Supervisory Stress Tests, Model Risk, and Model Disclosure: Lessons from OFHEO

W.S. Frame, K. Gerardi, and P. Willen

Federal Reserve Bank of Atlanta

Financial Markets Conference April, 9 2013

Disclaimer

• I am speaking today as a researcher and as a concerned citizen

- not as a representative of:
 - The Atlanta Fed
 - or the Federal Reserve System

- I am speaking today as a researcher and as a concerned citizen
- not as a representative of:
 - The Atlanta Fed
 - or the Federal Reserve System

- I am speaking today as a researcher and as a concerned citizen
- not as a representative of:
 - The Atlanta Fed
 - or the Federal Reserve System

- I am speaking today as a researcher and as a concerned citizen
- not as a representative of:
 - The Atlanta Fed
 - or the Federal Reserve System

- I am speaking today as a researcher and as a concerned citizen
- not as a representative of:
 - The Atlanta Fed
 - or the Federal Reserve System

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.
- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.

• SCAP was used as a confidence building tool at the time.

- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > \$100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.

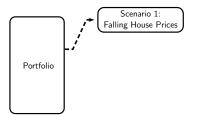
- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.
- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.
- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > \$100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.
- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.
- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > \$100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.
- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.
- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > \$100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.
- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.
- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > \$100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.

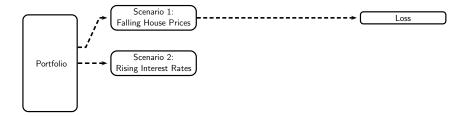
- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.
- But, there are inherent risks in stress-testing:

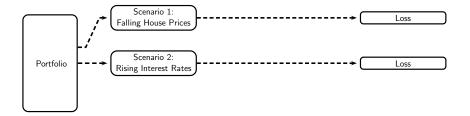

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.
- But, there are inherent risks in stress-testing:

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.
- But, there are inherent risks in stress-testing:

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.
- But, there are inherent risks in stress-testing:

Portfolio


- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

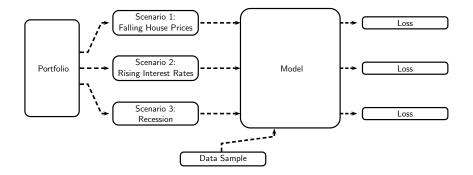

- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

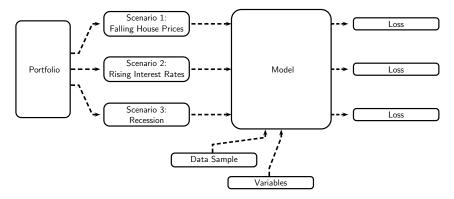
- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

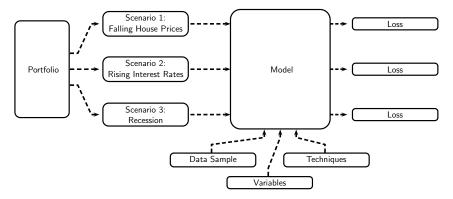
- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...



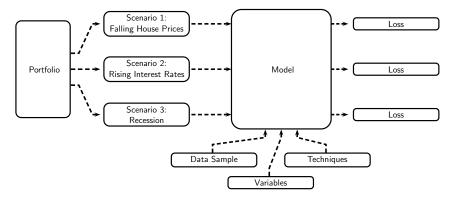
- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...


• Stress testing can fail because...

- (1) Wrong scenario
- (2) Modeling errors
- Or both...

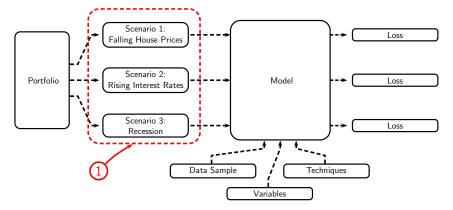

- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

▲ □ ▶ < □ ▶ <</p>


- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

▲□ ► < □ ► </p>

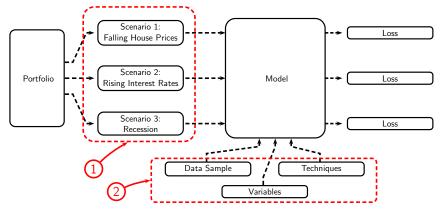
- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...


• • • • • • • • • • • • • •

• Stress testing can fail because...

- (1) Wrong scenario
- (2) Modeling errors
- Or both...

· < /₽ > < ∃ >



- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...


< < >>

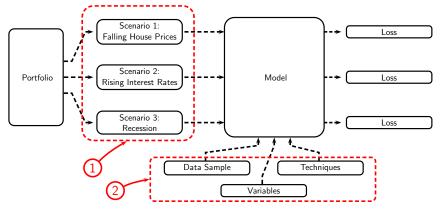
- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...


- Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...

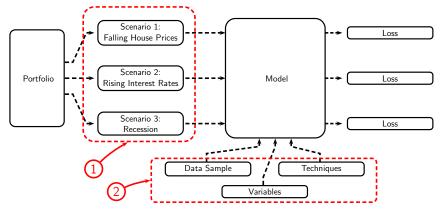
• OFHEO Risk-Based Capital Model


- Risk of insolvency was "effectively zero" (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > \$100 billion.
- What went wrong?

Gerardi (FRB Atlanta)

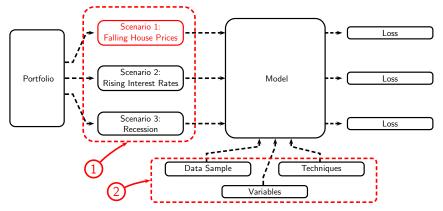

- OFHEO Risk-Based Capital Model
 - Risk of insolvency was "effectively zero" (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > \$100 billion.
- What went wrong?

Gerardi (FRB Atlanta)


- OFHEO Risk-Based Capital Model
 - Risk of insolvency was "effectively zero" (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > \$100 billion.
- What went wrong?

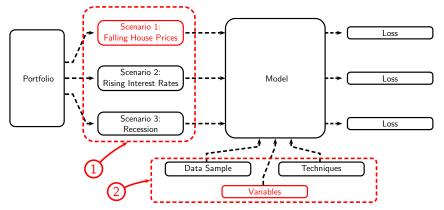
Gerardi (FRB Atlanta)

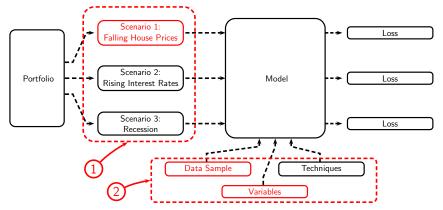
- OFHEO Risk-Based Capital Model
 - Risk of insolvency was "effectively zero" (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > \$100 billion.
- What went wrong?


Gerardi (FRB Atlanta)

- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.
- With (3) by far the most important.
 - Using more data, would have overpredicted least state of the second s

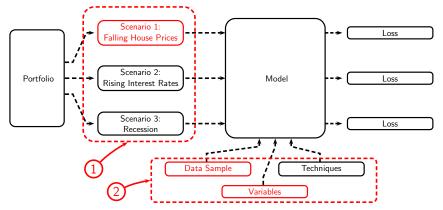
Gerardi (FRB Atlanta


OFHEO Stress Test

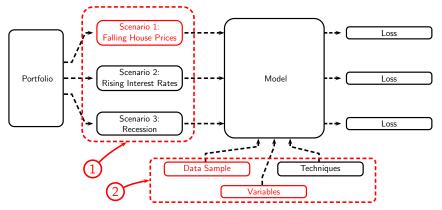

- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.
- With (3) by far the most important.
 - Using more data, would have overpredicted I

Gerardi (FRB Atlanta

OFHEO Stress Tes


- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.
- With (3) by far the most important.
- Gerardi (FRB Atlanta)

- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.


With (3) by far the most important.

Gerardi (FRB Atlanta

- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.
- With (3) by far the most important.
 - Using more data, would have overpredicted losses. < □ > < ≥ > < ≥ ><

Gerardi (FRB Atlanta

- We show that failure caused by:
 - Insufficiently stressful scenario
 - 2 Lack of key variables
 - Stale data.
- With (3) by far the most important.
 - Using more data, would have overpredicted losses.

Gerardi (FRB Atlanta

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, $5%$ thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

• Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

• Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- Brookings Papers on Economic Activity, Fall 2008: 69–145. Joint with Gerardi, Lehnert and Sherlund.
- Lehman Brothers: "U.S. ABS Weekly Outlook," August 15, 2005.
- "HEL Bond Profile Across HPA Scenarios"

#	Name	Scenario	Loss	Probability
(1)	Aggressive	11% HPA over the life of the pool	1.4%	15%
(2)		8% HPA for life	3.2%	15%
(3)	Base	HPA slows to 5% by end-2005	5.6%	50%
(4)	Pessimistic	0% HPA for the next 3 years 5% thereafter	11.1%	15%
(5)	Meltdown	-5% for the next 3 years, 5% thereafter	17.1%	5%

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- GSEs subject to *both* minimum leverage and risk-based capital requirement:
 - Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
 - Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]
- Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.
 - Overall treatment of credit, market, and operational risks.
 - Notice and comment requirements; full disclosure of model for replicability.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

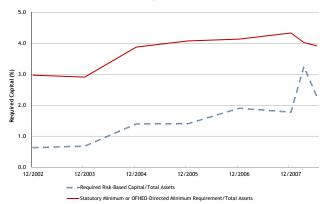
- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.
- Stress applied via house prices and interest rates.
- House price scenario derived from "benchmark loss experience".
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%
- Interest rates: "down rate" and "up rate".
- Loss severity no model, simple 61% recovery rate assumption.


- Estimated default and prepayment model using proprietary GSE data from 1979–1999.
- Joint estimation of default and prepayment using a multinominal logit model.
- Defined default as having occurred when a loan *terminated* with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.
- Included following covariates:
 - Loan age, original LTV ratio, probability of negative equity, measure of "burnout", and investor/owner-occupant status.
 - Continuous variables translated into sets of indicator variables.

- Estimated default and prepayment model using proprietary GSE data from 1979–1999.
- Joint estimation of default and prepayment using a multinominal logit model.
- Defined default as having occurred when a loan *terminated* with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.
- Included following covariates:
 - Loan age, original LTV ratio, probability of negative equity, measure of "burnout", and investor/owner-occupant status.
 - Continuous variables translated into sets of indicator variables.

- Estimated default and prepayment model using proprietary GSE data from 1979–1999.
- Joint estimation of default and prepayment using a multinominal logit model.
- Defined default as having occurred when a loan *terminated* with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.
- Included following covariates:
 - Loan age, original LTV ratio, probability of negative equity, measure of "burnout", and investor/owner-occupant status.
 - Continuous variables translated into sets of indicator variables.

- Estimated default and prepayment model using proprietary GSE data from 1979–1999.
- Joint estimation of default and prepayment using a multinominal logit model.
- Defined default as having occurred when a loan *terminated* with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.
- Included following covariates:
 - Loan age, original LTV ratio, probability of negative equity, measure of "burnout", and investor/owner-occupant status.
 - Continuous variables translated into sets of indicator variables.

 Risk-based capital requirement from stress test *never* binding – even in beginning of 2008!

Panel B: Freddie Mac

Timeline of the OFHEO Stress Test

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)
1996	First Notice of Proposed Rulemaking
1999	Second Notice of Proposed Rulemaking
2001	Final Rule Announced
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."
Q4, 2002	Stress Test Becomes Effective
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.

<ロト < 同ト < 三ト <

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)
1996	First Notice of Proposed Rulemaking
1999	Second Notice of Proposed Rulemaking
2001	Final Rule Announced
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."
Q4, 2002	Stress Test Becomes Effective
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insol- vent and imposes conservatorship.

< □ > < □ > < □ > < □ >

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)				
1996	First Notice of Proposed Rulemaking				
1999	Second Notice of Proposed Rulemaking				
2001	Final Rule Announced				
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."				
Q4, 2002	Stress Test Becomes Effective				
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insol- vent and imposes conservatorship.				

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)				
1996	First Notice of Proposed Rulemaking				
1999	Second Notice of Proposed Rulemaking				
2001	Final Rule Announced				
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."				
Q4, 2002	Stress Test Becomes Effective				
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.				

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)			
1996	First Notice of Proposed Rulemaking			
1999	Second Notice of Proposed Rulemaking			
2001	Final Rule Announced			
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."			
Q4, 2002	Stress Test Becomes Effective			
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.			

Gerardi (FRB Atlanta)

< □ > < □ > < □ > < □ >

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)				
1996	First Notice of Proposed Rulemaking				
1999	Second Notice of Proposed Rulemaking				
2001	Final Rule Announced				
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."				
Q4, 2002	Stress Test Becomes Effective				
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insol- vent and imposes conservatorship.				

< □ > < □ > < □ > < □ >

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)			
1996	First Notice of Proposed Rulemaking			
1999	Second Notice of Proposed Rulemaking			
2001	Final Rule Announced			
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."			
Q4, 2002	Stress Test Becomes Effective			
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.			

1992	Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)			
1996	First Notice of Proposed Rulemaking			
1999	Second Notice of Proposed Rulemaking			
2001	Final Rule Announced			
2002	Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is "effectively zero."			
Q4, 2002	Stress Test Becomes Effective			
September 2008	Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.			

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.
- Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).
- Evaluate model performance during the housing bust.
- Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.
 - Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables even as the mortgage market evolved dramatically during the boom.
- Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.

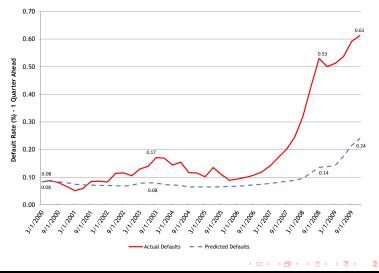
- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.

• Sample means for LTV and UPB for Fannie Mae loans originated 1995 to 2005:


Year	Avg. LTV Ratio (%)		Avg. UPB (\$)		Avg. Interest Rate (%)	
	OFHEO	LPS	OFHEO	LPS	OFHEO	LPS
1995	80.1	79.5	101,518	101,393	8.1	8.6
1996	79.1	77.3	105,059	107,358	8.0	8.1
1997	78.1	78.5	111,398	115,546	7.8	8.0
1998	76.2	78.0	122,646	129,966	7.1	7.1
1999	77.6	76.8	123,600	128,224	7.4	7.2
2000	78.9	77.9	128,041	137,490	8.2	8.1
2001	76.2	74.9	145,435	148,313	7.1	7.1
2002	74.3	74.2	153,982	155,927	6.7	6.7
2003	72.2	72.4	162,743	160,537	5.9	5.9
2004	74.4	70.8	162,513	161,472	6.0	6.0
2005	73.8	72.4	175,886	164,631	6.0	6.1

- Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.
 - Also can look at *k*-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
 - Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare predicted versus actual default/prepayment rate levels.

- Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.
 - Also can look at *k*-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
 - Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare predicted versus actual default/prepayment rate levels.

- Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.
 - Also can look at *k*-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
 - Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare predicted versus actual default/prepayment rate levels.

• Default Forecasts (1-Quarter Ahead)



Gerardi (FRB Atlanta)

OFHEO Stress Tes

Model Analysis

• Prepayment Forecasts (1-Quarter Ahead)

Gerardi (FRB Atlanta)

OFHEO Stress Tes

• What if OFHEO had updated their model by simply re-estimating it with newer data?

- Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
- Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare ratio of predicted versus actual default rates.
 - Significantly improved forecast during crisis.

- What if OFHEO had updated their model by simply re-estimating it with newer data?
 - Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
 - Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare ratio of predicted versus actual default rates.
 - Significantly improved forecast during crisis.

- What if OFHEO had updated their model by simply re-estimating it with newer data?
 - Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
 - Assume perfect foresight regarding next quarter's house prices and interest rates.
- Compare ratio of predicted versus actual default rates.
 - Significantly improved forecast during crisis.

• Default Forecasts (1-Quarter Ahead)

Gerardi (FRB Atlanta)

OFHEO Stress Test

9 2013 19 /

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

- What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?
 - More disaggregated house prices (county-level Corelogic indices)
 - FICO score at origination.
 - Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.
- Model with all of these variables actually *over-predicts* defaults during crisis.

• Default Forecasts (1-Quarter Ahead)

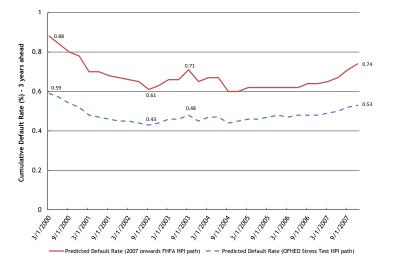
Gerardi (FRB Atlanta

OFHEO Stress Test

9 2013 21 / 2

- How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?
- OFHEO house price stress scenario:
 - Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.

- How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?
- OFHEO house price stress scenario:
 - Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.


- How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?
- OFHEO house price stress scenario:
 - Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.

- How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?
- OFHEO house price stress scenario:
 - Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.

- How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?
- OFHEO house price stress scenario:
 - Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.

< A

OFHEO Stress Tes

- ∢ 🗇 → - ∢

Gerardi (FRB Atlanta

Concluding Remarks

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...

Concluding Remarks

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.
- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.
- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.
- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.
- Open question as to why this occurred...