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Abstract

High interest rate currencies tend to appreciate. This is the uncovered interest rate parity
(UIP) puzzle. It is primarily a statement about short-term interest rates and how they
are related to exchange rates. Short-term interest rates are strongly affected by monetary
policy. The UIP puzzle, therefore, can be restated in terms of monetary policy. When
one country has a high interest rate policy relative to another, why does its currency tend to
appreciate? We represent monetary policy as foreign and domestic Taylor rules. Foreign and
domestic pricing kernels determine the relationship between these Taylor rules and exchange
rates. We examine different specifications for the Taylor rule and ask which can resolve the
UIP puzzle. We find evidence in favor of asymmetries. A foreign Taylor rule that is more
procyclical than its domestic counterpart, generates a positive excess expected return on
foreign currency. If foreign policy reacts relatively passively to inflation, the same is true.
The combination of a weak inflation policy and a strong employment policy makes for a
risky currency. This is broadly consistent with empirical evidence on ‘carry trade’ funding
and recipient currencies. When we calibrate our model to a particular currency pair — the
United States and Australia — we find that our model is consistent with many empirical
characteristics of real and nominal exchange rates, including the negative correlation between
interest rate differentials and currency depreciation rates.
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1 Introduction

Uncovered interest rate parity (UIP) predicts that high interest rate currencies will depreciate
relative to low interest rate currencies. Yet for many currency pairs and time periods we seem
to see the opposite (Bilson (1981), Fama (1984), Tryon (1979)). The inability of asset-pricing
models to reproduce this fact is what we refer to as the UIP puzzle.

The UIP evidence is primarily about short-term interest rates and currency depreciation
rates. Monetary policy exerts substantial influence over short-term interest rates. Therefore,
the UIP puzzle can be restated in terms of monetary policy: Why do countries with high
interest rate policies have currencies that tend to appreciate relative to those with low interest
rate policies?

The risk-premium interpretation of the UIP puzzle asserts that high interest rate curren-
cies pay positive risk premiums. The question, therefore, can also be phrased in terms of
currency risk: When a country pursues a relatively high-interest rate monetary policy, why
does this make its currency risky? For example, when the Fed sharply lowered rates in 2001
and the ECB did not, why did the euro become relatively risky? When the Fed sharply
reversed course in 2005, why did the dollar become the relatively risky currency? This paper
formulates a model of interest rate policy and exchange rates that can potentially answer
these questions.

To understand what we do it’s useful to understand previous work on monetary policy and
the UIP puzzle.1 Most models are built upon the basic Lucas (1982) model of international
asset pricing. The key equation in Lucas’ model is

m∗t+1

mt+1

≡
n∗t+1e

−π∗t+1

nt+1e−πt+1
=
St+1

St
(1)

where St denotes the nominal exchange rate (price of foreign currency in units of domestic),
nt denotes the intertemporal marginal rate of substitution of the domestic representative
agent, πt is the domestic inflation rate, mt ≡ nt exp(−πt) is the nominal marginal rate of
substitution, and asterisks denote foreign-country variables. Equation (1) holds by virtue
of complete financial markets. It characterizes the basic relationship between interest rates,
nominal exchange rates, real exchange rates, preferences and consumption.

Previous work has typically incorporated monetary policy into Equation (1) via an ex-
plicit model of money. Lucas (1982), for example, uses cash-in-advance constraints to
map Markov processes for foreign and domestic money supplies into the inflation term,
exp(πt − π∗t ), and thus into exchange rates. His model, and many that have followed it,
performs poorly in accounting for data. This is primarily a reflection of the weak empirical
link between measures of money and exchange rates.

1Examples are Alvarez, Atkeson, and Kehoe (2009), Backus, Gregory, and Telmer (1993), Bekaert (1994),
Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Canova and Marrinan (1993), Dutton (1993), Grilli
and Roubini (1992), Macklem (1991), Marshall (1992), McCallum (1994) and Schlagenhauf and Wrase (1995).
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Our approach is also built upon Equation (1). But — like much of the modern theory
and practice of monetary policy — we abandon explicit models of money in favor of interest
rate rules. Following the New Keynesian macroeconomics literature (e.g., Clarida, Gaĺı, and
Gertler (1999)), the policies of the domestic and foreign monetary authorities are represented
by Taylor (1993) rules. The simplest forms we consider are

it = τ + τππt + τxxt (2)

i∗t = τ ∗ + τ ∗ππ
∗
t + τ ∗xx

∗
t (3)

where it is the domestic short-term (nominal) interest rate, xt is consumption growth (analo-
gous to the output gap in a model with nominal frictions), τ , τπ and τx are policy parameters,
and, as above, asterisks represent foreign variables and parameters. Basically, where Lucas
(1982) uses money to describe how monetary policy affects the variables in Equation (1), we
use Taylor rules. An intuitive sketch of how we do so is provided in Section 2, followed by a
formalization in Sections 4 and 5.

We can now state our question more precisely. The variables m∗t and mt in Equation (1)
are called foreign and domestic pricing kernels. A number of papers (e.g., Backus, Foresi, and
Telmer (2001), Lustig, Roussanov, and Verdelhan (2011)) have demonstrated the importance
of asymmetries between foreign and domestic pricing kernels for explaining the UIP puzzle.
Inspection of Equation (1) shows why. Exchange rates are all about differences in pricing
kernels. If there are no differences, then the exchange rate is a constant. Many previous
papers have come up with statistical models of such differences, but far fewer have come
up with economic models. Lustig, Roussanov, and Verdelhan (2011), for example, argue in
favor of asymmetric pricing-kernel parameters (“prices of risk”) loading on global sources of
risk that are common across countries. They present empirical evidence supporting such a
statistical representation. But what is the interpretation of these parameter asymmetries?
Why do certain country’s pricing kernels load on global factors in such a way so as to make
their currencies risky?

Herein lies our basic question. Perhaps the differences in pricing-kernel parameters reflect
differences in monetary policies? That is, if the Fed’s policy is described by [τ τπ τx], and the
ECB’s by [τ ∗ τ ∗π τ

∗
x ], so that the pricing kernels can be written mt(τ, τπ, τx) and m∗t (τ

∗, τ ∗π , τ
∗
x),

then does the exchange rate implied by Equation (1) help us understand the UIP puzzle? If
so, does the model offer economic insights into why high-interest-rate policy countries have
risky currencies? We find in the affirmative on both counts.

Our findings are summarized as follows. We refer to τx < τ ∗x as foreign monetary policy
being relatively procyclical. We refer to τπ > τ ∗π as foreign policy being relatively accommoda-
tive (to inflation). We find that the combination of the two generates a foreign currency that
is risky in that the unconditional expected return to “borrow domestic, lend foreign” is pos-
itive. This also affects the conditional distribution. An appropriately-defined “carry trade”
— “borrow domestic, lend foreign, but only when the foreign interest rate is high enough” —
has a higher Sharpe ratio, the larger are these differences in policy parameters. We demon-
strate these results both analytically and quantitatively. We argue that they are broadly
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consistent with the salient features of carry-trade recipient and funding countries, and use
Australia-U.S. as a case study in our calibration analysis.

The technical economic intuition goes as follows. First, a procyclical monetary pol-
icy generates a negative correlation between inflation and consumption growth: mone-
tary policy generates inflation risk. This is a fairly general feature of Taylor-rule-implied
inflation. Second, since logmt+1 = log nt+1 − πt+1, this negative correlation generates
Var t(logmt+1) < Var t(log nt+1): monetary policy reduces nominal risk relative to real risk.
Third, an accommodative policy generates high inflation volatility and amplifies this effect.
Fourth, if Var t(logm∗t+1) < Var t(logmt+1) then the foreign currency pays a positive risk
premium. Finally, if the first three items are considered in relative terms (foreign compared
to domestic), then they imply the fourth and the story is concluded.

The plainer-language intuition — necessarily a bit loose — goes as follows. Variation
in exchange rates arises from differences in domestic shocks relative to foreign shocks. The
larger are the former, the larger will be the extent to which domestic shocks and exchange
rate shocks are the same thing. Hence, if U.S. (domestic) shocks are relatively large, then
the U.S. investor views currency as being risky, relative to the Australian (foreign) investor.
The result is that the foreign currency — the Australian dollar — pays a risk premium. This
is a fairly general characteristic of models of currency risk. Now consider monetary policy.
A procyclical policy stabilizes nominal state prices relative to real state prices (i.e., it gener-
ates a negative correlation between inflation and consumption). An accommodative policy
exacerbates this effect by generating larger inflation volatility. Ceteris paribus, if Australian
policy is both procyclical and accommodative, relative to U.S. policy, then Australian nom-
inal state prices will be stable relative to their U.S. counterparts, the USD/AUD nominal
exchange rate will be relatively reflective of U.S. “shocks,” and the AUD will be the risky
currency. End of the story. Note that it is not a story about the relative size of Australian
and U.S. macroeconomic shocks. It is, instead, a story about how differences in monetary
policies can take a given joint distribution of shocks and impart them into nominal exchange
rates in a way that moves us in the direction of some standard carry-trade facts.

We conduct a calibration analysis that shows that this comparative-static story is em-
pirically substantive. The data are from the U.S. and Australia, a typical “carry trade”
country-pair. The Taylor-rule parameters are calibrated to U.S. and Australian inflation
and consumption data, leaving open the implications for nominal interest rates and ex-
change rates. Specifically, the six parameters in Equations (2) and (3) are chosen to match
the mean and standard deviation of the two country’s inflation rates along with the correla-
tions between their consumption growth rates and their inflation rates. The above discussion
highlights why these correlations are pivotal. We find that the solution to this identification
scheme is unique and that it yields parameter estimates that are both economically sensible
and similar to those typically found in the literature. The implications for interest rates and
exchange rates are qualitatively consistent with our paper’s main point. This means that the
calibrated Australian Taylor-rule parameters are both relatively procyclical and relatively
accommodative, and that the model features (i) a realistic mean, volatility and autocorrela-
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tion in the nominal exchange rate, (ii) a negative UIP regression-coefficient, (iii) a positive
unconditional risk premium on the Australian dollar, and (iv) a carry-trade Sharpe ratio
that is indicative of time-variation in conditional risk premiums.

Quantitatively, our model generates risk premia that are far too small. We go on to ask
why by exploring some alternative identification schemes. The first shows that the Taylor
parameters can be identified with exchange rate moments — volatility and the UIP regression
coefficient — instead of the consumption-inflation correlations. This seems interesting in-
and-of-itself. It is supportive of our main point, that monetary policy asymmetries are
important for currency risk. It also improves the model’s quantitative performance by an
order of magnitude, and at very little cost in terms of the consumption-inflation behavior.
We also calibrate the Taylor parameters to match the unconditional currency risk premium
itself. The implied U.S./Australian inflation dynamics are strongly counterfactual, with,
for instance, U.S. inflation volatility being 0.30% compared to 1.9% for Australia (sample
moments are about 0.9% and 1.0%, respectively). Our paper is about how policy differences
are manifest in currency risk. The point here is that U.S. and Australian policies are not
different enough to fit the facts.

Our model features a number of other counterfactual behaviors. Chief among them is
that consumption growth is far too highly correlated across countries (Brandt, Cochrane,
and Santa-Clara (2006)). In the Appendix we develop and calibrate an enhanced model that
uses the two-country long-run risk setup, borrowing from Bansal and Shaliastovich (2013)
and Colacito and Croce (2011). We show that the counterfactual behaviors are diminished
substantially while at the same time leaving our main points in tact and robust. Additional
shortcomings of our model — both quantitative and conceptual — are discussed in Section
2.

The distinction between unconditional and conditional currency risk plays an important
role in our paper. We place much emphasis on the former. The reason is apparent from
looking at Equations (2) and (3). We interpret the Taylor rules as reflecting deep, immutable
policies (more on this below). Cross-country differences in them are primarily reflected in the
model’s unconditional distributions, including the distribution of the risk premium. While
we do show that the model’s conditional distributions are affected — via the effect on the
variability of the pricing kernel — this effect turns out to be relatively small. A better
model of conditional risk might feature some sort of time-variation in the cross-country
policy differences (e.g., regime-switching in the τ parameters). This is beyond the scope
of our study. As to what is more empirically relevant, it is important to acknowledge that
the unconditional risk premium appears to be small or zero for many, but not all, currency
pairs. As we’ve accumulated more time series evidence, the size of the latter set seems
to have grown (c.f., Engel (2011), Hassan (2010) and Lustig, Roussanov, and Verdelhan
(2011)) Prominent among these, no surprise, are the currencies that play an active role in
the carry-trade phenomenon, such as Australia, Japan and New Zealand. Our paper is more
empirically relevant for pairs involving these currencies than it is for, say, dollar/pound.

The remainder of our paper is organized as follows. In Section 2 we provide a relatively
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non-technical overview of our methodology, its strengths and its weaknesses. Section 3
reviews some previous results that are used extensively in Section 4, where we develop
and solve our model. Sections 5 and Section 6 analyze the model analytically and then
quantitatively. Section 7 concludes. Proofs and detailed calculations are relegated to a
series of appendices. In addition, the appendices contain an analysis of some alternative
Taylor rule formulations — incorporating the nominal exchange and lagged interest rates as
in McCallum (1994) and Woodford (2003)) — and a discussion of the sense in which our
setting, with time-varying volatility and exchange rates, overcomes some of the identification
issues that Cochrane (2011) shows are associated with Taylor rules.

2 Overview

Our approach is essentially a two-country version of Gallmeyer, Hollifield, Palomino, and Zin
(2007). It can also be viewed as a version of Bansal and Shaliastovich (2013) with endogenous
inflation. We assume that markets are complete, so that Equation (1) can be viewed in terms
of allocations, not just a change-of-units. The simplest Taylor rule we consider is

it = τ + τππt + τxxt , (4)

where it is the nominal short-term interest rate, πt is the inflation rate, xt is consumption
growth (analogous to the output-gap in a model with nominal frictions), and τ , τπ and τx
are policy parameters. We assume that the private sector can trade bonds. Therefore the
nominal interest rate must also satisfy the standard (nominal) Euler equation,

it = − logEt nt+1e
−πt+1 , (5)

where nt+1 is the real marginal rate of substitution. We specify nt+1 using Epstein and Zin
(1989) preferences and use the Hansen, Heaton, and Li (2008) linearization to express it in
terms of consumption growth, xt, its volatility, ut, and their innovations. Note that, as we
make very clear below, time-varying volatility is not an option for the question of currency
risk. It is a necessity (Backus, Foresi, and Telmer (2001)). The only issue is where it comes
from. In our paper it is an exogenously-specified characteristic of the consumption-growth
process.

An equilibrium inflation rate process must satisfy both of these equations at each point
in time, which requires inflation to solve the nonlinear stochastic difference equation:

πt = − 1

τπ

(
τ + τxxt + logEt nt+1 e

−πt+1
)
. (6)

A solution to Equation (6) is an endogenous inflation process, πt, that is a stationary function
of the model’s state variables, xt and ut: π(xt, ut). By substituting it back into the Euler
equation (5), we arrive at what Gallmeyer, Hollifield, Palomino, and Zin (2007) refer to as
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a ‘monetary policy consistent pricing kernel:’ a (nominal) pricing kernel that depends on
the Taylor-rule parameters τ , τπ and τx. Doing the same for the foreign country, and then
using Equation (1), we arrive at a nominal exchange rate process that also depends on the
Taylor-rule parameters. Equations (1)–(6) (along with specifications for the shocks) fully
characterize the joint distribution of interest rates and exchange rates and, therefore, any
departures from UIP.

We now outline the model’s strengths and limitations. Its main strength is that it delivers
processes for inflation and exchange rates that are jointly determined by the response of the
monetary authority and the private sector to the same underlying shocks. This is a defining
characteristic of New Keynesian macroeconomic models. Its main limitation is that this
dependence only goes one way. Ours is an endowment economy in which consumption is
specified exogenously. The monetary rule responds to consumption shocks, but consumption
outcomes are unaffected by the existence of the monetary rule. We could add “nominal
shocks” to the model — shocks to the Taylor rule are quite common in the literature — but
this property would remain. ‘Monetary policy’ affects only nominal outcomes. There can be
no discussion of whether a given policy is good or bad. We simply rely on empirical support
for the connection between Taylor rules and monetary policy, and the fact that better-
articulated monetary economies often feature interest rate behavior that looks like Taylor
rules. Moreover, since real exchange rates are, in our model, ratios of (real) marginal rates
of substitution, they are also unaffected by monetary policy. Our is a model with realistic
real and nominal exchange rate behavior, but only the latter is a result of the mechanism
we study. The former derives from properties of consumption and Epstein-Zin preferences
and has previously been pointed out by Bansal and Shaliastovich (2013) and Colacito and
Croce (2011).

A second limitation is that we specify consumption to be exogenous for both the foreign
and the domestic country. That is, we specify the consumption processes that underly the
ratio n∗t+1/nt+1 in Equation (1) to match observed consumption data from two countries, but
we are silent on the model of international trade that gives rise to such consumption alloca-
tions. While it is true that, in any equilibrium (with our preferences) that fits the observed
consumption facts, Equation (1) must hold, it is also true that we have nothing to say about
why there is cross-country variation in marginal utility (and thus in real exchange rates).
Bansal and Shaliastovich (2013), Colacito and Croce (2011), Gavazzoni (2008), Verdelhan
(2010) and others follow a similar approach. Hollifield and Uppal (1997), Sercu, Uppal, and
Hulle (1995) and the appendix in Verdelhan (2010) — all building upon Dumas (1992) — are
examples of more fully-articulated complete markets models in which imperfectly-correlated
cross-country consumption is generated by transport costs. Basically, our approach is to
these models what Hansen and Singleton’s (1983) first-order-condition-based approach was
to Mehra and Prescott’s (1985) general equilibrium model.
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3 Pricing Kernels and Currency Risk Premiums

We begin with a terse treatment of existing results in order to fix notation. The level of
the spot and one-period forward exchange rates, in units of U.S. dollars (USD) per unit of
foreign currency (say, British pounds, GBP), are denoted St and Ft. Logarithms are st and
ft. USD and GBP one-period interest rates (continuously compounded) are denoted it and
i∗t . Covered interest parity implies that ft− st = it− i∗t . Fama’s (1984) decomposition of the
interest rate differential (forward premium) is

it − i∗t = ft − st =
(
ft − Etst+1

)
+
(
Etst+1 − st

)
≡ pt + qt

This decomposition expresses the forward premium as the sum of qt, the expected USD
depreciation rate, and pt, the expected payoff on a forward contract to receive USD and
deliver GBP. We define the latter as the currency risk premium. We define uncovered interest
parity (UIP) as pt = 0. The well-known rejections of UIP are manifest in negative estimates
of the parameter b from the regression (Bilson (1981), Fama (1984), Tryon (1979))

st+1 − st = c+ b
(
it − i∗t

)
+ residuals . (7)

The population regression coefficient — we’ll call it the “UIP coefficient” — can be written

b =
Cov(qt, pt + qt)

Var(pt + qt)
. (8)

Fama (1984) noted that necessary conditions for b < 0 are

Cov(pt, qt) < 0 (9)

Var(pt) > Var(qt) (10)

Our approach revolves around the standard (nominal) pricing-kernel equation,

bn+1
t = Etmt+1b

n
t+1 , (11)

where bnt is the USD price of a nominal n-period zero-coupon bond at date t and mt is the
pricing kernel for USD-denominated assets. The one-period interest rate is it ≡ − log b1

t .
An equation analogous to (11) defines the GBP-denominated pricing kernel, m∗t , in terms of
GBP-denominated bond prices, b∗t .

Backus, Foresi, and Telmer (2001) translate Fama’s (1984) decomposition into pricing
kernel language. First, assume complete markets so that the currency depreciation rate is

st+1 − st = log
(
m∗t+1/mt+1

)
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Fama’s (1984) decomposition becomes

it − i∗t = logEtm
∗
t+1 − logEtmt+1 (12)

qt = Et logm∗t+1 − Et logmt+1 (13)

pt =
(
logEtm

∗
t+1 − Et logm∗t+1

)
− (logEtmt+1 − Et logmt+1) (14)

= Var t(logm∗t+1)/2− Var t(logmt+1)/2 , (15)

where Equation (15) is only valid for the case of conditional lognormality. Basically, Fama’s
(1984) conditions (9) and (10) translate into the restriction that the means and the variances
must move in opposite directions and that the variation in the variances must exceed that
of the means.

Our objective is to write down a model of mt+1 and m∗t+1 in which b < 0 and the
associated currency risk is realistic. Inspection of Equations (9) and (15) indicate that a
necessary condition is that pt vary over time and that, for the lognormal case, the log kernels
must exhibit stochastic volatility.

4 Model

Consider two countries, home and foreign. The home-country representative agent’s con-
sumption is denoted ct and preferences are of the Epstein and Zin (1989) (EZ) class:

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ

where β and ρ characterize patience and intertemporal substitution, respectively, and the
certainty equivalent of random future utility is

µt(Ut+1) ≡ Et[U
α
t+1]1/α ,

so that α characterizes (static) relative risk aversion (RRA). The relative magnitude of α
and ρ determines whether agents prefer early or late resolution of uncertainty (α < ρ, and
α > ρ, respectively). Standard CRRA preferences correspond to α = ρ. The marginal rate
of intertemporal substitution, defined as nt+1, is

nt+1 = β

(
ct+1

ct

)ρ−1(
Ut+1

µt(Ut+1)

)α−ρ
. (16)

We also refer to nt+1 as the real pricing kernel. The nominal marginal rate of substitution
— the pricing kernel for claims denominated in USD units — is then

mt+1 = nt+1e
−πt+1 , (17)

where πt+1 is the (continuously-compounded) rate of inflation between dates t and t+1. The
foreign-country representative agent’s consumption, c∗t , and preferences are defined analo-
gously. Asterisks are used to denote foreign variables. Foreign inflation is π∗t+1.
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The domestic pricing kernel satisfies Et(mt+1Rt+1) = 1 for all USD-denominated asset
returns, Rt+1. Similarly, Et(m

∗
t+1R

∗
t+1) = 1 for all GBP-denominated returns. The domestic

pricing kernel must also price USD-denominated returns on GBP-denominated assets:

Et
(
mt+1

St+1

St
R∗t+1

)
= 1 . (18)

We assume that international financial markets are complete for securities denominated in
goods units, USD units and GBP units. This implies the uniqueness of the nominal and real
pricing kernels and therefore, according to Equation (18),

St+1

St
=

m∗t+1

mt+1

=
n∗t+1e

−π∗t+1

nt+1e−πt+1
. (19)

Equation (19) must hold in any equilibrium with complete financial markets. This is true
irrespective of the particular goods-market equilibrium that gives rise to the consumption
allocations ct and c∗t that are inherent in nt and n∗t . Our approach is to specify ct and
c∗t exogenously and calibrate them to match the joint behavior of data on domestic and
foreign consumption. We are silent on the model of international trade that gives rise to
such consumption allocations. Bansal and Shaliastovich (2013), Colacito and Croce (2011),
Gavazzoni (2008), Verdelhan (2010) and others follow a similar approach. Hollifield and
Uppal (1997), Sercu, Uppal, and Hulle (1995) and the appendix in Verdelhan (2010) — all
building upon Dumas (1992) — are examples of more fully-articulated complete markets
models in which imperfectly-correlated cross-country consumption is generated by transport
costs. Basically, our approach is to these models what Hansen and Singleton’s (1983) first-
order-condition-based approach was to Mehra and Prescott’s (1985) general equilibrium
model.

Domestic consumption growth, xt+1 ≡ log(ct+1/ct), follows an AR(1) process with stochas-
tic volatility ut.

xt+1 = (1− ϕx)θx + ϕxxt +
√
utε

x
t+1

ut+1 = (1− ϕu)θu + ϕuut + σuε
u
t+1

The innovations εxt and εut are standard normal and independent of each other. The analogous
foreign consumption process is denoted with asterisks: x∗t+1 ≡ log(c∗t+1/c

∗
t ), with volatility

u∗t . Foreign parameter values are assumed to be identical (‘symmetric’) to their domestic
counterparts and the innovation-pairs, (εxt , ε

x∗
t ) and (εut , ε

u∗
t ), have correlations ηx,x∗ and ηu,u∗ .

The assumption of symmetry in the consumption processes serves to isolate the effect of
asymmetry in monetary policy.

The final ingredients are domestic and foreign Taylor rules:

it = τ̄ + τππt + τxxt (20)

i∗t = τ̄ ∗ + τ ∗ππ
∗
t + τxx

∗
t (21)
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For future reference we denote Υ ≡ [τ τπ τx] and Υ∗ ≡ [τ ∗ τ ∗π τ
∗
x ]. Here, we make the foreign

specification explicit so as to emphasize the asymmetry that is the focal point of our paper,
τπ 6= τ ∗π and τx 6= τ ∗x .

The Taylor rules (20) and (21) are fairly typical in the literature, the main exception
being that we use consumption growth instead of the ‘output gap.’ In our model, which
abstracts from any frictions that can give rise to a ‘gap,’ the distinction is meaningless. In
Appendix A we extend the basic specification (20, 21) to include exchange rates, lagged
interest rates and ‘policy shocks.’

4.1 Solution

What is a ‘solution?’ Since we take foreign and domestic consumption to be exogenous, it
is just a stochastic process for domestic inflation and one for foreign inflation such that the
nominal interest rates implied by the nominal pricing kernels, (17), are the same as those
implied by the Taylor rules, (20) and (21). A process for the nominal exchange rate follows
immediately by virtue of Equation (19).

We proceed as follows. Starting with the domestic country, we derive an expression for
the real pricing kernel in terms of the model’s state variables, xt and ut. Next, we solve for
domestic inflation and, therefore, obtain an endogenous expression for the domestic nominal
pricing kernel. We can do this independently of the foreign country because (i) consumptions
are exogenous, and (ii) there is no cross-country interaction in the Taylor rules (condition
(ii) is relaxed in Appendix A). Next, we do the same things for the foreign country. Finally,
we compute the nominal exchange rate as a ratio of the foreign and domestic nominal pricing
kernels.

Following Hansen, Heaton, and Li (2008), we linearize the logarithm of the real pricing
kernel, Equation (16):

− log nt+1 = δr + γrxxt + γruut + λrx
√
utε

x
t+1 + λruσuε

u
t+1 , (22)

where

γrx = (1− ρ)ϕx , γru =
α

2
(α− ρ)(ωx + 1)2 ,

λrx = (1− α)− (α− ρ)ωx , λru = −(α− ρ)ωu , (23)

where ωx and ωu are linearization coefficients, expressions for which are given (along with
δr) in Appendix B. Following the affine term structure literature, we refer to γr = [γrx γ

r
u]
>

as ‘real factor loadings’ and to λr = [λrx λ
r
u]
> as ‘real prices of risk.’ The one-period real

interest rate is rt = − logEtnt+1 = r + γrxxt + (γru − 1
2
(λrx)

2)ut, where r = δr − 1
2
(λruσu)

2.

The Euler equation for the nominal one-period interest rate is

it = − logEt nt+1e
−πt+1 . (24)
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This, combined with the domestic Taylor rule (20), implies that a solution for endogenous
inflation, π(xt, ut), must solve the difference equation.

πt = − 1

τπ

(
τ̄ + τxxt + logEt nt+1 e

−πt+1
)
. (25)

We guess that the solution is of the form

πt = a+ axxt + auut (26)

for coefficients a, ax and au to be determined. The unique “minimum state variable” solution
(McCallum (1981)) is

ax =
(1− ρ)ϕx − τx

τπ − ϕx

au =

α
2
(α− ρ)(ωx + 1)2 − 1

2

(
(1− α)− (α− ρ)ωx + ax

)2

τπ − ϕu
,

with the (relatively inconsequential) solution for a relegated to Appendix B.2. Putting
together Equations (22), (24) and (26), we arrive at what Gallmeyer, Hollifield, Palomino,
and Zin (2007) call the “monetary-policy-consistent nominal pricing kernel:”

− logmt+1 = δ + γxxt + γuut + λx
√
utε

x
t+1 + λuσuε

u
t+1 , (27)

with (nominal) factor loadings and prices of risk

δ = δr + a+ ax(1− ϕx)θx + au(1− ϕu) ;

γx = γrx + axϕx; γu = γru + auϕu;

λx = λrx + ax; λu = λru + au .

The nominal one-period interest rate is

it ≡ − logEt(mt+1)

= δ − 1

2
(λuσu)

2 + γxxt + (γu −
1

2
λ2
x)ut . (28)

Analogous calculations for the foreign country yield solutions for n∗t+1, π∗t+1, m∗t+1, r∗t and
i∗t . We omit these calculations since they are almost identical, the only differences being
that (i) the state variables, x∗t and u∗t are imperfectly correlated with xt and ut, and (ii) the
foreign Taylor-rule coefficients, Υ∗, are distinct from their domestic counterparts, Υ. See
Appendix B for explicit details.
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4.2 Exchange Rates

Using Equation (19), the nominal deprecation rate is dt+1 ≡ log(St+1/St) = log(m∗t+1/mt+1),
the difference between equation (27) and its analogous foreign counterpart. Using this, and
following Section 3, the forward premium, expected depreciation rate and risk premium can
be written as linear functions of the state variables:

ft − st = it − i∗t = (ι− ι∗) + (γxxt − γ∗xx∗t ) + (γu −
1

2
λ2
x)ut − (γ∗u −

1

2
(λ∗x)

2)u∗t

qt = (δ − δ∗) + (γxxt − γ∗xx∗t ) + (γuut − γ∗uv∗t )

pt = (ι− ι∗)− (δ − δ∗)− 1

2

(
λ2
xut − (λ∗x)

2u∗t
)
, (29)

where ι ≡ δ − 1
2
(λuσu)

2 and ι∗ ≡ δ∗ − 1
2
(λ∗uσ

∗
u)

2.

The UIP coefficient (from Equation (7)) is b = Cov(ft − st, qt)/Var(ft − st). A useful
reference point is the special case of ϕx = 0. If the Taylor rule parameters are symmetric
(i.e., Υ = Υ∗), then

b =
γu

γu − 1
2
λ2
x

.

Examining the above expressions for λu and λx, we see that, if volatility is positively auto-
correlated (ϕu > 0), then, for given Taylor coefficients, sufficient conditions for b < 0 are (i)
α < 0, and (ii) ρ − α > 0 and large enough, so that the representative agent has a strong
preference for the early resolution of uncertainty. Our quantitative analysis demonstrates
what ‘strong’ means in this context (it is in line with the norm in the asset pricing literature).

This last point highlights an important feature of our setup thus far. The extent to
which the UIP coefficient is negative hinges on preferences. The sign of the UIP coefficient
is driven by real exchange rate behavior, not by the properties of endogenous inflation. In-
deed, in Appendix B.3 we show that (i) the real UIP coefficient — the slope coefficient of
a regression of the real depreciation rate on the real interest rate differential — is unam-
biguously negative if ρ > α, and (ii) the nominal UIP coefficient is typically greater than its
real counterpart. Endogenous inflation, in other words, pushes us toward UIP. Exogenous
inflation, in contrast, imposes no such restrictions. Papers such as Bansal and Shaliastovich
(2013) and Lustig, Roussanov, and Verdelhan (2011) take the latter route and show that
an exogenously calibrated inflation process is consistent with the nominal UIP deviations
observed in the data. However, these papers assume — rather than endogenously derive —
that inflation is driven by the same factors driving the real pricing kernel, and freely specify
the sensitivity of inflation to those factors. We don’t have this freedom. The Euler equation
and Taylor rule, together, tell us what this sensitivity must be.

Two related points are as follows. First, this is not a general feature of Taylor-rule-implied
inflation. In Appendix A.2 we show that more elaborate Taylor rules — e.g., incorporating
exchange rates and/or lagged nominal interest rates — can generate a nominal UIP coefficient
that is less than its real counterpart. Here, we use the simpler setting because it articulates
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our main point most clearly. Second, suppose that our model did generate nominal deviations
from UIP that were substantially different from real deviations. While this would support our
cause — our view that monetary policy is important for exchange rate behavior — it would
also give rise to an important empirical tension. We know that real and nominal exchange
rates behave quite similarly (Mussa (1986)), and that real and nominal UIP regressions
also look quite similar (Engel (2011) is a recent example). Were our model to generate
big differences in nominal and real exchange rate behavior, it would thus contradict some
important features of the data. The most obvious way around this — if one wants to
continue down the road in which monetary policy plays an important role — is to consider
environments in which there is some feedback between nominal variables/frictions and real
exchange rates. This is beyond the scope of this paper.

5 Asymmetric Monetary Policy

What is the effect of asymmetries in the Taylor rule parameters, [τ τπ τx], and [τ ∗ τ ∗π τ
∗
x ]?

To answer this, we work with the log excess expected return on a forward contract that
is long GBP and short USD. The definition of pt above is the opposite. Therefore we work
with −pt.2 From Equation (29), after slight rearrangement,

− pt =
λ2
u − (λ∗u)

2

2
σ2
u +

λ2
xut − (λ∗xu

∗
t )

2

2

≈ λ2
u − (λ∗u)

2

2
σ2
u +

λ2
x − (λ∗x)

2

2
ut (30)

where the approximation is that the innovations in volatility are highly correlated across
countries: ηu,u∗ ≈ 1. This captures the main point of Lustig, Roussanov, and Verdelhan
(2011), the possibility that currency risk is best characterized as ‘asymmetric loadings on a
global risk factor.’ Our calibration will reflect this. Note that, according to Equation (30),
these asymmetric loadings (on the random factor) involve the prices of consumption risk, λx
and λ∗x, not the prices of volatility risk, λu and λ∗u. This will play an important interpretive
role.

Result 1 : Relatively procyclical monetary policy generates currency risk

The risk premium on foreign currency is increasing in (τ ∗x − τx), provided that
τ ∗x > τx. In words, foreign currency risk is associated with a foreign policy rule
that is relatively procyclical. The larger the difference, the greater the risk.

2We do so because it is more intuitive to say “this is the risk premium on holding foreign currency,” as
opposed to the premium on holding domestic currency. Our notational convention for pt, from Section 3,
follows that which is common in the literature.
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Result 2 : Relatively accommodative monetary policy generates currency risk

The risk premium on foreign currency is increasing in (τπ − τ ∗π), provided that
τπ > τ ∗π and that τx and τ ∗x are large enough. In words, provided that domestic
and foreign policies are sufficiently procyclical, foreign currency risk is associated
with a foreign policy rule that is relatively accommodative toward inflation. The
larger the difference, the greater the risk.

Proofs are provided in Appendix C. Note that these two results are broadly consistent with
historical evidence. German monetary policy, for example, has been widely perceived as
having placed a relatively small weight (small τx) on the ‘dual mandate,’ and a relatively
large weight (big τπ) on not accommodating inflation. The German currency has typically
been a ‘safe haven,’ paying a negative risk premium vis-a-vis countries with more procyclical,
accommodative monetary policies. We provide empirical substantiation in Section 6.

5.1 Parametric Interpretation

We now explore the forces at work behind Results 1 and 2. Equation (30) indicates that
the monetary policy parameters affect the risk premium through their effect on the prices
of consumption risk, λx and λ∗x and the prices of volatility risk, λu and λ∗u (functional forms
given in Section 4.1). We now hold the foreign parameter values [τ ∗π τ

∗
x ] fixed and outline the

relevant comparative static calculations involving the domestic parameter values [τπ τx]. This
will yield insights into how our model works and where the important empirical restrictions
lie.

Recall that the nominal prices of risk are related to the real prices of risk as λx = λrx +ax
and λu = λru + au, and that the real prices of risk, λrx and λru, are unaffected by the policy
parameters. Inspection of the coefficients

ax =
(1− ρ)ϕx − τx

τπ − ϕx

au =
γrv − λ2

x/2

τπ − ϕu

indicates that any effect on the price of consumption risk, λx, affects also the price of volatility
risk, λu, but not the reverse. Inspection of the risk premium (30) indicates that this is
important for understanding its mean and variance. The premium has two pieces, a constant
term involving λu and a random term involving λx. The price of consumption risk, therefore,
affects both the mean and the variance of the premium, whereas the price of volatility risk
affects only its mean. This will play an important interpretive role in what follows.
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5.1.1 Effect of the Cyclicality Parameter: τx

The risk premium (30) depends on the squared values of the prices of risk. Therefore the
signs of λx and λu are important for understanding how the comparative static calculations
∂λx/∂τx and ∂λu/∂τx affect the premium (i.e., the sign of ∂x(y)2/∂y depends on the sign of
x(y)). These signs are determined as follows.

First, the real prices of risk satisfy λrx > 0 and λru < 0. This holds by virtue of a preference
for the early resolution of uncertainty (α < ρ) (see Equation (23)), a standard specification
in the literature. Second, ax < 0 if the autocorrelation in consumption growth is small and τx
is ‘large enough.’ The former is an empirical fact (at the monthly frequency) and the latter
is a driver of our calibration because it generates the observed negative correlation between
inflation and consumption growth. Third, au < 0 if λx is large enough as is determined by
γrv − (λx)

2/2 < 0. A necessary condition for this to be true is that γrv − (λrx)
2/2 < 0. The

latter condition is familiar in any affine model — sometimes called the “precautionary savings
condition” — and, with symmetric coefficients, it is necessary in our model for a negative real
UIP coefficient. Fourth, it is easily shown that ∂λx/∂τx < 0 and ∂λu/∂τx > 0. Putting these
four conditions together (details provided in Appendix C.2) we can unambiguously conclude
that −pt, from Equation (30), satisfies ∂(−pt)/∂τx < 0: a more procyclical domestic policy
reduces the foreign currency risk premium.

To summarize, the point of these calculations is to better identify the mapping between
sample moments of the data, the parameter values of our model, and Results 1 and 2.
Result 1 states that currency risk is associated with a relatively procyclical monetary policy.
A preference for the early resolution of uncertainty plays an important role. The pivotal
sample moments turn out to be Cov(xt+1, xt) ≈ 0, Cov(xt, πt) < 0 and b < 0. Each will play
a prominent role in our calibration and our identification scheme for the policy parameters.

5.1.2 Effect of the Accommodative Parameter: τπ

Given the above sign restrictions, most of the work here is done. All that remains is to
compute the partial derivatives, ∂λx/∂τπ and ∂λu/∂τπ. In Appendix C.2 we show that the
former is positive but that the sign of the latter is ambiguous. This ambiguity is what
underlies the dependence of Result 2 on τx being ‘large enough.’ In our calibration we find
(we do not impose) that it is. In this case both derivatives are positive and we have the
result that a relatively accommodative foreign monetary policy is associated with a risky
foreign currency.

The main insights here are inherent in the above sign and preference parameter restric-
tions. For example, the covariance between inflation and consumption growth is once again
pivotal for how τπ affects the premium. One additional insight involves how τπ affects the
constant and the variable terms in the risk premium (30). A tighter domestic policy (large
τπ) increases the price of consumption risk, λx, thus amplifying the variable part of the pre-
mium. Where the ambiguity comes from is that, for relatively small values of τx, a tighter

16



policy decreases the price of volatility risk, thus muting the constant part of the premium.
The constant part is only relevant for the mean risk premium. The variable part matters
for both the mean (since ut > 0) and the variance and, therefore, for the UIP coefficient. It
will also play an important interpretive role when we explain the economic intuition in the
next section. This intuition will involve how the variance of the foreign and domestic pricing
kernels are affected by the policy parameters and will use the insights developed by Hansen
and Jagannathan (1991).

5.2 Economic Interpretation

At the heart of the economic intuition lies the general expression for the risk premium,
Equation (15), which applies to any lognormal model. We reproduce it here for clarity:

− pt = Var t(logmt+1)/2− Var t(logm∗t+1)/2 . (31)

Recalling that minus pt is the risk premium on foreign currency, this expression says some-
thing that, at first blush, might seem counterintuitive. It says that the country with the
low pricing-kernel variability is the country with the risky currency. Low variance ... high
risk! At second blush, however, it makes perfect sense. It is a general characteristic of the
“change-of-units risk” that distinguishes currency risk from other forms of risk. Change-of-
units risk is a relative thing. It measures how I perceive the risk in unit-changing relative to
how you perceive it.

To understand this, recall that the (log) depreciation rate is the difference between the two
(log) pricing kernels. If they are driven by the same shocks (and if loadings are symmetric),
then the conditional variances in Equation (31) are the same and currency risk is zero
for both foreign and domestic investors. If, instead, domestic shocks are much more volatile
than foreign shocks, then variation in the exchange rate and variation in the domestic pricing
kernel are more-or-less the same thing. The domestic investor then views foreign currency
as risky because its value is being dominated by the same shocks as is his marginal utility.
The foreign investor, in contrast, feels relatively sanguine about exchange rate variation. It
is relatively unrelated to whatever it is that is affecting his marginal utility. Hence, the risk
premium on the foreign currency must be positive and the premium on the domestic currency
(which, of course is the “foreign” currency for the foreign investor) must be negative. While
the latter might seem counterintuitive — the foreign investor views currency as a hedge —
it is inescapable. If GBP pays a positive premium then USD must pay a negative premium.3

3One should take care not to confuse this with “Siegel’s Paradox,” the statement that — because of the
ubiquitous Jensen’s inequality term — the forward rate cannot equal the conditional mean of the future
spot rate, irrespective of the choice of the currency numeraire. This is not what is going on here. The
Jensen’s term is (one half of) the variance in the difference of the (log) kernels, not the difference in the
variances from Equation (31). To make this crystal-clear, consider the case in which this entire discussion
would be a futile exercise in Siegel’s Paradox. Suppose that the log kernels are independent of one-another
with constant and identical conditional variances. Then the log risk premium, pt is zero, and the level risk
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Remember it like this; “high variability in marginal utility means low tolerance for exchange-
rate risk and, therefore, a high risk premium on foreign currency.”

Now that we’ve established intuition for Equation (31) we can turn to monetary policy.
Recall the basic definition of the nominal pricing kernel:

logmt+1 = log nt+1 − πt+1

=⇒ Var t
(

logmt+1

)
= Var t

(
log nt+1

)
+ Var t

(
πt+1

)
− 2Cov t

(
log nt+1 , πt+1

)
.

In Appendix B.2 we show something quite intuitive. If τx is large enough, then the covariance
term is positive enough so that Var t(logmt+1) < Var t(log nt+1); the nominal pricing kernel
is less variable than the marginal rate of substitution. This is not the case for any set of
parameter values, but it is for those that arise in any of our calibrations. It is a fairly typical
characteristic of most New Keynesian models and was first pointed out in our specific class of
models by Gallmeyer, Hollifield, Palomino, and Zin (2007). It is also empirically-plausible in
the sense that a large value for τx implies an endogenous inflation process that is negatively
correlated with consumption growth — thus implying a positive correlation between inflation
and marginal utility in Equation (32) — something we typically see in the data.

We find this implication of monetary policy to be interesting, irrespective of how things
work out for exchange rates. What’s intriguing is that a policy which seeks to fulfill the
“dual mandate” by reacting to real economic activity will typically generate inflation risk; a
negative (positive) correlation between consumption growth (marginal utility) and inflation.
This means that securities denominated in nominal units will have expected returns that
incorporate an inflation risk premium. What it also means, however, is that nominal risk
is less than real risk; the nominal pricing kernel is less variable than its real counterpart.
Sharpe ratios on nominal risky assets will therefore tend to be less than those on real risky
assets (Hansen and Jagannathan (1991)). Of course, we don’t observe data on the latter,
but the implication seem interesting nevertheless.

Now for our main point. Given a sufficiently large value for τx, why does a relatively
large value for τπ translate into a larger foreign currency premium? Because it undoes
the effect of τx. That is, as τπ gets large, the variance of endogenous inflation decreases
(i.e., the as the central bank cares more about inflation it drives the variability of inflation
to zero). Thus, the extent to which Var t(logmt+1) < Var t(log nt+1) is mitigated which,
because Var t(log nt+1) is exogenous in our setting, must mean that Var t(logmt+1) increases.
Thus the foreign-currency risk premium from Equation (31) increases.

Summarizing, then, the economic intuition goes as follows. A sufficiently procyclical in-
terest rate rule makes the nominal economy less risky than the real economy in the sense that
the nominal pricing kernel is less variable than the real pricing kernel. A stronger interest
rate reaction to inflation undoes this. It makes domestic state prices more variable so that

premium is −Var t(dt+1)/2, the familiar Siegel-Jensen term. The above discussion, and our model, presume
no such independence nor homoscedasticity. The name-of-the-game is the covariance term, Cov t(dt+1,mt+1)
(or its foreign-kernel equivalent).
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domestic residents view currency as being more risky relative to foreign residents. ‘Weak’
interest rate rules make for riskier currencies. This seems to accord with the data. The coun-
tries with (supposedly) strong anti-inflation stances — e.g., Germany, Japan, Switzerland,
the United States — have had, on average, low interest rates, low inflation and negative risk
premiums.

6 Quantitative Results: U.S. and Australia

We now turn to a quantitative examination of our model, the main idea being to confirm
the main mechanism outlined above, articulate it better, and to see how it behaves in a
non-local manner.

Before beginning, it is important to note that, in its current form, there are certain
dimensions of the joint distribution of consumption, exchange rates and interest rates that our
model will necessarily perform poorly on. This is well known in the literature. The model’s
primary limitation is that pointed out by Brandt, Cochrane, and Santa-Clara (2006) . It
cannot account for the high observed volatility in pricing kernels (Hansen and Jagannathan
(1991)) at the same time as the low observed cross-country correlation in consumption,
without having ridiculously volatile exchange rates. The approach that we take throughout
our paper is to ignore the cross-country-consumption evidence. We will maintain a large
cross-country correlation. This allows us to ask our primary question — “How do Taylor
rule asymmetries map into exchange rate risk premia?” — in an environment with realistic
behavior in asset returns and exchange rates. In Appendix D we present an enhanced model
that follows Bansal and Shaliastovich (2013) and Colacito and Croce (2011) by using long-
run risk to overcome the Brandt, Cochrane, and Santa-Clara (2006) puzzle. Qualitatively
almost all of what we emphasize in this section is unaffected. The enhanced model offers
the same insights, but in a much more complex environment. Quantitatively, the enhanced
model delivers what we’ll demonstrate here (and more), while at the same time having a
realistic cross-country consumption correlation.

Our basic approach is as follows. First, we calibrate the real side of our model —
preferences and the processes for foreign and domestic consumption — to match U.S. data on
consumption, real interest rates and real exchange rates. We treat the foreign and domestic
country symmetrically, so that, although the shocks are not the same across countries, the
parameter values and real moments are. Second, given the real model, we calibrate the six
Taylor rule parameters — three domestic parameters, [τ τπ τx], and three foreign parameters,
[τ ∗ τ ∗π τ

∗
x ] — to match nominal data from the U.S. and Australia. This country-pair accords

well with our basic story of a low and high inflation/interest-rate pair of countries that can
be associated with asymmetries in the Taylor parameters. Finally, we examine the moments
of the model that were not equated to their sample counterparts via the calibration exercise.
These moments are primarily related to exchange rates.

Figure 1 summarizes the nominal evidence that we focus upon. The top panel reports
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the U.S.-Australia one-month interest rate differential and the nominal exchange rate, 1986-
2012. Several things are readily apparent. First, Australia has typically had relatively high
interest rates. The average Australian rate (U.S. rate) over the period was 7.25% (4.48%), for
an average spread of 2.77%. No surprise, this has partly been a reflection of high Australian
inflation, which averaged 3.67% versus 2.80% for the U.S., for a spread of 0.87%. More of a
surprise has been the tendency for AUD to appreciate. Over the entire sample, the average
monthly (log) appreciation rate has been just over 2% (annualized), while since 2000 it has
been 3.75%.

For our question, this is all nicely summarized by the average excess return on a monthly
carry trade that is (typically) long AUD, funded by borrowing in USD. The month-by-month
payoffs, per unit AUD notional principal, are shown in the lower panel of Figure 1. We report
both unconditional and conditional payoffs, the former being ‘always long AUD and short
USD,’ whereas the latter conditions the long/short position on the predicted value from the
UIP regression (details are described in Figure 1’s caption). The sample means — displayed
in the figure as constant horizontal lines — are 0.0038 and 0.0069, with t-statistics of 2.0835
and 3.6793 respectively. These means translate into annualized excess returns and Shape
ratios of 4.46% and 0.39 for the unconditional strategy and 7.93% and 0.71 for the conditional
strategy. The latter — the conditional moments — are in-line with previous studies (perhaps
a bit large), whereas the former are less so. Previous work (e.g., Backus, Foresi, and Telmer
(2001)) has estimated that the unconditional currency risk premium, E(pt), is zero, thus
implying that all of the action is in the conditional distribution. More recently, however,
papers such as Hassan (2010) and Lustig, Roussanov, and Verdelhan (2011) have documented
some exceptions. The exceptions tend to be countries that are (i) relatively small in terms
of global share of GDP, and (ii) typically the recipients of the carry-trade capital flows.
Our focus on Australia, therefore, should not be viewed narrowly. The evidence is more
comprehensive and we use Australia as an illustrative example.

6.1 Calibration of Real Variables

Our consumption calibration is fairly standard. We treat the two countries symmetrically
— meaning that the parameter values are the same but that the realizations of the shocks
are not — and calibrate using U.S. data. There are seven parameters: the unconditional
mean and autocorrelation of the growth rate, (θx, ϕx), the AR(1) parameters for volatility,
(θu, ϕu, σu), and the cross-country correlation of the shocks, (ηx,x∗ , ηu,u∗).

We proceed sequentially, starting with parameters that have isolated effects on the
model’s moments, and continuing on to those that have increasingly inter-related effects. Ta-
ble 1 summarizes. The unconditional mean of consumption growth, θx, is set to its monthly
sample counterpart. The cross-country correlation in consumption growth is set to be very
close to unity: ηx,x∗ = 0.99. As discussed above, this is the major counterfactual aspect of
the calibration of our simple model. We rectify this in the enhanced model of Appendix D
and show that the insights afforded by the simple model are unaffected. The autocorrelation
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in consumption growth is set to ϕx = 0, motivated in part by the empirical evidence and in
part by a desire to remain consistent with the analytical results from above. The uncondi-
tional mean of volatility, θu, is set to match the sample standard deviation of consumption
growth. The autocorrelation of volatility is taken from Bansal and Yaron (2004) (and others
who use very similar values): ϕu = 0.987. This generates reasonable autocorrelation in our
model’s real interest rate. Given these values for θu and ϕu, the conditional variance of
volatility, σ2

u, is set to be as large as possible subject to the constraint that the probability
of observing a negative realization of volatility does not exceed 5%. This constraint turns
out to be quite binding in the sense that our economy requires high risk aversion in order to
generate realistic variability in interest rates and asset returns.

Turning to preference parameters, we choose a standard value for ρ = 1/3 (an elasticity
of intertemporal substitution of 1.5) and then choose risk aversion to match the volatility
of the real interest rate. This results in α = −89.4, admittedly very high but not without
many recent precedents of papers seeking to examine issues conditional on having realistic
asset returns (e.g., Campbell (1996), Ludvigson, Lettau, and Wachter (2008), Piazzesi and
Schneider (2007), Tallarini (2000)). Moreover, the enhanced model of Appendix D features
low risk aversion via the inclusion of long-run-risk. Finally, we choose the time preference
parameter, β and the cross-country correlation in volatility, ηu,u∗ , to (simultaneously) match
the sample average of the U.S. real interest rate and the volatility of the U.S.-Australian real
exchange rate.

6.2 Calibration of Nominal Variables

We now arrive at the crux of our exercise, asking how the Taylor rule coefficients affect
endogenous inflation, interest rates and exchange rates. We begin in what seems the most
natural and disciplined way, calibrating to inflation only and then seeing what happens to
interest rates and exchange rates. We calibrate the six Taylor-rule parameters, [τ τπ τx] and
[τ ∗ τ ∗π τ

∗
x ], to match the mean and variance of U.S. and Australian inflation, respectively,

as well as the two correlations, Corr(xt, πt) and Corr(x∗t , π
∗
t ). The motivation for the using

these correlations derives from Section 5.1.1, where they played a key role in the comparative
statics exercise. Here, our quantitative findings confirm the sense in which these correlations,
in addition to the means and variances, are useful for identification. Based on numerical ex-
perimentation, we find that, for the economically-admissible region of the parameter space,
the mapping between the six Taylor parameters and the six moments that we use for iden-
tification is unique.

Panel B of Table 2 reports results in the column labeled ‘Model I.’ The domestic and
foreign inflation processes capture, by construction, what we want them to capture. Foreign
inflation is higher on average and more volatile. The difference in the latter is small, but
that is a reflection of the data (we’ll see shortly that the model performs substantially
better if the inflation volatility spread is larger). The dynamics, on the other hand, are
unrealistic. Theoretical inflation is much more highly autocorrelated, at roughly 0.90, than
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its sample counterpart at 0.43 (monthly data).4 This reflects the following sequence of
tensions. First, the data compel us to have near-iid consumption growth. However our real
calibration emphasizes highly autocorrelated real interest rates (which then play a critical
role in the highly-autocorrelated nature of nominal interest rates). This then compels us to
have highly autocorrelated consumption volatility (something which, reassuringly, previous
work has argued in favor of based on consumption data alone). Second, the autocorrelation of
inflation is a convex combination of that of consumption growth and consumption volatility.
The coefficients in this combination are basically the ax and au coefficients from above.
They are, in turn, governed by the Taylor-rule parameters. In order to have moderate
autocorrelation in inflation, the weight on the consumption-growth term must be large,
which must be manifest in a large value for τx, the cyclicality parameter. However, such
a large value generates a correlation between consumption and inflation that is far too
negative. We’ve chosen to match this correlation so, consequently, our model must have
highly autocorrelated inflation. To summarize, the class of Taylor rules we consider, given
the behavior of consumption growth, cannot simultaneously account for a slightly negative
correlation between consumption and inflation and moderate autocorrelation observed in
(recent) inflation data.

Turning to what we are really interested in, exchange rates, we see numbers that are
consistent with Results 1 and 2 above, and therefore the overall message of our paper. What
we find is that, given a foreign country with higher and more volatile inflation, the Taylor-rule
coefficients that are (uniquely) associated with this generate (i) a realistic mean, volatility
and autocorrelation in the nominal exchange rate, (ii) a negative UIP coefficient, and (iii) a
positive unconditional (and therefore conditional) risk premium on the foreign currency. Our
model’s weaknesses, obviously, are the magnitudes of the risk premia which are minuscule
relative to the data. We now turn to two alternative calibrations that will yield insights into
why this is the case.

6.2.1 Two Alternative Nominal Calibrations

Model II. FX Volatility and UIP Slope. The third column of Table 2 (labeled ‘Model II’)
corresponds to the following modification of the above (‘Model I’) calibration. Instead of
targeting the domestic and foreign inflation-consumption correlations, we target the volatility
of the nominal currency depreciation rate and the UIP slope coefficient. This, again, leaves
us with six parameters and six moments and, again, we find that the exercise is uniquely
identified in the admissible region of the parameter space.

4Note that measuring the autocorrelation in U.S. inflation is somewhat problematic. Among other things,
it seems to have dropped substantially in the post-Volcker years. Estimates based on quarterly data are in
the neighborhood of 0.8-0.9 for the 70s and 80s, and drop to 0.0-0.4 in the 90s and 2000s. See, for example,
Fuhrer (2009). Australian inflation is even more problematic, being unavailable at the monthly frequency.
Our estimates in Table 1 are based on using quarterly data and then scaling things down by factors that
match the ratio of U.S. quarterly-to-monthly inflation persistence.
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What we find is that the model’s implications for the inflation-consumption correlation
are not drastically altered — the foreign correlation goes from -0.3 down to -0.45 — and that
this is primarily a reflection of a more procyclical foreign monetary policy, with τ ∗x increasing
from 0.21 to 0.30 (see Table 1) and the other parameters largely unaffected. Encouragingly,
the unconditional currency risk premium increases by a factor of 60, from 0.007 to 0.421.
This is still an order of magnitude shy of the data, but it’s a lot of progress at a fairly small
cost. The lack of monthly Australian consumption (and inflation) data makes it difficult to
say exactly how small. What the model is telling us is that a high-inflation, high-currency-
risk country is predicted to have a consumption-inflation correlation that is relatively more
negative than its counterpart.

Model III. Unconditional Risk Premium and Sharpe Ratio. Models I and II tell us that
asymmetries in the Taylor-rule coefficients move everything in the right direction, but not
far enough. Here we ask how large the asymmetries must be to account for the risk premium,
and at what cost? We abandon the target of the nominal exchange rate volatility and, instead
target the unconditional risk premium of 4.60%. The other 5 moments remain as the mean
and variance of domestic and foreign inflation and the UIP slope coefficient. In addition,
we fix τx = 0.2 because (i) we know that this will generate a realistic domestic inflation-
consumption correlation and, (ii) unconstrained, this parameter wants to be negative, which
is not economically interesting. The exercise, then, is not exactly identified. Nevertheless,
we find that there is a unique global minimum in the admissible region of the parameter
space.

The column of Table 2 labeled ‘Model III’ summarizes what we learn here. A realistically-
large risk premium requires (i) a large ‘cyclicality differential’ of (τ ∗x−τx) = (0.87−0.20), and
(ii) a large ‘accommodation differential’ of (τπ−τ ∗π) = (4.43−1.25). Both are exact reflections
of what the analytical results of Section 5 told us; a risky currency is one from a country with
a relatively procyclical and relatively accommodative monetary policy. The counterfactual
aspects of our model are simply how large these differentials need to be. Relative to the
data, the model generates too large of a differential in average inflation and the volatility of
inflation. U.S. and Australian inflation just don’t look different enough in order for Taylor-
rule asymmetries to account for a large fraction of the currency risk premium. In addition,
the model generates foreign inflation that is now close to i.i.d., and has a correlation with
consumption that is far too negative, at -0.94. We could ‘fix’ these things by allowing for
asymmetries in preferences and/or the foreign and domestic consumption processes. However
this would only serve to cloud our point: realistic asymmetries in Taylor rule parameters
contribute to our understanding about what drives currency risk.

6.3 Implications

In spite of the quantitative limitations of our baseline model, what we take from Table 1
is support for our main mechanism and point. What this means is basically three things.
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First, we have not imposed that τx < τ ∗x and τπ > τ ∗π : “the foreign policy is both more
procyclical and more accomodative.” They are the outcome of the identification procedure
which is driven by observed differences in inflation, the UIP coefficient, the covariance of
inflation and consumption, and several measures of currency risk. Second, the calibrated
values of the Taylor coefficients imply an unconditional risk premium on AUD that has the
right sign and, depending on the calibration, a non-trivial magnitude. This lends credence
to the comparative static exercise of Section 5; a country with a tighter monetary policy is
predicted to have a currency with a negative risk premium. Finally, because the mapping
between the Taylor coefficients and the unconditional premium is basically their effect on
the variability of the nominal pricing kernel, there is also an effect on the conditional risk
premium. This is apparent in Table 2 and in our final set of results, to which we now turn.

Figure 2 shows the effect of varying τx and τπ, relative to their calibrated values from Table
1, holding fixed the foreign Taylor rule parameters. The objects of interest are the Sharpe
ratios on unconditional and conditional ‘carry trade’ portfolios. By the former we simply
mean ‘always long foreign currency, funded by borrowing in domestic currency.’ By the latter
we mean ‘go long foreign currency, but only when the expected excess return is positive ...
otherwise go short.’5 Formally, defining rxt+1 ≡ st+1− ft as the log excess return on foreign
currency over domestic currency, the unconditional Sharpe ratio is E(rxt+1)/Stdev(rxt+1).
Its conditional counterpart is E(rxt+1It)/Stdev(rxt+1It), where It = 1 if Et(st+1 − ft) > 0
and It = −1 otherwise.

Figure 2 makes several interesting points:

1. At our calibrated value of τπ ≈ 4, the Sharpe ratio on foreign currency is increasing in
the parameter τπ. This is true both conditionally and unconditionally. It captures and
confirms our main result: a weak-policy country (low τπ) is predicted to have a risky
currency.

2. Although the immediate effect of the asymmetry τπ > τ ∗π is on the unconditional
distribution — this is Result 2 — it also affects the conditional distribution, the focal
point of almost all previous research on the UIP coefficient. The reason is coincident
with the basic intuition offered in Section 5.2. Ceteris paribus, a larger τπ increases
unconditional domestic pricing-kernel variability because it reduces inflation variability.
Since it has a very small effect on the variability in the conditional mean of the kernel,
it must also increase the average conditional variance and, therefore, the conditional
currency risk premium.

3. In Figure 2 the nominal Sharpe ratios exceed their real counterparts. Nominal currency
risk is larger than real currency risk. This is true, in spite of the fact that nominal

5Strictly speaking, the language ‘carry trade,’ as used here, is inconsistent with its typical usage. Typically,
it means ‘go long the high interest rate currency.’ However this will only coincide with the rule that says ‘go
long the currency with the highest expected return’ under special circumstances, such as (i) the unconditional
risk premium is zero, and the average interest rate spread is zero. Neither apply in our setting. We define
‘carry trade’ in terms of expected returns, not interest rate spreads.
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pricing kernel variability is less than real pricing kernel variability (‘nominal-unit risk is
less than real-unit risk’). Symbolically, the average nominal foreign currency risk pre-
mium, E(Var t logmt+1−Var t logm∗t+1) exceeds its real counterpart, E(Var t log nt+1−
Var t log n∗t+1), in spite of the fact that E(Var t logmt+1) > E(Var t log nt+1) andE(Var t logm∗t+1) >
E(Var t log n∗t+1). This result — like Results 1 and 2 — seems intrinsic to having an en-
dogenous model of inflation. It is saying something about the link between the real and
nominal economy that would not be possible were one to exogenously specify inflation
processes and append them to a model of the real pricing kernel.

4. The lower graph in Figure 2 shows that, holding τπ fixed, an increase in τx reduces the
Sharpe ratio. A stronger procyclicality in monetary policy makes currency risk smaller.
Or, put in the language used in Section 5.2, the extent to which a tight inflation policy
(a large value for τπ) will undo the risk-stabilizing effect of a procyclical policy becomes
mitigated. This suggests another tension in the so-called ‘dual mandate.’ Procyclical
policies reduce nominal risk relative to real risk, but the inflation-stabilizing role of
policy serves as an antagonist.

7 Conclusions

It is obvious that monetary policy affects exchange rates. Purchasing Power Parity is a good
low-frequency model. What is less obvious is that monetary policy affects exchange rate risk.
For this to be so, at least in the case of lognormal models, policy must interact with volatility
in some way. Ours is a model of such an interaction. It is a model in which the monetary
authority reacts to the same volatility shocks as does the private sector, so that such shocks
become manifest in nominal interest rates and exchange rates. We’ve shown that a particular
parameterization of this interaction can help explain data on currency risk, as well as offer
some economic interpretation. The main limitation of our setup is that the interaction goes
just one way. Policy reacts to volatility, but there is no sense in which volatility reacts, or
is affected by, policy. Hence, volatility in real exchange rates is independent of monetary
policy. This is clearly an important issue, but one we leave for future work.

We close with some broader observations and how they relate to our study. How is
monetary policy related to the UIP puzzle? Ever since we’ve known about the apparent
profitability of the currency carry trade people have speculated about a lurking role played
by monetary policy. The story is that, for some reason, central banks find themselves on the
short side of the trade, borrowing high yielding currencies to fund investments in low yielding
currencies. In certain cases this has seemed almost obvious. It’s well known, for instance,
that in recent years the Reserve Bank of India has been accumulating USD reserves and, at
the same time, sterilizing the impact on the domestic money supply through contractionary
open-market operations. Since Indian interest rates have been relatively high, this policy
basically defines what it means to be on the short side of the carry trade. This leads one to
ask if carry trade losses are in some sense a cost of implementing Indian monetary policy?
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If so, is this a good policy? Is there some sense in which it is causing the exchange rate
behavior associated with the carry trade?

Our paper’s questions, while related, are admittedly less ambitious than these specula-
tions about India and related situations. What we’ve shown goes as follows. It is almost
a tautology that we can represent exchange rates as ratios of nominal pricing kernels in
different currency units:

St+1

St
=
n∗t+1 exp(−π∗t+1)

nt+1 exp(−πt+1)
.

It is less a tautology that we can write down sensible stochastic processes for these four
variables that are consistent with the carry trade evidence.6 Previous work has shown that
such processes have many parameters that are difficult to identify with sample moments of
data. Our paper shows two things. First, that by incorporating a Taylor rule for interest
rate behavior we reduce the number of parameters. Doing so is sure to deteriorate the
model’s fit. But the benefit is lower dimensionality and parameters that are economically
interpretable. Second, we’ve shown that some specifications of Taylor rules work and others
don’t. Specifically, cross-country differences in Taylor-rule coefficients give rise to cross-
country differences in how pricing kernels load on global sources of risk, and this works in
certain dimensions. It also provides an economic interpretation of parameter asymmetries
emphasized by previous work, work that is mostly statistical and econometric in nature. It
also fits some basic empirical facts about cross-country differences in inflation and interest
rates (and, presumably, policies), and is driven by estimates of Taylor-rule coefficients that
are common in the literature. Moreover, such asymmetries seem intuitively plausible. It is
clear that the U.S., for example, plays an ‘asymmetric’ role in the foreign exchange market.
It seems natural to associate this special role with (i) U.S. monetary policy, and, therefore
(ii) a differential response of the U.S. pricing kernel to a global shock.

Finally, it’s worth noting that India is much more the exception than the rule. Most
central banks — especially if we limit ourselves to those from OECD countries — don’t have
such explicit, foreign-currency related policies. However, many countries do use nominal
interest rate targeting to implement domestic policy and, therefore, we can think about
central banks and the carry trade in a consolidated sense. For example, in early 2004 the UK
less U.S. interest rate differential was around 3%. Supposing that this was, to some extent, a
policy choice, consider the open-market operations required to implement such policies. The
Bank of England would be contracting its balance sheet — selling UK government bonds —
while (at least in a relative sense) the Fed would be expanding its balance sheet by buying
U.S. government bonds. If the infamous carry-trader is in between, going long GBP and
short USD, then we can think of the Fed funding the USD side of the carry trade and the
Bank of England providing the funds for the GBP side. In other words, the consolidated

6See, for example, Backus, Foresi, and Telmer (2001), Bakshi and Chen (1997), Bansal (1997), Brenna
and Xia (2006), Frachot (1996), Lustig, Roussanov, and Verdelhan (2011), and Saá-Requejo (1994).
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balance sheets of the Fed and Bank of England are short the carry trade and the carry-trader
is, of course, long. In this sense, central banks and their interest-rate policies may be playing
a more important role than is apparent by just looking at their foreign exchange reserves.
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Table 1
Calibrated Parameter Values

Description Parameter Value

Panel A: The Real Economy
Discount factor β 0.993
Relative risk aversion 1− α 90.408
Elasticity of intertemporal substitution (1− ρ)−1 1.5
Mean of consumption growth θx 0.0015
Autocorrelation of consumption growth ϕx 0
Cross-Country correlation in consumption innovations ηx,x∗ 0.999
Mean volatility level θu 6.165e−5

Autocorrelation of volatility ϕu 0.987
Volatility of volatility σu 6.000e−6

Cross-Country correlation in volatility innovations ηu,u∗ 0.999

Panel B: The Nominal Economy Model I Model II Model III
Constant in the domestic interest rate rule τ̄ -0.002 -0.002 -0.008
Constant in the foreign interest rate rule τ̄∗ -0.002 -0.002 0.002
Domestic response to consumption growth τx 0.198 0.194 0.200
Foreign response to consumption growth τ∗x 0.205 0.304 0.866
Domestic response to inflation τπ 1.968 1.965 4.423
Foreign response to inflation τ∗π 1.884 1.874 1.264

Table 1 reports the parameter values associated with the calibration exercise described in
Sections 6.1 and 6.2. These parameter values underly the various population moments re-
ported in Table 2. Table 2 reports sample moments in the second column and population
moments from our model in the remaining columns. Sample moments derive from a va-
riety of sources. The data frequency is monthly and, where appropriate the moments are
reported as annualized percentages. The notation ‘–’ indicates a moment for which the data
are either absent or unreliable. For example, we are not aware of a study that estimates
the real Bilson-Fama coefficient using real interest rates (which are different than realized
real returns on nominal bonds). Similarly, the unreliability of monthly U.S. consumption
growth for ascertaining persistence is well known. Consumption moments that are reported
are based on the standard monthly U.S. series. The cross-country consumption correlation is
representative of data reported by Brandt, Cochrane, and Santa-Clara (2006). Real interest
rate moments are taken from Lochstoer and Kaltenbrunner (2010). Data on foreign and do-
mestic inflation are based on authors own calculations using monthly data from Datastream,
1987-2012. The foreign country is Australia whereas the domestic country is the U.S.. Note
that the Australian inflation data is problematic relative to its U.S. counterpart. Among
other things, it is only available at the quarterly frequency. The above estimates are based
on using quarterly data and then scaling things down by factors that match the ratio of U.S.
quarterly-to-monthly inflation moments. Calculations and data are available upon request.
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Table 2
Sample and Population Moments

Moment Data Model

Panel A: The Real Economy
Consumption Growth (xt, x

∗
t )

Mean 1.800 1.800
Standard Deviation 2.720 2.720
Autocorrelation – 0
Cross-Country Correlation 0.350 0.999

Real Interest Rate (rr, r
∗
t )

Mean 0.860 0.860
Standard Deviation 0.970 0.970
Autocorrelation 0.840 0.987

Real Depreciation Rate (log(n∗t/nt))
Standard Deviation 11.410 11.410
Real UIP Coefficient – -53.486

Panel B: The Nominal Economy
Inflation (πt, π

∗
t )

Domestic, U.S. Model I Model II Model III
Mean 2.833 2.833 2.834 2.833
Standard Deviation 0.911 0.911 0.914 0.294
Autocorrelation 0.428 0.898 0.902 0.814
Correlation(xt, πt) -0.300 -0.300 -0.294 -0.418

Foreign, Australia
Mean 3.199 3.199 3.199 3.199
Standard Deviation 0.985 0.985 0.985 1.964
Autocorrelation 0.429 0.898 0.788 0.098
Correlation(x∗t , π

∗
t ) -0.300 -0.300 -0.449 -0.949

Nominal Interest Rate (it, i
∗
t )

Domestic, U.S.
Mean 4.304 3.786 3.773 3.820
Standard Deviation 2.584 1.711 1.717 1.181
Autocorrelation 0.992 0.987 0.987 0.987

Foreign, Australia
Mean 7.076 4.159 4.559 8.213
Standard Deviation 3.558 1.771 1.648 0.784
Autocorrelation 0.994 0.987 0.987 0.987

Nominal Depreciation Rate (log(m∗t/mt))
Mean 1.675 0.342 0.357 0.274
Standard Deviation 11.398 11.398 11.396 11.505
Autocorrelation 0.052 0.000 0.001 0.000

Nominal Currency Risk Variables
Nominal UIP Coefficient -1.019 -0.127 -1.019 -0.894
Uncond. Risk Premium on AUD, −E(pt) 4.459 0.007 0.421 4.028
Unconditional Sharpe Ratio 0.389 0.001 0.039 0.361
Conditional Risk Premium on AUD 7.933 0.982 1.080 4.326
Conditional Sharpe Ratio 0.709 0.084 0.091 0.365

See caption for Table 1.

33



Figure 1
Australia, U.S. Interest Rates and Exchange Rates
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The top graph shows the Australian less U.S. dollar 1-month eurocurrency interest rate
differential and the USD/AUD spot exchange rate (price of Australian dollar in units of U.S.
dollar). The bottom graph plots the month-by-month, continuously-compounded excess
return associated with two “carry-trade” strategies. The first, plotted as a solid black line,
is the ‘Unconditional Strategy:’ always long AUD and short USD. The second, plotted as
a dashed blue line, is the ‘Conditional Strategy:’ long AUD whenever the estimated UIP
regression function predicts that the excess return on AUD is positive, and short AUD
otherwise (whenever the dashed-blue line is not visible, it is equal to the solid black line).
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More specifically, the unconditional line is st+1 − st − (it − i∗t ) whereas the conditional line
is It[st+1 − st − (it − i∗t )] where It = 1 if â + (b̂ − 1)(it − i∗t ) > 0 and It = −1 otherwise,
and the parameter estimates are â = −0.00116 and b̂ − 1.17749, based on monthly data,
1987-2012. The two solid, constant lines are the sample means of each strategy, with the
conditional sample mean lying above its unconditional counterpart. The means (t-statistics)
are, respectively, 0.0038 (2.0835) and 0.0069 (3.6793). The percentage-annualized means
and Sharpe ratios are (4.46, 0.39) for the unconditional strategy and (7.93, 0.71) for the
conditional strategy. If one omits the years 2007-2012 these values are (4.26, 0.44) and
(8.44, 0.88), respectively. Data Source: Datastream.
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Figure 2
Comparative Statics: Sharpe Ratios and Taylor Coefficients
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Both graphs show how population Sharpe ratios on carry trade portfolios vary with the Taylor rule coefficients

τπ and τx, holding the corresponding foreign parameter values fixed at their values described by ‘Model III’

from Table 1. The top graph plots both unconditional and conditional nominal Sharpe ratios, as well as the

conditional real Sharpe ratio (the unconditional real Sharpe ratio is zero by construction because the real

side of the model does not feature any asymmetries, implying that the unconditional real risk premium is

zero). The unconditional Sharpe ratio is defined as that on a monthly portfolio which is always long foreign

currency funded by borrowing in domestic currency. It is E(rxt+1)/Stdev(rxt+1), where rxt+1 ≡ st+1 − ft,
the log excess return on foreign currency. The conditional Sharpe ratio is E(rxt+1It)/Stdev(rxt+1It), where

It = 1 if Et(st+1 − ft) > 0 and It = −1 otherwise.
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A Abstracting from Real Exchange Rates

A.1 A Simple Taylor Rule

The crux of our question asks “how does Taylor-rule-implied inflation affect exchange rates?”
In this appendix we try to clarify things further by abstracting from real exchange rate
variation. We set nt = n∗t , implying that log(St/St−1) = πt − π∗t , so that relative PPP holds
exactly. We don’t take this specification seriously for empirical analysis. We use it to try to
understand exactly how the Taylor rule restricts inflation dynamics and, therefore, nominal
exchange rate dynamics. As we’ll see in Appendix D, the lessons we learn carry over to more
empirically-relevant models with both nominal and real variability.

We use simplest possible variant of the Taylor rule that allows us to generate time-varying
risk premia:

it = τ + τππt + zt , (A1)

where zt is a ‘policy shock’ that follows the process

zt+1 = (1− ϕz)θz + ϕzzt +
√
vtε

z
t+1 (A2)

vt+1 = (1− ϕv)θv + ϕvvt + σvε
v
t+1 , (A3)

where εz and εv are i.i.d. standard normal. There are, of course, many alternative spec-
ifications. A good discussion related to asset pricing is Ang, Dong, and Piazzesi (2007).
Cochrane (2011) uses a similar specification to address issues related to price-level deter-
minacy and the identification of the parameters in Equation (A1). We begin with it for
reasons of tractability and clarity. In Appendix A.2, we then go on to include the nominal
depreciation rate and the lagged interest rate.

In addition to nt = n∗t , we abstract from real interest rate variation by setting nt = n∗t = 1.
For exchange rates, conditional on having nt = n∗t , this is without loss of generality. The
(nominal) short interest rate, it = − logEtmt+1, is therefore

it = − logEt e
−πt+1

= Et πt+1 −
1

2
Var t(πt+1) . (A4)

The Taylor rule (A1) and the Euler equation (A4) imply that inflation must satisfy the
following difference equation:

πt = − 1

τπ

(
τ + zt + Et πt+1 −

1

2
Var t(πt+1)

)
. (A5)
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Given the log-linear structure of the model, guess that the solution has the form,

πt = a+ a1zt + a2vt . (A6)

Instead of solving Equation (A5) forward, just substitute Equation (A6) into the Euler
equation (A4), compute the moments, and then solve for the ai coefficients by matching up
the result with the Taylor rule (A1). This gives,

a =
C − τ
τπ

a1 =
1

ϕz − τπ
a2 =

1

2(ϕz − τπ)2(ϕv − τπ)
,

where

C ≡ a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2 .

It’s useful to note that

a2 =
a2

1

2(ϕv − τπ)
.

Note that this is the same as saying that

∂it
∂vt

= τπ
∂πt
∂vt

=
∂Etπt+1

∂vt
− 1

2

∂Var tπt+1

∂vt
.

Similarly, a1 = 1/(ϕz − τπ) is the same as saying that

∂it
∂zt

= τπ
∂πt
∂zt

+ 1 =
∂Etπt+1

∂zt
− 1

2

∂Var tπt+1

∂zt
.

Both of these things are kind of trivial. They just say that the effect of a shock on the Taylor
rule equation must be consistent with the effect on the Euler equation.

Inflation and the short rate can now be written as:

πt =
C − τ
τπ

+
1

ϕz − τπ
zt +

1

2(ϕz − τπ)2(ϕv − τπ)
vt

it = C +
ϕz

ϕz − τπ
zt +

τπ
2(ϕz − τπ)2(ϕv − τπ)

vt

= C + ϕza1zt + τπa2vt ,
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and the pricing kernel as

− logmt+1 = C + (σva2)2/2 + a1ϕzzt + a2ϕvvt + a1v
1/2
t εzt+1 + σva2ε

v
t+1

= D +
1

ϕz − τπ
ϕzzt +

ϕv
2(ϕz − τπ)2(ϕv − τπ)

vt

+
1

ϕz − τπ
v

1/2
t εzt+1 +

σv
2(ϕz − τπ)2(ϕv − τπ)

εvt+1 ,

(A7)

where

D ≡ C + (σva2)2/2 .

Now consider a foreign country. Denote all foreign variables with an asterisk. The foreign
Taylor rule is

i∗t = τ ∗ + τ ∗ππ
∗
t + z∗t .

with z∗t and its volatility following processes analogous to Equations (A2–A3). For now, zt
and z∗t can have any correlation structure. Repeating the above calculations for the foreign
country and then substituting the results into Equations (12–15) in the main text we get

it − i∗t = ϕza1zt − ϕ∗za∗1z∗t + τπa2vt − τ ∗πa∗2v∗t
qt = D −D∗ + a1ϕzzt − a∗1ϕ∗zz∗t + a2ϕvvt − a∗2ϕ∗vv∗t
pt = −1

2

(
a2

1vt − a∗21 v
∗
t + σ2

va
2
2 − σ∗2v a∗22

)
.

It is easily verified that pt + qt = it − i∗t .

Result A.1 Symmetry and ϕz = 0

If all foreign and domestic parameter values are the same and ϕz = ϕ∗z = 0, then
the UIP regression parameter (8) is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )
=

Cov(pt + qt, qt)

Var(pt + qt)
(A8)

=
ϕv
τπ

(A9)

The sign of Cov(pt, qt) does not depend on ϕz. That is, Cov(pt, qt) is essentially the
covariance between the kernel’s mean and its variance and, while vt appears in both, zt
appears only in the mean. The assumption ϕz = 0 is therefore relatively innocuous in the
sense that it has no effect on one of the two necessary conditions (9) and (10).
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We require τπ > 1 for the solution to make sense. Therefore, according to Equation
(A9), 0 < b < 1 unless ϕv < 0. The latter is implausible. Nevertheless, the UIP regression
coefficient can be significantly less than unity and the joint distribution of exchange rates
and interest rates will admit positive expected excess returns on a suitably-defined trading
strategy.

We cannot, at this point, account for b < 0. But the model does deliver some insights
into our basic question of how Taylor rules restrict inflation dynamics and, consequently,
exchange rate dynamics. We summarize with several remarks.

Remark A.1.1 : This is not just a relabeled affine model

Inspection of the pricing kernel, Equation (A7), indicates that it is basically a log-linear
function of two unobservable factors. Is what we are doing just a relabeling of the class of
latent-factor affine models described in Backus, Foresi, and Telmer (2001)? The answer is
no and the reason is that the Taylor rule imposes economically-meaningful restrictions on
the model’s coefficients.

To see this consider a pricing kernel of the form

− logmt+1 = α + χvt + γv
1/2
t εt+1 (A10)

where vt is an arbitrary, positive stochastic process, and an analogous expression describes
m∗t+1. Backus, Foresi, and Telmer (2001) show that such a structure generates a UIP coeffi-
cient b < 0 if χ > 0 and χ < γ2/2. The former condition implies that the mean and variance
of negative the log kernel move in the same direction — this gives Cov(pt, qt) < 0 — and
the latter implies that the variance is more volatile so that Var(pt) > Var(qt).

Now compare Equations (A10) and (A7). The Taylor rule imposes the restrictions that
χ can only be positive if ϕv is negative (because a2 < 0 since τπ > 1) and that χ/γ =
ϕv/(2τπ(τπ −ϕv)). Both χ and γ are restricted by value of the policy parameter τπ, and the
dynamics of the volatility shocks. In words, the UIP evidence requires the mean and the
variance of the pricing kernel to move in particular ways relative to each other. The Taylor
rule and its implied inflation dynamics place binding restrictions on how this can happen.
The unrestricted pricing kernel in Equation (A10) can account for b < 0 irrespective of the
dynamics of vt. Imposing the Taylor rule says that vt must be negatively autocorrelated.

Remark A.1.2 : Reason that negatively-correlated volatility is necessary for b < 0?

First, note that a2 < 0, so that an increase in volatility vt decreases inflation πt. Why?
Suppose not. Suppose that vt increases. Then, since τπ > 1, the Taylor rule implies that
the interest rate it must increase by more than inflation πt. However this contradicts the
stationarity of inflation which implies that the conditional mean must increase by less than
the contemporaneous value. Hence a2 < 0. A similar argument implies that a1 < 0 from
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Equation (A6). The point is that the dynamics of Taylor-rule implied inflation, at least as
long as the real exchange rate is constant, are driven by the muted response of the interest
rate to a shock, relative to that of the inflation rate.

Next, to understand why ϕv < 0 is necessary for b < 0, consider again an increase in
volatility vt. Since a2 < 0, the U.S. interest rate it and the contemporaneous inflation rate
πt must decline. But for b < 0 USD must be expected to depreciate. This means that,
although πt decreases, Etπt+1 must increase. This means that volatility must be negatively
autocorrelated.

Finally, consider the more plausible case of positively autocorrelated volatility, 0 < ϕv <
1. Then b < 1 which is, at least, going in the right direction (e.g., Backus, Foresi, and Telmer
(2001) show that the vanilla Cox-Ingersoll-Ross model generates b > 1). The reasoning,
again, derives from the ‘muted response of the interest rate’ behavior required by the Taylor
rule. This implies that Cov(pt, qt) > 0 — thus violating Fama’s condition (9) — which
says that if inflation and expected inflation move in the same direction as the interest rate
(because ϕv > 0), then so must the USD currency risk premium. The Tryon-Bilson-Fama
regression (7) can be written

qt = c+ b(pt + qt)− forecast error ,

where ‘forecast error’ is defined as st+1 − st − qt. Since Cov(pt, qt) > 0, then Var(pt + qt) >
Var(qt) and, therefore, 0 < b < 1.

Even more starkly, consider the case of ϕv = 0 so that b = 0. Then the exchange rate
is a random walk — i.e., qt = 0 so that st = Etst+1 — and all variation in the interest rate
differential is variation in the risk premium, pt. Taylor rule inflation dynamics, therefore,
say that for UIP to be a good approximation, changes in volatility must show up strongly
in the conditional mean of inflation and that this can only happen if volatility is highly
autocorrelated.

Remark A.1.3 : Identification of policy parameters

Cochrane (2011) provides examples where policy parameters like τπ are impossible to dis-
tinguish from the parameters of the unobservable shocks. Result A.1 bears similarity to
Cochrane’s simplest example. We can estimate b from data but, if we can’t estimate ϕv di-
rectly then there are many combinations of ϕv and τπ that are consistent with any estimate
of b.

Identification in our special case, however, is possible because of the conditional variance
term in the interest rate equation: it = Etπt+1−Var tπt+1. To see this note that, with ϕz = 0,
the autocorrelation of the interest rate is ϕv and, therefore, ϕv is identified by observables.
Moreover,

it
Etπt+1

=
τπ
ϕv

,
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which identifies τπ because the variables on the left side are observable.

The more general case of ϕz 6= 0 doesn’t work out as cleanly, but it appears that the
autocorrelation of inflation and the interest rate jointly identify ϕz and ϕv and the above
ratio again identifies the policy parameter τπ. These results are all special cases of those
described in Backus and Zin (2008).

A.2 Exotic Taylor Rules

Asymmetric Taylor Rules

Suppose that foreign and domestic Taylor rules depend on the exchange rate in addition to
domestic inflation and a policy shock:

it = τ + τππt + zt + τ3 log(St/St−1) (A11)

i∗t = τ ∗ + τ ∗ππ
∗
t + z∗t + τ ∗3 log(St/St−1) (A12)

The asymmetry that we’ll impose is that τ3 = 0 so that the Fed does not react to the depre-
ciation rate whereas, say, the Bank of England does. Foreign central banks reacting more
to USD exchange rates seems plausible. It’s also consistent with some empirical evidence
in, for example, Clarida, Gaĺı, and Gertler (1999), Engel and West (2006), and Eichenbaum
and Evans (1995).

Assuming the same processes for the state variables as Equations (A2) and (A3) (and
their foreign counterparts), guess that the inflation solutions look like:

πt = a+ a1zt + a2z
∗
t + a3vt + a4v

∗
t ≡ a+ A>Xt

π∗t = a∗ + a∗1zt + a∗2z
∗
t + a∗3vt + a∗4v

∗
t ≡ a∗ + A∗>Xt ,

where we collected the state variables into the vector

X>t ≡
[
zt z

∗
t vt v

∗
t

]>
.

Interest rates, from Euler equations with real interest rates equal to zero, must satisfy

it = C +B>Xt

i∗t = C∗ +B∗>Xt ,
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where

B> ≡
[
a1ϕz a2ϕ

∗
z (a3ϕv −

a2
1

2
) (a4ϕ

∗
v −

a2
2

2
)
]

C ≡ a+ a1θz(1− ϕz) + a2θ
∗
z(1− ϕ∗z) + a3θv(1− ϕv) + a4θ

∗
v(1− ϕ∗v)−

1

2

(
a2

3σ
2
v + a2

4σ
∗2
v

)
B∗> ≡

[
a∗1ϕz a∗2ϕ

∗
z (a∗3ϕv −

a∗21

2
) (a∗4ϕ

∗
v −

a∗22

2
)
]

C∗ ≡ a∗ + a∗1θz(1− ϕz) + a∗2θ
∗
z(1− ϕ∗z) + a∗3θv(1− ϕv) + a∗4θ

∗
v(1− ϕ∗v)−

1

2

(
a∗23 σ

2
v + a∗24 σ

∗2
v

)
.

The Taylor rules become:

it = τ + τπ(a+ A>Xt) + zt + τ3

(
a+ A>Xt − a∗ − A

∗>Xt

)
= τ + τπa+ τ3(a− a∗) +

(
τπA

> + ι>z + τ3[A> − A∗>]
)
Xt

i∗t = τ ∗ + τ ∗π(a∗ + A∗>Xt) + z∗t + τ ∗3
(
a+ A>Xt − a∗ − A

∗>Xt

)
= τ ∗ + τ ∗πa

∗ + τ ∗3 (a− a∗) +
(
τ ∗πA

∗> + ι∗>z + τ ∗3 [A> − A∗>]
)
Xt ,

where ι>z ≡ [ 1 0 0 0 ] and ι∗>z ≡ [ 0 1 0 0 ]. Matching-up the coefficients means

C = τ + τπa+ τ3(a− a∗)
C∗ = τ ∗ + τ ∗πa

∗ + τ ∗3 (a− a∗)
B = τπA

> + ι>z + τ3(A> − A∗>)

B∗ = τ ∗πA
∗> + ι∗>z + τ ∗3 (A> − A∗>)

To solve for the constants (the first two equations):[
1− τπ − τ3 τ3

−τ ∗3 1− τ ∗π + τ ∗3

] [
a
a∗

]
=

[
τ − stuff
τ ∗ − stuff ∗

]
where stuff and stuff ∗ are everything on the LHS of the solutions for C and C∗, except
the first terms, a and a∗.

The B equations are eight equations in eight unknowns, A and A∗. Conditional on these,
the C equations are two-in-two, a and a∗. The B equations can be broken into 4 blocks of
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2. It’s useful to write them out because you can see where the singularity lies:[
(τπ + τ3 − ϕz) −τ3

τ ∗3 (τ ∗π − τ ∗3 − ϕz)

] [
a1

a∗1

]
=

[
−1
0

]
[

(τπ + τ3 − ϕ∗z) −τ3

τ ∗3 (τ ∗π − τ ∗3 − ϕ∗z)

] [
a2

a∗2

]
=

[
0
−1

]
[

(τπ + τ3 − ϕv) −τ3

τ ∗3 (τ ∗π − τ ∗3 − ϕv)

] [
a3

a∗3

]
=

[
−a2

1/2
−a∗21 /2

]
[

(τπ + τ3 − ϕ∗v) −τ3

τ ∗3 (τ ∗π − τ ∗3 − ϕ∗v)

] [
a4

a∗4

]
=

[
−a2

2/2
−a∗22 /2

]
.

Two singularities exist:

• UIP holds exactly. If τ3 = 0 (so that the Fed ignores the foreign exchange rate), ϕv = ϕ∗v
and τπ = τ ∗π (complete symmetry in parameters, save τ3 and τ ∗3 ) then a singularity is
τ ∗3 = τπ − ϕv. As τ ∗3 approaches this from below or above, the UIP coefficient goes to
1.

• Anomaly resolved. Similarly, if τ3 = 0, ϕv = ϕ∗v and τπ = τ ∗π then a singularity is
τ ∗3 = τπ. As τ ∗3 approaches from below, the UIP coefficient goes to infinity. As τ ∗3
approaches from above, it goes to negative infinity.

The latter condition is where the UIP regression coefficient changes sign. This says that we
need τ ∗3 > τ3. This may seem pathological. It says that — if we interpret these coefficients as
policy responses (which we shouldn’t) — the Bank of England responds to an appreciation
in GBP by increasing interest rates more than 1:1 (and more than the ‘Taylor principle’
magnitude of τπ > 1). We can now write the following result.

Result A.2 : Asymmetric reaction to exchange rates

If foreign and domestic Taylor rules are Equations (A11) and (A12), with τ3 = 0
and all remaining foreign and domestic parameter values the same, then b < 0 if
τ ∗3 > τπ.

Remark A.2.1 : Pathological policy behavior?

Interpreted literally, τ ∗3 > 0 means that the Bank of England reacts to an appreciation in
GBP by increasing the British interest rate. However, at the same time, there exist sensible
calibrations of the model in which Cov(i∗t , log(St/St−1)) > 0. This makes the obvious point
that the Taylor rule coefficients must be interpreted with caution since all the endogenous
variables in the rule are responding to the same shocks.
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McCallum’s Model

McCallum (1994), Equation (17), posits a policy rule of the form

it − i∗t = λ
(
st − st−1

)
+ σ
(
it−1 − i∗t−1

)
+ ζt ,

where ζt is a policy shock. He also defines UIP to include an exogenous shock, ξt, so that

it − i∗t = Et
(
st+1 − st

)
+ ξt .

McCallum solves the implicit difference equation for st−st−1 and finds that it takes the form

st − st−1 = −σ/λ
(
it − it−1

)
− λ−1ζt +

(
λ+ σ

)−1
ξt

He specifies values σ = 0.8 and λ = 0.2 — justified by the policy-makers desire to smooth
interest rates and ‘lean-into-the-wind’ regarding exchange rates — which resolve the UIP
puzzle by implying a regression coefficient from our Equation (7) of b = −4. McCallum’s
insight was, recognizing the empirical evidence of a risk premium in the interest rate differ-
ential, to understand that the policy rule and the equilibrium exchange rate must respond
to the same shock that drives the risk premium.

In this section we show that McCallum’s result can be recast in terms of our pricing kernel
model and a policy rule that targets the interest rate itself, not the interest rate differential.
The key ingredient is a lagged interest rate in the policy rule:

it = τ + τππt + τ4it−1 + zt , (A13)

where the processes for zt and its volatility vt are the same as above. Guess that the solution
for endogenous inflation is:

πt = a+ a1zt + a2vt + a3it−1 , (A14)

Substitute Equation (A14) into the pricing kernel and compute the expectation:

it =
1

1− a3

(
C + a1ϕzzt + (a2ϕv − a2

1/2)vt

)
,

where

C ≡ a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2 .
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Match-up the coefficients with the Taylor rule and solve for the aj parameters:

a =
C

τπ + τ4

− τ

τπ

a1 =
τπ + τ4

τπ(ϕz − τπ − τ4)

a2 =
(τπ + τ4)2

2τ 2
π(ϕz − τπ − τ4)2(ϕv − τπ − τ4)

a3 = − τ4

τπ
.

It’s useful to note that

a2 =
a2

1

2(ϕv − τπ − τ4)

and that matching coefficients imply

a1ϕz
1− a3

= 1 + τπa1 ;
a2ϕv − a2

1/2

1− a3

= τπa2 .

Inflation and the short rate are:

πt =
C

τπ + τ4

− τ

τπ
+

τπ + τ4

τπ(ϕz − τπ − τ4)
zt +

+
(τπ + τ4)2

2τ 2
π(ϕz − τπ − τ4)2(ϕv − τπ − τ4)

vt −
τ4

τπ
it−1

it =
τπ

τπ + τ4

C +
ϕz

ϕz − τπ − τ4

zt +
(τπ + τ4)2

2τπ(ϕz − τπ − τ4)2(ϕv − τπ − τ4)
vt

=
1

1− a3

(
C + ϕza1zt + (τπ + τ4)a2vt

)
.

The pricing kernel is

− logmt+1 = D +
a1ϕz

1− a3

zt +
a2ϕv − a3a

2
1/2

1− a3

vt + a1v
1/2
t εzt+1 ,+σva2ε

v
t+1

where

D ≡ C

1− a3

+ (σva2)2/2 .

The foreign currency denominated kernel and variables are denoted with asterisks. If we
assume that all foreign and domestic parameter values are the same, the interest-rate differ-
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ential, the expected depreciation rate, qt, and the risk premium, pt, are:

it − i∗t =
a1ϕz

1− a3

(zt − z∗t ) +
a2ϕv − a2

1/2

1− a3

(vt − v∗t )

qt =
a1ϕz

1− a3

(zt − z∗t ) +
a2ϕv − a3a

2
1/2

1− a3

(vt − v∗t )

pt = −1

2
a2

1(vt − v∗t ) .

It is easily verified that pt + qt = it − i∗t .

The nominal interest rate and the interest rate differential have the same autocorrelation:

Corr(it+1, it) = Corr(it+1 − i∗t+1, it − i∗t )

= 1− (1− ϕz)(1 + τπa1)2 Var(zt)

Var(it)
− (1− ϕv)(τπa2)2 Var(vt)

Var(it)
.

If we set ϕz = 0, then the regression parameter is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )

=
ϕv − τ4

τπ

To see the similarity to McCallum’s model define ζ ≡ zt − z∗t , and subtract the foreign
Taylor rule from its domestic counterpart in (A13). Assuming symmetry, we get

it − i∗t = τπ(πt − π∗t ) + τ4

(
it − i∗t

)
+ ζt

= τπ(st − st−1) + τ4

(
it − i∗t

)
+ ζt ,

where the second equality follows from market completeness and our simple pricing kernel
model. This is the same as McCallum’s policy rule with τπ = λ and τ4 = σ. His UIP “shock”
is the same as our pt = −a2

1(vt − v∗t )/2, with ϕz = ϕv = 0. With ϕv = 0 we get the same
UIP regression coefficient, −τ4/τπ. McCallum’s model is basically a two-country Taylor rule
model with a lagged interest rate in the policy rule and no dynamics in the shocks. Allowing
for autocorrelated volatility diminishes the model’s ability to account for a substantially
negative UIP coefficient, a feature that McCallum’s approach does not recognize. A value
of b < 0 can only be achieved if volatility is less autocorrelated that the value of the interest
rate smoothing policy parameter.
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A.3 Summary

The goal of this section has been to ascertain how the imposition of a Taylor rule restricts
inflation dynamics and how these restrictions are manifest in the exchange rate. What have
we learned?

A good context for understanding the answer is the Alvarez, Atkeson, and Kehoe (2008)
(AAK) paper. The nuts and bolts of their argument goes as follows. With lognormality, the
nominal interest is

it = −Et
(

logmt+1

)
− Var t

(
logmt+1

)
/2 .

AAK argue that if exchange rates follow a random walk then variation in the conditional
mean term must be small.1 Therefore (according to them), “almost everything we say about
monetary policy is wrong.” The idea is that, in many existing models, the monetary policy
transmission mechanism works through its affect on the conditional mean of the nominal
marginal rate of substitution, mt. But if exchange rates imply that the conditional mean is
essentially a constant — so that ‘everything we say is wrong’ — then the mechanism must
instead be working through the conditional variance.

If one takes the UIP evidence seriously, this isn’t quite right. The UIP puzzle requires
variation in the conditional means (i.e., it says that exchange rates are not a random walk).2

Moreover, it also requires that this variation be negatively correlated with variation in the
conditional variances, and that the latter be larger than the former. In terms of monetary
policy the message is that the standard story — that a shock that increases the mean (of the
marginal rate of substitution) decreases the interest rate — is wrong. The UIP evidence says
that we need to get used to thinking about a shock that increases the mean as increasing
the interest rate, the reason being that the same shock must decrease the variance, and by
more than it increases the mean.

Now, to what we’ve learned. We’ve learned that symmetric monetary policies as repre-
sented by Taylor rules of the form (A1) can’t deliver inflation dynamics that, by themselves,
satisfy these requirements. The reason is basically what we label the ‘muted response of the
short rate’. The evidence requires that the conditional mean of inflation move by more than
its contemporaneous value. But the one clear restriction imposed by the Taylor rule — that
the interest rate must move less than contemporaneous inflation because the interest rate

1i.e., random walk exchange rates mean that Et log(St+1/St) = 0, and, from Equation (13),
Et log(St+1/St) = −Et(logmt+1 − logm∗t+1). Random walk exchange rates, therefore, imply that the dif-
ference between the mean of the log kernels does not vary, not the mean of the log kernels themselves. More
on this below.

2Of course, the variation in the forecast error for exchange rates dwarfs the variation in the conditional
mean (i.e., the R2 from the Tryon-Bilson-Fama-regressions is very small). Monthly changes in exchange rates
certainly exhibit ‘near random walk’ behavior, and for policy questions the distinction may be a second-order
effect. This argument, however, does not affect our main point regarding the AAK paper: that exchange
rates are all about differences between pricing kernels and its hard to draw definitive conclusions about their
levels.
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must also be equal to the conditional mean future inflation — says that this can’t happen
(unless volatility is negatively autocorrelated).

This all depends heavily on the real interest rate being a constant. What’s going on is
as follows. In general, the Euler equation and the simplest Taylor rule can be written as

it = rt + Et πt+1 −
Var t

(
πt+1

)
2

+ Cov t(nt+1, πt+1) (A15)

it = τ + τππt + zt . (A16)

The Euler equation (A15) imposes restrictions between the current short rate and moments
of future inflation. The Taylor rule (A16) imposes an additional contemporaneous restriction
between the current interest rate and current inflation. To see what this does, first ignore
the real parts of Equation (A15), rt and the covariance term. Recalling that endogenous
inflation will be a function π(zt, vt), consider a shock to volatility that increases inflation
by 1%.3 The Taylor rule says that it must increase by more than 1%, say 1.2%. But, if
inflation is a positively autocorrelated stationary process, then its conditional mean, Etπt+1,
must increase by less than 1%, say 0.9%. Equation (A15) says that the only way this can
happen is if the conditional variance decreases by 0.2%; a volatility shock that increases πt
must decrease Var tπt+1. Therefore the mean and variance of the pricing kernel must move
in the same direction, thus contradicting what Fama (1984) taught us is necessary for b < 0.

Phrased in terms of the exchange rate, the logic is equally intuitive. The increase in the
conditional mean of inflation implies an expected devaluation in USD — recall that relative
PPP holds if we ignore real rates — which, given the increasing interest rate implied by the
Taylor rule, moves us in the UIP direction: high interest rates associated with a devaluing
currency. Note that, if volatility were negatively autocorrelated, Etπt+1 would fall and the
reverse would be true; we’d have b < 0.4

So, the contemporaneous restriction implied by the Taylor rule is very much a binding
one for our question. This points us in two directions. First, it suggests that an interaction
with the real interest rate is likely to be important. None of the above logic follows if rt and
Cov t(nt+1, πt+1) also respond to a volatility shock. We follow this path in the main text.
Second it points to something else that the AAK story doesn’t get quite right. Exchange rate
behavior tells us something about the difference between the domestic and foreign pricing
kernels, not necessarily something about their levels. The above logic, and AAK’s logic, is
about levels, not differences. Symmetry makes the distinction irrelevant, but with asymmetry
it’s important. What our asymmetric example delivers is (i) inflation dynamics that, in each
currency, satisfies ‘muted response of the short rate’ behavior, and (ii) a difference in inflation

3A shock to zt isn’t particularly interesting in this context because it doesn’t affect both the mean and
variance of the pricing kernel.

4This intuition is also useful for understanding why we get 0 < b < 1 with positively autocorrelated
volatility. The RHS of the regression, the interest rate spread, contains both the mean and the variance
of inflation. The LHS contains only the mean. If (negative) the mean and the variance move in the same
direction, then the RHS is moving more than the LHS and the population value of b is less than unity.
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dynamics that gets the difference in the mean and the variance of the kernels moving in the
right direction.

To see this, recall that X>t ≡
[
zt z

∗
t vt v

∗
t

]>
and consider the foreign and domestic pricing

kernels in the asymmetric model:

− logmt+1 = constants + a1ϕzzt + a3ϕvvt + a1v
1/2
t εzt+1 + a3σvε

v
t+1

− logm∗t+1 = constants + A>ΛXt + V (Xt)
1/2
[
εzt+1 ε

z∗

t+1 ε
v
t+1 w

∗
t+1

]>
,

where Λ is a diagonal matrix of autoregressive coefficients, and V (Xt) is a diagonal matrix
of conditional standard deviations. The asymmetric restriction that τ3 = 0 and τ ∗3 6= 0
effectively makes this a ‘common factor model’ with asymmetric loadings on the common
factors. A number of recent papers, Lustig, Roussanov, and Verdelhan (2011) for example,
have argued persuasively for such a specification. What we’ve developed is one economic
interpretation of their statistical exercise.5

More explicitly, consider the difference in the mean and variance of the log kernels from
the symmetric and asymmetric examples of Appendix A.1–A.2. For the symmetric case we
have

pt = −1

2
a2

1

(
vt − v∗t

)
qt = a2ϕv

(
vt − v∗t

)
whereas for the asymmetric case we have

pt = −1

2

(
a2

1 − a∗21

)
vt +

1

2
a∗4v

∗
t

qt = ϕv
(
a3 − a∗3

)
vt − a∗4v∗t ,

where the a coefficients are functions of the model’s parameters. What’s going on in the
symmetric case is transparent. pt and qt can only be negatively correlated if ϕv < 0 (since
a2 < 0). The asymmetric case is more complex, but it turns out that what’s critical is that
(a3−a∗3) < 0. This in turn depends on the difference (τπ− τ ∗3 ) being negative. Overall, what
the asymmetric Taylor rule does is that it introduces an asymmetry in how a common factor
between m and m∗ affect their conditional means. This asymmetry causes the common
factor to show up in exchange rates, and it can also flip the sign and deliver b < 0 with the
right combination of parameter values.

5Note that if the conditional mean coefficients on zt and vt were the same across m and m∗ then, contrary
to AAK’s assertion, monetary policy could affect the mean of the pricing kernel while still allowing for a
random walk exchange rate. This is simply because zt and vt would not appear in the difference between the
means of the two log kernels.
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B The Model

B.1 Linearization of the Pricing Kernel

The log of the equilibrium domestic marginal rate of substitution in Equation (16) is given
by

log(nt+1) = log β + (ρ− 1)xt+1 + (α− ρ)[logWt+1 − log µt(Wt+1)] , (B1)

where xt+1 ≡ log(ct+1/ct) is the log of the ratio of domestic observed consumption in t + 1
relative to t and Wt is the value function. The first two terms are standard expected utility
terms: the pure time preference parameter β and a consumption growth term times the
inverse of the negative of the intertemporal elasticity of substitution. The third term in the
pricing kernel is a new term coming from recursive preferences.

We work on a linearized version of the real pricing kernel, following the findings of
Hansen, Heaton, and Li (2008). In particular, we focus on the the value function of each
representative agent, scaled by the observed equilibrium consumption level

Wt/ct = [(1− β) + β(µt(Wt+1)/ct)
ρ]1/ρ

=

[
(1− β) + βµt

(
Wt+1

ct+1

× ct+1

ct

)ρ]1/ρ

,

where we use the linear homogeneity of µt. In logs,

wct = ρ−1 log[(1− β) + β exp(ρgt)] ,

where wct = log(Wt/ct) and gt ≡ log(µt(exp(wct+1 + xt+1))). Taking a linear approximation
of the right-hand side as a function of gt around the point m̄, we get

wct ≈ ρ−1 log[(1− β) + β exp(ρm̄)] +

[
β exp(ρm̄)

1− β + β exp(ρm̄)

]
(gt − m̄)

≡ κ̄+ κgt ,

where κ < 1. Approximating around m̄ = 0, results in κ̄ = 0 and κ = β, and for the general
case of ρ = 0, the “log aggregator”, the linear approximation is exact with κ̄ = 1 − β and
κ = β.

Given the state variables of the economy, xt and ut, and the log-linear structure of the
model, we conjecture a solution for the value function of the form,

wct = ω̄ + ωxxt + ωuut ,

where ω̄, ωx, and ωu are constants to be determined. Therefore,

wct+1 + xt+1 = ω̄ + (ωx + 1)xt+1 + ωuut+1
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and, using the properties of lognormal random variables, gt can be expressed as

gt ≡ log(µt(exp(wct+1 + xt+1)))

= log(Et[exp(wct+1 + xt+1)α]
1
α )]

= Et[wct+1 + xt+1] +
α

2
Vart[wct+1 + xt+1]

= ω̄ + (ωx + 1)(1− ϕx)θx + ωu(1− ϕu)θu + (ωx + 1)ϕxxt + ωuϕuut

+
α

2
(ωx + 1)2ut +

α

2
ω2
uσ

2
u .

Using the above expression, we solve for the value-function parameters by matching coeffi-
cients:

ωx = κ(ωx + 1)ϕx

⇒ ωx =

(
κ

1− κϕx

)
ϕx

ωu = κ[ωuϕu +
α

2
(ωx + 1)2]

⇒ ωu =

(
κ

1− κϕu

)[
α

2

(
1

1− κϕx

)2
]

ω̄ =
κ̄

1− κ
+

1

1− κ

[
(ωx + 1)(1− ϕx)θx + ωu(1− ϕu)θu +

α

2
ω2
uσ

2
u

]
.

The solution allows us to simplify the term [logWt+1 − log µt(Wt+1)] in the pricing kernel
in Equation (B1):

logWt+1 − log µt(Wt+1) = wct+1 + xt+1 − log µt(exp(wct+1 + xt+1))

= (ωx + 1)[xt+1 − Etxt+1] + ωu[ut+1 − Etut+1]

−α
2

(ωx + 1)2Vart[xt+1]− α

2
ω2
uVart[ut+1]

= (ωx + 1)u
1/2
t εxt+1 + ωuσuε

u
t+1 −

α

2
(ωx + 1)2ut −

α

2
ω2
uσ

2
u .

Equation (22) in the main text follows by collecting terms. In particular,

− log nt+1 = δr + γrxxt + γruut + λrx
√
utε

x
t+1 + λruσuε

u
t+1 , (B2)

where

δr = − log β + (1− ρ)(1− ϕx)θx +
α

2
(α− ρ)ω2

uσ
2
u

γrx = (1− ρ)ϕx ; γru =
α

2
(α− ρ)(ωx + 1)2
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λrx = (1− α)− (α− ρ)ωx ; λru = −
(α

2

)(κ(α− ρ)

1− κϕu

)(
1

1− κϕx

)2

ωx =

(
κ

1− κϕx

)
ϕx ; ωu =

(
κ

1− κϕu

)[
α

2

(
1

1− κϕx

)2
]

.

B.2 Endogenous Inflation and Monetary Policy Consistent Pric-
ing Kernel

We find the unique minimum state variable solution by guessing a solution for the endogenous
inflation process and then applying the method of undetermined coefficients as in McCallum
(1981). Given the lognormal structure of the economy we guess that

πt = a+ axxt + auut . (B3)

Substitute the guess in (B3) into the Euler condition and compute the expectation:

it = − logEt nt+1e
−πt+1

= C + (γrx + axϕx)xt +

(
γru + auϕu −

1

2
(λrx + ax)

2

)
ut , (B4)

where C = δr + a+ ax(1− ϕx)θx + au(1− ϕu))− 1
2
(λru + au)

2σ2
u. Then, plug in the guess in

(B3) into the Taylor rule:

it = τ̄ + τππt + τxxt

= (τ̄ + τπa) + (τπax + τx)xt + τπauut . (B5)

Matching coefficients in (B4) and (B5) gives the solution for the ai parameters. In particular,

ax =
γrx

τπ − ϕx

au =
γru − 1

2

(
λrx + ax

)2

τπ − ϕu

a =
1

τπ − 1

(
δ − τ̄ + ax(1− ϕx)θx + au(1− ϕu)θu −

(λru + au)
2σ2

u

2

)
.

Putting together (B2), (B3) and (B4) , we arrive at what Gallmeyer, Hollifield, Palomino,
and Zin (2007) call the “monetary-policy-consistent nominal pricing kernel:”

− logmt+1 = δ + γxxt + γuut + λx
√
utε

x
t+1 + λuσuε

u
t+1 , (B6)
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where

δ = δr + a+ ax(1− ϕx)θx + au(1− ϕu) ;

γx = γrx + axϕx; γu = γru + auϕu;

λx = λrx + ax; λu = λru + au .

Finally, recall that the nominal pricing kernel is related to the real pricing kernel and
inflation according to logmt+1 = log nt+1 − πt+1. Therefore, we can write

Var t
(

logmt+1

)
= Var t

(
log nt+1

)
+ Var t

(
πt+1

)
− 2Cov t

(
log nt+1 , πt+1

)
.

The negative correlation between consumption growth and inflation we observe in the data
implies Cov t

(
log nt+1 , πt+1

)
> 0. Together with a modest volatility of inflation — relative to

the volatility of the real marginal rate of substitution — we have that, for all our quantitative
exercises, Var(logmt+1) < Var(log nt+1). The nominal pricing kernel is less volatile than
the real marginal rate of substitution. Nominal risk is less than real risk.

B.3 Properties of the UIP coefficient

The real UIP coefficient is br = Cov(f rt − srt , q
r
t )/Var(f rt − srt ), where f rt − srt is the real

forward discount and qrt is the real depreciation rate. Assume symmetric coefficients across
countries. A useful reference point is the special case of ϕx = 0. When this is the case, we
have

br =
γru

γru − 1
2
(λrx)

2
=

α
2
(α− ρ)

α
2
(α− ρ)− (1−α)2

2

.

Examining the above expression, we see that the real UIP coefficient is negative if and only

if γru = α
2
(α− ρ) > 0 and γru− 1

2
(λrx)

2 = α
2
(α− ρ)− (1−α)2

2
< 0. One can verify that (i) α < 0,

and (ii) a preference for the early resolution of risk (that is, ρ > α) are sufficient conditions
to satisfy both the above inequalities.

Likewise, the nominal UIP coefficient is b = Cov(ft − st, qt)/Var(ft − st). When all
parameters are symmetric across countries (including the Taylor parameters), and when
ϕx = 0, we have

b =
γu

γu − 1
2
(λx)2

=
γru + auϕu

γru + auϕu − 1
2
(λx + ax)2

.

Examining the above expression, we see that nominal UIP coefficient is negative if and only
if γu = γru + auϕu > 0 and γu − 1

2
(λx)

2 = γru + auϕu − 1
2
(λx + ax)

2 < 0. For the relevant
parameter space in our quantitative exercise, the sensitivity of inflation to volatility, au, is
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negative. Therefore, when volatility is positively autocorrelated (ϕu > 0), we have that
γu = γru + auϕu < γru, so that, in general, it is harder to obtain γu > 0 For γu to be positive
we must have that (i) α < 0 (as was the case for the real UIP coefficient) and (ii) ρ > α and
large enough. The same conditions guarantee that γu − 1

2
(λx)

2 < 0. A numerical analysis of
the relative magnitude of the real and nominal UIP coefficients shows that the nominal UIP
coefficient is typically greater than its real counterpart. In other words, endogenous inflation
pushes us toward UIP. Results are available upon request.

19



C Proofs

C.1 Proofs of Results 1 and 2

In this Appendix, we show analytical proofs of Results 1 and 2 in the main text. We focus
on the specific case in which the difference in the Taylor rule parameters across countries
changes, while keeping their sum constant. This allows us to obtain clean analytical expres-
sions. We verified numerically that our results hold more generally for the set of parameters
that is relevant to our quantitative exercise. Additional comparative static results are pro-
vided in Appendix C.2.

Result 1 : Relatively procyclical monetary policy generates currency risk

The risk premium on foreign currency is increasing in (τ ∗x − τx), provided that
τ ∗x > τx. In words, foreign currency risk is associated with a foreign policy rule
that is relatively procyclical. The larger the difference, the greater the risk.

Proof: Let ∆x = τ ∗x − τx and Σx = τ ∗x + τx. Express the USD denominated risk premium on
holding foreign currency as a function of ∆x and Σx, that is

−pt(∆x,Σx) =
λ2
u(∆x,Σx)− (λ∗u)2(∆x,Σx)

2
σ2
u +

λ2
x(∆x,Σx)ut − (λ∗x)2(∆x,Σx)u∗t

2

≈ σ2
u

2

(
λ2
u(∆x,Σx)− (λ∗u)2(∆x,Σx)

)
+
ut
2

(
λ2
x(∆x,Σx)− (λ∗x)2(∆x,Σx)

)
=

σ2
u

2


λru +

γru − 1
2

(
λrx +

γrx+ 1
2 (∆x−Σx)

τπ−ϕx

)2

τπ − ϕu


2

−

λru +
γru − 1

2

(
λrx +

γrx+ 1
2 (−∆x−Σx)

τ∗
π−ϕx

)2

τ∗π − ϕu


2


+
ut
2

((
λrx +

γrx + 1
2 (∆x − Σx)

τπ − ϕx

)2

−
(
λrx +

γrx + 1
2 (−∆x − Σx)

τ∗π − ϕx

)2
)

,

where the approximation holds for the case of very high correlation between stochastic volatil-
ities across countries (ηu,u∗ ≈ 1). Therefore,

∂(−pt(∆x,Σx))

∂∆x

=
σ2
u

2

(
− λuλx

(τπ − ϕu)(τπ − ϕx)
− λ∗uλ

∗
x

(τ ∗π − ϕu)(τ ∗π − ϕx)

)
+

ut
2

(
λx

τπ − ϕx
+

λ∗x
τ ∗π − ϕx

)
> 0 ,

since λx > 0, λ∗x > 0, λu < 0, λ∗u < 0, τπ > 1, τ ∗π > 1, |ϕx| < 1, and |ϕu| < 1. �
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Result 2 : Relatively accommodative monetary policy generates currency risk

The risk premium on foreign currency is increasing in (τπ − τ ∗π), provided that
τπ > τ ∗π and that τx and τ ∗x are large enough. In words, provided that domestic
and foreign policies are sufficiently procyclical, foreign currency risk is associated
with a foreign policy rule that is relatively accommodative toward inflation. The
larger the difference, the greater the risk.

Proof: Let ∆π = τπ − τ ∗π and Σπ = τπ + τ ∗π . Express the USD denominated risk premium on
holding foreign currency as a function of ∆π and Σπ. When ηu,u∗ ≈ 1, we can write

−pt(∆π,Σπ) ≈ σ2
u

2

(
λ2
u(∆π,Σπ)− (λ∗u)2(∆π,Σπ)

)
+
ut
2

(
λ2
x(∆π,Σπ)− (λ∗x)2(∆π,Σπ)

)
=

σ2
u

2


λru +

γru − 1
2

(
λrx +

γrx−τx
1
2 (∆π+Σπ)−ϕx

)2

1
2 (∆π + Σπ)− ϕu


2

−

λru +
γru − 1

2

(
λrx +

γrx−τ
∗
x

1
2 (−∆π+Σπ)−ϕx

)2

1
2 (−∆π + Σπ)− ϕu


2


+
ut
2

((
λrx +

γrx − τx
1
2 (∆π + Σπ)− ϕx

)2

−
(
λrx +

γrx − τ∗x
1
2 (−∆π + Σπ)− ϕx

)2
)

.

Therefore,

∂(−pt(∆π,Σπ))

∂∆π

=
σ2
u

2

(
2λu

∂λu
∂∆π

− 2λ∗u
∂λ∗u
∂∆π

)
+
ut
2

(
2λx

∂λx
∂∆π

− 2λ∗x
∂λ∗x
∂∆π

)
,

where we have suppressed the dependence of the prices of risk on ∆π and Σπ. We have
λx > 0, λ∗x > 0, λu < 0, λ∗u < 0, and

∂(λx(∆π,Σπ))

∂∆π

= − γrx − τx
2(τπ − φx)2

> 0 ,

since (γrx − τx) is typically negative (see Section 5.1.1 in the main text). Similarly,

∂(λ∗x(∆π,Σπ))

∂∆π

=
γrx − τ ∗x

2(τ ∗π − φx)2
< 0 .

The sign of the partial derivatives ∂λu
∂∆π

and ∂λ∗u
∂∆π

is ambiguous. A sufficient condition for
∂(−pt(∆π ,Σπ))

∂∆π
> 0 is that ∂λu

∂∆π
< 0 and ∂λ∗u

∂∆π
> 0. We have

∂(λu(∆π,Σπ))

∂∆π

= −
γru − 1

2
λ2
x

2(τπ − φu)2
+

λx(γ
r
x − τx)

2(τπ − ϕu)(τπ − ϕx)2
.
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The first term, − γru− 1
2
λ2x

2(τπ−φu)2
is positive, and the second term, λx(γrx−τx)

2(τπ−ϕu)(τπ−ϕx)2
is negative. How-

ever, the first term is decreasing in τx, while the second term is increasing in τx.
6 Therefore,

there exists a large enough τx such that ∂λu
∂∆π

< 0. Similar calculations show that there exists

a large enough τ ∗x such that ∂λ∗u
∂∆π

> 0. �

C.2 The effect of cyclical and accommodative policy

Write the USD denominated risk premium on holding foreign currency as

−pt = (ῑ∗ − ῑ)− (δ∗ − δ)− 1

2
((λ∗x)

2u∗t − λ2
xut)

=
λ2
u − (λ∗u)

2

2
σ2
u +

λ2
xut − (λ∗xu

∗
t )

2

2

≈ λ2
u − (λ∗u)

2

2
σ2
u +

λ2
x − (λ∗x)

2

2
ut

= κ(p) + v(p) .

We refer to κ(p) as the constant part of the risk premium, and to v(p) as to its variable part.

C.2.1 The Effect of τx on the Price of Consumption Risk

Recall that the nominal price of consumption risk λx is

λx = λrx + ax . (C1)

where

ax =
(1− ρ)ϕx − τx

τπ − ϕx
. (C2)

Result C.1 An increase (decrease) in τx > 0 reduces (increases) the nominal price of con-
sumption risk, λx.

Proof: From equations (C1) and (C2),

∂λx
∂τx

=
∂λx
∂ax︸︷︷︸

+

∂ax
∂τx︸︷︷︸
−

< 0 .

6More precisely, ∂
∂τx

(
λx(γrx−τx)

2(τπ−ϕu)(τπ−ϕx)2

)
> 0 for a large enough price of consumption risk λx, which is the

case for all the set of parameters we consider.

22



�

Note that: i) the real price of consumption risk λrx is positive and independent of monetary
policy, so that ∂λx

∂ax
> 0; ii) ax is typically negative, so that ∂ax

∂τx
< 0 (see discussion in Sections

5.1.1 and 5.2); and iii) λrx is typically large enough to ensure λx > 0.

In words, an increase in τx > 0 makes ax more negative, reduces the nominal price of risk
λx > 0, and thus reduces the variable part of the foreign currency risk premium, v(p). The
effect of a more procyclical domestic monetary policy on the price of consumption risk is to
reduce the foreign currency risk premium.

C.2.2 The Effect of τx on the Price of Volatility Risk

Recall that the nominal price of volatility risk λu is

λu = λru + au , (C3)

where

au =
γrv − λ2

x/2

τπ − ϕu
. (C4)

Result C.2 An increase (decrease) in τx > 0 increases (reduces) the nominal price of volatil-
ity risk, λu.

Proof: From equations (C3) and (C4), and using the result in Appendix C.2.1, we have

∂λu
∂τx

=
∂λu
∂au︸︷︷︸

+

∂au
∂λx︸︷︷︸
−

∂λx
∂τx︸︷︷︸
−

> 0 .

�

Note that: i) the real price of volatility risk λru is negative with early resolution of risk
(α < ρ) and independent of monetary policy; ii) for the set of parameters we consider,
the coefficient au is negative. This is the case whenever the nominal price of consumption
risk, λx, is large enough relative real factor loading of volatility, γrv (see Equation (C4)). A
necessary condition is that γrv − (λrx)

2/2 < 0 which, in a model with symmetric parameters
across countries, is a necessary condition for the real UIP slope to be negative (see Appendix
B.3).

In words, an increase in τx > 0 increases au (that is, it makes it less negative), increases
the nominal price of risk λu (that is, it makes it less negative), and thus reduces the constant
part of the foreign currency risk premium, κ(p). The effect of a more procyclical domestic
monetary policy on the price of volatility risk is to reduce the foreign currency risk premium.
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C.2.3 The Effect of τx on the Prices of Risk: Summary

The results in Appendix C.2.1 and C.2.2 above tell us that the overall effect of a change
in τx on the foreign currency risk premium is unambiguous. A more procyclical domestic
monetary policy reduces the foreign currency risk premium both through its effect on the price
of consumption risk — and therefore on the variable component of the foreign currency risk
premium, v(p) — and through its effect on the price of volatility risk — and therefore on
the constant component of the foreign currency risk premium, κ(p).

C.2.4 The Effect of τπ on the Price of Consumption Risk

Result C.3 An increase (decrease) in τπ > 1 increases (reduces) the nominal price of con-
sumption risk, λx.

Proof: From Equations (C1) and (C2), and the fact that ax < 0,

∂λx
∂τπ

=
∂λπ
∂ax︸︷︷︸

+

∂ax
∂τπ︸︷︷︸

+

> 0 .

�

An increase in τπ > 1 increases ax (it makes it less negative), increases the nominal price
of risk λx, and thus increases the variable part of the foreign currency risk premium, v(p).
In words, the effect of a less accommodative domestic monetary policy on the price of
consumption risk is to increase the foreign currency risk premium.

C.2.5 The Effect of τπ on the Price of Volatility Risk

Result C.4 The effect of a change in τπ on the nominal price of volatility risk is ambiguous.

Proof: Let num(ax) and den(ax) denote the numerator and denominator of ax, respectively.
From Equations (C3) and (C4), and using the result in Appendix C.2.4 , we have

∂λu
∂τπ

=
∂λu
∂au

∂au
∂τπ

=
∂λu
∂au︸︷︷︸

+

+︷ ︸︸ ︷
den(ax)

−︷ ︸︸ ︷
∂num(ax)

∂λx

+︷︸︸︷
∂λx
∂τπ
−

−︷ ︸︸ ︷
num(ax)

+︷ ︸︸ ︷
∂den(ax)

∂τπ
den(ax)

2︸ ︷︷ ︸
+

,
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so that the sign of ∂λu
∂τπ

is ambiguous. �

The ambiguity arises from the fact that, for relatively small values of τx, a less accom-
modative domestic policy increases the price of volatility risk, λu (it makes it less negative).
For values of τx that are large enough, the sensitivity is reversed and a less accommodative
domestic policy decreases the price of volatility risk, λu, thus contributing positively to the
foreign currency risk premium.

C.2.6 The Effect of τπ on the Price of Risk: Summary

The results in Appendix C.2.4 and C.2.5 tell us that he overall effect of a change in τπ on
the foreign currency risk premium is ambiguous. A less accommodative domestic monetary
policy contributes positively to the the foreign currency risk premium through its effect
on the price of consumption risk (and therefore on the variable component of the foreign
currency risk premium, v(p)). However, a less accommodative domestic monetary policy has
an ambiguous effect on the price of volatility risk (and therefore on the constant component
of the foreign currency risk premium, κ(p)). Which of the two components prevails depends
on the parameters of the model. For values of τx that are large enough, a less accommodative
domestic monetary policy increases the foreign currency risk premium.
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D Enhanced Model

D.1 A Model with Long Run Risk

We now attempt to improve the overall quantitative performance of our model by following
Bansal and Yaron (2004), and the application to exchange rates of Bansal and Shaliastovich
(2013), in modeling consumption growth, xt+1 and x∗t+1, as containing a small and persistent
component (its ‘long-run risk’) with stochastic volatility:

log(ct+1/ct) ≡ xt+1 = µ+ lt +
√
ut ε

x
t+1 (D1)

lt+1 = ϕllt +
√
wt ε

l
t+1 , (D2)

where

ut+1 = (1− ϕu)θu + ϕuut + σuε
u
t+1 (D3)

wt+1 = (1− ϕw)θw + ϕwwt + σwε
w
t+1 . (D4)

Foreign consumption growth, x∗t+1 is defined analogously. The innovations are assumed to
be multivariate normal and independent within-country: (εx, εl, εu, εw)

′ ∼ NID(0, I), but we
allow for correlation across countries: ηj ≡ Corr(εj, εj

∗
), for j = (x, l, u, w). Note that there

is no direct relation between the symbols used in the model of this Appendix and the symbols
previously used in the main text.

The process (D1)–(D4) looks complicated, but each of the ingredients are necessary.
Stochastic volatility is necessary because without it the currency risk premium would be
constant and the UIP regression parameter, b, would be 1. Long-run risk — by which
we mean time variation in the conditional mean of consumption growth, lt — decouples
the conditional mean of consumption growth from other moments of consumption growth,
thereby permitting persistent and volatile interest rates to co-exist with relatively smooth
and close-to-i.i.d. consumption growth. Finally, cross-country correlation in the innovations
is critical for achieving realistic cross-country consumption correlations. The latter imposes
substantial discipline on our calibration (c.f., Brandt, Cochrane, and Santa-Clara (2006)).

As before, we use the Hansen, Heaton, and Li (2008) linearization of the real pricing ker-
nel. The log wealth consumption ratio wct = log(Wt/ct) is, up to a first order approximation,
related to gt ≡ log(µt(exp(wct+1 + xt+1))) as follows:

wct ≈ ρ−1 log[(1− β) + β exp(ρm̄)] +

[
β exp(ρm̄)

1− β + β exp(ρm̄)

]
(gt − m̄)

≡ κ̄+ κgt ,

where m̄ is the point around which the approximation is taken and κ < 1.

Given the state variables of the economy, lt, ut and wt, and the loglinear structure of the
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model, we conjecture a solution for the value function of the form,

wct = ω̄ + ωllt + ωuut + ωwwt ,

where ω̄, ωl, ωu and ωw are constants to be determined. Therefore

wct+1 + xt+1 = ω̄ + ωllt+1 + ωuut+1 + ωwwt+1 + xt+1

and, using the properties of lognormal random variables, gt can be expressed as

gt ≡ log(µt(exp(wct+1 + xt+1)))

= log(Et[exp(wct+1 + xt+1)α]
1
α )]

= Et[wct+1 + xt+1] +
α

2
Vart[wct+1 + xt+1] .

Using the above expression, we solve for the value-function parameters by matching coeffi-
cients

ωl = κ(ωlϕl + 1)

⇒ ωl =

(
κ

1− κϕl

)
ωu = κ(ωuϕu +

α

2
)

⇒ ωu =
α

2

κ

1− κϕu
ωw = κ(ωwϕw +

α

2
ω2
l )

⇒ ωw =
α

2
ω2
l

κ

1− κϕu
.

The solution allows us to simplify the term [logWt+1 − log µt(Wt+1)] in the pricing kernel
in Equation (B1):

logWt+1 − log µt(Wt+1) = wct+1 + xt+1 − log µt(exp (wct+1 + xt+1))

= ωl
√
wtε

l
t+1 + ωuσuε

u
t+1 + ωwσwε

w
t+1 +

√
utε

x
t+1

− α

2
(ω2

l wt + ω2
uσ

2
u + ω2

wσ
2
w + ut) .

Collecting terms, the real pricing kernel can be expressed as

− log(nt+1) = δr + γrl lt + γruut + γrwwt

+ λrx
√
utε

x
t+1 + λrl

√
wtε

l
t+1 + λruσuε

u
t+1 + λrwσwε

w
t+1 ,
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where

γrl = (1− ρ); γru =
α

2
(α− ρ); γrw =

α

2
(α− ρ)ω2

l

λrx = (1− α); λrl = −(α− ρ)ωl; λrv = −(α− ρ)ωu; λrw = −(α− ρ)ωw

δr = − log β + (1− ρ)µ+
α

2
(α− ρ)[(ωuσu)

2 + (ωwσw)2] .

The conditional mean of the real pricing kernel is equal to

Et log nt+1 = −(δr + γrl lt + γruut + γrwwt)

and its conditional variance is

Var t log nt+1 =
(
λrx
)2
ut +

(
λrl
)2
wt + (λruσu)

2 + (λrwσw)2 .

The conditional mean depends both on expected consumption growth and stochastic volatil-
ity, whereas the conditional variance is a linear function of current stochastic volatility
processes only.

Next, the real short rate is

rt ≡ − logEt(nt+1)

= r̄ + γrl lt + rruut + rrwwt ,

where

r̄ = δr − 1

2
[(λruσu)

2 + (λrwσw)2]

and

rru = γru −
1

2
(λrx)

2; rrw = γrw −
1

2
(λrl )

2 .

Assuming symmetry, the expression for the expected real depreciation, qrt , the real forward
premium, f rt − srt , and the real risk premium, prt , are:

qrt = γrl (lt − l∗t ) + γru(ut − u∗t ) + γrw(wt − w∗t ) ,

f rt − srt = γrl (lt − l∗t ) + rru(ut − u∗t ) + rrw(wt − w∗t ) ,

prt = −1

2

(
(λrx)

2(ut − u∗t ) + (λrl )
2(wt − w∗t )

)
.
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Result D.1 : The real UIP slope coefficient

If all foreign and domestic parameter values are the same, then the real UIP
regression parameter, obtained by the regressing the real interest rate differential
on the real depreciation rate is:

br =
Cov(f rt − srt , qrt )

Var(f rt − srt )

=
(γrl )

2Var(lt − l∗t ) + γrur
r
uVar(ut − u∗t ) + +γrwr

r
wVar(wt − w∗t )

(γrl )
2Var(lt − l∗t ) + (rru)

2Var(ut − u∗t ) + (rrw)2Var(wt − w∗t )
.

Without the presence of both stochastic volatility and EZ preferences, br is equal
to one and, in real terms, UIP holds identically. Also, when the long-run state
variables, lt and wt, are perfectly correlated across countries, the slope coefficient
reduces to br = γru/r

r
u. This is the case considered by Bansal and Shaliastovich

(2013).

For br to be negative, we require Cov(f rt − srt , q
r
t ) < 0. The expression above makes it

evident that only stochastic volatility terms can contribute negatively to this covariance. In
particular, a necessary condition for a negative real slope coefficient is that the γr = (γru, γ

r
w)

and rr = (rru, r
r
w)′ coefficients have opposite sign, for at least one of the stochastic volatility

processes. A preference for the early resolution of risk (α < ρ) and an EIS larger than one
(ρ < 0) deliver the required covariations.

D.2 Taylor Rule, Inflation and the Nominal Pricing Kernel

We consider the following domestic Taylor rule:7

it = τ + τππt + τllt . (D5)

An analogous equation, denoted with asterisks, characterizes the foreign-country Taylor rule.
Following the technique developed above, we guess that the solution for endogenous inflation
has the form

πt = a+ a1lt + a2ut + a3wt , (D6)

substitute it into the Euler equation, compute the moments, and then solve for the aj
coefficients by matching up the result with the Taylor rule (D5). This gives,

a1 =
γl − τl
τπ − ϕl

; a2 =
γu − 1

2
λ2
x

τπ − ϕu
; a3 =

γw − 1
2
λ2
l

τπ − ϕw
;

7For parsimony, we use expected consumption growth, lt, and not its current level, xt, as is instead
standard in the literature. Doing so reduces our state space by one variable. The model can readily be
extended to allow for a specification that includes xt instead of lt.
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a =
1

τπ − 1
[δ − τ + a2(1− ϕu)θu + a3(1− ϕw)θw

− 1

2
[(λuσu)

2 + (λwσw)2]

where the constant term, the factor loadings and the pricing of risk of the nominal pricing
kernel are

δ = δr + a+ a2(1− ϕu)θu + a3(1− ϕw)θw

γl = γrl + a1ϕl; γu = γru + a2ϕu; γw = γrw + a3ϕw;

λx = λrx; λl = λrl + a1; λu = λru + a2; λw = λrw + a3 .

The linearized nominal pricing kernel is

− logmt+1 = − log nt+1 + πt+1

= δ + γllt + γuut + γwwt

+ λx
√
utε

x
t+1 + λl

√
wtε

l
t+1 + λuσuε

u
t+1 + λwσwε

w
t+1 ,

and the nominal short rate is

it ≡ − logEt(mt+1)

= ῑ+ γllt + ruut + rwwt ,

where

ῑ = δ − 1

2
[(λuσu)

2 + (λwσw)2] ;

ru = γu −
1

2
λ2
x; rw = γw −

1

2
λ2
l .

The nominal interest rate differential, the expected depreciation rate and the risk premium
can be derived from Equations (12–15). Assuming symmetry across countries, we have

qt = γl(lt − l∗t ) + γu(ut − u∗t ) + γw(wt − w∗t ) ,

ft − st = γl(lt − l∗t ) + ru(ut − u∗t ) + rw(wt − w∗t ) ,

pt = −1

2

(
λ2
x(ut − u∗t ) + λ2

l (wt − w∗t )
)
.
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Result D.2 : The nominal UIP slope coefficient

If all foreign and domestic parameter values are the same, the nominal UIP slope
coefficient is

b =
Cov(ft − st, qt)

Var(ft − st)

=
γ2
l Var(lt − l∗t ) + γuruVar(ut − u∗t ) + γwrwVar(wt − w∗t )
γ2
l Var(lt − l∗t ) + r2

uVar(ut − u∗t ) + r2
wVar(wt − w∗t )

.

As was the case for the real UIP slope coefficient, without EZ preferences and
stochastic volatility in consumption growth, b = 1.

D.3 Quantitative Results

Ideally, we’d like our model to be able to account for a broad set of sample moments of
exchange rates and interest rates. Foremost, of course, are the negative nominal UIP slope
coefficient and the unconditional currency risk premium that have been discussed at length
in the main text. Others are (i) high correlation between real and nominal exchange rates
(Mussa (1986)), (ii) high exchange rate volatility relative to volatility in inflation differentials,
(iii) near random-walk behavior in exchange rates but obvious stationarity in interest rate
differentials, (iv) highly autocorrelated domestic real and nominal interest rates with means
and volatilities that match data, and (v) highly correlated foreign and domestic pricing
kernels but low correlation in cross-country consumption growth (Brandt, Cochrane, and
Santa-Clara (2006)). As we will see below, while the model with long run risk delivers most
of the required sample moments, including the low correlation in cross country consumption
growth that the main model could not account for, it struggles to replicate large unconditional
foreign risk premia.

We calibrate our model using a monthly frequency such that foreign and domestic con-
sumption processes are the same (but with different shocks). Table (3) reports the calibrated
parameters. The unconditional mean of consumption growth, µ, is set to 0.0015. The au-
tocorrelation coefficients, ϕl, ϕv, and ϕw, are taken from Bansal and Shaliastovich (2013).
Given ϕl, we choose θv and θw to match an annualized sample standard deviation of con-
sumption growth of 2.72%, while keeping the ratio of short-run versus long-run volatility
as in Bansal and Shaliastovich (2013). As was the case in the main text, the conditional
variances of short-run and long-run volatilities, σ2

w and σ2
v , are set to be as large as possible

subject to the constraint that the probability of observing a negative realization of volatility
does not exceed 5%. We set the cross-country correlations, ηl and ηw, equal to unity (as
do Bansal and Shaliastovich (2013) and Colacito and Croce (2011)), the idea being that
long-run consumption growth shocks are global. In contrast, we set ηu = 0, so that shocks
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to ‘short-run’ consumption volatility are country-specific. Given this, we choose ηx to match
the observed cross-country correlation in consumption growth of 0.35. Finally, we choose the
preference parameters as follows. As is standard in the long run risk literature, we fix the
intertemporal elasticity of substitution at 1.5 (ρ = 1/3). Then, we choose the risk aversion
coefficient, α, to match the volatility of the real depreciation rate and the subjective discount
factor, β, to pin down the unconditional mean of the real interest rate.

Panel A of Table 4 shows that the real model with long run risk partially delivers what
we set out to achieve. In particular, the cross country correlation in consumption growth,
at 0.35, is now as low as in the data, but the need for a low risk aversion coefficient in
achieving sensible values for the volatility of the real depreciation rate drives down the
standard deviation of the real interest rate to 0.53%, roughly half of our sample estimate of
0.97%.

Turning to the nominal side of the model, we follow an approach that is similar to that of
Section 6.2, asking how the Taylor rule coefficients affect endogenous inflation, interest rates
and exchange rates. We propose two alternative calibrations. We begin in what seems the
most natural and disciplined way, calibrating to inflation only and then seeing what happens
to interest rates and exchange rates. We calibrate the six Taylor-rule parameters, [τ τπ τl]
and [τ ∗ τ ∗π τ

∗
l ], to match the mean and variance of U.S. and Australian inflation, respectively,

as well as the two correlations, Corr(xt, πt) and Corr(x∗t , π
∗
t ).

Panel B of Table 4 reports results in the column labeled ‘Model LRR I.’ The domestic
and foreign inflation processes capture, by construction, what we want them to capture.
Foreign inflation is higher on average and more volatile. As was the case in the model of the
main text, theoretical inflation is much more autocorrelated than its sample counterpart. The
reason for this is discussed at length in Section 6.2. Also, unlike the simpler model of Section
5, we run into some constraints. The correlation between consumption growth and inflation
hits a lower bound at −0.283, a touch short of its empirical counterpart of −0.300. This is
due to the following series of tensions. First, the correlation between consumption growth
and inflation is affected by the Taylor parameters only through their effect on the volatility
of inflation, Stdev(πt), and the coefficient al, which governs the sensitivity of inflation to
long run risk. However, our calibration of the real part of the model, which we borrow from
the long run risk literature, implies that Stdev(πt) ≈ a1Stdev(lt). Taken together, the ratio
Stdev(πt)/a1 is roughly independent of monetary policy.

Turning to what we are really interested in, exchange rates, we see that the model with
long run risk struggles to replicate, at the same time, a negative Bilson-Fama-Tryon coeffi-
cient and a sizeable risk premium. The foreign risk premium is minuscule, albeit with the
correct sign, and the regression coefficient is positive at +0.248, versus a sample counterpart
of −1.000. On the positive side, the mean, volatility and autocorrelation of the nominal
depreciation rate is consistent with the data.

Importantly, while the foreign risk premium is minuscule relative to the data in our sam-
ple, its sensitivity to the Taylor parameters is consistent with Results 1 and 2, and there-
fore the overall message of our paper. Quantitative exercises confirm that relatively more
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procyclical monetary policy and relatively more accommodative monetary policy generate
currency risk (that is, −E(p) is increasing in τπ and τ ∗l , and decreasing in τl and τπ∗).

Panel B of Table 4 also reports results for an alternative calibration labeled ‘Model LRR
II.’ This alternative calibration corresponds to the following modification of the above ‘Model
LRR I.’ Instead of targeting the domestic and foreign inflation-consumption correlations, we
target the volatility of the depreciation rate and the UIP coefficient.

What we find is that the model’s implications for the inflation-consumption correlation
are unaltered — a consequence of the calibration of the real part of the model, as explained
above — but the unconditional risk premium is (roughly) zero, confirming the difficulties of
the model to simultaneously account for a negative UIP coefficient and a sizeable uncondi-
tional foreign currency risk premium. The requirement in the calibration exercise to have a
UIP coefficient around −1.000 makes it impossible for the model to generate the spread in
the volatilities of inflation that we observe in our sample. With a perfectly symmetric real
world, and very similar inflation processes at home and abroad, the currency risk premium
must be close to zero, as it turns out to be. This constraint can be relaxed by allowing for
a richer specification of the correlation structure of the volatility shocks. While compara-
tive statics exercises for the currency risk premium still deliver results consistent with the
main message of our paper, we leave to future work the task of finding a better specification
for real pricing kernels and Taylor rules that can deliver our story both qualitatively and
quantitatively.
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Table 3
Calibrated Parameter Values

Description Parameter Value

Panel A: The Real Economy
Discount factor β 0.999
Relative risk aversion 1− α 3.678
Elasticity of intertemporal substitution (1− ρ)−1 1.5
Mean of consumption growth µ 0.0015
Autocorrelation of long-run risk ϕl 0.991
Mean of short-run volatility level θu 5.661e−5

Autocorrelation of short-run volatility ϕu 0.800
Volatility of short-run volatility σu 2.070e−5

Mean of long-run volatility level θw 9.057e−8

Autocorrelation of long-run volatility ϕw 0.980
Volatility of long-run volatility σu 1.100e−8

Cross-Country correlation in short-run consumption innovations ηx,x∗ 0.292
Cross-Country correlation in long-run risk innovations ηl,l∗ 1.000
Cross-Country correlation in short-run volatility innovations ηu,u∗ 0
Cross-Country correlation in long-run volatility innovations ηw,w∗ 1.000

Panel B: The Nominal Economy Model LRR I Model LRR II
Constant in the domestic interest rate rule τ̄ -0.008 -0.008
Constant in the foreign interest rate rule τ̄∗ -0.008 -0.009
Domestic response to long run risk τl 5.146 5.202
Foreign response to long run risk τ∗l 5.003 5.225
Domestic response to inflation τπ 4.817 4.732
Foreign response to inflation τ∗π 4.417 4.713

Table 3 reports the parameter values associated with the calibration exercise described in
Appendix D.3. These parameter values underly the various population moments reported
in Table 4. Table 4 reports sample moments in the second column and population mo-
ments from our model in the remaining columns. Sample moments derive from a variety of
sources. The data frequency is monthly and, where appropriate the moments are reported
as annualized percentages. The notation ‘–’ indicates a moment for which the data are
either absent or unreliable. For example, we are not aware of a study that estimates the
real Bilson-Fama coefficient using real interest rates (which are different than realized real
returns on nominal bonds). Similarly, the unreliability of monthly U.S. consumption growth
for ascertaining persistence is well known. Consumption moments that are reported are
based on the standard monthly U.S. series and taken from Bansal and Shaliastovich (2013).
The cross-country consumption correlation is representative of data reported by Brandt,
Cochrane, and Santa-Clara (2006). Real interest rate moments are taken from Lochstoer
and Kaltenbrunner (2010). Data on foreign and domestic inflation are based on authors
own calculations using monthly data from Datastream, 1987-2012. The foreign country is
Australia whereas the domestic country is the U.S.. Note that the Australian inflation data
is problematic relative to its U.S. counterpart. Among other things, it is only available at
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the quarterly frequency. The above estimates are based on using quarterly data and then
scaling things down by factors that match the ratio of U.S. quarterly-to-monthly inflation
moments. Calculations and data are available upon request.
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Table 4
Sample and Population Moments

Moment Data Model

Panel A: The Real Economy
Consumption Growth (xt, x

∗
t )

Mean 1.800 1.800
Standard Deviation 2.720 2.720
Autocorrelation – 0.081
Cross-Country Correlation 0.350 0.350

Real Interest Rate (rr, r
∗
t )

Mean 0.860 0.860
Standard Deviation 0.970 0.531
Autocorrelation 0.840 0.990

Real Depreciation Rate (log(n∗t/nt))
Standard Deviation 11.410 11.410
Real UIP Coefficient – -1.476

Panel B: The Nominal Economy
Inflation (πt, π

∗
t )

Domestic, U.S. Model LRR I Model LRR II
Mean 2.833 2.833 2.833
Standard Deviation 0.911 0.911 0.943
Autocorrelation 0.428 0.991 0.991
Correlation(xt, πt) -0.300 -0.283 -0.283

Foreign, Australia
Mean 3.199 3.199 3.199
Standard Deviation 0.985 0.985 0.953
Autocorrelation 0.429 0.991 0.991
Correlation(x∗t , π

∗
t ) -0.300 -0.283 -0.283

Nominal Interest Rate (it, i
∗
t )

Domestic, U.S.
Mean 4.304 3.733 3.734
Standard Deviation 2.584 0.406 0.437
Autocorrelation 0.992 0.988 0.989

Foreign, Australia
Mean 7.076 4.102 4.101
Standard Deviation 3.558 0.477 0.446
Autocorrelation 0.994 0.989 0.989

Nominal Depreciation Rate (log(m∗t/mt))
Mean 1.675
Standard Deviation 11.398 11.410 11.410
Autocorrelation 0.052

Nominal Currency Risk Variables
Nominal UIP Coefficient -1.019 0.248 -0.997
Uncond. Risk Premium on AUD, −E(pt) 4.459 0.003 0.000

See caption for Table 3.
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