Discussion of

How the LSAPs Influence MBS Yields and Mortgage Rates?

Diana Hancock and Wayne Passmore

Adi Sunderam
Harvard Business School

December 6, 2013
Overview

• How does quantitative easing (QE) work?

• Three possible mechanisms:
 ◦ **Signaling**: Commits the Fed to low rates for a long time → Expectations hypothesis lower LT yields
 ◦ **Portfolio Balance**: Demand curves are downward sloping, less Q → higher prices (i.e., lower risk premia)
 ◦ **Recruitment Channel**: Low rates = reaching for yield → increased demand for risky assets and lower risk premia
 • Can amplify both the signaling and portfolio balance channels.

• Isolating independent effects of QE is important for policy.
 ◦ If there is no effect on risk premia, forward guidance is enough.
 ◦ QE may also carry some costs in terms of financial stability/market functioning.
Paper’s Approach

- Most previous work uses event studies.
- The authors run regressions like
 \[MBSYield_t = \alpha + \beta_1 \cdot Swap_t + \beta_2 \cdot YieldSpread_t + \beta_3 \cdot FedShare_t + \varepsilon_t \]
- Assign any variation in MBS Yields that can be ascribed to the swap yield or the yield spread as signaling.
- Interpret a negative coefficient on FedShare as evidence of the portfolio balance channel.
- Find evidence consistent with an economically meaningful portfolio balance channel.
 - Treasury purchases have reduced MBS yields by 76 bps.
 - MBS purchases have reduced yields by 73 bps.
 - Results are stronger in levels than differences.
Portfolio Balance and Market Segmentation

- The LSAPs are large-scale relative to the historical size of the Fed balance sheet.
 - $3.2 trillion of Treasuries and Agencies in portfolio as of 2013Q2.

- But they are small relative to the total quantity of risk in credit markets.
 - According to the Flow of Funds, there were approximately $37 trillion of debt securities outstanding in 2013Q2.
 - And another $30 trillion of corporate equity.

- So segmented markets are likely an important part of any story where the portfolio balance channel has an impact.
 - But complete segmentation means that Treasury purchases won’t affect MBS yields.
 - Need partial segmentation, which is not unreasonable.
Signaling

- Signaling important: Expected future Fed Funds after “taper talk”.
- But recent Fed communication focused on separating QE and forward guidance.
Signaling

- Signaling important: Expected future Fed Funds after “taper talk”.
- But recent Fed communication focused on separating QE and forward guidance.
Empirical Approach

- A simple formulation of MBS yields:
 \[MBSS_{Yield_t} = Swap_t + MBSS_{Specific_t} \]

- Break \(MBSS_{Specific_t} \) into cost of prepayment option and residual (including liquidity).
 \[MBSS_{Specific_t} = OptionCost_t + \varepsilon_t \]
 - No obvious channel for signaling to affect liquidity.
 - May affect option cost, but option is struck at-the-money so rate volatility should be particularly important.
 - Portfolio balance can affect both pieces.
 - Can increase or decrease liquidity premium.
 - May reduce option premium.

- For MBS specific components, important that the Fed purchase MBS as opposed to Treasuries.
Empirical Approach

- Break Swap_t into expectations hypothesis piece and term premium piece.

 $$\text{Swap}_t = E[\text{ShortRate}_{t\rightarrow T}] + \text{TermPremium}_t$$

 - Signaling affects expectations hypothesis piece.
 - Portfolio balance affects term premium piece.
 - Recruitment channel links the two pieces.

- If Treasury and MBS markets are integrated, purchasing either MBS or Treasuries should affect term premium.

- Basic empirical approach is to count all variation in MBSYield_t that can be ascribed to Swap_t as signaling.

 - This is conservative: Swap_t contains term premium, which portfolio balance may reduce if markets are integrated.
Empirical Approach

- Why do Treasury purchases have a larger effect than MBS purchases?
 - In my formulation, need partial segmentation between Treasury/MBS/swap markets to have any effect at all.

- Should the coefficient on the swap yield be constrained to be 1?
 - Obtain coefficients very close to 1 if you use Bloomberg data.
 - But this may be model driven.

- Could the denominator of *FedShare* be driving things?
 - Purchases are very predictable.
 - *FedShare* is relatively low when MBS issuance is high → typical downward sloping demand story says that MBS yields should be high.
 - This is not inconsistent with portfolio balance.
Portfolio Balance vs. Slow-Moving Capital

- We think that market segmentation is not permanent.
 - Capital may move slowly, but it moves eventually.
 - In fact, transmission to corporate debt markets may require portfolio rebalancing away from MBS/Treasuries.

- This suggests that portfolio balance effects may weaken over time.
 - Event studies may be overstating long-term effects of QE announcements.

- The authors could look at this with their empirical setup.

\[MBSYield_t = \alpha + \beta_1 \cdot Swap_t + \beta_2 \cdot YieldSpread_t + \beta_3 \cdot FedShare_t + \beta_4 \cdot T_t + \beta_5 \cdot FedShare_t \times T_t + \varepsilon_t \]

where \(T_t \) is the time since the last QE announcement.
Transmission to Mortgage Rates

- We are ultimately interested in rates available to borrowers, not prices in secondary markets.
- In mortgage markets, originators (banks) are an important layer of intermediation between borrowers and markets.
- Some evidence that market power in this layer affects transmission to borrowers (Scharfstein and Sunderam, 2013).
- Authors look at this, running

\[
MortgageRate_t = \alpha + \beta_1 \cdot MBSYield_t + \beta_2 \cdot Capacity_t + \varepsilon_t
\]

where *Capacity* is the ratio of refinancings to employees.

- Don’t find much evidence that capacity matters.
What is the Null? A Simple Model

- Think of MBS yield r as an input cost for mortgage originators.
- Capacity utilization as measured will be highly correlated with quantities.
 - So the specification is a bit like running prices on quantities and costs.
- What would this yield in a simple Cournot competition model with N firms competing?
- Suppose demand is given by $P(Q) = \varepsilon_D - bQ$.
- Firms solve $\max_q P(Q)q - rq$
- Assume ε_D and r are stochastic and independent with standard deviations σ_D and σ_r respectively.
What is the Null? A Simple Model

- In the symmetric equilibrium we have
 \[Q^* = \frac{\varepsilon_D - r}{b} \frac{N}{N+1}, \quad P^* = \frac{\varepsilon_D + rN}{N+1} \]

- Competition/capacity \(N \) affects transmission of MBS yields into prices and sensitivity of quantities to MBS yields:
 \[
 \frac{\partial P^*}{\partial r} = \frac{N}{N+1}, \quad \frac{\partial Q^*}{\partial r} = -\frac{1}{b} \frac{N}{N+1}
 \]

- Regressing \(P^* \) on \(r \) and \(Q^* \) yields
 \[
 \hat{\beta} = \begin{bmatrix}
 \sigma_r^2 & \text{Cov}(Q^*, r) \\
 \text{Cov}(Q^*, r) & \text{Var}(Q^*)
 \end{bmatrix}^{-1}
 \begin{bmatrix}
 \text{Cov}(P^*, r) \\
 \text{Cov}(Q^*, r)
 \end{bmatrix}
 \]

 \[
 = \begin{bmatrix}
 1 \\
 b \frac{N+1}{N}
 \end{bmatrix}
 \]
A Different Take on Pass-through

\[\Delta Rate_{i,t} = \alpha + \beta_1 \cdot \Delta MBS \text{ Yield}_t + \beta_2 \cdot \text{Top 4}_{i,t-1} + \beta_3 \cdot \Delta MBS \text{ Yield}_t \times \text{Top 4}_{i,t-1} + \epsilon_{i,t} \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{ MBS Yield}_t)</td>
<td>0.679</td>
<td>0.655</td>
</tr>
<tr>
<td></td>
<td>[7.90]</td>
<td>[7.28]</td>
</tr>
<tr>
<td>(\Delta \text{ MBS Yield}t \times \text{Top4}{t-1})</td>
<td>-0.626</td>
<td>-0.564</td>
</tr>
<tr>
<td></td>
<td>[-2.77]</td>
<td>[-2.39]</td>
</tr>
<tr>
<td>((\Delta \text{ MBS Yield}))(^+)</td>
<td>0.601</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.90]</td>
<td></td>
</tr>
<tr>
<td>((\Delta \text{ MBS Yield}))(^-)</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.84]</td>
<td></td>
</tr>
<tr>
<td>((\Delta \text{ MBS Yield}))(^+) \times \text{Top4}_{t-1}</td>
<td>-0.312</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.74]</td>
<td></td>
</tr>
<tr>
<td>((\Delta \text{ MBS Yield}))(^-) \times \text{Top4}_{t-1}</td>
<td>-0.916</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.78]</td>
<td></td>
</tr>
<tr>
<td>\text{Top 4}_{t-1}</td>
<td>-0.057</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>[-0.94]</td>
<td>[-0.04]</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.318</td>
<td>0.317</td>
</tr>
<tr>
<td>(N)</td>
<td>38068</td>
<td>38068</td>
</tr>
<tr>
<td>County FE</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
Minor Comments

- Newey-West standard errors for regressions in levels.
 - Reduces the t-statistics quite a bit in my data, though everything is still significant.

- GSE holdings of MBS.
 - Whether you want to count these as held by the private market or not depends on how much the GSEs are hedging the interest rate/prepayment risk.
 - I was under the impression they are doing a lot of hedging and so the private market is bearing that risk.

- Interest rate volatility
 - Seems natural this should affect MBS yields. Add controls?

- Data definitions
Conclusion

- Very interesting paper on an important subject.

- Encourage the authors to flesh out the discussion of the components of the MBS yield that QE is operating on.

- Thanks!