A Model of the Twin Ds: Optimal Default and Devaluation

by Na, Schmitt-Grohe, Uribe and Yue

Discussion by Anastasios Karantounias,
Federal Reserve Bank of Atlanta
December 12, 2014
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

Basic ingredients of the model:
1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.

Connection of the two phenomena:
1. Adverse shocks: Government devalues in order to reduce real wages and increase employment.
2. Adverse shocks: More incentives of the government to default.

Main result: Eaton-Gersovitz allocation (public external debt) equivalent to: allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.

Quantitative study of the joint default and devaluation/capital controls properties. Analyze also pegging.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

- Basic ingredients of the model:
 ① Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.

Connection of the two phenomena:
- Adverse shocks: Government devalues in order to reduce real wages and increase employment.
- Adverse shocks: More incentives of the government to default.

Main result: Eaton-Gersovitz allocation (public external debt) equivalent to allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.

Quantitative study of the joint default and devaluation/capital controls properties. Analyze also pegging.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.
- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.
- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz \Rightarrow default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) \Rightarrow give a motive for devaluation in order to achieve full employment.

Connection of the two phenomena:

- Adverse shocks: Government devalues in order to reduce real wages and increase employment.
- Adverse shocks: More incentives of the government to default.

Main result: Eaton-Gersovitz allocation (public external debt) equivalent to allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.

Quantitative study of the joint default and devaluation/capital controls properties. Analyze also pegging.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.

- Connection of the two phenomena:
 1. **Adverse shocks**: Government devalues in order to reduce real wages and increase employment.

- Main result: Eaton-Gersovitz allocation (public external debt) equivalent to allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.

- Quantitative study of the joint default and devaluation/capital controls properties. Analyze also pegging.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.

- Connection of the two phenomena:
 1. Adverse shocks: Government devalues in order to reduce real wages and increase employment.
 2. Adverse shocks: More incentives of the government to default.

- Main result: Eaton-Gersovitz allocation (public external debt) equivalent to allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.
- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.
- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.
- Connection of the two phenomena:
 1. **Adverse shocks**: Government devalues in order to reduce real wages and increase employment.
 2. **Adverse shocks**: More incentives of the government to default.
- **Main result**: Eaton-Gersovitz allocation (public external debt) equivalent to:
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz \Rightarrow default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) \Rightarrow give a motive for devaluation in order to achieve full employment.

- Connection of the two phenomena:
 1. Adverse shocks: Government devalues in order to reduce real wages and increase employment.
 2. Adverse shocks: More incentives of the government to default.

- Main result: Eaton-Gersovitz allocation (public external debt) equivalent to: allocation with decentralized borrowing (private external debt),
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.
- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.
- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.
- Connection of the two phenomena:
 1. Adverse shocks: Government devalues in order to reduce real wages and increase employment.
 2. Adverse shocks: More incentives of the government to default.
- Main result: Eaton-Gersovitz allocation (public external debt) equivalent to: allocation with decentralized borrowing (private external debt), with optimal capital controls and devaluation.
What this paper is doing.

- Study the joint determination of optimal sovereign default and devaluation.

- Going after the Twin D’s of Reinhart (2002): default episodes are typically accompanied with nominal devaluations.

- Basic ingredients of the model:
 1. Limited enforcement of external debt contracts a la Eaton-Gersovitz ⇒ default in equilibrium.
 2. Downward nominal wage rigidity (non-Walrasian element) ⇒ give a motive for devaluation in order to achieve full employment.

- Connection of the two phenomena:
 1. **Adverse shocks**: Government devalues in order to reduce real wages and increase employment.
 2. **Adverse shocks**: More incentives of the government to default.

- **Main result**: Eaton-Gersovitz allocation (public external debt) *equivalent to*: allocation with decentralized borrowing (private external debt), with optimal *capital controls* and *devaluation*.

- Quantitative study of the joint default and devaluation/capital controls properties. Analyze also pegging.
Discussion plan

- Overview of the model.
- Some thoughts about the setup.
- Some questions.
The setup

- Small open economy with tradeables and non-tradeables.
The setup

- Small open economy with tradeables and non-tradeables.
- **Uncertainty**: exogenous stochastic endowment of tradeable goods.
The setup

- Small open economy with tradeables and non-tradeables.

- **Uncertainty**: exogenous stochastic endowment of tradeable goods.

- Agent gets utility from tradable and non-tradable goods. No disutility of labor.
The setup

- Small open economy with tradeables and non-tradeables.
- **Uncertainty**: exogenous stochastic endowment of tradeable goods.
- Agent gets utility from tradable and non-tradable goods. No disutility of labor.
- Agent borrows external debt (provides one unit of $ for each state of the world). Agent does not default on any liability.
The setup

- Small open economy with tradeables and non-tradeables.
- **Uncertainty**: exogenous stochastic endowment of tradeable goods.
- Agent gets utility from tradable and non-tradable goods. No disutility of labor.
- Agent borrows external debt (provides one unit of $ for each state of the world). Agent does not default on any liability.
- Production of non-tradeables with labor from a competitive firm.
The setup

- Small open economy with tradeables and non-tradeables.
- **Uncertainty**: exogenous stochastic endowment of tradeable goods.
- Agent gets utility from tradable and non-tradable goods. No disutility of labor.
- Agent borrows external debt (provides one unit of $ for each state of the world). Agent does not default on any liability.
- Production of non-tradeables with labor from a competitive firm.
- Labor markets do not clear due an ad hoc downward wage rigidity.
The setup

- Small open economy with tradeables and non-tradeables.

- **Uncertainty**: exogenous stochastic endowment of tradeable goods.

- Agent gets utility from tradable and non-tradable goods. No disutility of labor.

- Agent borrows external debt (provides one unit of $ for each state of the world). Agent does not default on any liability.

- Production of non-tradeables with labor from a competitive firm.

- Labor markets do not clear due an ad hoc downward wage rigidity.

- **Government**: Taxes holdings of external debt, chooses exchange rate policy, provides transfers and decides each period to honor or not the private agent’s liability.
Agent

- Utility of agent: $E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c_t^T, c_t^N)$
Agent

- Utility of agent: $E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c_t^T, c_t^N)$
- Budget constraint:

$$P_t^T c_t^T + P_t^N c_t^N + \mathcal{E}_t d_t = P_t^T y_t + W_t h_t + (1 - \tau^d_t) q_t^d \mathcal{E}_t d_{t+1} + \mathcal{E}_t f + \Phi_t$$
Agent

- Utility of agent: \(E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c_T^t, c_N^t) \)
- Budget constraint:

\[
P_T^T c_T^t + P_N^N c_N^t + \mathcal{E}_t d_t = P_T^T y_T^t + W_t h_t + (1 - \tau^d_t) q_t^d \mathcal{E}_t d_{t+1} + \mathcal{E}_t f_t + \Phi_t
\]

- Endowment of time \(h_t \leq \bar{h} \).
Agent

- Utility of agent: \(E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c^T_t, c^N_t) \)
- Budget constraint:

\[
P^T_t c^T_t + P^N_t c^N_t + \varepsilon_t d_t = P^T_t y^T_t + W_t h_t + (1 - \tau^d_t) q^d_t \varepsilon_t d_{t+1} + \varepsilon_t f_t + \Phi_t
\]

- Endowment of time \(h_t \leq \bar{h} \).
- Demand for non-tradables:

\[
\frac{A_2(c^T_t, c^N_t)}{A_1(c^T_t, c^N_t)} = p_t, \quad p_t \equiv \frac{P^N_t}{P^T_t}
\]
Agent

- Utility of agent: \(E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c_t^T, c_t^N) \)
- Budget constraint:

\[
P_T^T c_t^T + P_N^T c_t^N + \mathcal{E}_t d_t = P_T^T y_T^T + W_t h_t + (1 - \tau_t^d) q_t^d \mathcal{E}_t d_{t+1} + \mathcal{E}_t f_t + \Phi_t
\]

- Endowment of time \(h_t \leq \bar{h} \).
- Demand for non-tradables:

\[
\frac{A_2(c_t^T, c_t^N)}{A_1(c_t^T, c_t^N)} = p_t, \quad p_t \equiv \frac{P_N^t}{P_T^t}
\]

- Law of one price: \(P_T^T = \mathcal{E}_t P_T^{T*} = \mathcal{E}_t \).
- Devaluation of \(\mathcal{E}_t \equiv \) inflation rate in tradables.
Agent

- Utility of agent: \(E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), c_t = A(c_t^T, c_t^N) \)

- Budget constraint:

\[
P_t^T c_t^T + P_t^N c_t^N + \varepsilon_t d_t = P_t^T y_t^T + W_t h_t + (1 - \tau_d^d) q_t^d \varepsilon_t d_{t+1} + \varepsilon_t f_t + \Phi_t
\]

- Endowment of time \(h_t \leq \bar{h} \).

- Demand for non-tradables:

\[
\frac{A_2(c_t^T, c_t^N)}{A_1(c_t^T, c_t^N)} = p_t, \quad p_t \equiv P_t^N / P_t^T
\]

- Law of one price: \(P_t^T = \varepsilon_t P_t^{T*} = \varepsilon_t \).

- Devaluation of \(\varepsilon_t \equiv \) inflation rate in tradables.

- Debt holdings:

\[
(1 - \tau_d^d) q_t^d = \beta E_t \frac{U'(c_{t+1}) A_{1,t+1}}{U'(c_t) A_{1t}}
\]
Firms and downward wage rigidity

- Demand for labor for production of non-tradeables

\[F'(h_t) = \frac{w_t}{p_t} \]
Firms and downward wage rigidity

- Demand for labor for production of non-tradeables

\[F'(h_t) = \frac{w_t}{p_t} \]

- Downward wage rigidity:

\[W_t \geq \gamma W_{t-1} \]
Firms and downward wage rigidity

- Demand for labor for production of non-tradeables

\[F'(h_t) = \frac{w_t}{p_t} \]

- Downward wage rigidity:

\[W_t \geq \gamma W_{t-1} \Rightarrow w_t \geq \gamma \frac{w_{t-1}}{\epsilon_t}, \quad \epsilon_t \equiv \frac{E_t}{E_{t-1}} \]
Firms and downward wage rigidity

- Demand for labor for production of non-tradeables

\[F'(h_t) = \frac{w_t}{p_t} \]

- Downward wage rigidity:

\[W_t \geq \gamma W_{t-1} \Rightarrow w_t \geq \gamma \frac{w_{t-1}}{\epsilon_t}, \quad \epsilon_t = \frac{E_t}{E_{t-1}} \]

- Labor market equilibrium

\[(h_t - \bar{h})(w_t - \gamma \frac{w_{t-1}}{\epsilon_t}) = 0 \]

- If unemployment \(h_t < \bar{h} \Rightarrow \) wages do not adjust enough downwards, \(W_t = \gamma W_{t-1}. \) If \(W_t > \gamma W_{t-1} \Rightarrow h_t = \bar{h}. \)
Firms and downward wage rigidity

- Demand for labor for production of non-tradeables

\[F'(h_t) = \frac{w_t}{p_t} \]

- Downward wage rigidity:

\[W_t \geq \gamma W_{t-1} \Rightarrow w_t \geq \gamma \frac{w_{t-1}}{\epsilon_t}, \quad \epsilon_t \equiv \frac{E_t}{E_{t-1}} \]

- Labor market equilibrium

\[(h_t - \bar{h})(w_t - \gamma \frac{w_{t-1}}{\epsilon_t}) = 0 \]

- If unemployment \(h_t < \bar{h} \Rightarrow \) wages do not adjust enough downwards, \(W_t = \gamma W_{t-1} \). If \(W_t > \gamma W_{t-1} \Rightarrow h_t = \bar{h} \).

- Due to the nominal rigidity, real wage can be above the full-employment real wage, \(F'(\bar{h}) \).
Government

- Does not issue debt. Taxes debt holdings of the household and rebates them lump-sum.
Government

- Does not issue debt. Taxes debt holdings of the household and rebates them lump-sum.

- Government though decides to default \(I_t = 0 \) or not on the agent’s debt. If default, setup like Arellano: output losses in terms of tradeables and stochastic exclusion from markets.

\[q_t = \text{Prob}(\text{repayment at } t+1) \]
Government

- Does not issue debt. Taxes debt holdings of the household and rebates them lump-sum.

- Government though decides to default \((I_t = 0)\) or not on the agent’s debt. If default, setup like Arellano: output losses in terms of tradeables and stochastic exclusion from markets.

- **How?** *Confiscates* the payments to the foreign lender and rebates them lump-sum to the agent.

\[
q_t = \text{Prob}(\text{repayment at } t+1) \quad 1 + r^*
\]
Government

- Does not issue debt. Taxes debt holdings of the household and rebates them lump-sum.

- Government though decides to default \((I_t = 0)\) or not on the agent’s debt. If default, setup like Arellano: output losses in terms of tradeables and stochastic exclusion from markets.

- How? *Confiscates* the payments to the foreign lender and rebates them lump-sum to the agent.

- Foreign lender: prices the default risk.

\[
q_t = \frac{\text{Prob}_t(\text{repayment at } t + 1)}{1 + r^*}
\]
Competitive equilibrium

- Given policy \(\{\tau^d_t, \epsilon_t, I_t\}_{t=0}^{\infty} \): a price system \(\{p_t, w_t, q_t\} \) and an allocation \(\{c^T_t, c^N_t, h_t, d_{t+1}\} \) such that everybody maximizes and markets clear.
Competitive equilibrium

- Given policy \(\{\tau_t^d, \epsilon_t, I_t\}_{t=0}^\infty \): a price system \(\{p_t, w_t, q_t\} \) and an allocation \(\{c_t^T, c_t^N, h_t, d_{t+1}\} \) such that everybody maximizes and markets clear.

- Resource constraint

\[
c_t^T = y_t^N - (1 - I_t)L(y_t^N) + I_t[q_t d_{t+1} - d_t]
\]
Competitive equilibrium

- Given policy \(\{\tau_t^d, \epsilon_t, I_t\}_{t=0}^\infty \): a price system \(\{p_t, w_t, q_t\} \) and an allocation \(\{c^T_t, c^N_t, h_t, d_{t+1}\} \) such that everybody maximizes and markets clear.

- Resource constraint

\[
c^T_t = y^N_t - (1 - I_t)L(y^N_t) + I_t[q_t d_{t+1} - d_t]
\]

- Optimal policy: choose \(\{\tau_t^d, \epsilon_t, I_t\}_{t=0}^\infty \) to maximize utility of the household subject to conditions of the CE.
Equivalence with Eaton-Gersovitz-Arellano

- Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
 3. Government acts as a monopolist of the security, i.e. takes into account how debt increases default premia.

- Main result: If exchange rate ϵ_t and capital controls $\tau_d t$ can be chosen freely, then
 1. Full employment is optimal $\Rightarrow c_N t = F(\bar{h})$.
 2. Allocation $c_T t, d t + 1$ and default choices same as in Arellano, but accompanied with the proper choice of \{ $\tau_d t, \epsilon_t$ \}.

- A model with centralized external borrowing delivers the same predictions as a model with the decentralized external borrowing, a government that can confiscate external payments as long as the government has free access to exchange rate policy and capital controls.
Equivalence with Eaton-Gersovitz-Arellano

- Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
Equivalence with Eaton-Gersovitz-Arellano

- Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
 3. Government acts as a monopolist of the security, i.e. takes into account how debt increases default premia.
Equivalence with Eaton-Gersovitz-Arellano

• Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
 3. Government acts as a monopolist of the security, i.e. takes into account how debt increases default premia.

• Main result: If exchange rate ϵ_t and capital controls τ^d_t can be chosen freely, then
 1. Full employment is optimal $\Rightarrow c^N_t = F(\tilde{h})$.
Equivalence with Eaton-Gersovitz-Arellano

- Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
 3. Government acts as a monopolist of the security, i.e. takes into account how debt increases default premia.

- Main result: If exchange rate ϵ_t and capital controls τ^d_t can be chosen freely, then
 1. Full employment is optimal $\Rightarrow c^N_t = F(\bar{h})$.
 2. Allocation c^T_t, d_{t+1} and default choices same as in Arellano, but accompanied with the proper choice of $\{\tau^d_t, \epsilon_t\}$.
Equivalence with Eaton-Gersovitz-Arellano

- Eaton-Gersovitz-Arellano:
 1. Government issues public debt that it can default on.
 2. Agents are hand-to-mouth and receive transfers from the government.
 3. Government acts as a monopolist of the security, i.e. takes into account how debt increases default premia.

- Main result: If exchange rate ϵ_t and capital controls τ^d_t can be chosen freely, then
 1. Full employment is optimal $\Rightarrow c^N_t = F(\bar{h})$.
 2. Allocation c^T_t, d_{t+1} and default choices same as in Arellano, but accompanied with the proper choice of $\{\tau^d_t, \epsilon_t\}$.

- A model with centralized external borrowing delivers the same predictions as a model with the decentralized external borrowing, a government that can confiscate external payments as long as the government has free access to exchange rate policy and capital controls.
Why?

- Undo downward wage rigidity by devaluing.
Why?

- Undo downward wage rigidity by devaluing.
- Full-employment real wage

\[w_t^f = \frac{A_2(c_t^T, F(\bar{h}))}{A_1(c_t^T, F(\bar{h}))} F'(\bar{h}) \]
Why?

- Undo downward wage rigidity by devaluing.
- Full-employment real wage

\[w^f_t = \frac{A_2(c^T_t, F(\bar{h}))}{A_1(c^T_t, F(\bar{h}))} F'(\bar{h}) \]

- Optimal devaluation: Any \(\epsilon_t \) such that

\[\epsilon_t \geq \gamma \frac{w^f_{t-1}}{w^f_t} \]
Why?

- Undo downward wage rigidity by devaluing.
- Full-employment real wage

\[w_t^f = \frac{A_2(c_t^T, F(\bar{h}))}{A_1(c_t^T, F(\bar{h}))} F'(\bar{h}) \]

- Optimal devaluation: Any \(\epsilon_t \) such that

\[\epsilon_t \geq \gamma \frac{w_{t-1}^f}{w_t^f} \]

- Focus on \(\epsilon_t = \frac{w_{t-1}^f}{w_t^f} \Rightarrow \) keep the nominal wage constant.
Why?

- Undo downward wage rigidity by devaluing.
- Full-employment real wage

\[w^f_t = \frac{A_2(c^T_t, F(\bar{h}))}{A_1(c^T_t, F(\bar{h}))} F'(\bar{h}) \]

- Optimal devaluation: Any \(\epsilon_t \) such that

\[\epsilon_t \geq \gamma \frac{w^f_{t-1}}{w^f_t} \]

- Focus on \(\epsilon_t = \frac{w^f_{t-1}}{w^f_t} \Rightarrow \) keep the nominal wage constant.

- Choose capital controls as a residual:

\[1 - \tau^d_t = \beta (1 + r^*) \frac{E_t \frac{U_{T,t+1}}{U_{T,t}}}{\text{Prob}_t(\text{repayment})} \]
The private agent does not take into account that the government can confiscate external payments and default on his debt.
The private agent *does not take into account* that the government can confiscate external payments and default on his debt.

The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau^d_t, \epsilon_t\} \).

This is reflected in his Euler equation. This is justified only if private agent takes as given total transfers \(\{f_t\} \) and \(\{\tau^d_t, \epsilon_t\} \) and if the private agent does not realize that \(q^d_t = q^d_t \).

If the agent took into account \(\{I_t\} \) and that \(q^d_t = q^d_t \) (one market instead of two), then the Euler equation would be

\[
(1 - \tau^d_t) q^d_t = \beta E_t I_{t+1} + U^T_{t+1} + U^T_{t+1}.
\]

Same equivalence would hold but different capital controls.

Is it possible to interpret the current setup as private agents borrowing from the government (at \(q^d_t \)) and government borrowing from abroad?
Question/Comment

- The private agent *does not take into account* that the government can confiscate external payments and default on his debt.

- The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau^d_t, \epsilon_t\}\).

- This is reflected in his Euler equation.
• The private agent does not take into account that the government can confiscate external payments and default on his debt.

• The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau^d_t, \epsilon_t\} \).

• This is reflected in his Euler equation.

• This is justified only if private agent takes as given total transfers \(\{f_t\} \) and \(\{\tau^d_t, \epsilon_t\} \) and if the private agent does not realize that \(q_t^d = q_t \).

• Is it possible to interpret the current setup as private agents borrowing from the government (at \(q_t^d \)) and government borrowing from abroad?
The private agent does not take into account that the government can confiscate external payments and default on his debt.

The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau_t^d, \epsilon_t\} \).

This is reflected in his Euler equation.

This is justified only if private agent takes as given total transfers \(\{f_t\} \) and \(\{\tau_t^d, \epsilon_t\} \) and if the private agent does not realize that \(q_t^d = q_t \).

If the agent took into account \(\{I_t\} \) and that \(q_t = q_t^d \) (one market instead of two), then the Euler equation would be

\[
(1 - \tau_t^d)q_t = \beta E_t I_{t+1} \frac{U_{T,t+1}}{U_{T,t}}
\]
The private agent does not take into account that the government can confiscate external payments and default on his debt.

The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau_t^d, \epsilon_t\} \).

This is reflected in his Euler equation.

This is justified only if private agent takes as given total transfers \(\{f_t\} \) and \(\{\tau_t^d, \epsilon_t\} \) and if the private agent does not realize that \(q_t^d = q_t \).

If the agent took into account \(\{I_t\} \) and that \(q_t = q_t^d \) (one market instead of two), then the Euler equation would be

\[
(1 - \tau_t^d)q_t = \beta E_t I_{t+1} \frac{U_{T,t+1}}{U_{T,t}}
\]

Same equivalence would hold but different capital controls.
The private agent does not take into account that the government can confiscate external payments and default on his debt.

The private agent is ignorant of the government policy sequence of \(\{I_t\}_{t=0}^{\infty} \) but not of \(\{\tau^d_t, \epsilon_t\} \).

This is reflected in his Euler equation.

This is justified only if private agent takes as given total transfers \(\{f_t\} \) and \(\{\tau^d_t, \epsilon_t\} \) and if the private agent does not realize that \(q^d_t = q_t \).

If the agent took into account \(\{I_t\} \) and that \(q_t = q^d_t \) (one market instead of two), then the Euler equation would be

\[
(1 - \tau^d_t)q_t = \beta E_t I_{t+1} \frac{U_{T,t+1}}{U_{T,t}}
\]

Same equivalence would hold but different capital controls.

Is it possible to interpret the current setup as private agents borrowing from the government (at \(q^d_t \)) and government borrowing from abroad?
Mechanism for Twin D’s

- Assume that $c_t^T \downarrow \Rightarrow$ demand for $c_t^N \downarrow \Rightarrow$ price p_t falls $\Rightarrow w_t/p_t \uparrow \Rightarrow$ demand for labor falls. To restore full employment need to reduce w_t by devaluing.

- Thus, “bad” shocks like bad endowment shocks \Rightarrow lead to devaluation \Rightarrow to restore full employment.

- Given a level of debt d, bad endowment shocks are more probable to lead to default.

- Devaluation + Default.
Mechanism for Twin D’s

- Assume that $c_t^T \downarrow \Rightarrow$ demand for $c_t^N \downarrow \Rightarrow$ price p_t falls $\Rightarrow w_t/p_t \uparrow \Rightarrow$ demand for labor falls. To restore full employment need to reduce w_t by devaluing.

- Thus, “bad” shocks like bad endowment shocks y_t^T lead to devaluation to restore full employment.
Mechanism for Twin D’s

• Assume that $c^T_t \downarrow \Rightarrow$ demand for $c^N_t \downarrow \Rightarrow$ price p_t falls $\Rightarrow w_t/p_t \uparrow \Rightarrow$ demand for labor falls. To restore full employment need to reduce w_t by devaluing.

• Thus, “bad” shocks like bad endowment shocks y^T_t lead to devaluation to restore full employment.

• Given a level of debt d, bad endowment shocks are more probable to lead to default.
Mechanism for Twin D’s

- Assume that $c_t^T \downarrow \Rightarrow \text{demand for } c_t^N \downarrow \Rightarrow \text{price } p_t \text{ falls } \Rightarrow \frac{w_t}{p_t} \uparrow \Rightarrow \text{demand for labor falls. To restore full employment need to reduce } w_t \text{ by devaluing.}$

- Thus, “bad” shocks like bad endowment shocks y_t^T lead to devaluation to restore full employment.

- Given a level of debt d, bad endowment shocks are more probable to lead to default.

- Devaluation + Default.
Pegging

- Assume $\epsilon_t = 1$ and *no other fiscal instrument except for the capital controls.*
Pegging

- Assume $\epsilon_t = 1$ and no other fiscal instrument except for the capital controls.
- Government has to take into account past wages. Default decision depends on (d, w_-, y).

\[
V_r(d, w_-, y) = \max_c \max_h \max_{d'} w U(A(c, F(h))) + \beta E_y |y V_r(d', w, y') \]

subject to
\[
c + d = y + q(d', w, y')
\]
\[
d' w = A_2(c, F(h)) A_1(c, F(h)) F'(h) \]
\[w \geq \gamma w - h \leq \bar{h}
\]
Pegging

- Assume $\epsilon_t = 1$ and *no other fiscal instrument except for the capital controls*.

- Government has to take into account past wages. Default decision depends on (d, w_-, y).

- Value of repayment

\[V^r(d, w_-, y) = \max_{c, h, d', w} U(A(c, F(h))) + \beta E_{y' \mid y} V(d', w, y') \]

subject to

\[
\begin{align*}
 c + d &= y + q(d', w, y)d' \\
 w &= \frac{A_2(c, F(h))}{A_1(c, F(h))} F'(h) \\
 w &\geq \gamma w_- \\
 h &\leq \bar{h}
\end{align*}
\]
Comparison of debt choice

- With optimal devaluation

\[u'(A)A_1(c, F(h)) \left[\frac{\partial q(d', y)}{\partial d'} d' + q(d', y) \right] = -\beta \frac{\partial}{\partial d'} E_{y'|y} V(d', y') \]

\[MR_{\text{optimal}} = -\beta \frac{\partial}{\partial d'} E_{y'|y} V(d', y') \]

- With pegging

\[\left[u'(A)A_1(c, F(h)) \right] + \mu F'(h) \frac{\partial A_2}{\partial c} \]

\[MR_{\text{pegging}} = -\beta \frac{\partial}{\partial d'} E_{y'|y} V(d', y') \]

- When constrained, one unit of tradeable consumption allows to increase the wage and relax the constraint.

- Additional marginal benefit of borrowing if \(MR_{\text{optimal}} = MR_{\text{pegging}} \).
Comparison of debt choice

- With optimal devaluation

\[
\begin{align*}
u'(A)A_1(c, F(h))[\frac{\partial q(d', y)}{\partial d'}d' + q(d', y)] &= -\beta \frac{\partial}{\partial d'} E_{y' | y} V(d', y') \\
\text{MR}_{\text{optimal}}
\end{align*}
\]

- With pegging

\[
\begin{align*}
[u'(A)A_1(c, F(h)) + \mu F'(h) \frac{\partial A_2/A_1}{\partial c}] \times M_{R_{\text{pegging}}} &= -\beta \frac{\partial}{\partial d'} E_{y' | y} V(d', w, y') \\
\end{align*}
\]
Comparison of debt choice

- With optimal devaluation

\[
u'(A)A_1(c, F(h))[\frac{\partial q(d', y)}{\partial d'} d' + q(d', y)] = -\beta \frac{\partial}{\partial d'} E_{y'|y} V(d', y')
\]

- With pegging

\[
[u'(A)A_1(c, F(h)) + \mu F'(h) \frac{\partial A_2/A_1}{\partial c}] \times MR_{pegging} = -\beta \frac{\partial}{\partial d'} E_{y'|y} V(d', w, y')
\]

- When constrained, one unit of tradeable consumption allows to increase the wage and relax the constraint.
Comparison of debt choice

- With optimal devaluation

\[
u'(A)A_1(c, F(h)) \left[\frac{\partial q(d', y)}{\partial d'} d' + q(d', y) \right] = -\beta \frac{\partial}{\partial d'} E_y' | y V(d', y')
\]

\[\text{MR}_{\text{optimal}}\]

- With pegging

\[
\left[u'(A)A_1(c, F(h)) + \mu F'(h) \frac{\partial A_2/A_1}{\partial c} \right] \times \text{MR}_{\text{pegging}} = -\beta \frac{\partial}{\partial d'} E_y' | y V(d', w, y')
\]

\[\text{MR}_{\text{pegging}}\]

- When constrained, one unit of tradeable consumption allows to increase the wage and relax the constraint.

- Additional marginal benefit of borrowing if \(\text{MR}_{\text{optimal}} = \text{MR}_{\text{pegging}}\).
Questions

• Find quantitatively that less debt can be sustained in equilibrium with pegging.
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.

- Default and repayment regions under pegging? How do they compare to the standard Eaton-Gersovitz case?
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.

- Default and repayment regions under pegging? How do they compare to the standard Eaton-Gersovitz case?

- Arellano: lower endowment shock \Rightarrow more incentives to default given the same amount of debt.
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.

- Default and repayment regions under pegging? How do they compare to the standard Eaton-Gersovitz case?

- Arellano: lower endowment shock \Rightarrow more incentives to default given the same amount of debt.

- With pegging? Given the same endowment shock and past wages, what is the amount of debt for which there is indifference between defaulting and repaying?
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.

- Default and repayment regions under pegging? How do they compare to the standard Eaton-Gersovitz case?

- **Arellano**: lower endowment shock \Rightarrow more incentives to default given the same amount of debt.

- With pegging? Given the same endowment shock and past wages, what is the amount of debt for which there is indifference between defaulting and repaying?

- Steepness of the price schedule/MR from debt issuance?
Questions

- Find quantitatively that less debt can be sustained in equilibrium with pegging.

- To understand better need to see the policy functions for debt in the two regimes.

- Default and repayment regions under pegging? How do they compare to the standard Eaton-Gersovitz case?

- Arellano: lower endowment shock ⇒ more incentives to default given the same amount of debt.

- With pegging? Given the same endowment shock and past wages, what is the amount of debt for which there is indifference between defaulting and repaying?

- Steepness of the price schedule/MR from debt issuance?

- Play around with the intertemporal and intratemporal substitutability in order to see how default/repayment regions change. For the current exercise marginal utility of tradeables does not depend on labor.
Optimal firm subsidies and currency pegging

- Subsidize purchases of labor by firms. Finance firm-subsidy by lump-sum taxes on consumer.

- After-subsidy wage: \((1 - \kappa)W\).

- Profits:

\[
\Pi_t = P_t^N F(h_t) - (1 - \kappa_t)W_t h_t \Rightarrow F'(h_t) = (1 - \kappa_t) \frac{W_t}{P_t^N} = (1 - \kappa_t) \frac{w_t}{p_t}
\]

- Even with currency pegging can achieve the full-employment wage by choosing properly \(\kappa_t\).
Optimal firm subsidies and currency pegging

- Subsidize purchases of labor by firms. Finance firm-subsidy by lump-sum taxes on consumer.
- After-subsidy wage: \((1 - \kappa)W\).
- Profits:

\[
\Pi_t = P_t^N F(h_t) - (1 - \kappa_t)W_t h_t \Rightarrow F'(h_t) = (1 - \kappa_t) \frac{W_t}{P_t^N} = (1 - \kappa_t) \frac{w_t}{p_t}
\]

- Even with currency pegging can achieve the full-employment wage by choosing properly \(\kappa_t\).
- Subsidize firms when there are bad endowment shocks in order to reduce the wage they are facing and increase employment.

\(\{\tau_d t, \kappa_t\}\) induced by the optimal default allocation.
Optimal firm subsidies and currency pegging

• Subsidize purchases of labor by firms. Finance firm-subsidy by lump-sum taxes on consumer.

• After-subsidy wage: \((1 - \kappa)W\).

• Profits:

\[\Pi_t = P_t^N F(h_t) - (1 - \kappa_t)W_t h_t \Rightarrow F'(h_t) = (1 - \kappa_t)\frac{W_t}{P_t^N} = (1 - \kappa_t)\frac{w_t}{p_t}\]

• Even with currency pegging can achieve the full-employment wage by choosing properly \(\kappa_t\).

• Subsidize firms when there are bad endowment shocks in order to reduce the wage they are facing and increase employment.

• \(\Rightarrow\) Equivalence of Eaton-Gersovitz-Arellano with a model with private external debt, optimal capital controls and optimal firm subsidies.
Optimal firm subsidies and currency pegging

- Subsidize purchases of labor by firms. Finance firm-subsidy by lump-sum taxes on consumer.

- After-subsidy wage: $(1 - \kappa)W$.

- Profits:

$$\Pi_t = P^N_t F(h_t) - (1 - \kappa_t)W_th_t \Rightarrow F'(h_t) = (1 - \kappa_t)\frac{W_t}{P^N_t} = (1 - \kappa_t)\frac{w_t}{p_t}$$

- Even with currency pegging can achieve the full-employment wage by choosing properly κ_t.

- Subsidize firms when there are bad endowment shocks in order to reduce the wage they are facing and increase employment.

- \Rightarrow Equivalence of Eaton-Gersovitz-Arellano with a model with private external debt, optimal capital controls and optimal firm subsidies.

- Schmitt-Grohe and Uribe (2013) have also considered this firm subsidy.
Optimal firm subsidies and currency pegging

- Subsidize purchases of labor by firms. Finance firm-subsidy by lump-sum taxes on consumer.
- After-subsidy wage: \((1 - \kappa)W\).
- Profits:

\[
\Pi_t = P_t^N F(h_t) - (1 - \kappa_t)W_t h_t \Rightarrow F'(h_t) = (1 - \kappa_t) \frac{W_t}{P_t^N} = (1 - \kappa_t) \frac{w_t}{p_t}
\]

- Even with currency pegging can achieve the full-employment wage by choosing properly \(\kappa_t\).
- Subsidize firms when there are bad endowment shocks in order to reduce the wage they are facing and increase employment.
- \(\Rightarrow\) Equivalence of Eaton-Gersovitz-Arellano with a model with private external debt, optimal capital controls and optimal firm subsidies.
- Schmitt-Grohe and Uribe (2013) have also considered this firm subsidy.
- Would be interesting to see \(\{\tau_t^d, \kappa_t\}\) induced by the optimal default allocation.