Optimal Collateralization with Bilateral Default Risk

Daniel Bauer
Georgia State University

Enrico Biffis
Georgia State University

Luz Rocio Sotomayor
University of Washington at Vancouver

CenFIS-CEAR workshop – The Role of Liquidity in the Financial System
November 20, 2015
1. Overview
2. A model
3. Optimal CSAs
4. Policy Implications
5. Conclusion
MOTIVATION

Regulation of OTC derivative markets (Dodd-Frank/EMIR)

- Move to central clearing for standardized, liquid OTC derivatives
 - Do CCP increase systemic/counterparty risk? (Acharya/Bisin, 2011; Biais/al., 2012; Pirrong, 2011; Duffie/Zhu, 2011; Cont/Kokholm, 2013; etc.)

- How about non-standardized, illiquid OTC instruments that will not be centrally cleared?
MOTIVATION

Regulation of OTC derivative markets (Dodd-Frank/EMIR)
- Move to central clearing for standardized, liquid OTC derivatives
- Do CCP increase systemic/counterparty risk? (Acharya/Bisin, 2011; Biais/al., 2012; Pirrong, 2011; Duffie/Zhu, 2011; Cont/Kokholm, 2013; etc.)
- How about non-standardized, illiquid OTC instruments that will not be centrally cleared?

Table 3: Non-centrally cleared derivative activity before and after central clearing takes effect

<table>
<thead>
<tr>
<th></th>
<th>Total gross notional outstanding amount (EUR million)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreign exchange</td>
</tr>
<tr>
<td>Before</td>
<td>54,958,056</td>
</tr>
<tr>
<td>After</td>
<td>47,863,156</td>
</tr>
<tr>
<td>% Reduction</td>
<td>13%</td>
</tr>
</tbody>
</table>

Note: The data above reflect the notional amount of non-centrally cleared derivative activity that will remain after central clearing mandates take effect (future portfolio). Each cell represents the simple sum of non-centrally cleared derivative notional amounts for each QIS respondent within each asset class and jurisdiction.

Source: BIS (2013)
MOTIVATION

Regulation of OTC derivative markets (Dodd-Frank/EMIR)
- Move to central clearing for standardized, liquid OTC derivatives
 - Do CCP increase systemic/counterparty risk? (Acharya/Bisin, 2011; Biais/al., 2012; Pirrong, 2011; Duffie/Zhu, 2011; Cont/Kokholm, 2013; etc.)
- How about **non-standardized, illiquid** OTC instruments that will **not** be centrally cleared?

Counterparty risk mitigation
- Multi-curve valuation (OIS, EUREPO, etc.)
- Credit Support Annex (CSA), ISDA rules
MOTIVATION

Regulation of OTC derivative markets (Dodd-Frank/EMIR)
- Move to central clearing for standardized, liquid OTC derivatives
 - Do CCP increase systemic/counterparty risk? (Acharya/Bisin, 2011; Biais/al., 2012; Pirrong, 2011; Duffie/Zhu, 2011; Cont/Kokholm, 2013; etc.)
- How about non-standardized, illiquid OTC instruments that will not be centrally cleared?

Counterparty risk mitigation
- Multi-curve valuation (OIS, EUREPO, etc.)
- Credit Support Annex (CSA), ISDA rules

Counterparty risk is bilateral
- Bilateral CSA design/pricing
- xVA (CVA/DVA/FVA etc.) reporting/trading/hedging
STYLIZED TRANSACTION

- Risk-averse agents A, B, trade in financial market, face illiquid exposure
- Party A exposed to random outflow $-Z_T$, party B to random inflow Z_T
STYLIZED TRANSACTION

- Risk-averse agents A, B, trade in financial market, face illiquid exposure
- Party A exposed to random outflow $-Z_T$, party B to random inflow Z_T
- Trade (risk sharing):

\[-kZ_T \]

\[kZ_T \]

Party A (hedger) \hspace{2cm} Party B (hedge supplier)
STYLIZED TRANSACTION

• Risk-averse agents A, B, trade in financial market, face illiquid exposure
• Party A exposed to random outflow $-Z_T$, party B to random inflow Z_T
• Trade (risk sharing):

\[-kZ_T \]

\[kZ_T \]

- Party A (hedger)
- Party B (hedge supplier)

• Symmetric, exogenous default rate $\lambda > 0$. Collateral account: $C_t^A = -C_t^B$.
QUESTIONS AND FINDINGS

CSA pricing/design

- OTCD pricing with bilateral default risk (Duffie/Huang, 1996, Brigo/al., 2007, Crepey, 2011, Hull/White, 2010, etc.): exogenous pricing kernel, no collateral
- Biffis/al. (2011), Brigo/al. (2012): CSA pricing, but exogenous collateral rules
 - Here endogenous collateral explaining observed CSAs
 → What is the optimal collateral design in a marginal trade?
QUESTIONS AND FINDINGS

CSA pricing/design

- OTCD pricing with bilateral default risk (Duffie/Huang, 1996, Brigo/al., 2007, Crepey, 2011, Hull/White, 2010, etc.): exogenous pricing kernel, no collateral
- Biffis/al. (2011), Brigo/al. (2012): CSA pricing, but exogenous collateral rules
- Here *endogenous collateral* explaining observed CSAs

→ **What is the optimal collateral design in a marginal trade?**

<table>
<thead>
<tr>
<th></th>
<th>A in the money</th>
<th>B in the money</th>
</tr>
</thead>
<tbody>
<tr>
<td>A defaults</td>
<td>B pays</td>
<td>A receives collateral</td>
</tr>
<tr>
<td>B defaults</td>
<td></td>
<td>(I get paid)</td>
</tr>
<tr>
<td>B in the money</td>
<td>B received collateral</td>
<td>A pays</td>
</tr>
<tr>
<td></td>
<td>(I pay)</td>
<td></td>
</tr>
</tbody>
</table>

Intuition:

- A defaults
- B in the money
- A receives collateral
- (I get paid)
- B pays
- (I pay)
QUESTIONS AND FINDINGS

CSA pricing/design

- OTCD pricing with bilateral default risk (Duffie/Huang, 1996, Brigo/al., 2007, Crepey, 2011, Hull/White, 2010, etc.): exogenous pricing kernel, no collateral
- Biffis/al. (2011), Brigo/al. (2012): CSA pricing, but exogenous collateral rules
- Here endogenous collateral explaining observed CSAs

→ What is the optimal collateral design in a marginal trade?

<table>
<thead>
<tr>
<th></th>
<th>A in the money</th>
<th>B in the money</th>
<th>A defaults</th>
<th>B defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>A in the money</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B in the money</td>
<td></td>
<td></td>
<td>B pays</td>
<td>A receives collateral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B received collateral</td>
<td>(I get paid)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A pays</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B in the money</td>
<td>(I pay)</td>
</tr>
</tbody>
</table>

Intuition:

- Collateral augments risk sharing opportunities
QUESTIONS AND FINDINGS

CSA pricing/design

- OTCD pricing with bilateral default risk (Duffie/Huang, 1996, Brigo/al., 2007, Crepey, 2011, Hull/White, 2010, etc.): exogenous pricing kernel, no collateral
- Biffis/al. (2011), Brigo/al. (2012): CSA pricing, but exogenous collateral rules
- Here endogenous collateral explaining observed CSAs

→ What is the optimal collateral design in a marginal trade?

<table>
<thead>
<tr>
<th></th>
<th>A defaults</th>
<th>B defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>A in the money</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B pays</td>
<td>A receives collateral (I get paid)</td>
</tr>
<tr>
<td>B in the money</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B received collateral (I pay)</td>
<td>A pays</td>
</tr>
</tbody>
</table>

Intuition:

- Collateral augments risk sharing opportunities
- **BUT**: Different valuation in default vs. non-default states

→ Partial collateralization optimal
QUESTIONS AND FINDINGS

CSA pricing/design

- OTCD pricing with bilateral default risk (Duffie/Huang, 1996, Brigo/al., 2007, Crepey, 2011, Hull/White, 2010, etc.): exogenous pricing kernel, no collateral
- Biffis/al. (2011), Brigo/al. (2012): CSA pricing, but exogenous collateral rules
- Here **endogenous collateral** explaining observed CSAs

→ **What is the optimal collateral design in a marginal trade?**

<table>
<thead>
<tr>
<th></th>
<th>A in the money</th>
<th>B in the money</th>
</tr>
</thead>
<tbody>
<tr>
<td>A defaults</td>
<td>B pays</td>
<td>B received collateral</td>
</tr>
<tr>
<td>B defaults</td>
<td>A receives collateral (I get paid)</td>
<td>A pays</td>
</tr>
</tbody>
</table>

- Intuition:
 - A in the money
 - B in the money

- Collateral augments risk sharing opportunities
- **BUT**: Different valuation in default vs. non-default states

→ **Partial** collateralization optimal
- Borrowing costs, collateral segregation, contagion, etc. make result stronger
QUESTIONS AND FINDINGS

Impact of Dodd-Frank/EMIR provisions

- Standardized CSAs: **Initial Margin (IM)** and **Variation Margin (VM)**

→ **What is the impact of imposing collateral rules, particularly “full” collateralization?**

- Intuition:
 - Only way to shift resourced between default states is by extent of risk sharing

→ **Decreases volume of risk sharing arrangements** (liquidity)
SETUP

- Agent $i \in \{A, B\}$, endowed with wealth w_0^i, CARA utility, default intensity $\lambda > 0$.
- Tradeable assets (only accessible in non-default states; Alvarez/Jermann, 2000)
 - Money market account yielding $r > 0$
 - Risky asset $dS_t = S_t \left(\mu dt + \sigma S \, dB_t^{(1)} \right)$
Agent $i \in \{A, B\}$, endowed with wealth w_0^i, CARA utility, default intensity $\lambda > 0$.

- Tradeable assets (only accessible in non-default states; Alvarez/Jermann, 2000)
 - Money market account yielding $r > 0$
 - Risky asset $dS_t = S_t \left(\mu dt + \sigma_S dB_{t}^{(1)} \right)$

- Trading account dynamics

\[
dW_t^i = W_t^i r dt + \pi_t^i \left((\mu - r) dt + \sigma_S dB_{t}^{(1)} \right)
\]
Agent $i \in \{A, B\}$, endowed with wealth w_i^0, CARA utility, default intensity $\lambda > 0$.

- Tradeable assets (only accessible in non-default states; Alvarez/Jermann, 2000)
 - Money market account yielding $r > 0$
 - Risky asset $dS_t = S_t \left(\mu dt + \sigma_S dB_t^{(1)} \right)$

- Trading account dynamics
 \[
dW_t^i = W_t^i rd t + \pi_t^i \left((\mu - r)dt + \sigma_S dB_t^{(1)} \right)
 \]

- A has exposure $-Z_T$ at time $T > 0$, B has exposure $+Z_T$, with
 \[
dZ_t = \sigma_Z dB_t^{(2)}, \quad Z_0 = 0
 \]
 - Z illiquid: agent A has terminal wealth $W_T^A - Z_T$
 - Z unspanned: $B^{(1)} \perp B^{(2)}$
Agent \(i \in \{A, B\} \), endowed with wealth \(w^i_0 \), CARA utility, default intensity \(\lambda > 0 \).

Tradeable assets (only accessible in non-default states; Alvarez/Jermann, 2000)
- Money market account yielding \(r > 0 \)
- Risky asset \(dS_t = S_t\left(\mu dt + \sigma_S dB^{(1)}_t\right) \)

Trading account dynamics

\[
dW^i_t = W^i_t r dt + \pi^i_t \left((\mu - r)dt + \sigma_S dB^{(1)}_t\right)
\]

A has exposure \(-Z_T\) at time \(T > 0 \), B has exposure \(+Z_T\), with

\[
dZ_t = \sigma_Z dB^{(2)}_t, \quad Z_0 = 0
\]

- \(Z \) illiquid: agent A has terminal wealth \(W^A_T - Z_T \)
- \(Z \) unspanned: \(B^{(1)} \perp B^{(2)} \)

Agents can enter a **forward** agreement on \(k \) units of \(Z_T \), but are exposed to **counterparty risk**
PROBLEMS

- Focus on A for convenience
- Symmetry between A’s and B’s views

Problem 1 (no counterparty risk)

\[
\begin{cases}
\sup_{(k, \pi^A) \in \mathbb{R} \times A} U \left(W^A_T - (1 - k) Z_T \right) \\
\text{s.t.} \\
\quad dW^A_t = W^A_t r dt + \pi^A_t \left((\mu - r) dt + \sigma dB^{(1)}_t \right)
\end{cases}
\]
Focus on A for convenience

Symmetry until \(\tau := \tau^A \land \tau^B \) \((N_t := 1_{\tau \leq t})\)

Problem 2 (counterparty risk, **Zero CSA**)

\[
\sup_{(k, \pi^A) \in \mathbb{R} \times A_\pi} U \left(W_T^A - (1 - k1_{\tau > T})Z_T \right)
\]

\[
s.t. \quad dW_t^A = N_t^A W_t^A r dt
\]

\[
+ \text{ trading gains if no default}
\]

\[
+ (1 - N_{t-}) \left((R_{t-}^A)^+ dN_t^A - (R_{t-}^A)^- dN_t^B \right)
\]

\(\tau^i \) default time of agent \(i \) and \(N_t^i := 1_{\tau^i \leq t} \)

\(R^i \) (replacement cost) depends on close-out convention...
PROBLEMS

- Focus on A for convenience
- Symmetry until $\tau := \tau^A \land \tau^B$ ($N_t := 1_{\tau \leq t}$)

Problem 3 (counterparty risk, **General CSA**)

\[\begin{align*}
\sup_{(k, C^A, \pi^A)} & \quad U \left(W_T^A - (1 - k1_{\tau > T})Z_T - 1_{\tau > T}C_T^A \right) \\
\text{s.t.} & \quad dW_t^A = N_t^A W_t^A rdtdN_t^A + \text{trading gains if no default} \\
& \quad + (1 - N_{t-}) \left[dC_t^A - rC_t^A dt \\
& \quad + ((R_t^A)^+ - (C_t^A)^+) \right] dN_t^A \\
& \quad + ((R_t^A)^- - (C_t^A)^-) \right] dN_t^B
\end{align*}\]

- Collateral fully fungible; interest rebated on cash collateral
OPTIMAL CSAs

Replacement cost

- Default-risk-free, risk-neutral close-out convention
- \[R_t^A = E_t \left[e^{-r(T-t)} Z_T \right] = k e^{-r(T-t)} Z_t \]

Admissible CSAs

- Fractional collateral, \(C_t^A = c(t) R_t^A \)
OPTIMAL CSAs

Replacement cost

- Default-risk-free, risk-neutral close-out convention
 - \(R_t^A = E_t \left[e^{-r(T-t)} Z_T \right] = k e^{-r(T-t)} Z_t \)

Admissible CSAs

- Fractional collateral, \(C_t^A = c(t) R_t^A \)
- Contingent collateral, \(C_t^A = f(t, W^A, Z, C^A, R^A) \)
OPTIMAL CSAs

Replacement cost

- Default-risk-free, risk-neutral close-out convention

 $$R_t^A = E_t \left[e^{-r(T-t)} Z_T \right] = k e^{-r(T-t)} Z_t$$

Admissible CSAs

- Fractional collateral, $$C_t^A = c(t) R_t^A$$
- Contingent collateral, $$C_t^A = f(t, W^A, Z, C^A, R^A)$$
- Standardized margins (Dodd-Frank/EMIR), $$C_t^A = \tilde{c} + R_t^A$$
 - Two-way Initial Margin, $$\tilde{c}$$ (VaR-based, segregated)
 - Variation Margin, $$c(t) = 100\%$$ (‘full’ collateralization)
OPTIMAL CSAs

Replacement cost

- Default-risk-free, risk-neutral close-out convention
 \[R_t^A = E_t \left[e^{-r(T-t)} Z_T \right] = k e^{-r(T-t)} Z_t \]

Admissible CSAs

- Fractional collateral, \(C_t^A = c(t) R_t^A \)
- Contingent collateral, \(C_t^A = f(t, W^A, Z, C^A, R^A) \)
- Standardized margins (Dodd-Frank/EMIR), \(C_t^A = \tilde{c} + R_t^A \)
 - Two-way Initial Margin, \(\tilde{c} \) (VaR-based, segregated)
 - Variation Margin, \(c(t) = 100\% \) (‘full’ collateralization)

What is optimal for \(A, B \)?

- ‘Less-than-full’ collateralization (e.g., \(c^*(t) < 1 \))
OPTIMAL FRACTIONAL CSA

![Graph showing collateral fraction vs. 1/10 of maturity T]

- **T = 1**
- **T = 10**

The graph illustrates the relationship between collateral fraction and 1/10 of maturity T for different values of T, highlighting the optimal fractional CSA.
COMPARATIVE STATICS: FRACTIONAL COLLATERAL

Optimal collateral fraction

\[c^*(t) = 1 - \frac{1}{\gamma \sigma_Z \sqrt{t}} g^{-1} \left(1 + \frac{\lambda + \frac{1}{2} s^2 \exp \left(- \left(\frac{1}{2} s^2 + \lambda \right) (T-t) \right)}{\frac{1}{2} s^2 \left(1 - \exp \left(- \left(\frac{1}{2} s^2 + \lambda \right) (T-t) \right) \right)} \right), \]

with \(s := \frac{\mu - r}{\sigma_S} \) Sharpe ratio, \(g(x) := \Phi(x) + \frac{\phi(x)}{x} \), with \(\Phi \) and \(\phi \) the cdf and pdf of the standard Normal, respectively.

For fixed \(t \in (0, \tau \wedge T] \), the optimal collateral fraction \(c^* \) is

- decreasing in the Sharpe ratio \(s \)
- increasing in \(\sigma_Z, \lambda \), and the risk aversion coefficient \(\gamma \)
CONTINGENT COLLATERAL RULES

Same problem as before, same close-out convention, but larger CSA space

\[C_t^A = e^{-r(T-t)} \int_0^t \hat{c}^A(s, W_s^A, -Z_s, C_s^A) dZ_s \]
CONTINGENT COLLATERAL RULES

Same problem as before, same close-out convention, but larger CSA space

\[C^A_t = e^{-r(T-t)} \int_0^t \widehat{c}^A(s, W^A_s, -Z_s, C^A_s) dZ_s \]

Results

- \(\widehat{c}^i,^* \) independent of \(W^i \)
- Optimal collateral fraction \(\widehat{c}^i,^* \) varies with \((Z, C^i) \)
 - Consistent with collateral triggers/thresholds observed in practice
 - CSA can take into account collateral performance (relevant for type/quality other than cash)
- Same intuition as before, but larger utility gains
WHAT DRIVES THE OPTIMAL CSA?

Wedge between default states and no-default states
- Default penalties, exclusion from the financial market
- Collateral allows to move resources between states [I default & pay (OTM)] and [Other defaults & pays (ITM)]
- Optimal trading volume additional lever to transfer
- Optimal choice features “overhedging” ($k > 1$) and partial collateral ($C' < 1$)

Extensions
- Segregation will not affect results, fee by custodian strengthens results
- Borrowing cost will strengthen results
- Contagion in the sense that default rate increases (Jarrow/Yu, 2001) strengthens results
OUTLINE

1. Overview
2. A model
3. Optimal CSAs
4. Policy Implications
5. Conclusion
THE COST OF COUNTERPARTY RISK

-0.75
-0.8
-0.85
-0.9
-0.95
-1

Horizon T

Expected Utility

No default risk
THE COST OF COUNTERPARTY RISK

![Graph showing the expected utility for different horizons with and without collateral or default risk.](image-url)
(SUB)OPTIMAL COLLATERALIZATION

Expected Utility

Horizon T

-0.75
-0.8
-0.85
-0.9
-0.95

Optimal Collateral Fraction
No collateral
No default risk
(SUB)OPTIMAL COLLATERALIZATION

![Graph showing Expected Utility against Horizon T for different scenarios: Optimal collateral fraction, IM only, No collateral, No default risk. The y-axis represents Expected Utility ranging from -1 to 0, and the x-axis represents Horizon T ranging from 1 to 10. The graph illustrates the impact of collateralization on expected utility over different horizons.]
(SUB)OPTIMAL COLLATERALIZATION

Expected Utility vs. Horizon T

- Optimal collateral fraction
- IM and full collateral
- IM only
- No collateral
- No default risk

Overview
A model
Optimal CSAs
Policy Implications
Conclusion
(SUB)OPTIMAL COLLATERALIZATION

![Graph showing Expected Utility vs. Horizon T]

- **Expected Utility** vs. **Horizon T**
- Lines represent different scenarios:
 - Optimal collateral fraction
 - IM and full collateral
 - IM only
 - No collateral
 - No default risk
 - Optimal contingent CSA

The graph illustrates the expected utility for different collateralization strategies over time.
TRADING VOLUME

![Graph showing the relationship between horizon T and the optimal collateral fraction \(\kappa^* \). The graph includes two lines: one for the optimal collateral fraction and another for IM and full collateral.](image-url)
A POLICY EXPERIMENT

Benevolent social planner

- Maximizes the agents’ expected utilities, while minimizing the expected shortfalls from defaults

\[
\sum_{i \in \{A,B\}} E \left[1_{\tau^i \leq T} (W^i_T + Z^i_T)^- \right], \quad \text{with} \quad Z^i_T := (1_{i=B} - 1_{i=A}) Z_T
\]

- Standardized margins can be more costly than bilateral CSAs due to detrimental effect on risk sharing (lower trading volume)
 - Collateral (VM in particular) is overall **bad** in **single default states**
 - Collateral is **good** in **joint default states**, but IM is what matters
EXPECTED SHORTFALLS

![Graph showing Expected Bailout Costs vs. Horizon T]

- **Expected Bailout Costs**
- **Optimal collateral fraction**

The graph illustrates the relationship between Expected Bailout Costs and Horizon T, emphasizing the optimal collateral fraction as a function of Horizon T.
EXPECTED SHORTFALLS

![Graph showing expected bailout costs vs horizon T]

- **Expected Bailout Costs**
- **Horizon T**

Lines:
- Red: IM + full collateral
- Blue dashed: Optimal collateral fraction
| 1 | Overview |
| 2 | A model |
| 3 | Optimal CSAs |
| 4 | Policy Implications |
| 5 | Conclusion |
CONCLUSION

Hedging demand and **CSA design** for bilateral OTC trades

- Optimal CSA results in **undercollateralization**
- Overcollateralization lowers **risk sharing** (hedging volume)
CONCLUSION

Hedging demand and **CSA design** for bilateral OTC trades

- Optimal CSA results in **undercollateralization**
- Overcollateralization lowers **risk sharing** (hedging volume)

CSAs have **several** important dimensions

- Collateral rules (what is ‘full’ collateralization?)
- MTM proxies, **valuation** models
- **Close out** conventions
CONCLUSION

Hedging demand and **CSA design** for bilateral OTC trades

- Optimal CSA results in **undercollateralization**
- Overcollateralization lowers **risk sharing** (hedging volume)

CSAs have **several** important dimensions

- Collateral rules (what is ‘full’ collateralization?)
- MTM proxies, **valuation** models
- Close out conventions

Bilateral CSAs vs. **standardized margins** (Dodd-Frank/EMIR)

- Detrimental impact on **risk sharing** should be taken into account when assessing the costs/benefits of standardization
- Tradeoff liquidity vs. systematic risk?
- Both IM and VM matter, and in different ways
THANK YOU