What drives liquidity?

Identifying shocks to market makers' supply of liquidity and their role in economic fluctuations

Jonathan Goldberg

Federal Reserve Board¹

Atlanta Liquidity Conference - November 20, 2015

Motivation

After crisis, renewed interest in intermediaries' risk-bearing capacity

But hard to identify shocks

- Supply and demand
- Endogeneity

This paper

Focus on broker-dealers and Treasury market

Implications for supply of intermediation by dealer firms

What shocks drive market liquidity?

Structural VAR with sign restrictions

Business cycles and asset prices

Dealers and market liquidity

Volatility episodes

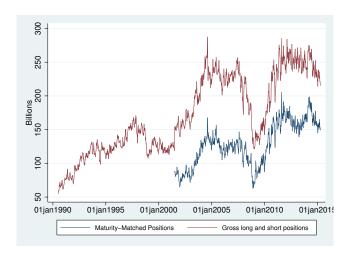
- Quant ('07), Flash ('10), Taper Tantrum ('13)
- Symptomatic of liquidity drought?

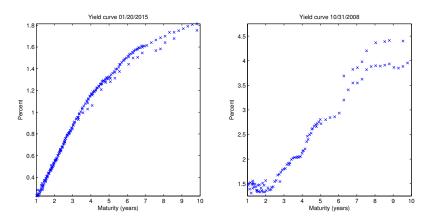
Approach

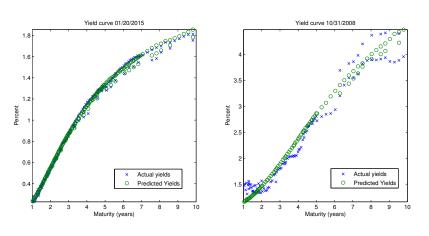
Look for a price and a quantity of liquidity such that

1. dealer willingness ↑ implies

$$P \downarrow Q \uparrow$$


macro shocks (TFP, uncertainty, markup, time pref, sentiment, monetary) do not imply


$$P \downarrow Q \uparrow$$
 or vice versa


Theory model

Robustness: Control for broad financial conditions

$$f(n) = \beta_0 + \beta_1 \exp(-n/\tau_1) + \beta_2(n/\tau_1) \exp(-n/\tau_1) + \beta_3(n/\tau_2) \exp(-n/\tau_2)$$

Theory: Overview

Noise compensates dealers for making markets

A investors, B investors

A bonds, B bonds: same maturity

Segmented: A investors trade only A bonds (GV 2002)

Dealers

Segmented markets

- Client owns a bond and no longer wants rate risk; wants to sell, not short similar maturity
- Close out a short
- ▶ "price-insensitive insurance companies" (Pedersen 2015)

Theory: Overview

"P" = $|p_b - p_a|$ and "Q" = gross long and short positions of the dealer

Dealer risk aversion $\Rightarrow P \uparrow Q \downarrow$

Investor risk aversion $\Rightarrow P \uparrow Q \uparrow$

Mean or variance of rates \Rightarrow no effect on P or Q

Model

$$Y_t = b + ct + B_1 Y_{t-1} + B_2 Y_{t-2} + \dots + B_l Y_{t-l} + \xi_t$$

$$E\left[\xi_{t}\xi_{t}^{'}\right]=\Sigma$$

Find A

$$A^{-1}\xi_t = v_t$$

where v_t mutually independent

$$E\left[v_{t}v_{t}^{'}\right]=I_{m}$$

Weak Normal Wishart prior. Weekly data: 1990 - 2015.

Model

Y_t

- Noise
- Aggregate gross long and short positions
- Equity-market implied vol (VIX)
- Equity excess returns $(r_t^{mkt} r_t^{rf})$
- Treasury market implied vol (MOVE)

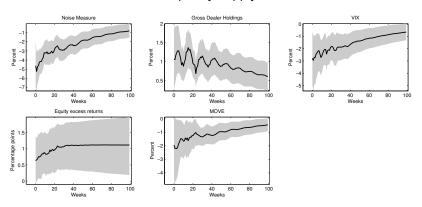
Identification

Benchmark

	Supply	Demand
Noise	-	+
Gross positions	+	+
VIX		
Equity returns		
MOVE		

Required to hold on impact and K=12 more weeks

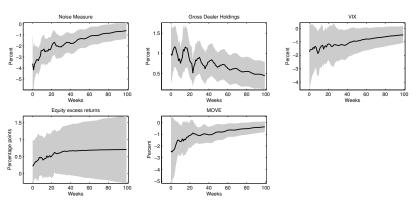
Identification


Alternative: Controlling for rate risk and equity market shocks

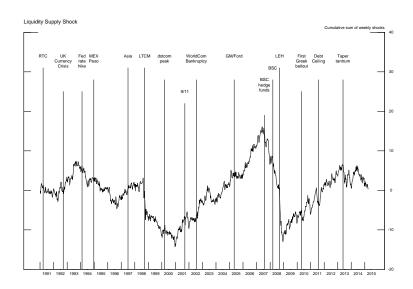
	Supply	Demand	Rate risk	Equity market
Noise	-	+		
Gross positions	+	+		
VIX				+
Equity returns				_
MOVE			+	

Required to hold on impact and K=12 more weeks

Model

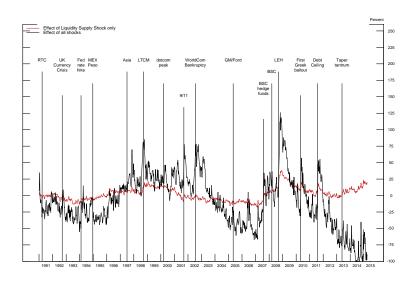

IRFs: Liquidity supply shock

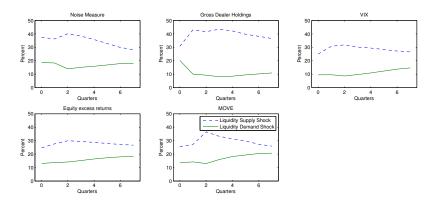
Gray: pointwise 68-percent credible interval


Model

IRFs: Liquidity supply shock - alternative specification

Gray: pointwise 68-percent credible interval


Cumulative sum of shocks


Cumulative effect on noise

Cumulative effect on VIX

Forecast error variance decomposition

Business cycles

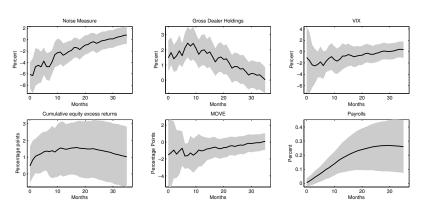
$$\Delta x_{t_m} = \alpha_0 + \sum_{i=0}^{l} \theta_{s,i} v_{s,t_m-i} + \epsilon_{s,t_m}$$

$$\rho(L)\epsilon_{s,t_m} = \zeta_{s,t} \sim_{i.i.d.} N(0, h_s^{-1})$$

Identification

lacksquare No feedback within a given month from Δx_{t_m} to v_{s,t_m}

Business cycles


Estimation

- ► Takes into account regressors are generated
- Unified Bayesian approach

Business cycles

Robustness

Gray: pointwise 68-percent credible interval

Conclusion

New method for identifying shocks to the supply of intermediation by broker dealers

 Improves on previous methods including recursively identified VARs

Liquidity supply shocks have important effects on real activity, inflation, asset prices

Normative conclusions require macro models with financial sector

Approach in this paper can potentially discipline models