From imitation to innovation: Where is all that Chinese R&D going?

Discussion

Michael König (University of Zurich), Zheng (Michael) Song (Chinese University of Hong Kong), Kjetil Storesletten (University of Oslo), Fabrizio Zilibotti (Yale University)

Discussant: Simon Alder (University of North Carolina at Chapel Hill)

Second IMF-Atlanta Fed Research Workshop on China’s Economy
May 18-19, 2017
Overview of the paper

Motivation

- China invests a large fraction of GDP in R&D
 - Approximately as much as the OECD total
 - More than the UK
- Proactive industrial policies
Overview of the paper
Total Research and Development Spending, 2011-15

Sources: World Bank; and IMF staff calculations.
Overview of the paper

Motivation

How effective is this investment?

1. Does R&D investment translate into productivity growth?
2. Is the allocation of R&D investment efficient?
3. Which firms do R&D?
Overview of the paper
TFP growth in Taiwan and China

TFP Growth: Taiwan

TFP Growth: China
Overview of the paper

Approach

- Chinese and Taiwanese firm-level data on R&D
- Theoretical model with innovation and imitation to measure wedges and TFP
- Estimate model parameters based on Taiwanese data
- Use estimates in the model and make predictions for China
Overview of the paper
Findings with baseline model

- Find that baseline model prediction doesn’t fit the data well
 - TFP growth increases too much in initial TFP level (too much selection)
 - e.g. difference in TFP growth between R&D and non-R&D firms too large (R&D too effective)
- Estimating model based on Chinese data suggests very low productivity of R&D
Overview of the paper
Findings with different versions of the model

- Analyze the implications of various modifications:
 1. Increasing the variance in the cost of R&D (c)
 2. Reducing probability of success of R&D (p)
 3. Assuming firms can fake R&D
 - Informational asymmetries lead to moral hazard and adverse selection
 - Model now matches the data better
Convergence in TFP

- Data shows that firms with the lowest initial productivity have the highest subsequent productivity growth rate
- Model is written in this way as well (next comment)

Is there a survival bias and how important is it?

- Firms with lower initial TFP may need to have better prospects of TFP growth to be able to continue their business (e.g. get credit)
 ⇒ Only those with high expected TFP growth survive
Comment II
Matching process for imitation

- The model predicts convergence through a simple mechanism:
 - Imitation successful with probability \(q(1 - F(A_t)) \)
 - Low productivity firm has the same probability to be matched with a firm of given \(A_t \) as a high productivity firm
 - Low productivity firm more likely to meet a firm with higher productivity than itself
 \(\Rightarrow\) Higher probability to imitate successfully

- Why and how do firms meet?

- Could the matching depend on the firm’s productivity?
Comment III
Moral Hazard

- There seems to be both moral hazard and adverse selection
- It would be great to have more information about the form of the subsidies, the informational problems, and how it is formalized in the model
- Show that this is the more plausible explanation than low productivity of R&D
Comment IV
Intellectual Property Rights

- Protection of intellectual property rights may differ in Taiwan and China
- Would like to know more about how this matters for the estimation and for the descriptive statistics
Crédit Impôt recherche : une niche fiscale hors de contrôle

Le crédit d'impôt recherche, réel coup de pouce donné aux entreprises innovantes, voit ses dépenses exploser, mais la fraude est devenue monnaie courante.
Comment V
Crédit d’Impôt Recherche

- France introduced the “Crédit d’Impôt Recherche (CIR)” in 1983 and expanded it further in 2008
- The number of firms that claimed tax credit doubled from 9800 to 17900 during 2007 to 2011, claims almost tripled (France Inter, 2017)
- Appears to lead to moral hazard problems
 - Firms try to find ways to ex post label outcomes as the result of research
 - A smaller share of researchers spend 100% of their time in research
Conclusion

- Great project on an important topic
- I like the use of Chinese and Taiwanese firm-level data and using the model to measure wedges and perform counterfactuals
- Introducing informational asymmetries seems a natural way to think about the puzzle of high R&D but small difference in TFP growth. This is something I would like to know more about.
- Still preliminary but very interesting and promising research