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Motivation: If/How Are ML Methods Better at 
Predicting Default in FinTech Lending?

• How much do machine learning methods improve 
prediction accuracy? 

• Which covariates are important in the ML models, and 
how do they compare with logistic regressions?
o Any notable interactive effects across covariates?

• How much do more data help ML models (relative to 
logistic model)? How much do more input variables 
help, and how does it depend on the type of inputs?

• Do ML models predict more accurate and/or better 
default probabilities for subgroups of consumers?
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Key Findings: ML Models Predict More 
Accurately, Help Uncover Complex Relation… 

• Tree-based ML models improve prediction accuracy
o Excel more in ranking than exact probability estimate 

• List of important inputs (features) similar across ML 
models and logistic regressions
o But ML models uncover notable interactive effects

• More observations help ML models relatively more, 
but only up to a point (~ 5,000 obs.) 

• More predictors, esp. local conditions, help too

• Two tree-based ML models predict better default prob. 
for different subgroups of consumers, but neither is 
more accurate for any subgroup 
o Intrinsic algorithm matters…
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Trees: Recursive Partition of Data Space 
Nonparametric Flex. Approximation of Functions
• Allow different relationships in different parts of the sample 

space

• Competitive in classification problems (e.g., binary responses), 
even though trees using Gini gains for splits (e.g., CART) are 
subject to inherent biases

• Interactive effects 
a natural result 

• Used for feature 
selection: only 
those inputs used 
for splits 
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Random Forests: 
Ensemble of Trees  Low Variance

• Individual tree: low bias but high variance 
 To reduce variance: Average predictions over many 

trees, and reduce correlation across trees

• Each tree: trained on bootstrapped random subsample, 
and random subset of covariates 
• Subsetting of inputs: efficient for input selection in high-

dimension problems
• Can be interpreted as adaptive nearest neighbors (NN)

• Easy to apply: fewer hyperparameters to tune than 
boosting and faster coverage; competitive performance 

• But still subject to intrinsic CART bias
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Gradient Boosting with Tree Base Learners: 
Stagewise Additive Modeling, Low Bias & Var.

• Boosting: sequence of simple models (base learners), 
each successive step fits last step’s residual or 
increases weights on obs. with wrong predictions
o Gradient boosting: fits last step’s residual to achieve 

largest descent in gradient of the loss function 
 Final prediction: weighted average over all the steps

• Reduce both bias & variance; low risk of overfitting 
• Boosting with trees as base learners found to excel in 

classification problems

• Feature Importance: an input’s contribution to reducing 
the loss function
o Defined on relative basis; normalize the sum to 100
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Misc. Additional Procedures to Implement ML 
Models: CV, Discretize Data,…

• K-fold Cross validation: set aside 1/K data for validating model, 
and train model on the rest (1 – 1/K) of data, then rotate
o These ML models lack formal inference, so use CV to quantify 

nonparametrically the uncertainty regarding predictions
o If suspect data drift, train + CV using loans made in period t, 

compare with error rate of tests on future loans (t + h)

• Hyperparameter tuning: 
o Tree depth (degree of interactive effects), min. terminal node size, 

% of input subset; learning rate in boosting (low rate  many trees)

• Discretize input variables to minimize the impact of intrinsic 
bias in CART

• Also try LASSO and Ridge regressions: L1 and L2 regularization
o LASSO: L1 penalty leads to feature selection naturally
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Data Sources

• LendingClub:
o Borrower attributes: mainly credit bureau data (FICO score, DTI, # 

of inquiries last 6 months, etc.) 
o Loan outcome (3-year loans only for max. data)

• Census Bureau (ACS): prime-age population, poverty share, 
share with college degrees, etc.

• BLS unemployment rate (US, by county  by 3-digit zip code)
• FHFA HPI (by 3-digit zip code)
• Equifax (CCP) data by 3-digit zip: avg. balance on credit card, 

student loan and other non-mortgage debt 
• Banking market conditions: wt. avg. NPL of CRE and RRE of 

banks in the zip area, CET1 cap ratio, deposit HHI 
• BEA and BLS: major NIPA indicators (GDP and PCE growth, 

deflator inflation)
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Training vs. Testing Samples, 
Metrics for Model Comparison 

• Training: by monthly loan cohort 2009:M1 – 2014:M2 
• Testing: loans made in the same month (CV test subsample) vs. 

in future months
o Train models on cohort t, test on cohorts t + h, h ≥ 0
o In real time, need data released ≥ t + 36 to train models on cohort t;

need data released ≥ t + h + 36 to test cohort t + h
o Last fully matured loan cohort 2015:M8

• Metrics for model comparison:
o Mean squared error (MSE): exact value of predicted PD matters
o Area under ROC curve (AUC): 

probability of ranking a random obs. with y = 1 higher than a 
random obs. with y = 0 
 ranking matters, but not exact value of predicted PD
 AUC = 0.5 for a completely uninformative model 
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ML Models Rank Default Prob. More Accurately: 
AUC Comparison Across All Models
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In contrast to AUC, ML Model MSEs Comparable 
to LASSO, Ridge  Regularization is Key
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AUC comparison: LendingClub Credit Grades 
Rank Borrowers Most Accurately
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Random Forests Feature Importance: Similar to 
Logistic and LASSO Coeff. Significance Ranking 
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Boosted Trees Feature Importance: Similar 
Ordering but More Uniform across Inputs
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Partial Dependence—Interactive Effect betw. FICO 
& Unemployment Rate (Low FICO X High UR)
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The More Covariates, the Better?

1. Baseline: 
• All individual + loan indicators
• Local economic conditions: ex ante indicators, ex post 

unemployment rate & HPI growth rate 
2. LendingClub early grade model variables:

• 8 key borrower credit indicators
3. Ex ante economic variables only:

• Baseline – ex post local conditions 
4. Thin credit: to mimic cases with little credit history

• # of inquiries in last 6 months, months since last inquiry, 
total current/high balance, credit history length, requested 
loan amount

• All local economic conditions
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More Predictors Increase ML Models’ AUC More, 
esp. for Test Loans in the Same Month
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More Observations Increase ML Models’ AUC 
More, but peak around 500~5000 obs.
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ML Models’ Prediction Accuracy (Relative MSE) 
Hardly Differs by Borrower Risk, Income, etc.

XGBoost
Random 
Forest

Risk Grade A -1.270 -1.669
(1.661) (1.674)

Risk Grade B -1.219 -1.907
(1.343) (1.362)

Risk Grade C -0.968 -1.762
(1.050) (1.073)

Risk Grade D -1.020 -1.711
(0.897) (0.922)

Risk Grade E -0.739 -1.144
(0.689) (0.716)
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ML Models’ Prediction Accuracy (Relative MSE) 
Hardly Differs by Borrower Risk, Income, etc.

XGBoost
Random 
Forest

Risk Grade A -1.270 -1.669
(1.661) (1.674)

Risk Grade B -1.219 -1.907
(1.343) (1.362)

Risk Grade C -0.968 -1.762
(1.050) (1.073)

Risk Grade D -1.020 -1.711
(0.897) (0.922)

Risk Grade E -0.739 -1.144
(0.689) (0.716)

XGBoost
Random 
Forest

FICO Score 0.00253 0.00732
(0.00759) (0.00750)

Debt-to-Income Ratio -0.00211 -0.0167
(0.0228) (0.0223)

Log of Applicant Income 0.284 0.532
(0.347) (0.344)

Log of Loan Amount 0.0586 0.147*
(0.0738) (0.0727)

Log of 3-digit Zip Code Population -0.0400 -0.154
(1.373) (1.443)

Unemploy. Rate Difference from US Rate 1.683** 1.847**
(0.428) (0.432)

HPI Growth Rate (t-1) -0.0596* -0.0602*
(0.0290) (0.0287)

Poverty Share (%) 0.529* 0.508
(0.262) (0.263)

Share with Card Utilization >= 85% 0.194 0.220
(0.355) (0.356)
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Boosted Trees Predict Lower Prob. for Borrowers 
Already Deemed Safe, Random Forests Less So

XGBoost
Random 
Forest

Risk Grade A 4.196** -1.538
(1.077) (1.050)

Risk Grade B 2.459** -1.728*
(0.812) (0.783)

Risk Grade C 0.976 -1.839**
(0.651) (0.631)

Risk Grade D 0.0492 -1.646**
(0.585) (0.571)

Risk Grade E -0.111 -0.984*
(0.469) (0.460)
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Boosted Trees Predict Lower Prob. for Borrowers 
Already Deemed Safe, Random Forests Less So

XGBoost
Random 
Forest

Risk Grade A 4.196** -1.538
(1.077) (1.050)

Risk Grade B 2.459** -1.728*
(0.812) (0.783)

Risk Grade C 0.976 -1.839**
(0.651) (0.631)

Risk Grade D 0.0492 -1.646**
(0.585) (0.571)

Risk Grade E -0.111 -0.984*
(0.469) (0.460)

XGBoost
Random 
Forest

FICO Score 0.0639** 0.0266**
(0.00880) (0.00853)

Debt-to-Income Ratio -0.0867** 0.0622**
(0.0204) (0.0193)

Log of Applicant Income 2.137** 0.0928
(0.392) (0.397)

Log of Loan Amount 1.162** 1.094**
(0.141) (0.134)

Log of 3-digit Zip Code Population 0.932 1.218
(1.722) (1.865)

Unemploy. Rate Difference from US Rate -0.637 -1.002
(0.615) (0.639)

HPI Growth Rate (t-1) 0.0232 0.0377
(0.0468) (0.0459)

Poverty Share (%) -0.773* -0.617
(0.390) (0.385)

Share with Card Utilization >= 85% -0.484 -0.359
(0.498) (0.491)
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Summary of Findings

• Tree-based ML models improve prediction accuracy
o Excel more in ranking than exact probability estimate

• List of important inputs (features) similar across ML 
models and logistic regressions
o But ML models uncover notable interactive effects

• More observations help ML models relatively more, 
but only up to a point (~ 5,000 obs) 

• More predictors, esp. local conditions, help too

• Two tree-based ML models predict better default prob. 
for different subgroups of consumers, but neither is 
more accurate for any subgroup 
o Algorithm matters: averaging helps risky borrowers 

more


