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Gender wage gap

e Convergence of gender wage gap (Blau and Kahn, 2017)

* Human capital gap (education, experience, etc.)

* Discrimination
* Unexplained gap persists

* Preferences for non-pay job attributes => compensating

differential (Goldin, 2014) (Wiswall et al., 2014, 2017) (Gutierrez,
2018), (Le Barbanchon et al., 2019)

* Temporal flexibility

* Occupations and industries

[- Commuting friction } < This paper




Log wage gap and log commuting gap (residual)
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Raw gap

e Large geographic variation in commuting friction due to the

geography of jobs

e Commuting friction accounts for 17-20% of the remaining
gender wage gap (preliminary)
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Job choice model (1/3)

 Workers maximize foIIowing
U(r,w) = In(w T

Differ by gender

e Job choice frontier- maximum wage attainable
within commuting time t

Return to commuting
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Job choice model (2/3)
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Job choice model (3/3) — smaller B
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Model prediction

e Gender gap in commuting time and wage larger for
workers living far from high-wage jobs (relative to
low-wage jobs).

e Workers living far from city centers should see larger
wage and commuting gaps.

e Gaps should vary more spatially for occupations in which
high-wage jobs are geographically concentrated.

* Wage gap should be correlated with commuting
gap.
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Data
e American Community Survey (2013-2017)

e Cross-sectional earnings, hours worked and commuting time
* Rich set of demographic variables: sex, age, marital status, children,
education.

e PUMA (Public Use Microdata Areas) geocode for each worker.

Log commute gap

Log wage gap (NY MSA) (NY MSA)
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Empirical evidence (1/3): Gender gaps
larger farther from city centers

Log Hourly Wage
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Empirical evidence (2/3): wage gap is
highly correlated with commuting gap

« Commuting gap can explain a portion of the gender wage gap
 Gender wage gap is slightly lower in places with no
commuting gap. (0.1079 to ~0.0893 — around 17%)

Residual log wage gap vs.
Log wage gap vs. log commuting gap residual log commuting gap
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Empirical evidence (3/3): Commuting
gap unlikely driven by spatial sorting

e Management professional jobs are highly centralized
e Healthcare practitioner jobs much more decentralized

e Spatial sorting not likely drives commuting gap

Management and professional jobs Healthcare practitioners
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Estimating the Indifference curve
U(r,w) = In(w) — \;7

American Community Survey 2013-2017

Under perfect mobility, utility U equal everywhere
e Regress In(w) on tyield unbiased estimate of A

Simple cross-sectional regression yield biased results
1. Location sorting by ability (demo)
2. Random job arrival (demo)

Identify the slope of reservation utility curve
e Slope of the lower boundary of observed (In(w), 1):
* (In(wA), %)
e Estimator must be robust to outliers and measurement errors
e (.01 quantile regression on residualized (In(w), t) (simulation)




Indifference curve: Results

Single Single Married Married
All no w/ no w/ College < College
children children children children
(1) (2) (3) (4) (5) (6) (7)
A 0.379%*F% | 0.408*** (0.322%%* 0.467*** 0.297%%*  (.330%** 0.386%**
(0.0119) (0.0266) (0.064) (0.0253) (0.0174) (0.0197) (0.0159)
Af 0.506%*F* | 0.357*** ().382%** 0.616%** 0.588*** () 49 *** 0.501%**
(0.0144) (0.0291) (0.0377) (0.0312) (0.0267) (0.0231) (0.0199)
Af = Am 0.127*** -0.051 0.0598 0.149%** 0.29%** 0.161%** 0.116%**
(0.0187) (0.0395) (0.0743) (0.0401) (0.0319) (0.0303) (0.0255)
Observations 5,022,015 1,167,374 386,044 983,149 1,699,917 1,844,513 2,949 877
Residence NY Chicago SF Boston
(1) (2) (3) (4)
Am 0.379%** ().347*** 0.475%%* 0.464%**
(0.0439) (0.0652) (0.101) (0.0704)
Af 0.429%** (0.592%** 0.660%** 0.508%***
(0.0467) (0.0807) (0.0827) (0.105)
A= Am 0.050 (0.245%%* 0.185 0.0444
(0.0641) (0.1037) (0.131) (0.126)
Observations 309,236 137,728 80,582 82.712




Measuring the Job choice set frontier
In(w) =& +\6;In(7 — 77" if 7 > 7™"
e Simulate spatial distribution of jobs with wages for each

occupation and residential PUMA
e Mean and sd of residual wages - ACS 2013-2017 Place-of-Work PUMA
(PWPUMA)
e Zip Code Business Patterns (zip code level job count)
* Google distance API

e Frontier estimator (Cazals et al. 2002) to pin down B (estimator)

Financial manager — Northern suburbs, NY  Financial manager — Midtown Manhattan, NY
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Job choice set frontier: Results

B distribution
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Model prediction vs. data
Bi(Af — Am)
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Am
* Predicted log wage gap is 0.01386 log gap (0.07038 actual gap) —
19.69%

e Predicted log commuting gap is 0.03365 log gap (0.0243 actual
gap) — 138%
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Counterfactual: increasing travel speed

e Reduce commuting time

e Re-compute 3

Two effects
e Smooth existing trade-off (B { )
* Jobs previously too far may enter trade-off (B 1)
* Nonlinear

Reducing Commute Time by

0% 20% 50% 80%

Observed gap in log wage 0.07038 0.07038 0.07038 0.07038
Model explained gap 0.01386 0.01355 0.01297 0.00775

Fraction explained 19.69% 19.25% 18.43% 11.01%




Conclusion

* We analyze the role of commuting friction in the
remaining gender wage gap

e Use a job choice model to illustrate that differential
preferences for commuting and returns to
commuting lead to wage differentials between
genders

e Strong empirical support in the data

e Estimate the model: the indifference curve and job
choice frontier

e Commuting friction explains a portion (17-20%) of
the gender wage gap (preliminary)
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Log wage gap and log commuting gap
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Sorting by ability
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Random job arrival
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|dentification (2/2)
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Frontier estimator

e Cazals et al. (2002)
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e M=500
* n(t) is the number of observations less than t
e Robust to outliers

e Estimate the maximum log wage within certain log
commuting time threshold

~
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