Discussion of:

“Pockets of Poverty: The Long-Term Effects of Redlining”

By Ian Appel and Jordan Nickerson

Bhash Mazumder, Federal Reserve Bank of Chicago

Atlanta Fed/Georgia State Real Estate Finance Conference, November 30, 2017
Overview

• I have a working paper on the same topic with Dan Aaronson and Dan Hartley
 (first presented in Spring 2016 at Fed System Applied Micro mtg. in Cleveland)
The Effects of the 1930s HOLC “Redlining” Maps

Daniel Aaronson, Daniel Hartley, and Bhashkar Mazumder
Overview

• I have a working paper on the same topic with Dan Aaronson and Dan Hartley
 (1st presented in Spring 2016 at System Applied Micro mtg. in Cleveland)
• Rather than say that “they should have done what we did”, I’ll just show you what we did
 • But, obviously just a 10 minute version
• Along the way I will try to compare and contrast
 • Different data, time periods
 • Different methodologies
 • Different outcomes
• Should shed light on some key issues
Our Key Findings

• HOLC maps led to increased segregation, reduced home ownership, lowered home values and credit scores, and decreased upward mobility
 o Effects peak around 1970 to 1980 and then wane
 o Boundaries drawn 80 years ago are reflected in measures of financial well-being today
• Long-run effects differ by border type and by city
 o Housing and credit market effects in “yellow-lined” areas bigger and more persistent than redlined areas. Potentially important for thinking about channels.
 o Work in progress explores heterogeneity by city.
Data

HOLC Maps and Data:
• Originally drawn for 239 cities with a population of 40,000 or more. We obtained geocoded maps of 149 cities from the University of Richmond Digital Scholarship Lab.
• We have also done textual analysis of detailed area description files

Census Data
• 1910 - 1940 100% count of geocoded address-level data
• 1950-1980: Census tract aggregate data
• 1990, 2000, 2010: Block-level aggregate data

NY Fed Consumer Credit Panel/Equifax, 1999-2016
• ~20% sample
• Block-level
• Credit scores, indicator for subprime
Methodology: Border Design

- We differentiate *D-C borders from C-B borders*
- Create 1/8, 1/4 mile buffer zone along borders
1) Identify Different Grade Boundaries
Example: New York City
2) Create Boundary Buffer Zones
(1/8 mile buffer around HOLC boundaries that are over ¼ mile in length)
Methodology: Border Design

- We differentiate D-C borders from C-B borders
- Create 1/8, 1/4 mile buffer zone along borders
- Using address level micro data from 1910-1930, we show that:
 1) Border Diff in Diff sometimes fails parallel trends assumption
 2) RD assumption of discontinuity along the border fails
 - Pre-trends in gaps are growing along D-C borders from 1910-1930
 - Clear pre-map discontinuities using fine grain cells (15 meters)
Parallel Trends Holds for C-B … but not for D-C

Gap in Share African American
(1/4 mile buffer zone)
Appendix Figure A2: Distance plots around HOLC Borders

Panel A: African American Share, 1930, C-D boundaries

Panel B: Home Ownership, 1930, B-C Boundaries

Panel C: House Values, 1930, B-C Boundaries

Note: Each dot here is 50ft or 15m
Methodology: Border Design

- We differentiate D-C borders from C-B borders
- Create 1/8, 1/4 mile buffer zone along borders
- Using address level micro data from 1910-1930, we show that:
 1) Border Diff in Diff sometimes fails parallel trends assumption
 2) RD assumption of discontinuity along the border fails
 - Pre-trends in gaps are growing along D-C borders from 1910-1930
 - Clear pre-map discontinuities using fine grain cells (15 meters)
- Alternative Approaches:
 - Highlight C-B where diff in diff assumptions are highly plausible
 - Compare treated borders to a set of counterfactual boundaries we create using propensity score (synthetic control method) on observables. Look for boundaries that could have been drawn based on pre-existing gaps (but weren’t)
 - Use only subset of idiosyncratic borders (counterfactual boundaries with lowest likelihood for being drawn based on p-scores --RD assumptions actually hold here)
Results
Effects on Segregation (C-B)

Gap in Share African American, C-B Boundary
(Propensity Score, Grid CF, 1/4 mile)
Effects on Segregation (C-B)

Gap in Share African American, C-B Boundary
(Propensity Score, Grid CF, 1/4 mile)
Effects on Segregation (C-B)

Gap in Share African American, C-B Boundary
(Propensity Score, Grid CF, 1/4 mile)
Effects on Segregation (D-C)

Gap in Share African American, D-C Boundary

Treated
Control
Effects on Segregation (D-C): Comparing Low vs High Propensity for Treatment

Eliminates “pre-trends”
Home Ownership Results

Gap in Home Ownership, D-C Boundary
(Propensity Score, Grid CF, 1/4 mile)

Gap in Home Ownership, C-B Boundary
(Propensity Score, Grid CF, 1/4 mile)

This is 1990
House Value Results

Gap in House Value, D-C Boundary
(Propensity Score, Grid CF, 1/4 mile)

Gap in House Value, C-B Boundary
(Propensity Score, Grid CF, 1/4 mile)
Effects on Modern Credit Scores

Figure 11: Effects on D-C and C-B Gaps in Credit Scores

Panel A: D-C Gaps in Credit Scores

Panel B: D-C Gaps in Subprime

Panel C: C-B Gaps in Credit Scores

Panel D: C-B Gaps in Subprime

Source: FRBNY Consumer Credit Panel/Equifax
Segregation Effects by Region

Panel A: Northeast

Panel B: Midwest

Panel C: South
Figure 13: City-specific Gaps Along D-C and C-B Borders

Panel A: D-C Gaps in African American Share by City, Average 1990-2010
Concluding Thoughts

• Strongly suggestive evidence that maps had causal effects over subsequent decades (race, housing markets, credit markets). Account for 15-30 percent of overall area gaps in segregation and home ownership over 1950-2010.

• Effects on C-B borders (“yellow-lined”) are typically larger and more persistent. Is this due to policy, information, spatial investment?

• Evidence that effects peaked around 1970 or 1980.

• Fair degree of heterogeneity across regions, cities and neighborhood grades. Useful variation to try to better understand.

• Comparison with Appel and Nickerson
 o Similar magnitude of effect size on home ownership in 1990
 o But, many differences in data, research design and overall methodology
 o Other important points of contrast: we find that border types matter and that neighborhood demographic composition changed dramatically.
Extra Slides
Identification strategy Part 2

• **Problem:** D-C boundaries were likely drawn where racial gaps were growing and where homeownership gaps existed. There may also be pre-existing trends in unobservables.

• **Solutions:**
 1. Create control boundaries that had similar characteristics and trends before the maps were drawn.
 2. Use only treated boundaries with minimal gaps pre-maps.

• **Key Ideas:**
 “Missing Borders” --some borders were not drawn because they were inside a natural neighborhood. These lend themselves to be “controls” (Chicago)
 “Misaligned Borders” --some borders might have been drawn at an arbitrary location, simply to close a polygon.
Potential Issues with HOLC Borders

1. **Missing interior borders** (these are potential controls)

Ex. Chicago D98: “The eastern portion of the area is not quite so heavily populated with foreign element.”

2. **“Misaligned” Borders drawn to close a polygon**
Population by Race Dynamics Differ between D-C and C-B

D-C Boundaries

- Gap in Population Density, D-C Boundary
- Gap in AA Population Density, D-C Boundary
- Gap in White Population Density, D-C Boundary

C-B Boundaries

- Gap in Population Density, C-B Boundary
- Gap in AA Population Density, C-B Boundary
- Gap in White Population Density, C-B Boundary

Note: a little less robust to methods.
Figure A5: Distance plot of AA Share Using Low Propensity Treated