M the effective maturity, b a maturity adjustment coefficient, and N the cdf of a Gaussian

distribution. The risk-weighted asset will be obtained by multiplying k by 12.5×EAD, where

EAD is the exposure at default. With the regulator’s approval, the bank can use its own

internal model to compute PD, LGD and EAD (PD also enters the formulas defining b and

R). These parameters can be computed by the bank in several ways, but a large bank would

typically use a Jarrow-Turnbull model. Tarashev (2008) performs an interesting exercise by

comparing the regulatory capital obtained with different academic models. On a sample of

BBB-rated bonds for instance, a bank choosing the most pessimistic model would have to

keep 2.8% regulatory capital, compared to 2.3% with the most optimistic one, i.e. 18% less

(Table 5 in Tarashev (2008))! This difference is only due to the different structures of these

models; there is even more scope for gaming in their implementation.

Such differences are likely to give rise to a strategic selection of models. The first part of

the paper gives some empirical implications about this selection (Implications 1 and 2). An

exogenous increase of demand for banks’ loans should cause more banks to use optimistic

models, as proxied by the proportion of assets for which banks choose to adopt the “internal

ratings based approach” of Basel instead of the “standardized” approach. Increasing costs

(e.g. through regulation) in a “shadow” banking sector competing with the regulated sector

has the same effect. Since the implementation of Basel III leads to heavier capital charges,

internal models may also be used to mitigate the additional costs of complying with the

regulation. An implication of the second part is that good candidate models to bypass the

regulation are those which are proven to be over-optimistic only when the situation is so bad

that the regulator cannot be too harsh on banks, by fear of deepening an economic downturn.

The analysis fits the regulation of credit risk well, but section 4 in particular could also

apply to market risk or operational risk. Credit risk models are extremely difficult to backtest
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due to their time horizon (typically one-year) and the scarcity of available data. The formula

in equation 1 is supposed to lead in the end to enough capital to cover losses with probability

0.999. If the regulator only looked at “violations” (as for market risk), reporting a risk ten

times too low would go unnoticed for a hundred years on average. Advanced tests can be

used of course, such as the one proposed by Lopez and Saidenberg (2000), but the problem of

insufficient data cannot be completely bypassed, see also Kupiec (2002). Thus the regulator

can hardly backtest credit risk models, while checking their methodology ex-ante is also a

difficult task (see Jackson and Perraudin (2000)).

Finally, the hidden information problem I consider here also turns up in other forms of

“regulation”. A rating agency estimating the creditworthiness of a firm or the risk of a pool

of loans similarly has to rely partly on internal models chosen by an agent. Inside a firm,

the models a team uses to manage risk may also determine the compensation its members

receive5. With slight amendments, the model I develop here can be used to analyze this

larger class of problems.

Related literature. There is a huge literature on the regulation of banks and on the Basel

framework in particular. Kim and Santomero (1988) and Rochet (1992) show that risk-based

capital requirements are necessary to control banks’ risks without inducing inefficient asset

allocations. The use of VaR for market risk and internal ratings for credit risk has been seen

as a way to implement such capital requirements. Dangl and Lehar (2004) for instance have

analyzed the risk-taking of a bank under VaR based regulation. Several papers like Daniels-

son, Shin, and Zigrand (2004), Heid (2007) or Kashyap and Stein (2004) have criticized the

pro-cyclical equilibrium effects of using risk-based capital requirements. The first part of

this paper also focuses on equilibrium effects but without the assumption that risk-based

requirements stem from a correct representation of risk. This part is linked to models of

competition between leveraged banks, for instance Herring and Vankudre (1987), Matutes

and Vives (2000), Bolt and Tieman (2004). Closely related are also recent papers study-

ing the choice between Basel’s “standardized” and the “internal ratings based” approaches:

5A recent example of improper risk valuation driven by employees’ incentives is presented in “Deutsche
Bank: Show of strength or a fiction?”, by T. Braithwaite, M. Mackenzie and K. Scannell, Financial Times,
05.12.12.
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Ruthenberg and Landskroner (2008) and Antao and Lacerda (2011) (empirical), and Hakenes

and Schnabel (2011) (theory).

Carey and Hrycay (2001) estimate the extent to which portfolio managers can use different

methodologies to game the regulation, and conclude on the necessity to monitor the use of

credit risk models. Jacobson, Linde, and Roszbach (2006) show on a sample of Swedish banks

that banks using different methodologies leads to different estimates of economic capital.

They also suggest that “given the fact that many supervisors will have an informational

disadvantage [...], internal models are likely to become instrumental in banks’ search for lower

regulatory capital buffers”. Feess and Hege (2011) are to my knowledge the only authors to

study this problem theoretically, but they focus on the choice between using internal models

or not, not on the choice of one model rather than another.

Several papers have considered the possibility of biased models for the regulation of market

risk. An interesting difference with credit risk models is that market risk is evaluated on a

daily basis, typically by the value at risk at the 99% level, so that after 100 days it is already

possible to detect blatant over-optimism. Incentives not to use optimistic market risk models

are provided in the Basel framework, as studied theoretically by Lucas (2001) and Cuoco and

Liu (2006). Empirical studies by Berkowitz and O’Brien (2002), Perignon, Deng, and Wang

(2008) and Perignon and Smith (2010) show that VaRs reported for market risk were actually

too conservative, implying that the penalty for under-reporting the VaR is probably too high.

If banks respond to incentives to choose pessimistic market risk models, they probably also

respond to incentives to choose optimistic credit risk models.

The second part focusing on how the regulator could elicit the revelation of the true model

echoes Chan, Greenbaum, and Thakor (1992), Freixas and Rochet (1998) and Giammarino,

Lewis, and Sappington (1993) on fairly priced deposit insurance. In these papers, information

is revealed by using risk-based insurance premia and capital ratios, a possibility I do not

consider here as insurance premia are not risk-based in most countries, or in too crude a way

to realistically assume that they could give correct incentives. I discuss the links with these

papers further in section 4.2. Another difference is that in my paper the hidden information

is about “models”, which typically give similar predictions except for high levels of losses,

which adds an interesting difficulty to the design of the regulation.
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This paper contributes to yet another strand of the literature, concerned with “markets

for models/theories”. Banks in this paper are on the demand side of such a market. Examples

include Hong, Stein, and Yu (2007), who study agents relying on partial models and shifting

from one to the other depending on their observations, and Cogley, Colacito, and Sargent

(2007) who study rational learning of macroeconomic models with a feedback of learning

on economic variables. Few papers look at situations where the demand for models is not

directly derived from their predictive power only. Exceptions include Millo and MacKenzie

(2009) who study the usefulness of simple risk management models for internal communica-

tion, and Ghosh and Masson (1994), who suggest that governments could pretend to believe

in false economic models so as to gain bargaining power against other countries.

The remainder of the paper is organized as follows: section 2 develops the general frame-

work; section 3 derives empirical implications from a stylized representation of the current

regulation; section 4 asks whether the regulator could use backtesting to reveal the true model

and discusses policy implications; section 5 presents other applications of the framework.

2 Framework

Agents and assets. To study how market prices depend on the models chosen by inter-

mediaries and how these prices determine the incentives to choose a given model, I introduce

three types of agents:

-Borrowers need to finance risky projects. Their demand for loans D(rL) is a function of

the gross interest rate rL. D is decreasing, D(1) = +∞ and lim
+∞

D(rL) = 0. rL(L) is the

inverse demand function. A random proportion t of borrowers will default, according to a

distribution defined below. A defaulting loan yields 0 (failure of the borrower’s project)6.

-Investors can invest their large initial wealth W in a safe asset yielding the exogenous riskless

rate r0 with certainty or lend to intermediaries at a rate rD, but not directly to borrowers.

-Intermediaries can lend to borrowers, invest in the safe asset, and borrow M from investors

at rD. They initially own K (equity) and are protected by limited liability. Finally, I assume

6Default is assumed to be independent of the interest rate and the amount lent. Relaxing this assumption
makes the analysis more cumbersome (adverse selection) without altering the main results.
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that a debt contract between an investor and an intermediary cannot be made contingent on

the intermediary’s subsequent choice of leverage or assets.

There is a continuum [0, 1] of each type of agents, all risk-neutral and price-takers on a

perfect competitive market. Finally, a benevolent regulator can set limits to intermediaries’

leverage and aims at maximizing social welfare. Throughout the paper a female pronoun

refers to the regulator, and a male pronoun to an intermediary. Fig. 1 sums up the market

structure.7

[Insert Fig. 1 here.]

Model uncertainty. The proportion t of defaulting borrowers follows a distribution F (t, σ)

with support over [0, 1], interpreted as the correct risk model in this economy. Two assump-

tions are needed to study the strategic choice of risk models: the plausibility of different

models and asymmetric information between the bank and the regulator:

M1: Let {F (., σ), σ ∈ [σmin, σmax]} be a family of cumulatives over [0, 1], parameterized

by σ, twice-continuously differentiable in both arguments. Denote f(., σ) the corresponding

pdfs. The family of distributions has the monotone likelihood ratio property:

∀t0, t1, σ0, σ1 with t1 ≥ t0, σ1 ≥ σ0,
f(t1, σ1)

f(t1, σ0)
≥ f(t0, σ1)

f(t0, σ0)

M2: A given σ is randomly selected in [σmin, σmax] according to some pdf. Ψ(.), density

ψ(.). Intermediaries observe σ before they take any decision, but σ remains hidden to the

regulator. t, the proportion of defaulting loans, is drawn from F (., σ).

M1 means there exists a rich set of different plausible models indexed by σ, which can be

interpreted as one model with different parameterizations, or models from different families.

Moreover, models with a low σ give risk estimates unambiguously more optimistic than

models with a high σ. Finally, M2 means that intermediaries know the true model σ while

the regulator does not, thus an extreme form of asymmetric information.

7All figures are in the Appendix A.6, the notations used are summed up in A.1.
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2.1 The intermediary’s program

Taking the model chosen and prices as given, I first derive the demand for funds and the

supply of credit by an intermediary. Take r0, rD, rL as given with rL ≥ rD ≥ r0. It never

pays off for an intermediary to borrow M > 0 and invest at r0 since investors ask for rD ≥ r0.

Thus we have either L = M +K with M possibly zero, or L = M = 0 (intermediaries invest

their equity in the safe asset)8.

Due to limited liability, an intermediary’s realized profit if he lends L and a proportion t

of borrowers do not repay can be written as max
(
0, rL(1 − t)L − rDM

)
. The intermediary

cannot repay his debt if there have been too many defaults in his portfolio, that is if:

t > 1− rD
rL

(
1− K

L

)
= θ(L) (2)

θ(L) is the maximum proportion of sustainable losses, that an intermediary can bear without

defaulting. It will be easier in many proofs to work with θ instead of L. Inverting equation

2, L is determined by θ as:

L(θ) =
rDK

rD − rL(1− θ)
(3)

Thus, denoting π(θ, σ) the intermediary’s expected profit if he chooses L > 0, we have

π(θ, σ) =

∫ θ

0

(rL(1− t)L(θ)− rD(L(θ)−K))f(t, σ)dt (4)

= rLL(θ)× s(θ, σ) (5)

with s(θ, σ) = F (θ, σ)Eσ(θ − t|t ≤ θ)

Profit is thus the product of two terms. rLL(θ) are the revenues if all borrowers repay their

debt. The second term is the probability that the bank survives, times expected repayments

above the level enabling the bank to survive. s(θ, σ) is the proportion of expected “surplus”

repayments, with the convention that it is 0 if the intermediary defaults. Finally the operator

Eσ denotes an expectation according to the distribution f(., σ).

Notice that the bank is supposed to compute expected profit according to the true model

8It is possible to have non-zero reserves by assuming random deposit withdrawals. This would not affect
the main results, except that for some parameters the regulation would not be binding.
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σ, not to the model reported to the regulator. Several interpretations of this assumption

are possible, the most simple being that the bank takes into account that the model he

uses is biased. Section 5.2 develops formally another argument: since the bank defaults for

losses above θ, forecasting mistakes made about such losses are privately irrelevant. Model

uncertainty for credit risk is typically about high levels of default, whether the bank uses a

correct or biased model may thus not change the computation of its profit.

The intermediary will either invest all equity in the riskless asset and not borrow, or

maximize π(θ(L), σ) in L, taking prices as given. As is detailed in the next subsection, he

also faces a regulatory constraint on the ratio K/L, which has to be larger than some α, and

the intermediary’s program can be written as:

max
L

π(θ(L), σ) s.t. L ≤ K/α (6)

An increase in L expands the scale of operation, bringing more profit for a given proportion of

expected surplus repayments. But this proportion itself is increasing in θ and thus decreasing

in L: less leverage means a lower probability of default and less debt to repay. Profit is

decreasing and then increasing in L as on Fig. 2. Thus only three choices make sense: (i)

investing K in loans without borrowing (L = K), (ii) investing K in the safe asset without

borrowing (L = 0), (iii) borrowing until the constraint binds and investing everything in

loans (K/L = α).

Lemma 1. Let (M∗, L∗) be the profit-maximizing choice of the intermediary.

There exists rL such that:

-If rL ≥ rL then L∗ = K/α,M∗ = K(1− α)/α.

-If rL < rL then M∗ = 0. L∗ = K if rL ≥ r0/Eσ(1− t), and L∗ = 0 otherwise.

The value of rL and the proof are in Appendix A.2. The intermediary uses the maximum

leverage allowed by the regulation if rL is high enough to compensate for the high risk of

defaulting, and otherwise doesn’t borrow but invests in loans or in the safe asset.
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2.2 Regulation under complete information

I first analyze the optimal capital ratio the regulator can set if she also knows σ. It will

be convenient to define the rate rL at which investors would break even if they could lend

directly to borrowers:

rL(L) = reL =
r0

Eσ(1− t)
(7)

When intermediation is necessary and for a given level of capital, reaching a supply of loans of

D(reL) may require a high leverage, and thus the possibility that an intermediary defaults. I

take as given that the regulation is motivated by limiting losses to a public deposit insurance

fund. For simplicity I consider only complete deposit insurance with a fixed premium9. Then

rD = r0 since loans to intermediaries are riskless, and investors’ welfare is constant. The

regulator sets capital requirements, taking into account the surplus of borrowers, the profit

of intermediaries, and the cost of repaying losses to depositors. I assume a deadweight cost

c > 0 from taxation.

Under complete information, the regulator can use “model-sensitive” capital constraints

K/L ≥ α(σ). It is convenient to translate this constraint on the capital ratio into a constraint

on maximum sustainable losses:

K/L ≥ α(σ)⇔ θ ≥ 1− (rD/rL)(1− α(σ)) = θ(σ)

The constraint faced by the intermediary is just θ ≥ θ(σ), the regulator asks the intermediary

to have enough capital to bear at least θ(σ) losses in his portfolio. As shown in the previous

subsection, this constraint will be binding for a high enough interest rate rL. We thus have

the following objective function for the regulator, to maximize in θ for a given σ:

V (θ, σ) = r0W +

∫ θ

0

(rLL(1− t)− r0(L−K))f(t, σ)dt+ Eσ(1− t)

(∫ L

0

rL(u)du− rL(L)L

)

− (1 + c)

∫ 1

θ

(r0(L−K)− (1− t)rLL)f(t, σ)dt

= r0(W +K − L)︸ ︷︷ ︸
Safe asset

+Eσ(1− t)
∫ L

0

rL(u)du︸ ︷︷ ︸
Surplus from loans

−c
∫ 1

θ

(r0(L−K)− (1− t)rLL)f(t, σ)dt︸ ︷︷ ︸
Deadweight costs

(8)

9If investors are not fully insured, know the true risk and can fully monitor the bank, then in equilibrium
rL = reL but intermediaries can still choose over-optimistic models, see section 5.3. Notice that in the few
countries where the premium is risk sensitive, it actually gives further incentives to get optimistic risk weights.
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Both rL and L depend on the θ chosen by the regulator. To keep things simple, I assume

demand to be so elastic that the effect of θ on rL is negligible. Otherwise increasing θ could

lead to an increase in rL, and the optimal θ could be increasing in σ only by parts.

Lemma 2 (First-best). For a given level of capital K10:

-If D(reL) ≥ K the first-best is to set θ∗ = 1 (L = K) and let intermediaries invest in loans

up to the point where rL = reL.

-If D(reL) < K, c is high enough and demand D(.) is elastic enough, then V (θ, σ) is concave

and the optimal regulatory threshold θ∗(σ) is increasing and satisfies:

rL(σ) =
r0

Eσ(1− t)
+

c

Eσ(1− t)
(1− F (θ∗(σ), σ)) (r0 − rL(σ)Eσ(1− t|t > θ∗(σ))︸ ︷︷ ︸

≥0

(9)

The case for a model-based regulation here is straightforward: when the true model is

more pessimistic (higher σ), there is less surplus to gain by expanding credit and more risks

of default for a given level of θ, hence the regulator wants to restrict leverage more. Note that

with the first-best regulation the regulator implements a capital requirement that involves

under-investment (rL > reL) to decrease the costs to taxpayers.

2.3 Numerical example

Consider the following example, to be kept for illustration throughout the paper. The pro-

portion of defaults follows a Beta distribution with parameters a = 3.5, b = 31.5 but many

values are possible for b, uniformly distributed from b = 13 up to b = 50, which is the most

optimistic model. Take σ = 1/b so that M1 holds.

In practice, regulators aim at capping the probability that each intermediary defaults,

typically 0.1% in the Basel framework. Assume this is an approximate solution to equation

9. Since an intermediary defaults with probability 1 − F (θ, σ) when the true model is σ,

10The result depends on the assumption that K is fixed in the short-run, otherwise it is optimal for
the regulator to impose 0 leverage. As shown in the Internet Appendix B.1, the results are qualitatively
unchanged if there is some informational cost of levying capital (Myers and Majluf (1984)). This is consistent
with the spirit of the Basel framework, although recent papers like Admati et al. (2011) argue that a more
ambitious regulatory reform should aim at decreasing the cost of capital, thus allowing for higher capital
ratios.
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θ∗(σ) has to satisfy F (θ∗(σ), σ) = 1 − p to ensure a default probability lower than p. For

easier visualization I assume a p = 0.05 probability to default, unlike in Basel. Plotting the

CDFs we can easily see θ∗(1/31.5) and θ∗(1/50) on Fig. 2 (left).

Fig. 2 (right) plots the profit π(θ(L), 1/31.5) as a function of L, with rL = 1.1, rD =

1, K = 1 and when defaults follow the “true” Beta distribution. Investing K in loans is

less profitable than investing in the safe asset in this example. However, investing in loans

with a high enough leverage is even more profitable, as the bank exploits the government’s

guarantee on its debt. If the regulator knows the true model and imposes L ≤ L(θ∗(1/31.5)),

the bank prefers not to use any leverage. But if she falsely believes that σ = 1/50 and

imposes L ≤ L(θ∗(1/50)), the bank chooses maximum leverage. This illustrates the adverse

selection problem: in this extreme example, if the intermediary is successful at convincing

the regulator that σ = 1/50 he will increase his expected profit by 10% and default with a

25% probability, five times higher than the regulator’s objective.

[Insert Fig. 2 here.]

3 Model choice and market equilibrium

3.1 Equilibrium

I now study how banks choose their risk models in equilibrium, in a stylized representation

of the current regulatory structure.

-T=0 the regulator specifies a rule linking any model σ to a capital ratio α(σ), and the

requirements that an internal model has to satisfy. These requirements define a set of models

accepted by the regulator. For simplicity assume all models with a positive probability to be

the true model are accepted, so that this set is the interval [σmin, σmax].

-T=1 σ is drawn from the distribution Ψ(.). Each intermediary observes σ, remains unlever-

aged or reports a model σ′ ∈ [σmin, σmax] at a vanishingly small cost ζ > 0. 11.

11The assumption that different intermediaries know the same σ is not key to the main results but allows
to easily define a competitive equilibrium, see the Internet Appendix B.3. ζ corresponds to the cost of
developing an internal model, and implies that such a model will be used only if it is a source of profit above
the riskless rate.
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-T=2 An intermediary who has reported a model σ′ chooses a supply of loans and a demand

for deposits maximizing profit, such that K/L ≥ α(σ′) and L ≤ M + K, taking prices as

given. rL, rD,M and L are simultaneously determined by competitive equilibrium conditions.

-T=3 a proportion t of borrowers default, where t is drawn from the distribution F (., σ).

The capital ratio α(σ) links a bank’s model to capital requirements, exactly as in equation

1: a model σ determines LGD and PD, which in turn determine R and capital requirements.

α(.) can incorporate additional measures of the regulator, such as floors, extra safety margins

and so on. The model can also accommodate a number of measures taken to ensure models

are not too biased: comparison with “industry standards”, required assumptions of the

model, reasonable performance of the model on historical data... all enter the definition of

the interval [σmin, σmax]. But then a bank is free to choose among all models that can get the

regulator’s approval. As a consequence, the situation is equivalent to a “delegation game”

(Holmstrom (1977) and Alonso and Matouschek (2008)) in which banks are offered a set of

attainable leverage ratios from which they can choose12. This assumption fits the letter of

the Basel Accords, except the requirement that the bank has used the model for internal

purposes for several years before it can be used for regulatory purposes (as shown in section

5.2, this is unlikely to make a big difference).

Intermediaries’ choice at T = 1 and T = 2. Solving the model backwards, I first define

formally the equilibrium of the subgame starting at T = 1 when a given σ is realized:

Definition 1 (Equilibrium with choice of a risk model). For an increasing α(.) and a given

realization of σ, an equilibrium is a 5-uple (rL, rD, µl, µr, µs) and a function h : (σmin, σmax]→

[0, 1] where a proportion h(σ′) of intermediaries choose σ′, µl choose σmin and K/L =

α(σmin), µr choose K = L, µs choose L = 0 and invest K in the safe asset, and:

-Each intermediary’s choice given his model, rL and rD is a solution to the intermediary’s

program of Lemma 1, the supply of loans by intermediaries is equal to D(rL) and funds bor-

rowed by intermediaries equal funds supplied by investors at an interest rate rD.

-Investors are indifferent between lending to intermediaries and buying the safe asset.

12A difference with these papers being that here the agents are interacting with each other.

13



-No intermediary wants to choose a different σ′ or change his investment strategy.

This definition simply enlarges the concept of competitive equilibrium by requiring that

no intermediary wants to choose a different model. Since investors are fully insured, it must

be the case by condition 2 that rD = r0. This equality implies that if rL ≥ reL it always

pays to borrow at least a little, whereas if rL < reL an unleveraged intermediary prefers the

safe asset to loans, so in both cases µr = 0. We know from Lemma 1 that, depending on rL,

either an intermediary uses no leverage at all or his capital constraint is binding. Then for any

σ ∈ (σmin, σmax] we have h(σ) = 0 and only two strategies may be used: not borrowing and

investing in the safe asset (proportion µs of intermediaries), or choosing the most optimistic

model and using maximum leverage (proportion µl). Thus only the minimum of the function

α(.), α(σmin), will matter. I denote ᾱ this minimum.

Proposition 1. For given ᾱ and σ, starting at T = 1 there exists a unique equilibrium, in

which µl(ᾱ, σ) intermediaries choose the most optimistic model.

µl increases if the demand function shifts from D to D′ ≥ D. µl decreases in σ.

Since the equilibrium is unique, I denote rL(ᾱ, σ) the equilibrium interest rate on loans,

and pd(ᾱ, σ) the expected proportion of defaulting intermediaries in equilibrium, where:

pd(ᾱ, σ) = µl(ᾱ, σ)

(
1− F

(
1− r0(1− ᾱ)

rL(ᾱ, σ)
, σ

))
(10)

Corollary 1. When µl(ᾱ, σ) < 1, pd increases if the demand function shifts from D to

D′ ≥ D.

See Appendix A.4 for the proof. This proposition illustrates the role of demand in giving

incentives to choose a model: when (i) all intermediaries use an optimistic model, they are

able to use a high leverage and the supply of loans is high, which lowers the interest rate

on loans. This is an equilibrium if and only if the interest rate is not so low as to make

it more profitable not to borrow, that is if demand is high enough. Conversely, if (ii) few

intermediaries use leverage, the supply of loans is low and the interest rate high. To have

an equilibrium the interest rate must be low so that it doesn’t pay to use even the most

optimistic model, thus demand has to be low. An increase in demand then leads to a wider

adoption of optimistic models and a higher risk in the banking sector.
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The regulator’s choice at T = 0. The regulator anticipates that intermediaries will

choose either L = 0 or σmin. Banks always choose the same internal model, if they use one,

thus the regulator may just as well choose the function α(.) constant and equal to ᾱ. The

equilibrium levels of rL and µl depend both on ᾱ and σ and the regulator’s objective is:

max
ᾱ

∫ σmax
σmin

(γ(ᾱ, σ)− cµl(ᾱ, σ)δ(ᾱ, σ))ψ(σ)dσ (11)

γ(ᾱ, σ) = r0(W +K − (K/ᾱ)) + Eσ(1− t)
∫ K/ᾱ

0
rL(u)du

δ(ᾱ, σ) =
∫ 1

1− r0(1−ᾱ)
rL(ᾱ,σ)

(r0((K/ᾱ)−K)− (1− t)rL(ᾱ, σ)K/ᾱ)f(t, σ)dt

The regulator has to select a single ᾱ to solve the trade-off between the expected surplus

γ(ᾱ, σ) and the expected deadweight losses from taxation cµl(ᾱ, σ)δ(ᾱ, σ), in expectation

over all realizations of σ. A necessary condition for an interior solution is:

EΨ (Eσ(1− t)rL(ᾱ, σ)) = r0 −
ᾱ2

K
c× EΨ

(
d

dᾱ
(µl(ᾱ, σ)δ(ᾱ, σ))

)

This condition is similar to equation 9: the expected interest rate on loans implemented by

the regulator is distorted from the average (over σ) break-even interest rate due to the cost

of public funds. But now the regulator needs to take into account that the proportion of

intermediaries who will adopt optimistic models is affected by ᾱ and σ. The latter effect is

in the right direction: when σ increases and risk is more severe, we know from Proposition 1

that µl decreases so that less intermediaries are at risk. The flexibility given to intermediaries

thus has a positive effect. However it also limits the extent to which the regulator can control

risk:

Proposition 2 (Counterproductive tightening). For a low enough elasticity of the demand

for loans, tightening capital requirements increases µl(ᾱ, σ). If µl(ᾱ, σ) is low enough, pd(ᾱ, σ)

increases.

Proof : the equilibrium is defined by µl and rL satisfying the following two equations:

µlK = D(rL)ᾱ (12)

r0ᾱ = rLs

(
1− r0

rL
(1− ᾱ), σ

)
(13)
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Equation 13 defines rL as the interest rate such that an intermediary is indifferent between

choosing L = K/ᾱ and L = 0. When ᾱ increases there are two effects: rL increases so that

D(rL) decreases, and for a given rL the product D(rL)ᾱ increases. If demand is rigid enough

the first effect is negligible, so D(rL)ᾱ increases in equation 12 and µl has to increase. pd(ᾱ, σ)

is the product of µl and the probability that an intermediary with maximum leverage fails

(equation 10). The effect of increasing ᾱ on the second term is negative: each intermediary

has a lower leverage and the interest rate on loans increases. But when µl is small enough

this negative effect is smaller than the positive impact of ᾱ through the increase of µl. �

Intuitively, there are three effects when the regulator increases ᾱ. First, an intermediary

already using the most optimistic model has less leverage than before, which decreases losses

to taxpayers. When the true model is quite pessimistic and few intermediaries use the

optimistic model, this effect is small. Second, choosing the most optimistic model is less

profitable because it allows less leverage. Third, since intermediaries have a tighter capital

constraint, the supply of loans decreases and the interest rate rL goes up. This increase

makes it more profitable to use the most optimistic model. When demand is rigid enough,

the third effect is stronger than the second, so an increase in ᾱ leads more intermediaries

to adopt the most optimistic model, which in turn increases risk. Thus a naive tightening

of the regulation can counter-intuitively increase risk, precisely in those states of the world

where the true model is quite pessimistic and risk is already high, as on Fig. 3.

3.2 Empirical and policy implications: market and regulation

Even when investors are fully insured, the market still gives a counterweight to incentives to

use optimistic models: when more banks adopt optimistic models and use a high leverage,

the interest rate on loans goes down and increasing leverage is less profitable. Some banks

then choose not to adopt over-optimistic models and to remain unleveraged, which can be

thought of as banks sticking to more traditional activities, for which model uncertainty and

risk are low. A wide adoption of over-optimistic models is possible only if there is a high

demand for loans due to, say, a boom in a given sector, a housing bubble or a long period of

accommodating monetary policy.
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Proposition 2 shows that market and regulation are partial substitutes in limiting the

use of over-optimistic models. A tighter regulation restricts leverage and loan supply, in-

creases the interest rate on loans, and thus incentives to use optimistic models. Tightening

the regulation can thus be counterproductive. In particular, the strong increase of capital

requirements with the transition to Basel III gives incentives to develop optimistic models so

as to minimize the impact of increased capital requirements13. This is not just a “Peltzman

effect”, the propensity of agents to behave less cautiously when they feel safer: the effect

here comes from the substitutability between market incentives and regulatory incentives.

Examples. Before turning to empirical implications, I illustrate the main results using

the same example as in section 2 and a demand for loans equal to D(rL) = η
(rL−1)

, η = 1.

On Fig. 3 I plot for different choices of ᾱ by the regulator the expectation over σ of the

welfare, the volume of loans, the proportion of defaulting intermediaries, and the number of

intermediaries with optimistic models. Tightening the regulation leads more intermediaries

to adopt the most optimistic model in this example and, as a result, for low levels of ᾱ the

default probability increases when regulation tightens.

The optimal ᾱ for the regulator can be identified on the figure and is close to 8.2%.

Assume now that the regulator selects this value of ᾱ; Fig. 4 shows the same variables,

but for the different realizations of σ. As expected from Proposition 1, when the true risk

parameter is higher less intermediaries try to bypass the regulation.

Finally, for the same optimal ᾱ and the median value of σ, I plot the same variables on

Fig. 5, letting η vary between 0.05 and 5. As expected from Proposition 1, an increase in

demand leads more intermediaries to adopt an optimistic model, and risk rises accordingly.

When demand becomes so high that all intermediaries already use maximum leverage, an

increase in demand only leads to a higher interest rate and thus less risk.

[Insert Fig. 3, 4 and 5 here.]

13According to several commentators, this is exactly how many banks have reacted. See for instance “Banks
turn to financial alchemy in search for capital” by T. Braithwaite, Financial Times, 24.10.11, or “Fears rise
over banks’ capital tinkering” by B. Masters, P. Jenkins and M. Johnson, Financial Times, 13.11.2011.
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Empirical predictions. The theoretical framework gives new predictions about the use of

internal risk models by regulated financial institutions. Getting data about what models are

used in different institutions is challenging, but an available proxy is the percentage of their

assets for which the regulatory risk weights are computed using an internal model. Under the

null assumption that the development and adoption of new models is unaffected by economic

incentives, this percentage should not be correlated with changes in regulatory or market

conditions. This paper on the contrary predicts the following:

Empirical implication 1. A more intensive use of internal models to compute risk weights

should be caused by:

-1. A positive shock on the demand for loans (µl is increasing in η).

-2. A negative shock on the riskiness of borrowers (µl is decreasing in σ).

-3. A regulatory tightening, if the demand for loans is not too elastic (Proposition 2).

Points 1 and 2 gives a cross-country implication: the imposition of the same regulatory

floor on risk weights in different countries should lead to different choices of models, in a way

that flattens the average default probability across countries.

A concern with the regulation of banks is that a regulatory tightening will be neutralized

by transfers of assets from the regulated banks to the shadow banking sector, or other un-

regulated entities. This can be introduced parsimoniously in the model by assuming there

is a supply of loans S(rL, σ, c) by the shadow banking sector, where c is some measure of

lending costs in this sector, so that ∂S/∂rL ≥ 0, ∂S/∂σ ≤ 0 and ∂S/∂c ≤ 0. If the rL solving

D(rL) = S(rL, σ, c) is such that r0ᾱ < rLs(1 − (r0/rLᾱ)(1 − ᾱ), σ) then in equilibrium the

regulated sector is active, and section 3.1 can easily be adapted with a demand “net of supply

by the shadow banks” D̄(rL, σ, c) = D(rL)−S(rL, σ, c) instead of D(rL). Of particular inter-

est here are equilibria with 0 < µl < 1. rL is still determined by equation 13, is independent

of c and increasing in ᾱ. Then µL is determined by:

µl
K

ᾱ
= D(rL)− S(rL, σ, c) (14)

The derivatives ∂rL/∂ᾱ ≥ 0 and ∂S/∂c ≤ 0 immediately give us the following:
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Empirical implication 2. -1. A regulatory tightening causes an increase in the supply of

loans by the shadow banking sector, (∂S/∂rL)× (∂rL/∂ᾱ) ≥ 0.

-2. A negative shock on the shadow banks’ supply (higher funding costs, more regulation...)

causes more intermediaries to adopt over-optimistic models (µl increases when c increases).

Policy implications. The model has important implications for current policy debates:

-1. When banks can choose over-optimistic models, tightening the regulation can increase

the risk of default in the banking sector, in particular if interest rates on loans react strongly

to the drop in supply. A typical example is the transition to Basel III. Several regulators are

also currently considering the imposition of floors on certain risk weights (see for instance

the “Collins amendment” in the next update of the U.S. regulation), the ᾱ chosen by the

regulator in the model can also be interpreted as such a floor. A prediction of the model

is that higher floors will lead to the selection of more optimistic models, and possibly to an

increase in the total risk of the banking sector.

-2. Counter-cyclical capital ratios can have a pro-cyclical effect on the default risks in the

banking sector. This is a consequence of point 1: although in the model optimal capital

requirements should vary over the cycle (as η and the distribution Ψ change), increasing ᾱ

when risks are higher can actually increase risk.

-3. The presence of a shadow banking sector reduces the effect described in Proposition 2,

but does not cancel it. This is shown by differentiating equation 14, which gives:

∂µl
∂ᾱ

=

(
1

K
D(rL) +

ᾱ

K
× ∂rL
∂ᾱ

D′(rL)

)
−
(

1

K
S(rL, σ, c)−

ᾱ

K
D(rL)

∂rL
∂ᾱ

∂S(rL, σ, c)

∂rL

)

The first term in brackets is the effect without the supply by shadow banks, as in Proposition

2. The second term is negative and thus reduces this effect, but can be made very small if

for instance ᾱ and S(rL, σ, c) are small.

-4. Regulatory changes implying a decrease in supply by the shadow banking sector14 lead to

more adoption of optimistic risk models in the regulated sector, and increase the probability

that a regulated bank defaults.

14See for instance the “Initial Integrated Set of Recommendations to Strengthen Oversight and Regulation
of Shadow Banking” published by the FSB on 19.11.12.
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The message from these different points is that the possibility to bypass the regulation

by using more optimistic models is not a secondary problem requiring a fix. On the contrary,

it is a serious loophole that can completely undo important regulatory reforms.

Discussion. A natural question is of course why the regulator would let banks so much

freedom. In practice the regulator defines a certain number of requirements and backtests

the model, which must also have been used by the bank for two years before it can serve

the computation of regulatory capital. This prevents banks from using models totally off the

mark, but not from using models slightly over-optimistic. Backtesting for example does not

often lead to the rejection of a credit risk model given the low power of the tests.

I see four reasons why regulators may have postponed dealing with the hidden information

problem: (i) when Basel II was put in place, internal models were already in use and had no

reason to be biased, hence regulators thought they could rely on them but neglected incentives

to tweak the models in the future. (ii) The regulator can consider that the priority is to

give incentives to use quantitative models to increase transparency, and that the market will

penalize banks using unrealistic models. (iii) Banks’ defaults affect non-national investors, so

that regulators use their discretion in allowing more or less optimistic models to favor national

banks, which is exactly what the Basel framework was supposed to avoid (Rochet (2010)).

(iv) The next section shows that giving incentives to use the correct model is a difficult

task, the regulator may prefer to deal with this problem by using more cautious capital

requirements. But this first part and in particular Proposition 2 show that adding capital

requirements to cover “model risk” is not sufficient, and can actually be counter-productive.

It is therefore necessary for the regulation to take the hidden information problem seriously

and adopt a mechanism giving incentives to use the correct model.

4 Optimal regulation with hidden model

To focus on information problems and abstract from market equilibrium effects, I assume

from now on that rL is given, or equivalently that demand is very elastic. Moreover I assume

rL > r0/Eσmax(1− t) so that any capital requirement will be binding, even if the true model
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is the most pessimistic one. As a consequence, when she sets α(σ) the regulator equivalently

sets a constraint of the form θ ≥ θ(σ), which will be easier to work with.

Assume the regulator wants to implement a leverage constraint dependant on the interme-

diary’s type and expressed as θ = θ(σ), maximizing under incentive compatibility constraints:

Eψ(V (θ(σ), σ))− Expected costs of the regulation

where V is the social welfare function studied in section 2.2. Absent costs, the regulator would

implement the first-best θ∗(.). There are three constraints for the regulator: (i) incentive

compatibility (IC) - a bank must be better off telling the truth about the model; (ii) limited

liability (LL) - the regulator cannot tax more than what the intermediary has earned, in

particular it is impossible to “punish” a defaulting intermediary; (iii) giving the agent more

than a type-dependent outside option (IR) (Jullien (2000)) - he can choose not to borrow

at all or opt for the “standardized approach”, not use any internal model and earn a profit

that will depend on the true state of the economy. I assume that a bank can opt out of the

mechanism and then get π̄(σ) if σ is the true parameter, with π̄′ ≤ 0.

In this section I study a backtesting mechanism, used for market risk models, and show

a specific difficulty of using such a natural mechanism for credit risk models. The framework

is flexible enough to study alternative mechanisms that could be used in practice, some of

them are developed in the Internet Appendix.

4.1 On the difficulty of backtesting internal models ex post

Sufficient conditions to reach the first-best. Consider a mechanism where an inter-

mediary observes the true model σ, announces some parameter σ′ and faces the constraint

θ ≥ θ(σ′). Given the assumption rL > r0/Eσmax(1 − t), the intermediary chooses θ = θ(σ′),

then suffers some level of defaults t in his portfolio and finally pays a transfer T (σ′, t) if

t ≤ θ(σ′). It will be useful to denote u(θ, t) the profit before transfers of an intermediary

choosing θ when t defaults realize:

u(θ, t) = rLL(θ)(1− t)− r0(L(θ)−K) (15)
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The regulator’s program is the following:

max
θ(.),T (.,.)

Eψ(V (θ(σ), σ) + cEσ(T (σ, u))) with: (16)

∀σ, σ′, π(θ(σ), σ)− Eσ(T (σ, t)) ≥ π(θ(σ′), σ)− Eσ(T (σ′, t)) (IC)

∀σ, π(θ(σ), σ)− Eσ(T (σ, u)) ≥ π̄(σ) (IR)

∀σ, t, u(θ(σ), t) ≥ T (σ, t) (LL)

The spirit of such a regulation is easy to understand: the regulator offers a profile of transfers

T (σ, t) such that an intermediary reporting σ is heavily taxed if the realized level of defaults is

relatively unlikely, given the model announced. The backtesting mechanism used for market

risk models belongs to this class of mechanisms.

Consider a simpler example with only two types σ1, σ2, σ2 > σ1, two possible realizations

of defaults t, t̄, t̄ > t, and Pr(t = t|σi) = pi, p1 > p2. To satisfy (IC) and bind (IR) the

regulator gives π̄(σ1)/p1 to a type reporting σ1 if t realizes, 0 otherwise, and π̄(σ2) to type σ2

irrespective of the realization. (IC) for type σ2 gives π̄(σ2)/π̄(σ1) ≥ p2/p1. It is impossible

to reach the first-best if the outside option of type σ1 is much higher than that of type σ2

and the likelihood ratios of the two states under both models are not different enough. Put

differently, if profit decreases quickly in σ it has to be the case that the different models give

very different predictions, otherwise a rent has to be left to the regulated. Fig. 6 gives an

example where p1 = 0.5, p2 = 0.25 and π̄(σ1) = 1. π̄(σ2) = 0.8 in the first graph and 0.4 in

the second. The condition π̄(σ2)/π̄(σ1) ≥ p2/p1 ensures that the two lines cross at a point

with a positive payoff after t̄, which will give contracts satisfying (IC), (LL) and binding

(IR) for both types. The following proposition generalizes this idea to a continuum of types:

Proposition 3. If, in addition to M1, F (., .) is log-concave in its second argument and π̄

log-convex, then with θ(.) = θ∗(.) the menu of transfers T (., .) defined below satisfies (IC)
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and (LL) and is such that (IR) is binding for every σ.

T (σ, t) =

 max(0, u(θ∗(σ), t)) if t > a(σ)

u(θ∗(σ), t)− π̄(σ)
F (a(σ),σ)

if t ≤ a(σ)

with a(σ) increasing and such that:

F ′2(a(σ), σ)

F (a(σ), σ)
=
π̄′(σ)

π̄(σ)

[Insert Fig. 6 here.]

With the proposed menu, an intermediary reporting model σ gets π̄(σ)
F (a(σ),σ)

if the realized level

of defaults is less than a(σ), and zero otherwise. By definition such a mechanism satisfies the

limited liability condition. Moreover, if he reports truthfully the intermediary gets exactly

π̄(σ) in expectation, thus the mechanism binds condition (IR). We only have to find a(σ)

such that (IC) holds for all types. Under M1 we can induce truthful revelation with an

increasing a(.): intermediaries announcing a low σ get a high payoff but only if the level

of defaults is under a low threshold (which will be crossed only with a small probability if

their report is truthful), intermediaries announcing a higher σ get a lower payoff but more

often. The two other assumptions ensure that this particular mechanism satisfies (IR) and

(IC). Since F (., .) is decreasing in its second argument and π̄ is decreasing, the log-concavity

of F (., .) in σ expresses the idea that the different distributions do not give too similar

predictions as σ increases, and the log-convexity of π̄ implies that the outside option does

not decrease too quickly as σ increases. The intuition is the same as in the binary example

above. See Appendix A.5 for the full proof.

Fig. 7 gives an example, the parameters are the same as in the example of section 3.2

and rL is equal to 1.15. On the left panel I plot the expected payoff an intermediary gets if

the true parameter is σ and he reports σ′, for all values of σ′ and different values of σ. By

construction of the mechanism the maximum payoff is obtained for σ′ = σ. On the right

panel I show how this is achieved by plotting the payoff an intermediary gets when he reports

the true σ and t defaults realize.

[Insert Fig. 7 here.]
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The logic behind this result is simple: if risk is low, the intermediary is ready to pay high

penalties if high default levels realize, because this event is unlikely. In principle, observing

the level of defaults ex-post gives a powerful tool to punish the users of over-optimistic

models. A limitation is that the intermediary’s outside option should not be too sensitive to

his type. If this outside option is the profit of a bank under Basel’s standardized approach,

an implication is that a more risk-sensitive standardized approach can make the revelation

of models in the advanced internal ratings based approach more difficult.

A negative result. The optimal menu of penalties may include transfers for levels of

default above those at which a bank defaults itself. Due to limited liability, the regulator

cannot impose penalties for high levels of default, it may thus be necessary to subsidize

defaulting banks who had announced very pessimistic parameters. This is the case with the

mechanism of Proposition 3 when a(σ) > θ∗(σ).

This happens in particular when models are difficult to backtest. For low levels of risk

there is a lot of historical data to calibrate different models, such that they tend to deliver

similar predictions, while for extreme levels data is much more sparse. This is at the same

time the reason why the regulator would like to use the bank’s expertise, and why it is

difficult to punish overoptimism. I model this situation in a stylized way by assuming the

different models are perfectly equivalent up to a given level of defaults:

Definition 2. Models σ ∈ [σmin, σmax] are distinguishable only above t̂ if for any (σ, σ′) ∈

[σmin, σmax]
2 and for any t < t̂ we have f(t, σ) = f(t, σ′).

Take any two models σ, σ′ with σ < σ′ such that θ(σ) ≤ θ(σ′). Assume σ is so low that

the regulator wants to implement θ(σ) < t̂, in which case a bank using model σ will default

for levels of losses that give no information on which is the true model. I prove that in this

case it will be necessary to subsidize a bank using model σ after it defaults. By contradiction,

assume it is not the case. Then for any t ≥ θ(σ) we have u(θ(σ), t) = T (σ, t) = 0. To bind

the constraint (IR) for type σ we thus need:

∫ θ(σ)

0

[u(θ(σ), t)− T (σ, t)]f(t, σ)dt = π̄(σ)
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A bank of type σ′ gets π̄(σ′) for reporting truthfully, while reporting σ gives:

∫ 1

0

[u(θ(σ), t)− T (σ, t)]f(t, σ′)dt =

∫ θ(σ)

0

[u(θ(σ), t)− T (σ, t)]f(t, σ)dt = π̄(σ)

where the second term is implied by f(t, σ) = f(t, σ′) for t ≤ θ(σ) ≤ t̂. Since σ < σ′ we

have π̄(σ) > π̄(σ′), which violates (IC) for type σ′, a contradiction. It is thus necessary to

have T (σ, t) < 0 at least for some t > t̂: to have (IC) and bind (IR), it must be the case

that a type with a low σ gets a positive payoff for some realizations of t that have a higher

probability when the true model is σ than when it is a more pessimistic model.

It is politically unfeasible for the regulator to commit to a mechanism where taxpayers’

money is used to subsidize defaulting banks. Then the reasoning above shows that she has

to use transfers such that for any σ with θ(σ) < t̂, an intermediary truthfully reporting σ′

must get at least π̄(σ). Hence the following proposition:

Proposition 4. If models σ ∈ [σmin, σmax] are distinguishable only above t̂ and θ(σmin) ≤ t̂:

-To satisfy (IC), (LL) and bind (IR), the regulator must commit to subsidizing defaulting

banks in some states of the world: ∀σ s.t. θ(σ) < t̂, ∃t > t̂ T (σ, t) < 0.

-If unable to commit, the regulator has to set T (., .) such that each type gets at least π̄(σmin),

the highest reservation value, in order to get truthful revelation by all types.

Remark 1. If the regulator is unable to commit to subsidizing an intermediary after he

defaults, if θ∗(σmin) < t̂ there is a trade-off between extracting the intermediaries’ surplus

and how model-sensitive the regulation can be.

When it is impossible to “punish” the use of optimistic models, the only possibility is to

give a “bonus” for the use of pessimistic models. This “bonus” can be very costly here since

all intermediaries have to get the reservation value of the most optimistic type. To avoid

these costs, the only solution is to increase the capital requirements of the most optimistic

types such that there is no θ(σ) below t̂. This means reducing the model-sensitiveness of the

regulation compared to the first-best solution, more so when backtesting is more difficult (t̂

is higher).
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4.2 Discussion and policy implications

This section concludes on a rather negative note. In principle the regulator could use the

observation of the realized level of defaults to detect over-optimistic models, as is done for

market risk. Credit risk however is likely to be different: models typically yield different

predictions for tail values only, and when high levels of default are reached it is likely that the

institution will already be at risk. To preserve incentive compatibility, capital requirements

have to be increased, so that the bank can still be punished ex-post in states of the world where

over-optimism can be detected. This limits how sensitive to the intermediary’s model the

regulatory constraint can be. But if the regulation has to be less reactive to the intermediary’s

report, using internal models for regulatory purposes is also less useful. Notice that for market

risk the regulator wants regulatory capital to cover losses during 99% of trading days, against

(implicitly) 99.9% of years for credit risk. In the terms of the model θ∗ is larger in the latter

case; it is tempting to consider market risk as the case where backtesting can work (θ∗ > t̂)

and credit risk as the case where it cannot (θ∗ < t̂).

The regulator may have more options in a dynamic environment where losses appear

over time, as opposed to this static framework. Dewatripont and Tirole (1994), Decamps,

Rochet, and Roger (2004) or Rochet (2010) actually advocate abandoning the regulatory use

of internal models and having a regulator prompt to intervene when simple capital ratios

hit certain thresholds. A similar problem may appear however: if large “tail” losses follow a

sequence of moderate losses, a lot of information can be gained by dynamically monitoring

the bank’s assets. However if large losses appear so suddenly that it is already too late to

take corrective action, the situation corresponds to the case θ∗(σ) > t̂ above.

Models of adverse selection in a banking context similar to the menu of transfers discussed

above have been used to study deposit insurance premia. In Chan, Greenbaum, and Thakor

(1992), low-risk (resp. high-risk) banks self-select a menu with a low insurance premium and

a high capital requirement (resp. a high insurance premium and a low capital requirement).

A similar mechanism could theoretically be used in our context. A problem however is that

the demand for loans is inelastic in the aforementioned paper, so that the regulator does not

take into account that higher capital ratios and/or higher insurance premia will imply fewer

loans, a concern that seems currently extremely important. Increasing capital requirements
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when risk is low would decrease the amount of loans in the economy precisely when they

have a higher social value. It is in principle possible to do better by using transfers to banks

depending on the model they reported and on the level of defaults that realizes, which gives

information about whether the model used is realistic or not. In Giammarino, Lewis, and

Sappington (1993), the problem studied is different: the regulator is able to check the quality

of the bank’s assets at no cost through auditing, but a risk-based regulation may give the

bank incentives not to spend enough effort to increase the quality of its assets. But internal

risk models today are used precisely because it is assumed that the bank has more information

about its assets than the regulator can acquire through simple auditing procedures. Hence

the main problem seems to be adverse selection, not moral hazard, although it is interesting

to introduce the moral hazard element into the picture (see the Internet Appendix B.5).

Solving the asymmetric information problem studied in section 3 is hard because the

regulator wants a safe intermediary to have a high leverage. This partly explains why the

problems underlined in section 3 actually take place, and reinforces the warning issued in

that section. Different options exist for a second-best regulation, depending on the tools

that the regulator has. The Internet Appendix develops several of them, in particular a

mechanism based auditing internal models ex ante. The second-best regulation involves a

trade-off: the goal is to obtain finely risk-sensitive capital requirements, but then capital

requirements will also be model -sensitive. More sensitivity to the model used gives more

incentives to misreport, which increases regulatory costs.

5 Other applications of the framework

5.1 Gradual adoption of new models

It is certainly not always the case that risk models are deliberately chosen to bypass regulatory

constraints. More plausibly, there is a process in which new models are developed, with a

competitive advantage for more “useful” models. Either their users tend to favor them,

or their “suppliers”, often specialized firms, realize that models both plausible and not too

pessimistic attract more customers. The equilibrium of Proposition 1 is the outcome of such

a process. Note that this process can also take place in a world where banks do not know
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better than the regulator which model is the correct one.

Imagine that at the beginning 1 − µS,0 banks use all available models in the same pro-

portions, µS,0 invest in the safe asset only. In each subsequent period, each bank can choose

a new risk model. They cannot compute precisely which model is the best to use, and tend

to adopt models which seem widely used and profitable: with ni,t the number of banks using

strategy i in period t, π(i, t) the profit made by a bank adopting this strategy in t, and π̄t

the average profit in t, assume:

∀i, ∀t ≥ 0, ni,t+1 =
π(i, t)

π̄t
nt

In these “replicator dynamics” the total number of banks stays constant, a more profitable

model is more adopted, and if the process converges to some distribution of strategies and

market prices then they form an equilibrium in the sense of Definition 1.

In the framework of section 3.1 the choices of different banks are strategic substitutes:

incentives to choose the most optimistic model are higher when rL is higher, and rL is higher

when less banks choose the most optimistic model. This has interesting dynamic implications

if we simulate the process. I take the same parameters for the distribution of defaults and

demand as in section 3.2, µS,0 = 90%, and there are 1000 models giving values of θ between

θ(σmin) and 1. Fig. 8 shows the evolution over 10 periods of the proportion of intermediaries

choosing the most optimistic model, and the distribution of intermediaries over the different

models available in period 10. 24% of intermediaries choose the most optimistic model, and

72% invest in the safe asset only.

[Insert Fig. 8 here.]

At the beginning, most intermediaries do not invest in the risky asset, hence rL is high

and larger than reL. It is extremely profitable to use the most optimistic models, and many

intermediaries switch to them. The supply of loans increases, rL decreases and in period

2 already the adoption of optimistic models is smaller. rL continues to shrink gradually,

but as it does it becomes profitable to use low levels of leverage, and we obtain a process

in two waves: forerunners rush to very optimistic models and rL drops, then these first

models are gradually abandoned and replaced by more conservative ones. In the end the
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process converges to an asymmetric situation with banks using either maximum leverage or

no leverage at all, corresponding to the equilibrium of section 3.1.

Empirical implication 3. When new models become available, or the regulatory use of

internal models is allowed for new assets, the adoption of optimistic models should be quick

at the beginning, and then slow down as it becomes less profitable to invest in these assets.

5.2 The cost of bad forecasts

I have made the assumption that an intermediary can choose an over-optimistic model with

no more cost than if he chose a more realistic one. In a more general framework it could

be costly, or even impossible, to choose an optimistic model to bypass regulation and at the

same time allocate between the several types of borrowers as the true model advises. This

would add a countervailing force giving incentives to stay closer to the true model.

For this countervailing force to be of any importance, optimistic models must be too

optimistic for default levels below the default point. If the model just underestimates the

probability of extreme events and the intermediary defaults for events less extreme, the

forecasting mistake is privately irrelevant. Assume the true model is σ and the intermediary

reports σ′, rL is multiplied if the level of realized defaults is t by ε(|f(t, σ′)− f(t, σ)|), with

ε ≥ 0 a decreasing function and ε(0) = 1. In words, the return on each loan (conditional

on repayment) is discounted, and the discount is higher when the probability of the realized

default level was more badly forecast. Equation 5 can be rewritten as:

π̃(L, σ′, σ) =

∫ θC(L,σ′)

0

(rLL(1− t)ε(|f(t, σ′)− f(t, σ)|)− rD(L−K)) f(t, σ)dt

where θC(L, σ′) s.t. rLL(1− θC(L, σ′))ε(|f(t, σ′)− f(t, σ)|)− rD(L−K) = 0

Assume the most optimistic model σmin and the true model σ are distinguishable only in the

tail above θC(L, σmin). Then θC(L, σmin) and the bank’s profit are the same as without costs

for forecast errors since below θC(L, σmin) the optimistic model’s predictions are correct.

Costs associated to forecasting errors do not give incentives to choose correct models if

some models are available which are both optimistic regarding the probability of extreme

events, and realistic everywhere else, which is precisely the fact highlighted in Proposition 4.
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5.3 Other extensions

The model allows for many other extensions. Some are detailed in the Internet Appendix.

It is possible to take into account additional countervailing forces to over-optimism, with

random deposit withdrawals, risk aversion or a charter-value effect for instance. The main

economic mechanisms would not be affected. The only assumption needed in this paper

is that these forces are not strong enough to avoid biased models, which is what investors

believe (Samuels, Harrison, and Rajkotia (2012)).

On top of the adverse selection problem considered here, moral hazard may arise if banks

choose in which assets to invest before reporting risk estimates. As suggested by Carey and

Hrycay (2001): “investments might be focused in relatively high-risk loans that a scoring model

fails to identify as high-risk, leading to an increase in actual portfolio risk but no increase in

the banks estimated capital allocations”. Section B.5 of the Internet Appendix sketches an

extension where banks focus on complex assets for which there is model uncertainty, even

when they are on average riskier than simple assets.

My model’s assumptions match the case of banks relying on retail funding. They can

be adapted to wholesale funding, deposits being replaced by uninsured debt. If the banks’

lenders know the true model they charge higher rates to banks adopting optimistic models

and in equilibrium rL = reL. Regulation then relies on market discipline: the regulator makes

sure investors are given quantitative estimates of risk, and that the methodology used is

clear enough for them to detect over-optimistic models. This is optimal if the regulator cares

only about protecting investors. But if a bank’s default has some externalities, then risk

is too high. Another interpretation is that the possibility to choose risk measures enables

intermediaries and their creditors to bypass the regulation and reach the level of leverage

maximizing their joint profit. An application is the case of an originator of securitized

products (intermediary) facing investors legally prevented from investing in low-grade assets.

Optimistic risk measures can be used to label products as “investment grade” and sell them

to regulated investors, who are aware that ratings are unrealistic but want to bypass the

regulation (see Pagano and Volpin (2009) and Bolton, Freixas, and Shapiro (2012)).

Other mechanisms to reveal the banks’ private information can be analyzed. A possible

solution is auditing: the regulator inspects internal models and looks for suspicious “tweaks”.

30



Since auditing is costly, the regulator audits just enough to prevent banks from misreport-

ing, and takes into account that a more risk-sensitive regulation gives more incentives to

misreport. Section B.2 shows that the second-best regulation is less risk-sensitive than the

first-best, due to two effects: banks knowing risk is high have less incentives to misreport

when allowed a higher leverage, and when pretending risk is low would give them a lower

leverage. For high auditing costs, these effects make the second-best regulation much less

risk-sensitive, so that using internal models unnecessarily complicated. This extension is

close to Prescott (2004). In his paper the amount a bank invests is fixed. As a result, the

bank with the highest risk has more incentives to misreport and second-best capital ratios

are above the first-best, but not necessarily less risk-sensitive.

Another solution is to use reports from different banks, or benchmarking. I show in

B.3 that the first-best satisfies Maskin monotonicity (Maskin (1999)) and how to adapt

the canonical mechanism for Nash implementation15. However, the assumption of section

3 that all banks have the same information is meant as a simplifying assumption allowing

to consider a representative bank (see footnote 11). I show Proposition 1 still obtains in

a model where banks have different monitoring technologies, so that their models are not

directly comparable and they have different σ. Clearly a bank’s information about internal

models has both an idiosyncratic and a common component, studying mechanisms along the

lines of Cremer and McLean (1988) would be interesting for future research.

In section 3.1, it seems that the regulator has a simple solution: if all banks report σ′

and market prices are inconsistent with the report, she could infer that banks have lied

and use this information to choose θ. However this reaction will be anticipated by market

participants in equilibrium, which can make market signals much less informative or even

destroy the existence of an equilibrium (see Bond, Goldstein, and Prescott (2010)). In B.4,

I show that the regulator can indeed use a bank’s market value to learn σ if its shares are

priced by investors who know the true model. This is not a very compelling case, because with

perfectly informed shareholders it would not be necessary to have a Basel type regulation, as

high capital ratios would not be that costly. If instead the regulator uses the market price

of junior debt, no equilibrium exists when model uncertainty is too high.

15Which is not trivial as there is an interaction between transfers and limited liability as in section 4.
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6 Conclusion

“Model-based” regulation exploits banks’ better information about their own risks to compute

capital ratios. This information however is private, and financial intermediaries cannot be

expected to develop unbiased models if they face incentives to do otherwise. The process of

elaboration/adoption of new models may be biased towards more “profitable” models.

This paper gives new empirical implications on how the choice of internal models reacts

to market and regulatory changes. A regulation failing to give proper incentives to develop

cautious models can cripple other regulatory changes, in particular a regulatory tightening

can lead to the wide adoption of over-optimistic risk models and increase risk.

This problem can only be addressed by giving incentives to use the best possible models.

A regulation relying more on internal risk measures makes it harder for the regulator to

reveal an intermediary’s true model, for two reasons. First, it gives more incentives to use

slightly over-optimistic models as it will enable the intermediary to increase leverage. Second,

if intermediaries are allowed to use more leverage it is more likely that they will default for

high levels of losses. Since these high levels are the ones that enable the regulator to identify

optimistic models, it becomes more difficult to punish over-optimistic intermediaries.

The current trend in regulation is towards less use of internal models, at the cost of a

more distortive regulation that does not react finely to a bank’s risks. A more ambitious

avenue would be to keep using internal models to make the regulation more efficient, and

give the regulators more tools to ensure the figures reported are unbiased.

There are other instances in which a strategic use of models can take place. The regulation

of insurance companies in the Solvency II framework is comparable. Internal models are also

used to measure the performance of employees and desks, to convey information from one

hierarchic level to another, to rating agencies, shareholders... Sibbertsen, Stahl, and Luedtke

(2008) cite as evidence of model risk a report according to which some investors “tend to

apply an across-the-board discount of about 20% to the published numbers”. This discount

cannot stem from honest and random mistakes about the true model, much rather from the

suspicion that models are deliberately chosen to bias the reported information. Hence the

relevant framework here may not be model risk, but “hidden model”.
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A Appendix - Figures and proofs

A.1 Notations

rL gross interest rate on loans to borrowers.

rD gross interest rate on loans to intermediaries.

r0 risk-free rate, normalized to 1.

reL first-best interest rate on loans, equals r0/(1− E(t)).

D(.) demand for loans by final borrowers.

rL(.) inverse demand function for loans.

L amount lent by an intermediary/the representative intermediary.

M amount borrowed by an intermediary.

K capital owned by an intermediary.

W investors’ wealth.

t random proportion of defaulting loans.

f(., σ), F (., σ) family of pdf and cdf, parameterized by σ, modeling the proportion of defaulting loans.

ψ(.),Ψ(.) pdf and cdf from which the true σ is drawn.

θ default point, maximum proportion of defaults an intermediary can suffer in his portfolio.

s(θ, σ) expected proportion of surplus repayments in an intermediary’s portfolio.

π(θ, σ) expected profit of an intermediary.

V (θ, σ) social welfare.

α(σ) minimum capital ratio required from an intermediary reporting model σ.

ᾱ minimum of the function α(.).

θ(σ) minimum θ allowed by the regulation if the intermediary reports model σ.

η parameter of the demand function used in simulations.

µl, µr, µs proportions of intermediaries with max. leverage / investing K in loans / K in the safe asset.

pd expected number of defaulting intermediaries in equilibrium.

A.2 Proof of Lemma 1

For a given constraint K/L ≥ α, the intermediary’s program if he invests in loans is:

max
θ
rLL(θ)s(θ, σ), s.t. θ ≥ 1− (rD/rL)(1− α) = θ

Notice in particular that α ≤ 1 and rL ≥ rD implies that θ ≥ 0 and rD − rL(1− θ) ≥ 0. It is easy

to compute that s′(θ, σ) = F (θ, σ). Then we have

π′1(θ, σ) =
rLL(θ)(F (θ, σ)(rD − rL(1− θ))− rLs(θ, σ))

rD − rL(1− θ)
(17)
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Denoting G(θ) = F (θ, σ)(rD − rL(1 − θ)) − rLs(θ, σ), we have G′(θ) = f(θ, σ)(rD − rL(1 − θ))

as both terms rLF (θ, σ) cancel out, thus G′ is always positive. This implies that π(θ, σ) is ei-

ther decreasing and then increasing in θ, always increasing or always decreasing. Finally, we have

π′1(1, σ) = rLK
rD

(rD − rL(1− E(t)) , lim
θ→θ

π′1(θ, σ) = −∞. Using equation 7 defining reL:

-If rL ≥ (rD/r0)reL, then π′1(1, σ) ≤ 0 and π′1 is negative for every θ, thus if he invests in loans the

intermediary chooses θ = θ. Notice that we also have rL(1 − E(t)) ≥ r0, hence the intermediary

prefers investing in loans to investing in the safe asset.

-If (rD/r0)reL > rL > reL then the intermediary chooses θ = θ or L = K, since profit is either first

decreasing and then increasing in θ, or always increasing. Direct comparison shows that he will

choose θ = θ if and only if

rL ≥ rD
(

1− E(t)− s(θ, σ)

(1− θ)(1− E(t))

)
= r1(rD, θ)

-If (rD/r0)reL > reL > rL profit is decreasing and then increasing in θ, but investing K in the safe

asset yields more than in loans. The intermediary chooses θ = θ over L = 0 if and only if

rL ≥
r0rD

rDs(θ, σ) + r0(1− θ)
= r2(rD, θ)

-If (rD/r0)reL > reL = rL the previous condition applies, except that the intermediary is indifferent

when he doesn’t borrow between investing in the safe asset or in loans.

We have to compare the different thresholds for rL. First, we have:

r1(rD, θ) > (rD/r0)reL

⇔ θ > E(t) + s(θ, σ)

⇔ θ >

∫ 1

0
tf(t, σ)dt+ θF (θ, σ)−

∫ θ

0
tf(t, σ)dt

⇔ θ(1− F (θ, σ)) >

∫ 1

θ
tf(t, σ)dt⇔ θ > E(t|t ≥ θ)

The last inequality is false. Developing and rearranging r1(rD, θ) and r2(rD, θ), we get:

r1(rD, θ) > r2(rD, θ) ⇔ r1(rD, θ) > reL ⇔ r2(rD, θ) > reL

⇔ rD >
r0(1− θ)

1− E(t)− s(θ, σ)
(18)

This last inequality may be true or false depending on rD. Thus we have two cases to consider and
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the conditions above prove the following:

If rD > (r0(1 − θ))/(1 − E(t) − s(θ, σ)): when rL < reL the intermediary chooses r∗L = 0,

when r1(rD, θ) > rL ≥ reL he chooses L∗ = K, when rL > r1(rD, θ) he chooses θ∗ = θ. Now

if rD ≤ (r0(1 − θ))/(1 − E(t) − s(θ, σ)): if rL < r2(rD, θ) the intermediary chooses L∗ = 0, if

rL ≥ r2(rD, θ) he chooses θ∗ = θ. This implies the proposition where rL = max(r1(rD, θ), r2(rD, θ)).

A.3 Proof of Lemma 2

When demand is close to perfectly elastic rL does not depend on α, such that choosing α is equivalent

to choosing θ = 1− r0
rL

(1− α). Moreover we can write:

L(θ) =
r0K

r0 − rL(1− θ)

L is obviously decreasing in θ. The first-order condition in θ gives us:

V ′1(θ, σ) = L′(θ)

(
rLEσ(1− t)− r0 − c

∫ 1

θ
(r0 − rL(1− t))f(t, σ)dt

)
= L′(θ) (rLEσ(1− t)− r0 − c(1− F (θ, σ))(r0 − rLEσ(1− t|t > θ))) = 0

Assumption M1 implies that a distribution with a higher σ dominates a distribution with a lower

one in the sense of first-order stochastic dominance. As a result when σ increases Eσ(1 − t) and

Eσ(1− t|t > θ) decrease, (1−F (θ, σ)) increases such that, since L′(θ) ≤ 0, V ′1(θ, σ) increases. Hence

V ′′1,2(θ, σ) ≥ 0. We can then compute:

V ′′11(θ, σ) = L′′(θ)(rLEσ(1− t)− r0)− cL′′(θ)
∫ 1

θ
(r0 − rL(1− t))f(t, σ)dt+ cL′(θ)(r0 − rL(1− θ))

L′′ is positive, thus the first term may be positive since in general the regulator will allow less

leverage than what would lead to rL = reL. When the regulator reduces the leverage further the

supply of loans decreases at a declining speed, hence welfare losses due to credit restriction increase

more slowly, which gives some convexity in θ to V . When costs are high enough however this effect

is compensated by the two other terms: by definition of θ we have r0− rL(1− t) ≥ 0 for t ≥ θ, such

that they are negative. Hence if c is high enough V ′′11 is negative and V ′′1,2(θ, σ) positive, so that for

every σ there is a unique maximum of V for θ = θ∗(σ), with θ∗ increasing.

A.4 Proof of Proposition 1 and Corollary 1

When rD = r0, inequality 18 is equivalent for any θ to θ > E(t) + s(θ), which was proven to be

wrong in A.3. Thus we have reL ≥ r2(r0, θ(σmin)) ≥ r1(r0, θ(σmin)), an intermediary will choose

either L = 0 or θ = θ(σmin). In equilibrium a proportion µl of intermediaries thus choose model
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σmin and L = K/ᾱ, and the others invest only in the safe asset. If the interest rate on loans is rL,

the supply of loans must equal the demand:

µl
K

ᾱ
= D(rL) (19)

It is impossible to have µl = 0 in equilibrium since this would require an infinite interest rate rL, at

which supply would be positive. Hence there are two possibilities: if 0 < µl < 1 it must be the case

that intermediaries are indifferent between investing only in the safe asset and choosing maximum

leverage, in which case rL will be equal to r2(r0, θ(σmin)). This condition can be rewritten as:

r0α = rLs

(
1− r0(1− α)

rL
, σ

)
(20)

The second possibility is to have µl = 1, in which case the left-hand side of equation 20 has to be

lower than the right-hand side, or equal.

Start with equation 20. The right-hand side is increasing in rL, for rL → +∞ it goes to infinity,

and for rL = r0(1 − α) it is equal to zero. Hence there is a unique value r∗L for which there is

equality. Then by using equation 19 we can compute µ∗l = D(r∗L)(ᾱ/K). If we find µ∗l ≤ 1 we have

an equilibrium. Moreover it is unique: if we choose a higher µl then rL has to be lower, in which

case the right-hand side in equation 20 becomes strictly lower than the left-hand side, which cannot

be the case in equilibrium. If instead we find µ∗l > 1, it implies that µl = 1 is an equilibrium, and

rL is determined by K/ᾱ = D(rL). Again this equilibrium is unique: if we decrease µ then rL will

increase, and the right-hand side in equation 19 will become even greater.

Assume now that we start the same reasoning with a higher σ. Due to assumption M1, s(., σ)

is decreasing in σ, to have an equality in equation 20 we need a higher rL, which will give a lower

D(rL) in equation 20, and hence a lower equilibrium µl. If we start with a σ such that µl = 1 in

equilibrium, an increase in σ will make it less interesting to invest in loans, which will either let µl

unchanged or induce a switch from the case µl = 1 to the case µl < 1.

Finally, assume we do the same reasoning with a higher demand function D′. This does not

affect the determination of r∗L, but since D′(r∗L) > D(r∗L), µl will be higher.

The corollary follows from equation 10 defining pd(ᾱ, σ) as the product of µl(ᾱ, σ) and the

default probability of a bank with maximum leverage. When µl(ᾱ, σ) < 1, increasing demand

leaves rL(ᾱ, σ) unchanged, the first term µl increases and the second term is unchanged, hence the

product increases.

A.5 Proof of Proposition 3

Define U(σ′, σ) the expected profit of an intermediary reporting σ′ when the true parameter is σ:
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U(σ′, σ) = F (a(σ′), σ)
π̄(σ′)

F (a(σ′), σ′)

U ′1(σ′, σ) =
(π̄′(σ′)F (a(σ′), σ) + a′(σ′)f(a(σ′), σ)π̄(σ′))F (a(σ′), σ′)

F (a(σ′), σ′)2

− (a′(σ′)f(a(σ′), σ′) + F ′2(a(σ′), σ′))π̄(σ′)F (a(σ′), σ)

F (a(σ′), σ′)2
(21)

Incentive compatibility requires for every σ:

U ′1(σ, σ) = 0⇔ F ′2(a(σ), σ)

F (a(σ), σ)
=
π̄′(σ)

π̄(σ)
(22)

Notice first that the left-hand side is increasing in a (MLRP), and under the assumptions of the

proposition the left-hand side is decreasing in σ and the right-hand side increasing. This ensures

that if there exists a solution a(.) it is increasing in σ. Is it always possible to find such an a(σ)?

Since π̄ is the payoff of an intermediary not using any leverage or allowed some default point θ

independent of σ, it can be written as π̄(σ) = rLKL(θ)s(θ, σ), with θ = 1 if no leverage is allowed.

s(θ, σ) can be rewritten as s(θ, σ) =
∫ θ

0 F (t, σ)dt. Thus we can rewrite equation 22 as:

F ′2(a(σ), σ)

F (a(σ), σ)
=

∫ θ
0 F

′
2(t, σ)dt∫ θ

0 F (t, σ)dt

a(σ) can take values between 0 and 1, the right-hand side is negative. We have F ′2(1, σ)/F (1, σ) = 0.

If lim
a→0

F ′2(a,σ)
F (a,σ) = −∞ there exists a value a to satisfy the required equality. If this limit is a negative

number −k, then for every t in [0, 1] we have F ′2(t, σ) ≥ −kF (t, σ). Integrating we find:

∫ θ
0 F

′
2(t, σ)dt∫ θ

0 F (t, σ)dt
≥ −k

hence for a given σ the right-hand side is always lower than
F ′2(1,σ)
F (1,σ) and greater than lim

a→0

F ′2(a,σ)
F (a,σ) .

Since
F ′2(a,σ)
F (a,σ) is increasing in a there is always a unique a satisfying the inequality for a given σ, and

hence there always exists a unique solution a(.) increasing and satisfying the first-order condition.

We now have to show that the second-order condition is met. We can use equation 22 to replace

F ′2(a(σ′), σ′) in equation 21. After some rearrangements this gives us:

U ′1(σ′, σ) ≥ 0⇔ f(a(σ′), σ)

f(a(σ′), σ′)
≥ F (a(σ′), σ)

F (a(σ′), σ′)

by the monotone likelihood ratio property we thus have U ′1(σ′, σ) ≥ 0 ⇔ σ′ ≤ σ, hence truthfully

reporting σ globally maximizes U(., σ).
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A.6 Figures

Figure 1: Market structure.
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Figure 2: Cumulatives and minimum default points (left), and profit as a function of loans

(right).
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Figure 3: Expected welfare, volume of loans, intermediaries using the most optimistic

model and default probability as ᾱ increases.
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Figure 4: Welfare, volume of loans, intermediaries using the most optimistic model and

default probability as σ increases.
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Figure 5: Welfare, volume of loans, intermediaries using the most optimistic model and

default probability as η increases.
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Figure 6: Example of separation when π̄(σ2)/π̄(σ1) > p2/p1, and non separation otherwise.
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Figure 7: Expected payoff for a given σ to report σ′ (left), and payoff from reporting the

truth depending on the level of defaults (right).
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